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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

AN APPROACH TO ATOMICITY DECOMPOSITION IN THE EVENT-B

FORMAL METHOD

by Asieh Salehi Fathabadi

Formal methods are mathematically based techniques and tools to model software and

hardware systems. Event-B is a formal method that emerged over the last decade as

an evolution of classical B. Event-B is supported by an open and extensible Eclipse-

based tool-set, called Rodin. Rodin provides an integrated environment supporting the

whole process of multi-stage modelling and handling of the associated proofs. Rodin

extensibility is exploited by developing a number of plug-ins to extend the main plat-

form capabilities. During recent years, Event-B and Rodin have been used to model

some real-world complex systems and prove consistency properties of them. However

developing models of large and complex systems is not an easy task, since it can result

in complex models and difficult proofs. There are some techniques in Event-B which

can help to tackle the difficulties of modelling complex systems; refinement and model

decomposition are two examples. Atomicity decomposition was recently introduced as

another technique to help with the structuring of refinement-based development of com-

plex systems in Event-B.

In this research, we have investigated how the development process with Event-B can be

enriched further by using the atomicity decomposition approach. The atomicity decom-

position approach provides a graphical notation to structure refinement and to support

the explicit sequencing of events in an Event-B model. In this approach, modelling

usually starts with a single atomic event of the system which is split to two or more

sub-events in the next refinement level.

We have further developed the atomicity decomposition patterns and features. A formal

description of the atomicity decomposition language is presented. The transformation

rules from an atomicity decomposition diagram to the Event-B model are defined. The

atomicity decomposition diagrams can be transformed to Event-B models using these

rules. Exploiting the extensibility of the Rodin platform, a Rodin plug-in tool was

developed to provide atomicity decomposition support in Event-B. The modelling and

tool extensions developed in this thesis are applied to two complex case studies, the

Media Channel System and the BepiColombo System. We present an evaluation of the

atomicity decomposition approach using insights gained from these case studies.
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Chapter 1

Introduction

Formal Methods [3, 4] are mathematically based modelling techniques used to specify

and verify hardware and software systems. Z [5, 6], VDM [7, 8] and B-Method (also

known as classical B) [9, 10, 11, 12] are among the most recent formal methods.

Event-B [4, 13, 14] is an evolution of the classical B. Event-B uses the concept of Re-

finement [8] in modelling. Event-B modelling starts with an abstract specification of a

system. Details are added during refinement steps in order to arrive at a more detailed

model. The mathematical language of Event-B is base on set theory and first order logic.

Based on the Event-B language, a set of proofs can be produced and discharged for each

Event-B model. Rodin [13, 15, 16, 17] is an open source, extensible and integrated mod-

elling tool supporting Event-B. This tool is not only used as a modelling environment,

but also provides an integrated environment for proving properties of models. Formal

modelling is not just about constructing descriptions, but proving some properties about

the formal models is equally important. Rodin provides an integrated environment for

both modelling and proving. Extensibility of Rodin makes it easy for new features to be

added to it. During recent years, some Eclipse based plug-ins were developed and added

to Rodin. ProB [18] as an animator, UML-B [19] as graphical environment provider,

B2Latex [20] as a translator from B to Latex and model decomposition [21] which allows

decomposition of a model into sub-models, have been developed and added to Rodin.

Recently Event-B has been applied to developing some notable industrial cases [22, 23].

However building models of large and complex systems results in large and complex

models and proofs. Dealing with large and complex models and proofs is a difficult and

time consuming task. Some techniques such as Atomicity Decomposition [24] sometimes

called Event Decomposition can help to solve this difficulty. Atomicity decomposition

augments refinement in Event-B in order to structure the refinement process.

This thesis focusses on atomicity decomposition as an approach for modelling large and

complex systems using Event-B. This approach enables developers to structure the re-

finement process in Event-B. Refinement in Event-B is too general. It does not explicitly

1
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show all of the relations between behaviors of the abstract model, called abstract events,

and the behaviors of the refinement, called the concrete events. Atomicity decomposi-

tion diagrams enables us to explicitly show the relationships between abstract events

and concrete events. It also imposes an explicit ordering between events within a single

level of refinement.

Based on the atomicity decomposition approach, during each refinement level, abstract

events can be decomposed into several sub-events using a provided graphical notation.

This approach demonstrates how coarse-grained atomicity is refined to more fine-grained

atomicity. This approach is also capable of showing an overall structure of several re-

finement levels. Therefore it provides an effective way to handle complex development.

On the other hand, providing decomposition constructs and patterns, makes the mod-

elling of large systems more manageable. Using constructs and patterns, we can achieve

reusability in Event-B development. In the atomicity decomposition approach, patterns

refer to common atomicity decomposition styles.

To implement atomicity decomposition, tool support has been developed as a plug-in

for the Rodin platform. This tool provides an environment to define atomicity decom-

position rules and patterns. The developed atomicity decomposition plug-in can help to

ease the burden of the manual work.

1.1 Thesis Motivation and Contribution

The modelling of large and complex systems can result in large and complex models, and

proofs [25]. Refinement, generic instantiation and decomposition, are three techniques

which can help us to overcome this difficulty [25]. Decomposition [24, 26] in Event-

B has two types; Model Decomposition and Atomicity Decomposition. In the case of

model decomposition, which will be explained in Section 2.5, when a model becomes too

large, we can split it into small sub-models which are much easier to tackle. Through

generic instantiation an existing model can be used as generic and instantiated to be

used in another development [27]. Our focus in this thesis is the latest, Atomicity

Decomposition.

We are aware that refinement, as will be explained in Sections 2.2.3 and 2.4.3, is a useful

modelling technique and can be a good solution for those difficulties, but it can not solve

all complexity problems since it does not show the relations between refinement levels.

Clear relationships between actions of refinement levels in a graphical environment,

which is done using the atomicity decomposition approach, make complex models more

understandable.

This thesis contributes to the development of systems using the Event-B formal method

and Rodin tool-set. Thesis contributions are listed below :
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• Structure Refinement in Event-B

One of the important contributions of the atomicity decomposition approach,

which is first outlined in [24], is that it shows the relationships between the earlier

level of modelling called the abstract model and the corresponding later refinement

level called the concrete model. Whereas just by applying refinement technique

into the Event-B text we are not able to show the relationships between refinement

levels, Section 3.3. Therefore we can say that atomicity decomposition is an ap-

proach in Event-B which augments Event-B refinement with additional structure.

Atomicity decomposition is a representation of the refinement process in Event-

B which explicitly presents relationships between actions of different refinement

levels. Using atomicity decomposition diagrams through refinement levels make

this technique a visual refinement strategy. Also it has the ability to show the

explicit ordering between actions of one level of refinement, Section 3.2.

• Evaluation via Complex Case Studies

The atomicity decomposition approach has been applied to the development pro-

cess of two complex case studies, the Media Channel System and the BepiColombo

System (Chapter 7). These developments highlight the benefits of the atomicity

decomposition approach, during the development process of a complex system.

An evaluation of the atomicity decomposition approach using insights gained from

these case studies is outlined in Chapter 8. The application of the atomicity de-

composition approach in development of the media channel system is published

in “Formal Methods for Components and Objects” (FMCO) 2009 conference [1].

And the BepiColombo development using the atomicity decomposition approach

is published in “Nasa Formal Methods” (NFM) 2011 symposium [2].

• Constructs and Patterns

Atomicity decomposition assists us in the development of refinement patterns, and

this result can decrease the modelling effort. As a result of developing the case

studies some new construct patterns and features have been discovered which are

presented in Chapter 4.

• Language Description and Translation Rules

Defining atomicity decomposition patterns helped us to describe the atomicity

decomposition language in a formal way. The general and formal description of

the language of atomicity decomposition diagrams and rules of translating each

element of diagram to Event-B model are presented in Chapter 5.

• Tool Support and Automatic Generation of Models

Developing the atomicity decomposition plug-in in the Rodin platform as tool

support for this approach; this results in automatic generation of an Event-B

model from an atomicity decomposition diagram, which can decrease the modelling

effort in complex systems. The tool development is presented in Chapter 6. We
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present the work developed for the atomicity decomposition approach including

the theory behind it (Chapter 5), the extension to tool support (Chapter 6) and

the application to case studies (Chapter 7).

1.2 Outcomes and Thesis Organisation

This Report is organised as follows. Chapter 2 introduces the necessary background to

understand the rest of the document. Some background knowledge about the formal

method is outlined in Section 2.2, followed by introducing existing formal methods in

Section 2.3. Then Section 2.4 focuses on Event-B and its structure and refinement.

Finally Section 2.5 explains the background definition of model decomposition in Event-

B which is used later in developing a case study, the BepiColombo system.

The atomicity decomposition approach is first introduced by Butler in [24]. Chapter 3

is a literature review of atomicity decomposition presented in [24]. In this chapter, the

benefits of the approach in structuring refinement in Event-B is highlighted and two

small examples are presented.

We manually applied the approach presented in [24] to two complex case studies, the

media channel system and the BepiColombo system, an on-board instrument controller

for a space craft. Some new construct patterns and features were discovered during the

case study developments. These new patterns and features together with the existing

ones from [24] are presented in Chapter 4.

Later using the pattern definitions, the general and formal description of the atomicity

decomposition approach and rules of translating to Event-B model are presented in

Chapter 5. The tool supported the atomicity decomposition approach is presented in

Chapter 6.

Instead of the manual modelling, using the developed tool support we have developed the

model of case studies for the second time in a semi-automatic way. Chapter 7 presents

the application of the atomicity decomposition approach in the developments of case

studies including manual and semi-automatic models. Then in Chapter 8 a critical

evaluation of the atomicity decomposition approach is presented based on experience of

the case study developments. Finally, there is a conclusion and explanation of future

work.



Chapter 2

Background

2.1 Introduction

This chapter presents relevant background on modelling, formal methods and Event-

B. Section 2.2 will give a brief overview of modelling, its difficulties and outlines the

significant role of it as an early stage in the software development process. Then formal

methods as modelling techniques will be presented. And it is followed by an overview

of some formal methods in Section 2.3. Event-B as a formal method for specifying

and proving about software and hardware systems, its notation and structure will be

described in Section 2.4. This section also outlines the definition of refinement in Event-

B and a brief explanation of Rodin, an open Eclipse based toolkit for modelling in

Event-B. Finally an overview of model decomposition in Event-B which is later used in

development of a case study is described in Section 2.5.

2.2 Formal Methods

2.2.1 Overview of Modelling

There is a big difference between modelling and programming. First the model of a

system is not exactly the system; it means the model of a system is not executable like

the program of a system. For example, one can not play with the model of a computer

game. Moreover as Abrial says [3, 4], a program contains the algorithm whereas a model

describes the properties of a program; in other words, the initial model of a program

describes the way by which we can finally judge that the final program is correct. For

example, the initial model of an array sorting program does not explain how to sort

it. It rather explains what the properties of a sorted array are and what the relation is

between the initial non-sorted array and the final sorted one.

5
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One of the benefits of using modelling as a step in the development process of a system

is minimizing failure risks and cost in the testing phase [3]. A model of a program comes

with proofs which related to the program. In proving we make certain that all properties

can be proved to be consistent. With using proofs, we reason about our models [25].

More precisely, the model of a program is not just descriptions of it; modelling can be

accompanied by proving some consistency properties [3, 4].

2.2.2 Definition of Formal Methods

Formal methods can be defined as mathematically-based techniques which are used to

specifying and reasoning about software and hardware systems [3, 4]. Holloway believes

that engineers will consider formal methods [28].

The language of most formal methods is a language of classical logic and set theory.

Abrial states that it is convenient to communicate models to everyone that has some

mathematical background. Also using mathematical language will allow us to do some

reasoning in the form of proofs [4, 29].

Rangarajan believes that using formal methods as a collection of mathematical activities

and formal logic to specify and prove about systems has many valuable benefits [30].

First, considering formal methods as an early phase in the development process life cycle,

results in early detection of defects, so it can play the role of a solution to heavy testing

phase on final product which is well known to happen quite often too late in development

process life cycle. Moreover, in the testing phase it is impossible to provide coverage

of all possible interleaving and event orderings, whereas, by using model checkers and

provers as formal analysis tools we can reach more fault conditions, so another benefit

of using formal methods can be guarantee of correctness. Finally, the analytical nature

of formal methods results in more reliable verification in large and complex systems

compared to testing alone.

2.2.3 Refinement

Building a model, usually starts with a very abstract model of the system, and then

gradually details are added through several modelling steps in such a way that leads

us towards a suitable implementation; this approach is called refinement [8]. In other

words, during refinement levels, the model becomes more and more precise and closer

to the requirements. Roever and Engelhardt in [8], state that a useful analogy is that of

the scientist looking through a microscope. The microscope does not change anything,

some previously invisible parts of the reality are now revealed by the microscope.
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From a given model M1, a new model M2 can be built as a refinement of M1. In this

case, model M1 is called an abstraction of M2, and model M2 will said to be a concrete

version of M1. A concrete model is said to refine its abstraction.

Refinement allows us to tackle the system complexity. Using refinement, instead of

building a single model in a flat manner, we have a sequence of models, where each of

them is supposed to be a refinement of the previous [25].

Refinement calculus is a formalized approach to stepwise refinement for program con-

struction. The refinement calculus is a calculus of program transformation. It starts from

abstract specification of a system. It is then refined by a series of transformations into

executable program. Refinement calculus is originated by Back [31] and Morgan [32].

In Morgan’s book the motivation was to link Z notation to an executable programming

notation.

2.3 Overview of Some Formal Modelling Languages

Many formal methods have been proposed in recent years to improve software qual-

ity. These include specification and modelling languages as well as formal verification

techniques, such as model checking, and theorem proving. Here we are going to briefly

summaries some well known existing formal modelling languages:

2.3.1 VDM

The VDM [7, 8], (Vienna Development Method) is one of the longest-established formal

methods for the development of computer-based systems, introduced by a research group

of IBM laboratory in Vienna in the 1970s. It has grown to include a group of techniques

and tools based on a formal specification language - the VDM Specification Language

(VDM-SL). Jones claimed that it was developed in an industrial environment and was

one of the most widely used formal methods in 1990s [7]. VDM supports writing speci-

fication and also discharging proof obligations that ensure that the specification can be

proven to be consistent. All specification and proof obligation are written in term of

predicates.

Use of VDM starts with a very abstract model and develops this into an implementation.

Each step involves Data Reification, then Operation Decomposition. Data reification

develops the abstract data types into more concrete data structures, while operation

decomposition develops the (abstract) implicit specifications of operations and functions

into algorithms that can be directly implemented in a computer language of choice [7].
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2.3.2 Z

In 1977, Abrial proposed Z with the help of Schuman and Meyer [33]. It was devel-

oped further at Oxford University. The Z notation [5, 6], (pronounced zed) is a formal

modelling language based on standard mathematical notation used in set theory and

logic. The set theory used includes standard set operators, set comprehension, cartesian

products, and power sets. The mathematical logic is a first-order predicate calculus.

The Z notation is used for specifying, modelling and reasoning about computing sys-

tems. Jacky states that Z is just a notation, it is not a method and it can support many

different methods [5]. Also as it mentioned in Section 2.2.1 like other formal notations,

Z in not a programming language, so it is not an executable notation. Although Z is

more popular than VDM, VDM has the composition and decomposition features [34].

A Z specification describes the state space together with a collection of operations. The

Z refinement is defined between two Z specifications, allows both the state space and

the individual operations to be refined. Operation refinement is the process of recasting

each abstract operation into a concrete operation. Data refinement extends operation

refinement by allowing the state space of the concrete operations to be different from

the state space of the abstract operations. In order to specification structuring in Z,

a schema notation is included in it [6]. Schema notation provides a framework for a

textual combination of sections of mathematics. These sections of mathematics are

called schemas.

2.3.3 B-Method

The B-Method (also known as classical B) [9, 10, 11, 12] is originally developed by Abrial

in the mid 1980s. The B-Method is a model-based method for formal development of

computer software systems. It has been used in major safety-critical system applications

such as Metro Line 14 in Paris [10].

The B language is based on set theory including sets, relations and functions to define

variables and predicate logic to specify invariants (constraints of variables). Generalized

substitutions are used to specify operations, which allow deterministic and nondeter-

ministic state transitions. B uses structuring mechanisms (machine, refinement and

implementation) in organization of a development.

Compared to Z, B is more focused on refinement rather than just formal specification.

In particular, there is better tool support [10] such as Atelier-B [35]. These tools support

two main proof activities in B: consistency checking, shows that invariants are preserved

by machine operations, and refinement checking, which prove the validity of each refined

machine.
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2.3.4 CSP

CSP (Communicating Sequential Processes) [36, 37] is a process algebra for modelling

parallel processing and interaction between processes. A process in CSP is considered

as a mathematical abstraction of interactions between a system and its environment.

The behaviour of a system is described through processes. CSP allows the refinement

of models.

The set of events in which a process P can engage is called its alphabet, written αP

and represents the visible interface between the process and its environment [38]. The

processes are constrained in the way they can engage in the events of its alphabet. A

process interacts with its environment by synchronously engaging in atomic events. A

sequence of events is described using a prefix operator “→”. The expression a → P

describes the process that engages in the event a and then behaves as process P. The

environment can decide between two processes using the choice operator “2”. P 2 Q

represents the process that offers the choice to the environment between behaving as

process P or as process Q. There is also a nondeterministic choice operator “u”: P u Q
represents the process that internally chooses between behaving as P or Q, without any

environment control. Another operator in CSP in parallel composition of two processes.

P and Q interact by synchronising over common events in αP ∩αQ, while events not in

αP ∩αQ can occur independently. The parallel composition of two processes P and Q is

shown by expression P ‖ Q. An event common to both P and Q, becomes a single event

in P ‖ Q and can be offered by P and Q only when both P and Q are prepared to offer it.

The interleaving operator represents completely independent concurrent activity. The

process P ||| Q behaves as both P and Q simultaneously. The hiding operator provides

a way to abstract processes, by making some events unobservable. A trivial example of

hiding is (a→ P ) \ {a} which, assuming that the event a doesn’t appear in P.

2.3.5 Action Systems

Action systems [39, 40] provide a method to program distributed systems in a way

that the overall behavior of the system is emphasized. In this manner, the behavior

of the system is described in terms of the possible interactions, called actions, that the

processes can engage in, rather than in terms of a sequential execution of the processes.

The behavior of a distributed system was usually described in process-based manner.

Each process interacts with other processes by sending and receiving messages in a

execution of a sequential piece of program. In a process-based approach it is difficult to

get a picture of the overall behavior of the system. Whereas action system is a state-

based description of a distributed system that concentrates on the overall behavior of

the system by defining states and actions, rather than sequential processes.
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2.3.6 A Comparison

This section compares the mentioned formalisms, based on comparisons which have been

presented in [34], [41] and [42].

Z, VDM and B are model-based methods. In model-based methods, the states and op-

erations are explicitly modelled and the operations transform the system from a state

to another state. In model-based approach there is no explicit representation of con-

currency. Therefore Z, VDM and B do not support representation and reasoning of

concurrency.

Temporal Logic is a logic-based formalism. In Logic-based approach, logics are used

to describe system desired properties, including low-level specification, temporal and

probabilistic behaviors. Temporal logic and CSP can handle concurrency.

Another common classification of formal approaches from behavioral point is to parti-

tion them to state-based and event-based [43]. From this point of view, Z, VDM, B and

Temporal logic are state-based, whereas CSP is a event-based formalism. Considering

state-based, there is explicit definition of states. Operations have an effect of trans-

forming the system from a state to another state. Whereas in event-based, the focus is

on identifying events of the system and then describing in what order these events are

allowed to happen.

2.4 Event-B

2.4.1 The Event-B Definition

Event-B [4, 14, 26, 44] is a formal method for specifying, modelling and reasoning about

systems. Event-B is an evolution of B-Method [9] developed by Jean-Raymond Abrial.

Hallerstede states that Event-B has evolved from B-Method and Action Systems [39, 40].

On the one hand Event-B is a simplification as well as an evolution of B-Method; on

the other hand Event-B is influenced by the action systems approach. It has a same

structure as an action system which describes the behavior of a reactive system in terms

of the guarded actions that can take place during its execution.

Event-B is different than the B-Method in some aspects. The B-Method is organized in

a way that is suitable for the development of non-concurrent programs, whereas Event-B

is geared toward the development of systems including reactive and concurrent systems.

Event-B is used in modelling and verifying. The modelling notation has been designed to

be simple and easily teachable, which is based on set theory and logics. Building a model

in Event-B starts with a very abstract level, and continues in different abstraction levels

by use of refinement, which will be explained in Section 2.4.3. Event-B use mathematical
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proof to verify consistency between refinement levels. Association of proof obligations

in Event-B permits us to reason about it, see Section 2.4.4. Rodin is a tool platform for

modelling and proving in Event-B, will be explained in Section 2.4.5.

2.4.2 Event-B Structure and Notation

A model in Event-B [4, 13, 14] consists of Contexts and Machines. In other words, a

model is made of several components of these two types.

Contexts contain the static part (types and constants) of a model while Machines contain

the dynamic part (variables and events). Contexts provide axiomatic properties of an

Event-B model, whereas Machines provide behavioural properties of an Event-B model.

Items of machines and contexts are called modelling elements presented in this section.

There are various relationships between contexts and machines. A context can be “ex-

tended” by other contexts and “referenced” or “seen” by machines. A Machine can be

“refined” by other machines and can reference to contexts as its static part. Refinement

is described more in Section 2.4.3. Machine and context relationship are illustrated in

Figure 2.1.

seesabstract
Machine(1) Context(1)

sees

refines extends

abstract 
machine

Machine(2) Context(2)concrete 
machine

.

.
refines

.

. extends

M hi (i) C t t(i)

.

sees

refines .

Machine(i) Context(i)

Figure 2.1: Machine and Context Relationships

Recall from Section 2.2.3, from a given machine, Machine1 in this case, a new machine,

Machine2, can be built as a refinement of Machine1. In this case, Machine1 is called an

abstraction of Machine2, and Machine2 will said to be a concrete version of Machine1.

2.4.2.1 Context Structure

The modelling elements of a context [4, 13, 14] are from four types: sets, constants,

axioms and theorems. It is illustrated in Figure 2.2. Axioms are various predicate

describe the property of sets, constants, theorems. A context can extend more than one

context, and also can be seen by several machines in a direct or indirect way. By indirect,
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we mean that a context may be referenced by a machine whose abstract machine sees

that context. Clause “Theorems” lists the various theorems which have to be proved

within the context.

Context

Sets
Constants
AxiomsAxioms

Theorems

Figure 2.2: Structure of a Context

2.4.2.2 Machine Structure

A Machine [4, 13, 14] consists of variables, invariants, events, theorems and variants,

illustrated in Figure 2.3. Variables, v, define the state of a model. Invariants, I(v),

constrain variables, and are supposed to hold whenever variables are changed by an

event. New events can be defined in a concrete machine, will be described more in

Section 2.4.3. In order to prove that they do not take control forever, a new event must

decrease a natural number expression called variant [45].

Machine

Variables
Invariants
Theorems
Variants
Events

Figure 2.3: Structure of a Machine

2.4.2.3 Events

In Event-B, state of a model is changed by means of event execution. Each event is com-

posed of a name, a set of guards G(t, v) and some actions S(t, v), where t are parameters

of the event and v is state of the system which is defined by variables. All events are

atomic and can be executed only when their guards hold. When the guards of several

events hold at the same time, then only one of those events is chosen nondeterministi-

cally to be executed. An event can appear in three forms presented in Table 2.1. In the

simplest term, an event contains only some actions, in second form it can composed of

guards and actions without parameters, and finally in third form an event has guards,

actions and some parameters.
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Three Possible Forms of an Event

E = begin S(v) end
E = when G(v) then S(v) end
E = any t when G(t,v) then S(t,v) end

Table 2.1: Event Forms

The action of an event can have a few forms of assignments [13], illustrated in Table 2.2.

Here x is a variable, E(t, v) is an expressions, and P (t, v, x′) is a predicate. The first

assignment form is deterministic. In the second row, the assignment is nondeterministic

(for instance, assign a value within a non-empty set). The third row assigns a value to

x according to the predicate defined and it is also considered nondeterministic.

Type Generalized Substitution

Deterministic x := E(t, v)

Nondeterministic x :∈ E(t, v)

Nondeterministic x :| P (t, v, x′)

Table 2.2: Action Forms

2.4.3 Refinement in Event-B

In the Event-B development, rather than having a single large model, it is encouraged

to construct the system in a series of successive layers, starting with an abstract repre-

sentation of the system. The abstract model should provide a simple view of the system,

focusing on the main purpose and key features of the system. The details of how the

purpose is achieved are ignored in abstraction. Details of functionality of the system

are added gradually to the abstract model in a stepwise manner. This process is called

refinement.

In the Event-B modelling, we use proof to verify the consistency of a refinement. The

semantic of some refinement proof obligations are described in Section 2.4.4.

Types of Refinement in Event-B [8, 13, 46]:

Refining an Event-B model can consist of Context extension and Machine refinement.

Considering context extension, it is possible to add new sets, constants and properties

while retaining the old ones.

Refinement in Event-B has different views or classification. From Event-B notation point

of view, refinement of a machine consists of:

1. Refining existing events:
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(a) Add new parameters, guards and actions to the existing abstract event: in

this case the resulting concrete event is labeled as extended. In an extended

event, the existing parameters, guards and actions can not be modified.

(b) Modify parameters, guards and actions of the existing abstract event: in

this case the resulting concrete event is labeled as non− extended (refine).

Adding new parameters, guards and actions are allowed too.

In both types the guards of the concrete event must be proved to be stronger than

its abstraction (guard strengthening).

2. Add new events

The new event refines a dummy event in the abstraction which does nothing (skip).

The new event does not diverge. It means that it should not take control forever.

The new event can be labeled as:

• Convergent: Each convergent event requires a variant ro ensure non-divergence.

• Anticipated: Events that will be introduced in a future refinement but are

declared in anticipation.

• Ordinary: None of the others and the most commonly used.

3. Add new variables and invariants:

Introducing new variables usually results in (2) or (1.a) types of refinement. Some-

times abstract variables can be replaced by new concrete variables. In this case

the refinement can result in (1.b). Variable replacement is called data-refinement.

Sometimes variable replacement results in redundant variables which can be re-

moved.

A gluing invariant connects the abstract variables to the concrete variables. In

other words, it glues the state of the concrete model to that of its abstraction. The

invariant of the concrete model including gluing invariants should be preserved for

every event.

Each abstract event should be refined by at least one concrete event. One abstract event

can be refined by more than one concrete event. It is called event splitting, examples

are presented in the case study developments. Also one concrete event can refine more

than one abstract event. It is called event merging.

Refinement is the process of enriching or modifying the abstract model in order to

introduce new functionality or add details of current functionality. From another view,

there are two forms of refinement:

• Vertical Refinement (Structural Refinement): In this from, design details of current

functionalities are added. This form of refinement may involve data-refinement (3)

and modifying abstract events (1.b). In refinement level the modified events are

labeled as non-extended events.
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• Horizontal Refinement (Superposition Refinement or Feature Augmentation): New

functionalities of the system, which are not addressed in abstract level, are intro-

duced. Usually it can be achieved by introducing new events (2), new variables

(3) or extending abstract events (1.a). In refinement level these concrete events

are labeled as extended events.

2.4.4 Proof Obligations

There are different proof obligations which are generated by the Event-B tool, Rodin,

during development of a system using Event-B [47, 48]. Here we describe some of those

which are most important. Considering Figure 2.4, machine M2 refines machine M1.

Both of them see context Ctx. M2 contains two events, evt3 as a new event and evt2

as a refining event. Also it contains some gluing invariants.

context Ctx
constants c
sets s
axioms axm
end

machine M1 sees Ctx

variables v1
invariants inv1

events

event evt1
any x1
where grd1
then act1

end

end

machine M2 refines M1  sees Ctx

variables v2 
invariants  inv2, gluing_inv
variant n

events

event evt2 refines evt1 
any x2 
where grd2
then act2

end

convergent event evt3
any x3
where grd3
then act3

end

end

refines

sees

sees

Figure 2.4: An Event-B Model (Context Ctx, Abstract Machine M1, Concrete
Machine M2)

Table 2.3 contains a list of important proof obligation in Event-B modelling.

The last four proof obligations are refinement proof obligations and the last two are

the proof obligation generated for defining new events in concrete machine in a new

refinement level. Here are some explanation for each mentioned proof obligations:

• Well-definedness (WD): Ensure that a potential ill-defined axiom, theorem,

invariant, guard, action, variant is indeed well-defined. For instance for having

cardinality of a set, card(S) it should be proved that the set, S, in finite.
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Well-definedness x / WD x is the name of axiom, theorem,
invariant, guard, action, variant

Invariant Preservation evt / inv / INV evt is the event name, inv is the
invariant name

Feasibility of a nondetermin-
istic event action

evt / act / FIS evt is the event name, act is the
action name

Guard Strengthening evt / grd / GRD evt is the concrete event name,
grd is the abstract guard name

Action Simulation evt / act / SIM evt is the concrete event name,
act is the abstract action name

Natural number for a numeric
Variant

evt / NAT evt is the new event name

Decreasing of Variant evt / VAR evt is the new event name

Table 2.3: Proof Obligations in Event-B

• Invariant Preservation (INT): Ensure that each invariant is preserved by

each event. For instance in Figure 2.4, one of generated proof obligation is

evt1/inv1/INV, ensuring that inv1 is preserved by event evt1 in machine M1.

• Feasibility (FIS): Ensure that each nondeterministic action is feasible. In Fig-

ure 2.4, for event evt1 in machine M1, this proof obligation is given: evt1 / act1

/ FIS; it means there should exist values for variable v1 such that the assignment

act1 is feasible.

• Guard Strengthening (GRD): Ensure that each abstract guard is no stronger

than the concrete ones in the refining event. As a result, when a concrete event is

enabled the corresponding abstract one is also enabled. For instance for the model

in Figure 2.4, evt2 / grd1 / GRD ensure that abstract guard grd1 is weaker than

the guards of the concrete event evt2.

• Simulation (SIM): Ensure that each action in a concrete event simulates the

corresponding abstract action. When a concrete event executes, the corresponding

abstract event is not contradicted. In Figure 2.4 the simulation proof is evt2 / act1

/ SIM.

• Numeric Variant (NAT): Ensures that under the guards of each convergent

event a proposed numeric variant is indeed a natural number. evt3 / NAT is the

proof obligation generated for the model of Figure 2.4.

• Decreasing of Variant (VAR): Ensures that each convergent event decreases

the proposed numeric variant. As a consequence the new event does not take

control forever. evt3 / VAR in Figure 2.4 ensures that event evt3 does not take

control forever.
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2.4.5 Rodin as an Event-B Tool

Rodin [3, 13, 16, 49] is a software tool for formal modelling and proving in Event-B.

Rodin has an open platform, and is an extensible and adaptable modelling tool. Butler

and Hallerstede state that “the aim with Rodin open tools kernel is to greatly extend

the state of the art in formal methods tools, allowing multiple parties to integrate their

tools as plug-ins to support rigorous development methods” [16]. They believe that

this is likely to have a significant impact on future research in formal methods tools

and will encourage greater industrial uptake of these tools. The ProB animator [18],

UML-B [19], B2LaTeX [20] and model decomposition [50] are good examples of plug-in

developments; ProB is a model checker which checks the consistency of B machines;

UML-B maps a graphical formal modelling notation to the Event-B language; B2LaTex

is used for translating Event-B models into LaTeX documents; and model decomposition

which allows to decomposed a model into sub-models, it will be explained in Section 2.5.

Like programming tools, Rodin carries out many tasks automatically, and provides fast

feedback in the case of changes in a model text. Instead of compiling automatically

in programming tools, Rodin generates proof obligations and discharges trivial ones

automatically; and instead of running a program, Rodin is used to reason about a

model.

Rodin is an integration between modelling and proving. As described in previous sec-

tions, proving is an essential part of modelling. The proof obligations define what is

to be proved for an Event-B model. Discharging all proof obligations of a model shows

that all model properties are consistent. Sometimes a model can be changed using proofs

errors. When a proof obligation can not be charged, it shows that there is an inconsis-

tency in the model. This leads us to learn more about the system in order to change the

model in a consistence way. Therefore during modelling we can learn about system and

we can eliminate misunderstandings and learn new requirements by proving the failed

proof obligations.

2.4.6 A Comparison Between Event-B and Other Formal Methods

Classical B, Z and VDM have a one-to-one operation refinement, meaning that one

abstract operation is refined by only one concrete operation. There is no feature of

introducing new events in these formal methods. Whereas Event-B is flexible as it

inherits a refinement property from action systems. It is possible to introduce new

events during the stepwise refinement steps. Also event merging and event splitting are

provided in Event-B refinement.

Although Event-B is an extension of Classical B, there are some differences between

them:
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• The model structure is different. In Event-B, the context as the static part of the

system and the machine as the dynamic part of the system are explicitly separated.

Whereas in the B-Method a machine contains both parts.

• In the B-Method, operations are called by other operations. While in Event-B

the enabled events are continually executed in a nondeterministic manner. Since

in Event-B, we are modelling reactive systems, the events are not called and the

model controls its behaviour by nondeterministically choosing the enabled events.

• A B-Method operation contains pre-conditions which express formally what is to be

proved when the operation is invoked [51]. The caller of an operation is responsible

to make sure that pre-conditions of the called operation are hold before calling it.

The called operation can assume that its pre-conditions hold, and it does not need

to check its pre-conditions.

Whereas an Event-B event contain guards. An event can be executed only when

its guards hold. In Event-B, enabled events are nondeterministically chosen to

execute.

• Refinement is more general in Event-B. Introducing new events is an important

ability in Event-B refinement.

2.5 Event-B Model Decomposition

2.5.1 Overview

Model decomposition predated Event-B and is found in action systems [40]. In devel-

oping a model in Event-B, one of the key features is introducing new events and new

state variables during refinement. As a consequence it usually ends up with many events

and many variables in the last refinement level. Dealing with a large number of events

and variables can be complex, particulary in some points we need to refine just a few

variables and events and so other variables and events play no role in the refinement [52].

Model decomposition in Event-B [53], is intended to decrease the complexity and increase

the modularity of a large Event-B model, especially after several layers of refinements.

The idea of model decomposition is cutting a huge model into smaller pieces called sub-

models, which can more easily deal with than the first model, and each of them can be

refined separately.

Distribution of proof obligations into several sub-models is one of the major results

of model decomposition, which is expected to be easier to discharge. The further re-

finements of independent sub-models in parallel is a benefit of model decomposition.

Moreover the possibility of team development after model decomposition seems useful

in developing a big system.
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An overview of the model decomposition in Event-B is illustrated in Figure 2.5. As

presented the model becomes bigger during refinement layers and with decomposition it

is split into smaller sub-models, then each sub-model can be refined independently.

Model (1)

.

.

Model (i)
Refinement

Before Decomposition

Model (i)

.

.

Model (n)Model (n)

Decomposition

Sub‐Model (1) Sub‐Model (n)

R fi

. . .

Refinement
After Decomposition

.

.

.

.

.

.

Sub‐Model (1m) Sub‐Model (nm)

Figure 2.5: Model Decomposition in Event-B

2.5.2 Decomposition Styles

There are two ways of decomposing an Event-B model, shared variable and shared

event [54]. The shared event approach seems particularly suitable for message-passing

distributed programs, whereas the shared variable approach seems more suitable for con-

current programs [55]. In shared event model decomposition, variables are partitioned

among the sub-models, whereas in shared variable approach, events are partitioned

among the sub-models. Details are explained in the next section.

A model decomposition plug-in [21, 50, 56] in Rodin platform provides tool support for

both styles of model decomposition.

Later in Chapter 7.3, we will see how model decomposition approach in developing

the Event-B model of a complex system is useful together with using the atomicity

decomposition approach which is the main contribution of this thesis.
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2.5.2.1 Shared Variable Style

Shared variable decomposition illustrated in Figure 2.6 is proposed by Abrial [52], Meta-

yar [57] and Hallerstede [58]. Machine M is decomposed into machine M1 and M2. The

solid lines show relationships between events and variables in each machine.

The shared variable decomposition does not permit events sharing and a variable can

be split into different sub-models, this variable is called a shared variable. First the

events of M are partitioned among M1 and M2. Then the variables of M are distributed

according to the event partition. v1 and v3 are private variables, since they are accessed

by events of only one sub-model, e1 in M1 and e4 in M2 respectively. v2 is a shared

variable which is accessed by event e2 in M1 and e3 in M2. External event of e2 ext is

built in M2, since e2 modifies the shared variable v2 in M1. The invariant distribution

is done according to variable distribution. An invariant belongs to a sub-model if all

variables used in that invariant belong to that sub-model.

Machine M

e1 e2 e3 e4

V1 V2 V3

Machine M1 Machine M2

e1 e2 e3_
ext

e4e3e2_
ext

V1 V2 V2 V3

Figure 2.6: Shared Variable Decomposition

2.5.2.2 Shared Event Style

Figure 2.7 illustrates shared event decomposition proposed by Butler [59]. Variables of

the machine M are partition among the sub-models, M1 and M2. After the variable

partition it is necessary to split the events according to the variable partition. Events

using variables allocated to different sub-models, e2 using v1 from M1 and v2 from

M2, are called shared events and must be split. Part of the shared event which is

corresponding to each variable, e2 1 and e2 2, is used to build sub-models events.

Invariant distribution is similar to shared variable decomposition.
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Machine M

e1 e2 e3 e4

V1 V2 V3

Machine M1 Machine M2

e1 e4e3e2_1 e2_2

V1 V2 V3

Figure 2.7: Shared Event Decomposition





Chapter 3

Atomicity Decomposition Part 1 -

Overview and Background

3.1 Introduction

The atomicity decomposition approach was first introduced by Butler in [24]. In this

chapter we present the atomicity decomposition approach from [24], in Section 3.2. As

mentioned in Section 1.2, a major contribution of atomicity decomposition approach is

structuring refinement in Event-B. To highlight this contribution, Section 3.3 outlines

the role of atomicity decomposition diagrams in structuring refinement in Event-B. It

is followed by two examples of the atomicity decomposition application from [24], in

Section 3.4.

3.2 Overview of Atomicity Decomposition Diagram in Event-

B

Although the refinement approach in Event-B, as explained in Sections 2.2.3 and 2.4.3,

provides a flexible approach to modelling, it does not have the ability to show the

relationship between one abstract event and the corresponding concrete events. The

atomicity decomposition approach is intended to make the relationships between ab-

stract and concrete events clearer and easier to manage than simply using the standard

Event-B refinement technique. In this approach course-grained atomicity can be refined

to more fine-grained atomicity.

The tree structure notation of the atomicity decomposition approach is first introduced

by Butler in [24]. The diagrammatic notation is based on JSD structure diagrams by

Jackson [7]. In [24] the atomicity decomposition diagram is presented in two examples

23
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containing a parallel execution of an event. Before introducing the parallel notation, we

generate a simple view of the atomicity decomposition diagram in order to explain the

basic features. It is shown in Figure 3.1. The features explained here are from [24].

Event1

AbstractEvent

Event2 Event3

Root, abstract event, is decomposed into some sub events

The sub events are read from left to right and indicate sequential control 

A dashed line: 

Event1 refines skip

A solid line: 

Event3 refines AbstractEvent

Figure 3.1: Atomicity Decomposition Diagram

The abstract atomic event, AbstractEvent, appears in the root node. The diagram

shows how the root is decomposed into some sub-events in the refinement model. The

number of sub-events can be one or more. In this case we consider three sub-events to

explain the features of the diagram. An important feature of diagram, in common with

JSD structure diagrams, is that the sub-events are read from left to right and indicate

sequential control from left to right. This means that our diagram indicates that the

abstract event is realised in the refinement by firstly executing Event1, then executing

Event2 and then executing Event3.

Sub-events are treated in two ways, one refines abstract event and the others are viewed

as hidden events in the abstract model which refine skip in the refinement model. So

another important feature is types of lines, solid line and dashed line. The sub-events

corresponding to dashed lines, Event1, Event2, are new events which refine skip in the

abstract model. The sub-event with a solid line, Event3, is a refining event which must

be proven to refine the abstract event, AbstractEvent. A new event introduced in the

refinement model which refines skip, can be viewed as a hidden event in the abstract

model. This kind of event is not visible to the environment of a system in the abstract

model, and therefore they are outside the control of the environment [24].

In this case, Event1 should execute before Event2. Also Event2 should execute before

Event3. This is done by some control variables in the refinement model. We will see

more about control variables later in this chapter.
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With the aim of making the point more clear, the possible execution traces of the model,

called event trace [24], are presented here.

The execution trace of the abstract model contains a single event and is represented as

< AbstractEvent >. The execution trace of the refinement model events, Event1, Event2

and Event3, is < Event1, Event2, Event3 >.

3.3 Event-B Refinement and Atomicity Decomposition Di-

agrams

One of the important motivations of the atomicity decomposition approach is that it

explicitly shows the event ordering and the relationship between an abstract event and

the corresponding concrete events, whereas the Event-B text is not able to explicitly

show these properties. This can be seen by comparing Figure 3.2 and Figure 3.3.

Assume Event E21 should execute before event E22. And event E22 should execute

before event E23. Considering Figure 3.2, the ordering between these events is implicit.

Whereas the atomicity decomposition diagram in Figure 3.3, explicitly shows the event

ordering by a sequence execution of events from left to right.

events

event E21event E21
where

@grd1 VarE21 = FALSE
then

@act1 VarE21 TRUE
end

event E22event E22
where

@grd1 VarE21 = TRUE
@grd2 VarE22 = FALSE

then
@act1 VarE22 TRUE

end

event E23 refines E1 
where

@grd1 VarE22 = TRUE
@grd2 VarE23 = FALSE

then
@act1 VarE23 TRUE

endend

end

Figure 3.2: Event-B Model of Atomicity Decomposition Diagram in Figure 3.3

Considering Figure 3.2, the ordering is implicitly specified by some control variables in

the Event-B model. VarE21, VarE22 and VarE23 are boolean control variables which

are initialised to FALSE. First event E21 executes and enables VarE21 variable. Event
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E22 is guarded by VarE21 variable, grd1. Therefore event E22 can execute only after

event E21 executes. Also event E23 is guarded by VarE22, grd1. So event E23 can

execute only after event E22 executes.

event E1

event E21
where

@grd1 VarE21 = FALSE

event E22
where

@grd1 VarE21 = TRUE
@grd2 VarE22 = FALSE

event E23 refines E1 
where

@grd1 VarE22 = TRUE
@grd2 VarE23 = FALSEthen

@act1 VarE21 TRUE
end

@grd2 VarE22  FALSE
then

@act1 VarE22 TRUE
end

@grd2 VarE23  FALSE
then

@act1 VarE23 TRUE
end

Figure 3.3: Atomicity Decomposition Diagram of Event-B Model in Figure 3.2

Moreover the diagram explicitly illustrates our intention that the effect achieved by

event E1 at the abstract model is realized at the refinement model by execution of event

E21 followed by event E22 followed by event E23, Figure 3.3. Whereas in the standard

Event-B model, Figure 3.2, events E21 and E22 are refinements of skip and there is no

explicit connection to abstract event E1. Technically, event E23 is the only event that

refines event E1 but the diagram indicates that we break the atomicity of abstract event

E1 into three sub-events E21, E2 and E23.

3.4 Examples of Application

With the aim of making the application of atomicity decomposition diagrams more clear,

two examples from [24] are presented here.

Assume the abstract machine contains a single event Out, that simply outputs N exactly

for one time. Considering Figure 3.4, there is only one boolean control variable in the

machine, called Out, which initialised to false. Out event can execute only when it has

not executed before, grd1. In execution it disabled itself, act1. The output value is

represented in the parameter v, grd2.

The output is produced in an atomic event in the abstract machine. We wish to refine

the abstract machine by a machine modelling a concurrent accumulation of the output

value before outputting it. The refinement structure is presented in an atomicity de-

composition diagram in Figure 3.5. The diagram shows that we break the atomicity

of abstract Out event, to three sub-events. This means that the abstract Out event

is realised in the refinement by firstly executing the initialisation, then executing the

Increase event in parallel and then executing Out event. The parallel execution here
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machine M0
variables Out
invariants
@inv1 Out ∈ BOOL

events
event INITIALISATION

then
@act1 Out ≔ FALSE

end

event Out
any v
where

@grd1 Out = FALSE
@grd2 v = N

then
@act1 Out ≔ TRUE

end

End

Figure 3.4: Abstract Model of an Outputting System

is illustrated with a circle containing “all” and name of a parameter. We call it all-

replicator, since it replicates the corresponding sub-events with a new parameter, p, and

Increase event needs to executes for all instances of parameter p before Out event exe-

cution. Figure 3.5 is slightly different to what Butler presented in [24]. Butler illustrates

the parallel execution with a circle containing “par(p)”. Since we have improved the

atomicity decomposition notations, which will be presented in Chapter 4, we found it

more understandable if the diagram presented here is compatible with the improvement

of notations in Chapter 4.

Out

Increase (p)

all(p)

Initialisation Out

Figure 3.5: Atomicity Decomposition Diagram of an Outputting System

The Event-B model of the refinement machine is presented in Figure 3.6. Each parallel

execution of Increase event, increments the variable x exactly once. When all N sub-

events have incremented x, the value of x is output with execution of Out event.

Consider the case where we have two subprocesses, PROC = {p1, p2}, and N = 2. The

event traces of the refinement model are as below:

< Initialisation, Increase(p1), Increase(p2), Out(2) >

< Initialisation, Increase(p2), Increase(p1), Out(2) >
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Out

event Increase
any p
where
@grd1 p ∈ PROC
@grd2 p ∉ Increase

then
@act1 Increase ≔ Increase ∪ {p}
@act2 x ≔ x +1

end

all(p)

event INITIALISATION
then
@act1 x ≔ 0
@act2 Increase ≔ ∅

@act3 Out ≔ FALSE
end

event Out refines Out
any v
where
@grd1 Out = FALSE
@grd2 Increase = PROC
@grd3 v = x

then
@act1 Out ≔ TRUE

end

Figure 3.6: Event-B Refinement of an Outputting System

The two possible interleaving of Increase(p1) and Increase(p2), represented by two events

traces, model their concurrent execution.

As presented in the first example, Out event needs to execute only for one time. There-

fore we defined the control variable, Out, as a boolean variable, which is disabled in the

body of Out event after the first execution. Whereas sometimes we wish to model a

sequence of events which can execute more than one time for different instances of one

or more parameters. Second example presents this case. Later in Chapter 4, first case

is called Single Instance (SI) and second case is called Multiple Instance (MI). The type

of control variables are different in SI and MI. Considering SI, as seen in first example,

control variables are boolean, whereas in the MI case, control variables are sets. Having

set type enables multiple instances of an event and event interleaving.

As the second example, consider the atomicity decomposition diagram of a file write

system in Figure 3.7. The atomicity of the abstract Write event is break to three sub-

events in the refinement machine, in order to model the writing of individual pages,

PageWrite event. The writing of the entire file is no longer atomic. The writing of a file

is initiated by StartWrite event and ended by EndWrite event. Multiple file writes are

allowed to be taking place simultaneously in an interleaved fashion. This is indicated

by a parameter provided in abstract Write event, f, and inherited with all sub-events.

Also in the refinement model, the pages of an individual file f can be written in parallel

hence an all-replicator over PageWrite event replicates its parameter with p.

Write (f)

PageWrite (f, p)

all(p)

StartWrite (f) EndWrite (f)

Figure 3.7: Atomicity Decomposition Diagram of File Write
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The control variables are sets and the invariants to model event sequencing implied in

Figure 3.7 are presented in Figure 3.8. StartWrite is a subset of FILE, because it is

bounded by parameter f, (inv1 ). PageWrite is a subset of FILE × PAGE, because it

is bounded by parameter f and all-replicator parameter p, (inv2 ). If a page has been

written for a file, then StartWrite will already have executed for the file, (inv3 ).

invariants
@inv1 StartWrite ⊆ FILE
@inv2 PageWrite ⊆ FILE × PAGE
@inv3 dom(PageWrite) ⊆ StartWrite

Figure 3.8: Invariants of File Write Refinement Model

The Event-B model of StartWrite and PageWrite events are presented in Figure 3.9. The

event sequencing is managed with some guards. PageWrite is guarded with StartWrite,

grd1, which indicates ordering between StartWrite event and each PageWrite event.

event StartWrite
any f
where

@grd1 f ∈ file
@grd2 f ∉ StartWrite

then
@act1 StartWrite ≔ StartWrite ∪ {f}

end

event PageWrite
any f p
where

@grd1 f ∈ StartWrite
@grd2 f ↦ p ∉ PageWrite

then
@act1 PageWrite ≔ PageWrite ∪ { f ↦ p }

end

Figure 3.9: Event-B Model of File Write

The accurate explanation of Event-B model derived from atomicity decomposition dia-

grams are presented in a pattern based style in Chapter 4. In this section, by using some

examples, we tries to make the overall benefits of the atomicity decomposition approach

more clear.

3.5 Conclusion

This chapter introduced the atomicity decomposition diagram notation. We have out-

lined how atomicity decomposition diagrams help to structure refinement in Event-B by

showing the relationships between events of different refinement levels and by providing

an explicit visual view of the ordering between events. Each node presents one event.

The root node contains the name of an abstract event and the child nodes contain the
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names of concrete sub-events. A refining relationship between an abstract event and

a concrete event is indicated with a solid line in the diagram between these two event

nodes, and a non-refining relationship is indicated with a dashed line. The ordering

between events is indicated with a sequence from left to right in the diagram.

To make the application of atomicity decomposition diagrams more clear and to high-

light the benefits of atomicity decomposition diagrams in structuring refinement, two

examples have been outlined. First example covers the case when a single instance (SI)

of event executions is need, whereas the second one shows the multiple instance (MI)

case.

This chapter presented background material required to understand the atomicity de-

composition patterns in Chapter 4 and description of the atomicity decomposition lan-

guage in Chapter 5.



Chapter 4

Atomicity Decomposition Part 2 -

Patterns and Features

4.1 Introduction

The features of the atomicity decomposition approach in [24] are introduced in Chap-

ter 3. Using these features we have developed two case studies. These developments

helped us to improve and expand the atomicity decomposition approach by discovering

new constructors and features. This chapter presents the constructor patterns and fea-

tures in Section 4.2 and Section 4.3 respectively. Each pattern outlines the intention and

diagrammatic notation of a decomposing constructor and the way that it is encoded in

the Event-B model. The related works are compared with the atomicity decomposition

approach in Section 4.5.

More formal and general descriptions of the atomicity decomposition semantic and trans-

lation rules to the Event-B are presented in Chapter 5. This chapter helps to understand

the contents of Chapter 5.

4.2 Atomicity Decomposition Diagram Patterns

4.2.1 Introduction

This section presents the atomicity decomposition constructors in a pattern-based style.

Each pattern outlines one constructor in one level of refinement. The combination of

different patterns in more than one level of refinement will be presented via formal

description of the atomicity decomposition language and translation rules in Chapter 5.

31
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In the atomicity decomposition approach, we found some common and reusable con-

structors (as solutions) to some common intentions (as problems). These recurring

problem-solution pairings motivated us to use a pattern-based approach to introduce

the atomicity decomposition constructors. Moreover organizing the problems and solu-

tions in a pattern-based approach is easy to read, understand and apply.

In total, eight constructor patterns have been delineated. The constructor patterns are

divided to four distinct groups:

• Sequence pattern, Section 4.2.2.

• Loop pattern, Section 4.2.3.

• Logical constructor patterns: and-constructor, Section 4.2.4, or-constructor, Sec-

tion 4.2.5, xor-constructor, Section 4.2.6.

• Replicator patterns: all-replicator, Section 4.2.7, some-replicator, Section 4.2.8,

one-replicator, Section 4.2.9.

The logical constructors, including the and-constructor, the or-constructor and the xor-

constructor, introduce logical relations between two or more sub-events.

Each replicator constructor, including the all-replicator, the some-replicator and the

one-replicator, introduces a new parameter to its related sub-event and replicates the

dimension of the related sub-event.

The sequence pattern and the all-replicator pattern have been introduced in [24]. The

examples of these two constructors from [24] have been presented in Section 3.4. Here

we present them in a way that follows the pattern based style. The other constructs and

corresponding Event-B models are derived from developing our case studies. The case

study developments are presented in Chapter 7.

4.2.2 Sequence Pattern

Each pattern is presented in a table. The sequence pattern is presented in Table 4.1.

Each pattern table includes the name of the pattern in the first row, followed by a

diagrammatic representation of the atomicity decomposition diagram of the pattern for

single instance execution (SI) on the left and multiple instances execution (MI) on the

right. It is followed by the Event-B model generated from the atomicity decomposition

diagrams. The Event-B model contains the invariants and events separately for the SI

case and the MI case, labeled as “SI/MI Invariants” and “SI/MI Events”. The Event-

B model shown in the table is part of the model which is generated from atomicity

decomposition diagrams, user defined Event-B elements like events can be included

in the Event-B model but not in any atomicity decomposition diagram. The table

interpretation just described, is used for all patterns’ tables.
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Name: Sequence

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

Event1 Event2 Event3

AbstractEvent (p)

Event1 (p) Event2 (p) Event3 (p)

AbstractEvent

Event1 Event2 Event3

AbstractEvent (p)

Event1 (p) Event2 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event2_seq Event2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ Event2 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event2_seq Event2 ⊆ Event1

@inv_Event3_seq Event2⊆ Event3

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event2_seq Event2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ Event2 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event2_seq Event2 ⊆ Event1

@inv_Event3_seq Event2⊆ Event3

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event Event2 

where

@grd_seq Event1 = TRUE

@grd Event2 = FALSE

then

@act Event2≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq Event2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event Event2

any p where

@grd_seq p ∈ Event1

@grd p ∉ Event2

then

@act Event2≔ Event2 ∪ { p }

end

event Event3 refines AbstractEvent

any p where

@grd_seq p ∈ Event2

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 4.1: Sequence Pattern
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Intention: The atomicity of an abstract event, AbstractEvent, is decomposed to se-

quencing of two or more concrete sub-events. In other words, the behaviour exhibited

by an abstract event is realised by the sequential execution of one or more concrete

events in the refinement level. Since we are able to describe the features of the sequence

pattern by having three sub-events, we minimise the number of sub-events to three,

Event1, Event2 and Event3.

Diagrammatic Representation: The name of the abstract event appears in the root

node, and sub-events’ names appear in leaf nodes in sequence from left to right. A leaf

is a node without any child node.

In decomposing the atomicity of an event, two cases are considered. First when a single

execution of an event is needed. In this case, there is no control parameter for the

event. Moreover control variables are defined with boolean type, since we do not need

to record the execution of events for different instances of the parameter(s). This case is

called Single Instance (SI). The second case is when multiple instances of an event are

needed. It is called Multiple Instances (MI). In this case, there are one or more control

parameters for the events. In the diagrammatic representation, control parameter(s)

name(s) appear in between parentheses after the event name. In the table, p represents

a list of parameters, p1, ..., pn. We use a set type for control variables. Using sets, enables

multiple instances of an event and event interleaving.

Restrictions: One and only one of the leaves in an atomicity decomposition diagram is

connected to the root event with a solid line. Other leaves have to connect with dashed

lines. This restriction is referred to as the “single solid line” rule in the rest of patterns.

This restriction can raise two questions:

• First, where is the leaf placed with solid line in the sequence of sub-events in the

atomicity decomposition of an abstract event?

• Second, why only one leaf with the solid line can be placed in the atomicity de-

composition of an abstract event?

The first question is answered in the next two paragraphs. The short answer for the

second question is that this restriction is a result of restrictions in the Event-B model.

Since there can be only one occurrence of the abstract event in the refinement level,

there is only one refining event (leaf with the solid line). The second question is clarified

at the end of this section using examples of event traces.

In the Event-B model, the EQL (Equality of preserved variable) proof obligation,

(evt/v/EQL), ensures that an abstract variable v is preserved in the concrete event

evt. It means that the EQL proof obligation does not allow an abstract variable to be

changed in a new event which refines skip. The abstract variable v can be modified
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only by a concrete event that refines the abstract event which modifies variable v. Also

the SIM (Simulation) proof obligations ensure that each action in a concrete event

simulates the corresponding abstract action. It means when a concrete event executes,

the corresponding abstract event is not contradicted.

The leaf corresponding to the solid line is encoded to an event which refines the abstract

event, appearing as the root node. Considering the limitation which EQL and SIM

proof obligations make in the Event-B model, the refining event is the event which

simulates the main behaviour of the abstract event by modifying the corresponding

abstract variable(s). In our patterns we consider it as the last event, Event3.

Event-B Model:

Semantics are given to an atomicity decomposition diagram by generating an Event-B

model from it. We now explain how an atomicity decomposition diagram of the sequence

pattern is encoded as an Event-B model. The encoded Event-B model for the sequence

pattern is presented in Table 4.1.

The middle sub-event in the sequence pattern is replaced by a constructor in the rest of

patterns, which are described later. Each constructor can be placed as the first or the

last sub-event of the diagram too; the reason that we consider it as the middle sub-event

is to show the effect of the previous sub-event (the first sub-event) on the constructor,

and the effect of the constructor on the next sub-event (the last sub-event). The sequence

pattern is considered as a basic pattern for the rest of atomicity decomposition patterns.

Therefore most of the translation rules from the diagram to the Event-B model which

are explained in this pattern, are true for the rest of patterns.

For each leaf, a node without any child node, one control variable and one event are

generated. The generated event name and variable name are same as the leaf name.

Recalling event labeling in Section 2.4.3, all generated new events are labeled as ordinary

events. Ordering between leaves is achieved by generating some actions and guards in

generated events. The generated event corresponding to the leaf with the solid line

refines the abstract event. The leaf with the solid line can have the same name as the

abstract event, since it refines the abstract event. In the diagrams of Table 4.1 the

rightmost event can have the same name as the abstract event.

Considering the SI case, the boolean control variable’s value in the related event, is

assigned to TRUE. This assignment enables the next event’s guard in sequence. For

example, in event Event1, variable Event1 is assigned to TRUE, indicating that event

Event1 executes. This assignment enables guard (Event1 = TRUE) in event Event2.

We do not need the sequencing guard in the first event, as there is no event before

it in sequence. Another guard is generated for each generated event too. This guard

indicates that the current event has not executed before, i.e., (Event1 = FALSE) in

event Event1.
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In the MI case, each event corresponding to a leaf gives rise to a set control variable

whose type is based on the type of the parameter(s) of the leaf. In the table, p represents

a list of parameters, p1, ..., pn, of type TY PE(p1) × ... × TY PE(pn). When an event

executes for a specific value of the instance parameter(s), the value is added to the

set control variable in the action of that event. This enables the next event’s guard

in sequence. For example, in event Event1, the parameter value is added to the set

variable Event1. This action enables the next event’s guard, (p ∈ Event1) in event

Event2. Another guard in each event checks that the event has not executed before,

i.e., (p /∈ Event1) in event Event1.

For each leaf an invariant is generated. The invariants states the sequencing conditions.

For example in the SI case, (Event2 = TRUE ⇒ Event1 = TRUE) is a condition to

show that Event1 should executes before Event2. In the MI case, the subset invariant

(Event2 ⊆ Event1) shows that for instances of variable Event2, event Event1 has

executed before. For the first leaf, we do not need a sequencing invariant. Instead a

typing invariant is generated.

A gluing invariant is generated for a leaf with solid line. Leaf Event3 connects to the root

node with solid line, so the gluing invariant (Event3 = AbstractEvent) is generated.

To make the use of gluing invariant clear, consider a case when machine M2 refines

machine M1. Atomicity decomposition diagrams help illustrate the relation between

abstract events of M1 and concrete events of M2. Each event E of M2 corresponding

to a leaf with solid line in diagrams, either refines an abstract event A of M1, or it is a

new event corresponding to a leaf with dashed line refining skip. The proof obligations

defined for Event-B refinement are based on the following proof rule that makes use of

a gluing invariant Inv Gluing.

• Each M2.E refines M1.A under Inv Gluing, if A is defined.

• Each M2.E refines skip under Inv Gluing, if E is a new event.

Therefore in order to discharge the refinement proof obligations, some gluing invari-

ants, which define the relationship between abstract variable and concrete variables, are

needed.

Event Execution Trace Examples:

Considering the SI case in the sequence pattern, the single event trace of the refinement

model is as follow:

< Event1, Event2, Event3 >

Each event trace represents a record of a possible execution trace of the model. It is

instructive to relate the event trace of the refinement model with the event trace of the

abstract model. The single event trace of the abstract model is
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< AbstractEvent >

If we remove Event1 and Event2 from the trace of the refinement model, we get the

trace of the abstract model (considering Event3 refines AbstractEvent):

< Event1, Event2, Event3 > \ {Event1, Event2} = < Event3 > = < AbstractEvent >

Removing events from a trace is the standard way of giving a semantic to hidden

events [24, 26] and is used, for example, in CSP. By treating Event1 and Event2 as

hidden events, traces of the refinement model looks like traces of the abstract model.

This illustrates a semantics of refinement of Event-B models. Machine M1 is a refine-

ment of machine M0 since any trace of M1 in which the new events are hidden is also a

trace of M0. In this point the answer for the second question raised in the Restriction

part can be made clear. If more than one leaf refines the abstract event in the atomicity

decomposition of the abstract event, the refinement semantics in Event-B is violated.

Because removing hidden events from the refinement trace does not result in the same

abstract trace.

As mentioned in the explanation of the Event-B model, using the set type for control

variables, enables multiple instances of an event in an event trace. To make this point

clear, we provide some examples of event traces for the MI case here. Considering the

MI case in the sequence pattern, assume the case where we have two instances of the

parameter, (p1 and p2 ), two examples of possible event traces are as follows :

< Event1(p1), Event2(p1), Event3(p1), Event1(p2), Event2(p2), Event3(p2) >

< Event1(p1), Event1(p2), Event2(p1), Event2(p2), Event3(p1), Event3(p2) >

To clarify the sequencing conditions modelled with subset invariants in the MI case, we

explain the sequencing invariant, (Event2 ⊆ Event1). This invariant holds in the above

two event traces. For example in the second trace, after execution of Event2(p1), set

variable Event2 = {p1} is a subset of set variable Event1 = {p1, p2}.

4.2.3 Loop Pattern

The loop pattern is presented in Table 4.2. The table interpretation is the same as what

described in term of the sequence pattern table interpretation in Section 4.2.2.

Intention: In the sequence of sub-events, zero or more execution of an event is needed.
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Name: Loop

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

LoopEvent

*

AbstractEvent (p)

LoopEvent (p)

*

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

LoopEvent

*

AbstractEvent (p)

LoopEvent (p)

*

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event3_seq Event3 = TRUE ⇒ Event1 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event3_seq Event3⊆ Event1

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_Event3_seq Event3 = TRUE ⇒ Event1 = TRUE

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_Event3_seq Event3⊆ Event1

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event LoopEvent

where

@grd_seq Event1 = TRUE

@grd_loop Event3 = FALSE

end

event Event3 refines AbstractEvent

where

@grd_seq Event1 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event LoopEvent

any p

where

@grd_seq p ∈ Event1

@grd_loop p ∉ Event3

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ Event1

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 4.2: Loop Pattern
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Diagrammatic Representation: The loop constructor appears as a circle containing

a star. The node connected to the loop, LoopEvent, can execute zero or more time

after execution of previous sub-event, Event1, and before execution of next sub-event,

Event3, in sequence.

Restrictions: The loop constructor is always connected to the root node with a dashed

line. Since the loop event can execute for more than one time, a loop with a solid line

does not follow the single solid line rule, which has been explained in the Sequence

Pattern (Section 4.2.2). This is clarified at the end of this section using examples of

event trace.

Event-B Model:

The encoded Event-B model for the loop pattern is presented in Table 4.2. No control

variable is generated for a loop leaf, since we do not need to record the loop event

execution. Therefore there is no action for the loop event, LoopEvent here.

A guard is generated in the loop event to check that next event has not executed before,

i.e., guard (Event3 = FALSE) in the SI case and guard (p /∈ Event3) in the MI case.

The event after the loop event, is guarded by the execution condition of the event before

the loop event. Considering the SI case, guard (Event1 = TRUE) and considering the

MI case guard (p ∈ Event1) in event Event3, both check the execution of the event

before the loop, Event1. This guard allows zero executions of the loop event. Right

after execution of event before the loop, with zero execution of the loop event, the event

after the loop can execute. That is why we do not need a variable and an action to

record the loop execution.

An invariant is generated to show the sequencing between the event before the loop,

Event1, and the event after the loop, Event3. The way that sequencing invariant is

described is same as what described in the sequence pattern in Section 4.2.2.

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.2, the event trace of the model in case of

zero execution of the loop is:

< Event1, Event3 >

And the event trace of the model in case of two executions of the loop is:

< Event1, LoopEvent, LoopEvent, Event3 >

As mentioned in the restriction, a loop with a solid line is not allowed due to the Event-B

restrictions. Assume the loop in the SI case diagram in Table 4.2 is connected to the

abstract event with a solid line, and the other two sub-events are connected with dashed



40 Chapter 4 Atomicity Decomposition Part 2 - Patterns and Features

lines. If we remove the hidden sub-events (sub-events with dashed line) from the above

event trace, the result is as follow:

< LoopEvent, LoopEvent >

Considering what has been explained in the Sequence Pattern in Section 4.2.2 about

removing events from a trace, the just mentioned trace is supposed to be same as the

abstract event trace, < AbstractEvent >, but it is not. Therefore the loop constructor

in an atomicity decomposition diagram is always connected to the abstract event with

a dashed line.

4.2.4 and-constructor Pattern

The and-constructor pattern is presented in Table 4.3. The table interpretation is same

as what was described in terms of the sequence pattern table interpretation in Sec-

tion 4.2.2.

Intention: The intention is to execute all two or more available sub-events in any order,

in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in atomicity

decomposition diagram with the and-constructor, a circle containing and. All nodes

connected to the and-constructor execute in any order in the sequence of other sub-

events. For simplicity, in this pattern we consider two leaves for the and-constructor.

Restrictions: There are at least two nodes connected to the and-constructor. Following

single solid line rule, the and-constructor is always connected to the root node with

a dashed line, and all of the corresponding and-constructor events, AndEvent1 and

AndEvent2 here, inherit dashed line from the and-constructor.

Event-B Model:

The encoded Event-B model for the and-constructor pattern is presented in Table 4.3.

Each and-constructor event can execute only after execution of previous event, Event1.

This is ensured with a guard, explained in the sequence pattern. The next event after the

and-constructor can execute only after execution of all and-constructor events. Therefore

a guard is generated in the event after the and-constructor, to ensures that all of the

and-constructor events execute before. This guard is a logical conjunction between

corresponding control variables generated for the and-constructor leaves. Considering

the SI case, guard (AndEvent1 = TRUE ∧ AndEvent2 = TRUE), and in the MI case

guard (p ∈ AndEvent1 ∩AndEvent2), are generated.

Comparing to sequence pattern invariants, the sequencing invariants for the event after

the and-constructor is slightly changed in order to show the logical conjunction between

control variables of the and-constructor events.
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Name: and-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

AndEvent1

and

AndEvent2

AbstractEvent (p)

AndEvent1 (p)

and

AndEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

AndEvent1

and

AndEvent2

AbstractEvent (p)

AndEvent1 (p)

and

AndEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AndEvent1_seq AndEvent1 = TRUE ⇒ Event1 = TRUE

@inv_AndEvent2_seq AndEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (AndEvent1 = TRUE ∧ AndEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_AndEvent1_seq AndEvent1⊆ Event1

@inv_AndEvent2_seq AndEvent2⊆ Event1

@inv_Event3_seq Event3⊆ AndEvent1 ∩ AndEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AndEvent1_seq AndEvent1 = TRUE ⇒ Event1 = TRUE

@inv_AndEvent2_seq AndEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (AndEvent1 = TRUE ∧ AndEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_AndEvent1_seq AndEvent1⊆ Event1

@inv_AndEvent2_seq AndEvent2⊆ Event1

@inv_Event3_seq Event3⊆ AndEvent1 ∩ AndEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event AndEvent1

where

@grd_seq Event1 = TRUE

@grd AndEvent1 = FALSE

then

@act AndEvent1≔ TRUE

end

event AndEvent2

where

@grd_seq Event1 = TRUE

@grd AndEvent2 = FALSE

then

@act AndEvent2≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq AndEvent1 = TRUE ∧ AndEvent2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end
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Multiple Instance(MI) Events:

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event AndEvent1

any p

where

@grd_seq p ∈ Event1

@grd p ∉ AndEvent1

then

@act AndEvent1≔ AndEvent1 ∪ { p }

end

event AndEvent2

any p

where

@grd_seq p ∈ Event1

@grd p ∉ AndEvent2

then

@act AndEvent2≔ AndEvent2 ∪ { p }

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ (AndEvent1 ∩ AndEvent2)

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 4.3: and-constructor Pattern

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.3, the event traces of the model are as follows:

< Event1, AndEvent1, AndEvent2, Event3 >

< Event1, AndEvent2, AndEvent1, Event3 >

4.2.5 or-constructor Pattern, Multiple Choice

The or-constructor pattern is presented in Table 4.4. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 4.2.2.

Intention: The intention is to execute one or more sub-events from two or more avail-

able sub-events, in any order, in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in atomic-

ity decomposition diagram with the or-constructor, a circle containing or. One or more

nodes connected to the or-constructor execute in any order in the sequence of other

sub-events. For simplicity, in this pattern we consider two leaves for the or-constructor.
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Name: or-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

OrEvent1

or

OrEvent2

AbstractEvent (p)

OrEvent1 (p)

or

OrEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

OrEvent1

or

OrEvent2

AbstractEvent (p)

OrEvent1 (p)

or

OrEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OrEvent1_seq OrEvent1 = TRUE ⇒ Event1 = TRUE

@inv_OrEvent2_seq OrEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (OrEvent1 = TRUE ∨ OrEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_OrEvent1_seq OrEvent1⊆ Event1

@inv_OrEvent2_seq OrEvent2⊆ Event1

@inv_Event3_seq Event3⊆ OrEvent1 ∪ OrEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

Invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OrEvent1_seq OrEvent1 = TRUE ⇒ Event1 = TRUE

@inv_OrEvent2_seq OrEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (OrEvent1 = TRUE ∨ OrEvent2 = TRUE)

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_OrEvent1_seq OrEvent1⊆ Event1

@inv_OrEvent2_seq OrEvent2⊆ Event1

@inv_Event3_seq Event3⊆ OrEvent1 ∪ OrEvent2

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event OrEvent1

where

@grd_seq Event1 = TRUE

@grd OrEvent1 = FALSE

then

@act OrEvent1≔ TRUE

end

event OrEvent2

where

@grd_seq Event1 = TRUE

@grd OrEvent2 = FALSE

then

@act OrEvent2≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq OrEvent1 = TRUE ∨ OrEvent2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end
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Multiple Instance(MI) Events:

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event OrEvent1

any p

where

@grd_seq p ∈ Event1

@grd p ∉ OrEvent1

then

@act OrEvent1≔ OrEvent1 ∪ { p }

end

event OrEvent2

any p

where

@grd_seq p ∈ Event1

@grd p ∉ OrEvent2

then

@act OrEvent2≔ OrEvent2 ∪ { p }

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ (OrEvent1 ∪ OrEvent2)

@grd_ p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 4.4: or-constructor Pattern

Restrictions: There are at least two nodes connected to the or-constructor. Following

single solid line rule, the or-constructor is always connected to the root node with dashed

line, and all of the corresponding or-constructor events, OrEvent1 and OrEvent2 here,

inherit dashed line from the or-constructor.

Event-B Model:

The encoded Event-B model for the or-constructor pattern is presented in Table 4.4.

Each or-constructor event can execute only after execution of previous event, Event1.

This is ensured with a guard, explained in sequence pattern. Next event after the

or-constructor in sequence can execute only after execution of at least one of the or-

constructor events. Therefore a guard is generated in the event after the or-constructor,

to ensures that at least one of the or-constructor events executes before. This guard is a

disjunction between the corresponding control variables generated for the or-constructor

events. Considering the SI case, guard (OrEvent1 = TRUE ∨ OrEvent2 = TRUE),

and in the MI case guard (p ∈ OrEvent1 ∪OrEvent2), are generated.

Comparing to sequence pattern invariants, the sequencing invariants for the event after

the or-constructor is changed in order to show the disjunction between control variables

of the or-constructor events.
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Event Execution Trace Examples:

Considering the SI case diagram in Table 4.4, the event traces of the model are as follows:

< Event1, OrEvent1, Event3 >

< Event1, OrEvent2, Event3 >

< Event1, OrEvent1, OrEvent2, Event3 >

< Event1, OrEvent2, OrEvent1, Event3 >

4.2.6 xor-constructor Pattern, Exclusive Choice

The xor-constructor pattern is presented in Table 4.5. The table interpretation is the

same as what was described in term of sequence pattern table interpretation in Sec-

tion 4.2.2.

Intention: The intention is to execute exactly one event from two or more available

sub-events, in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in the atom-

icity decomposition diagram with the xor-constructor, a circle containing xor. Exactly

one of the nodes connected to the xor-constructor executes in the sequence of other

sub-events. The xor-constructor can connect to the root node either with solid line or

dashed line. Since only one of the xor-constructor events execute in this pattern, so

having solid line for the xor-constructor follows the single solid line rule. It is clarified

in examples of event trace at the end of this section. For simplicity, in this pattern we

consider two leaves for the xor-constructor.

Restrictions: There are at least two nodes connected to the xor-constructor.

Event-B Model:

The encoded Event-B model for the xor-constructor pattern is presented in Table 4.5.

The Event-B model is almost like the or-constructor pattern. In each xor-constructor

event, a guard is needed to ensure that other xor-constructor events have not executed.

For example, in the SI case, guard XorEvent2 = FALSE is generated in XorEvent1,

and considering the MI case, guard p /∈ XorEvent2 is generated in XorEvent1 .

Also an extra invariant is provided to show that at any time only one of the xor-

constructor events has executed or none of them has executed. In the SI case, invariant

partition({XorEvent1, XorEvent2} ∩ {TRUE},
{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

shows that at any time only one the control boolean variables’value can be TRUE. And

in the MI case invariant
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partition((XorEvent1 ∪XorEvent2), XorEvent1, XorEvent2)

shows that the set control variables are disjoints. The partition operator in event-B is

defined as follows:

partition(E0, E1, ..., En) ≡ (E0 = E1 ∪ ... ∪ En) ∧ (i 6= j ⇒ Ei ∩ Ej = ∅)

If the xor-constructor is provided with a solid line, the each xor-constructor sub-event

refines the abstract event. Also a gluing invariant is needed. The just stated invariants

in the SI case and the MI case respectively are changed to:

partition({AbstractEvent} ∩ {TRUE},
{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

partition(AbstractEvent,XorEvent1, XorEvent2)

These gluing invariant not only describe the exclusive choice property, but also they

describe the relation between abstract variable and the xor-constructor control variables.

Considering partition definition, the gluing invariants in the SI case and the MI case

respectively describe:

{AbstractEvent}∩{TRUE} = ({XorEvent1}∩{TRUE})∪({XorEvent2}∩{TRUE})

AbstractEvent = XorEvent1 ∪XorEvent2

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.5, the event traces of the model are as follows:

< Event1, XorEvent1, Event3 >

< Event1, XorEvent2, Event3 >

As mentioned above, the xor-constructor can be connected to the root node with a solid

line. Assume the xor-constructor in the SI case diagram in Table 4.2 is connected to the

abstract event with a solid line, and the other two sub-events are connected with dashed

lines. If we remove the hidden sub-events (sub-events with dashed line) from the above

event traces, the results are as follows:

< XorEvent1 >

< XorEvent2 >

Considering what has been explained in the Sequence Pattern in Section 4.2.2 about

removing events from a trace, the just mentioned traces are same as the abstract event

trace, < AbstractEvent >, since both xor-constructor events refine the AbstractEvent.
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Name: xor-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

XorEvent1

xor

XorEvent2

AbstractEvent (p)

XorEvent1 (p)

xor

XorEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

XorEvent1

xor

XorEvent2

AbstractEvent (p)

XorEvent1 (p)

xor

XorEvent2 (p)

Event1 Event3

Event1 (p) Event3 (p)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_XorEvent1_seq XorEvent1 = TRUE ⇒ Event1 = TRUE

@inv_XorEvent2_seq XorEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (XorEvent1 = TRUE ∨ XorEvent2 = TRUE)

@inv_xor partition( {XorEvent1, XorEvent2} ∩ {TRUE} , 

{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_XorEvent1_seq XorEvent1⊆ Event1

@inv_XorEvent2_seq XorEvent2⊆ Event1

@inv_Event3_seq Event3⊆ XorEvent1 ∪ XorEvent2

@inv_xor partition((XorEvent1 ∪ XorEvent2), XorEvent1, XorEvent2)

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_XorEvent1_seq XorEvent1 = TRUE ⇒ Event1 = TRUE

@inv_XorEvent2_seq XorEvent2 = TRUE ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ (XorEvent1 = TRUE ∨ XorEvent2 = TRUE)

@inv_xor partition( {XorEvent1, XorEvent2} ∩ {TRUE} , 

{XorEvent1} ∩ {TRUE}, {XorEvent2} ∩ {TRUE})

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p)

@inv_XorEvent1_seq XorEvent1⊆ Event1

@inv_XorEvent2_seq XorEvent2⊆ Event1

@inv_Event3_seq Event3⊆ XorEvent1 ∪ XorEvent2

@inv_xor partition((XorEvent1 ∪ XorEvent2), XorEvent1, XorEvent2)

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event XorEvent1

where

@grd_seq Event1 = TRUE

@grd XorEvent1 = FALSE

@grd_xor XorEvent2 = FALSE

then

@act XorEvent1 ≔ TRUE

end

event XorEvent2

where

@grd_seq Event1 = TRUE

@grd XorEvent2 = FALSE

@grd_xor XorEvent1 = FALSE

then

@act XorEvent2 ≔ TRUE

end

event Event3 refines AbstractEvent

where

@grd_seq XorEvent1 = TRUE ∨ XorEvent2 = TRUE

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end



48 Chapter 4 Atomicity Decomposition Part 2 - Patterns and Features

Multiple Instance(MI) Events:

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event XorEvent1

any p

where

@grd_seq p ∈ Event1

@grd p ∉ XorEvent1

@grd_xor p ∉ XorEvent2

then

@act XorEvent1≔ XorEvent1 ∪ { p }

end

event XorEvent2

any p

where

@grd_seq p ∈ Event1

@grd p ∉ XorEvent2

@grd_xor p ∉ XorEvent1

then

@act XorEvent2 ≔ XorEvent2 ∪ { p }

end

event Event3 refines AbstractEvent

any p

where

@grd_seq p ∈ (XorEvent1 ∪ XorEvent2)

@grd p ∉ Event3

then

@act Event3≔ Event3 ∪ { p }

end

Table 4.5: xor-constructor Pattern

4.2.7 all-replicator Pattern

The all-replicator pattern is presented in Table 4.6. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 4.2.2.

Intention: The intention is to execute a sub-event for all instances of a new parameter,

in the right place in the sequence of other sub-events. The all-replicator is a generalisa-

tion of the and-constructor.

Diagrammatic Representation: The all-replicator is presented with a circle contain-

ing all flowed by name of a new parameter.

Restrictions: Based on the single solid line rule, the all-replicator is always connected

to the root event with dashed line, since the all-replicator event can execute for more

than one time depending on the number of new introduced all parameter instances.

Event-B Model:

The encoded Event-B model for the all-replicator pattern is presented in Table 4.6. The

all-replicator parameter, p2, is added to the sub-event connected to the all-replicator,

AllEvent, as a new dimension.
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The type of generated control variable for the all-replicator event has got one more

dimension compared with other sub-events. Because the all-replicator introduces a new

parameter. An invariant is generated to define the type of the all-replicator control

variable. For instances considering the SI case, variable AllEvent is a subset of type of

new parameter p2, TY PE(p2), whereas other control variables are boolean variables. In

the MI case AllEvent’s variable is defined as a cartesian product of the root parameter’s

type TY PE(p1) and the all-replicator parameter’s type, TY PE(p2).

The event after the all-replicator event in sequence, Event3, can execute only after

execution of the all-replicator event, AllEvent, for all instances of the new parameter, p2.

A guard is generated in next event, Event3, to ensure this property. Guard (AllEvent =

TY PE(p2)) in event Event3 in the SI case, ensures that event AllEvent has executed

for all instances of p2 before. Also considering the MI case, guard (AllEvent[{p1}] =

TY PE(p2)) plays same role. Relational image r[S] in Event-B is defined as below:

r[S] = {y| ∃x.x ∈ S ∧ x 7→ y ∈ r}

Considering relational image definition, guard (AllEvent[{p1}] = TY PE(p2)) ensures

that for p1, AllEvent has executed for all instances of p2 from set TY PE(p2).

An invariant is generated to model the all-replicator condition: (p1 ∈ Event3 ⇒
AllEvent[{p1}] = TY PE(p2)) in MI case and (Event3 = TRUE ⇒ AllEvent =

TY PE(p2) in the SI case.

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.6, assume p2 ∈ {a, b}, the the event traces

of the model are as follows:

< Event1, AllEvent(a), AllEvent(b), Event3 >

< Event1, AllEvent(b), AllEvent(a), Event3 >

Number of executions of AllEvent is always equal to cardinality of the all-replicator pa-

rameter’s type set. In this example AllEvent executes for two times, since card({a, b}) =

2.
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Name: all-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

AllEvent (p2)

AbstractEvent (p1)

AllEvent (p1, p2)

all(p2)

all(p2)

Event1 Event3

Event1 (p) Event3 (p)

AbstractEvent

AllEvent (p2)

AbstractEvent (p1)

AllEvent (p1, p2)

all(p2)

all(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AllEvent_type AllEvent⊆ TYPE(p2)

@inv_AllEvent_seq AllEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ AllEvent = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_AllEvent_type AllEvent⊆ TYPE(p1) × TYPE(p2)

@inv_AllEvent_seq dom( AllEvent ) ⊆ Event1

@inv_Event3_seq p1 ∈ Event3⇒ AllEvent [ { p1 } ] = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_AllEvent_type AllEvent⊆ TYPE(p2)

@inv_AllEvent_seq AllEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ AllEvent = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_AllEvent_type AllEvent⊆ TYPE(p1) × TYPE(p2)

@inv_AllEvent_seq dom( AllEvent ) ⊆ Event1

@inv_Event3_seq p1 ∈ Event3⇒ AllEvent [ { p1 } ] = TYPE(p2)

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event AllEvent

any p2

where

@grd_seq Event1 = TRUE

@grd p2 ∉ AllEvent

then

@act AllEvent≔ AllEvent ∪ { p2 }

end

event Event3 refines AbstractEvent

where

@grd_seq AllEvent = TYPE(p2)

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act Event1≔ Event1 ∪ { p }

end

event AllEvent

any p1 p2

where

@grd_seq p1 ∈ Event1

@grd p1 ↦ p2 ∉ AllEvent

then

@act AllEvent≔ AllEvent ∪ { p1 ↦ p2 }

end

event Event3 refines AbstractEvent

any p1

where

@grd_seq AllEvent [ { p1 } ] = TYPE(p2)

@grd p1 ∉ Event3

then

@act Event3≔ Event3 ∪ { p1 }

end

Table 4.6: all-replicator Pattern
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4.2.8 some-replicator Pattern

The some-replicator pattern is presented in Table 4.7. The table interpretation is the

same as what was described in term of sequence pattern table interpretation in Sec-

tion 4.2.2.

Intention: The intention is to execute a sub-event for one or more instances of a new

parameter, in the right place in the sequence of other sub-events. The some-replicator

is a generalisation of the or-constructor.

Diagrammatic Representation: The some-replicator is presented with a circle con-

taining some followed by name of a new parameter.

Restrictions: Based on the single solid line rule, the some-replicator is always con-

nected to the root event with dashed line, since the some-replicator event can execute

for more than one time.

Event-B Model:

The encoded Event-B model for the some-replicator pattern is presented in Table 4.7.

The some-replicator parameter, p2, is added to the sub-event connected to the some-

replicator, SomeEvent, as a new dimension.

The type of generated control variable for the some-replicator event is defined with an

invariant as described in the all-replicator pattern.

The event after the some-replicator event in the sequence, Event3, can execute only after

execution of the some-replicator event, SomeEvent, at least for one of the instances of

the new parameter, p2. The sequencing guard (SomeEvent 6= ∅) in event Event3 in

the SI case, ensures that event SomeEvent has executed for one or more instances of

p2 before. Also considering the MI case, guard (p1 ∈ dom(SomeEvent)) ensures that

card(SomeEvent[{p1}]) ≥ 1. It means for p1, event Event3 executes for at least one

instance of p2.

The sequencing invariant generated for Event3, (Event3 ⊆ dom(SomeEvent)), also

shows one or more execution of SomeEvent before execution of Event3.
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Name: some-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

SomeEvent (p2)

AbstractEvent (p1)

SomeEvent (p1, p2)

some(p2)

some(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

AbstractEvent

SomeEvent (p2)

AbstractEvent (p1)

SomeEvent (p1, p2)

some(p2)

some(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_SomeEvent_type SomeEvent⊆ TYPE(p2)

@inv_SomeEvent_seq SomeEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ SomeEvent ≠ ∅

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_SomeEvent_type SomeEvent⊆ TYPE(p1) × TYPE(p2)

@inv_SomeEvent_seq dom( SomeEvent ) ⊆ Event1

@inv_Event3_seq Event3⊆ dom( SomeEvent ) 

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_SomeEvent_type SomeEvent⊆ TYPE(p2)

@inv_SomeEvent_seq SomeEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ SomeEvent ≠ ∅

@inv_Event3_gluing Event3 = AbstractEvent

Invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_SomeEvent_type SomeEvent⊆ TYPE(p1) × TYPE(p2)

@inv_SomeEvent_seq dom( SomeEvent ) ⊆ Event1

@inv_Event3_seq Event3⊆ dom( SomeEvent ) 

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event SomeEvent

any p2

where

@grd_seq Event1 = TRUE

@grd p2 ∉ SomeEvent

then

@act SomeEvent≔ SomeEvent ∪ { p2 }

end

event Event3 refines AbstractEvent

where

@grd_seq SomeEvent ≠ ∅

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act_Event1 Event1≔ Event1 ∪ { p }

end

event SomeEvent

any p1 p2

where

@grd_seq p1 ∈ Event1

@grd p1 ↦ p2 ∉ SomeEvent

then

@act SomeEvent≔ SomeEvent ∪ { p1 ↦ p2 }

end

event Event3 refines AbstractEvent

any p1

where

@grd_seq p1 ∈ dom( SomeEvent )

@grd p1 ∉ Event3

then

@act Event3≔ Event3 ∪ { p1 }

end

Table 4.7: some-replicator Pattern
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Event Execution Trace Examples:

Considering the SI case diagram in Table 4.7, assume p2 ∈ {a, b}, the event traces of

the model are as follows:

< Event1, AllEvent(a), AllEvent(b), Event3 >

< Event1, AllEvent(b), AllEvent(a), Event3 >

< Event1, AllEvent(a), Event3 >

< Event1, AllEvent(b), Event3 >

The number of the some-replicator event execution is always less than or equal to the car-

dinality of the some-replicator parameter’s type set. In above event traces, SomeEvent

executes for one or two times, since card({a, b}) = 2.

4.2.9 one-replicator Pattern

The one-replicator pattern is presented in Table 4.8. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 4.2.2.

Intention: The intention is to execute a sub-event for exactly one instance of a new

parameter, in the right place in the sequence of other sub-events. The one-replicator is

a generalisation of the xor-constructor.

Diagrammatic Representation: The one-replicator is presented with a circle con-

taining one flowed by name of a new parameter. Following the single solid line rule, the

one-replicator can be connected to the root event with either dashed line of solid line,

since the one-replicator event can execute for only one instance.

Event-B Model:

The encoded Event-B model for the one-replicator pattern is presented in Table 4.8. The

one-replicator parameter, p2, is added to the sub-event connected to the one-replicator,

OneEvent, as a new dimension.

Type of generated control variable for the one-replicator event is defined with an invari-

ant as described in the all-replicator pattern.

The event after the one-replicator event in the sequence, Event3, can execute only after

execution of the one-replicator event, OneEvent, for exactly one of the instances of

the new parameter, p2. The sequencing guard in event Event3 is same as the one in

the some-replicator pattern. In order to restrict the number of the one-replicator event

executions, we provide a guard in the one-replicator event. Considering the SI case, the

guard (OneEvent = ∅) in event OneEvent ensures that event OneEvent can execute
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only for one time. And in the MI case, guard (p1 /∈ dom(OneEvent)) ensures that for

p1, event OneEvent can execute only for one instance of p2.

An invariant is generated to show that the one-replicator event can execute only for one

time (for each instance of event parameter in the MI case). In the SI case,

(card(OneEvent) 6 1), and the MI case, invariant (∀ p.card(OneEvent[{p}]) 6 1).

A gluing invariant is generated for the one-replicator with the solid line. The gluing

invariant in the SI case and the MI case respectively are as follows:

OneEvent 6= ∅⇔ AbstractEvent = TRUE

dom(OneEvent) = AbstractEvent

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.8, assume p2 ∈ {a, b}, the event traces of

the model are as follows:

< Event1, OneEvent(a), Event3 >

< Event1, OneEvent(b), Event3 >

The one-replicator event can execute exactly for one instance of the new parameter.
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Name: one-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent

OneEvent (p2)

AbstractEvent (p1)

OneEvent (p1, p2)

one(p2)

one(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

AbstractEvent

OneEvent (p2)

AbstractEvent (p1)

OneEvent (p1, p2)

one(p2)

one(p2)

Event1 Event3

Event1 (p1) Event3 (p1)

Event-B Model

Single Instance(SI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OneEvent_type OneEvent⊆ TYPE(p2)

@inv_OneEvent_seq OneEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ OneEvent ≠ ∅

@inv_OneEvent_one card(OneEvent) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_OneEvent_type OneEvent⊆ TYPE(p1) × TYPE(p2)

@inv_OneEvent_seq dom( OneEvent ) ⊆ Event1

@inv_Event3_seq Event3⊆ dom( OneEvent )

@inv_OneEvent_one ∀p· card( OneEvent [{p}] ) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Event1_type Event1 ∈ BOOL

@inv_OneEvent_type OneEvent⊆ TYPE(p2)

@inv_OneEvent_seq OneEvent ≠ ∅ ⇒ Event1 = TRUE

@inv_Event3_seq Event3 = TRUE ⇒ OneEvent ≠ ∅

@inv_OneEvent_one card(OneEvent) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

invariants

@inv_Event1_type Event1⊆ TYPE(p1)

@inv_OneEvent_type OneEvent⊆ TYPE(p1) × TYPE(p2)

@inv_OneEvent_seq dom( OneEvent ) ⊆ Event1

@inv_Event3_seq Event3⊆ dom( OneEvent )

@inv_OneEvent_one ∀p· card( OneEvent [{p}] ) ≤ 1

@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Event1

where

@grd Event1 = FALSE

then

@act Event1≔ TRUE

end

event OneEvent

any p2

where

@grd_seq Event1 = TRUE

@grd p2 ∉ OneEvent

@grd_one OneEvent = ∅

then

@act  OneEvent≔ OneEvent ∪ { p2 }

end

event Event3 refines AbstractEvent

where

@grd_seq OneEvent ≠ ∅

@grd Event3 = FALSE

then

@act Event3≔ TRUE

end

event Event1

any p where

@grd p ∉ Event1

then

@act_Event1 Event1≔ Event1 ∪ { p }

end

event OneEvent

any p1 p2

where

@grd_seq p1 ∈ Event1

@grd p1 ↦ p2 ∉ SomeEvent

@grd_one p1 ∉ dom( OneEvent )

then

@act OneEvent≔ OneEvent ∪ { p1 ↦ p2 }

end

event Event3 refines AbstractEvent

any p1

where

@grd_seq p1 ∈ dom( OneEvent )

@grd p1 ∉ Event3

then

@act Event3≔ Event3 ∪ { p1 } 

end

Table 4.8: one-replicator Pattern
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4.3 Additional Features of the Atomicity Decomposition

Approach

4.3.1 The Most Abstract Level

The most abstract level of an Event-B model is illustrated in a diagram that aids un-

derstanding, shown in Figure 4.1. The name of a process in the system appears in an

oval as the root node, and the names of most abstract events appear in the leaves in

order from left to right. All lines have to be dashed lines, since all of leaves are the

most abstract events and do not refine the root node. The Event-B model is the same

as presented in patterns, Section 4.2. The only difference is that in the most abstract

level, there is no refining event (no solid line) and no gluing invariant in the Event-B

model.

Event 1 Event n… Event 1 (p1, …, pn) Event n (p1, …, pn)…

ProcessName ProcessName (p1, …, pn)

Figure 4.1: The Most Abstract Level Diagrams

4.3.2 Combined Atomicity Decomposition Diagram

In an atomicity decomposition diagram, root node, AbstractEvent in described patterns

in Section 4.2, is one of the events in (i)th refinement level which decomposed into some

sub-events in (i+1)th refinement level. Later each sub-events can be further decomposed

to some other sub-events in the next refinement level, (i+2)th refinement level, and so on.

The reason in the patterns we called the root node, AbstractEvent, is that comparing

with sub-events, AbstractEvent is placed in an earlier level of refinement which can be

considered as an abstract level for the sub-events refinement level.

Starting from the most abstract level diagram, the atomicity decomposition diagrams

for different events can be combined in a single diagram. An example is illustrated in

Figure 4.2. In this example, there are four abstract events, Event1, Event2, Event3 and

Event4, in the most abstract level. In the first refinement level, Event2 is decomposed

to Event5 followed by one instance of Event6. Also Event4 is decomposed to three

sequential sub-events, Event7, followed by a loop constructor applied to Event8, followed

by Event9.
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Event 1 Event 4

ProcessName

Event 2

and

Event 3

The Most Abstract Level

1st Refinement

nth Refinement

Event 6 (p1)

one(p1)

Event 5 Event 8 

*

Event 7 Event 9

ith Refinement

………..

………..

… …

… …

… …

Figure 4.2: Combined Atomicity Decomposition Diagram

The combined atomicity decomposition diagram provides the overall visualization of

the refinement structure. The benefits of combined atomicity decomposition diagram

will be explained more in the evaluation chapter, Section 8.4. In a combined atomicity

decomposition diagram, each leaf is encoded as one event in the Event-B model. A leaf

is a node without any child. For example, in the first refinement level of Figure 4.2, the

leaves are Event1, Event5, Event6, Event3, Event7, Event8, Event9.

The general atomicity decomposition language which describes the structure of the com-

bined atomicity decomposition diagram and translation rules to the Event-B model are

presented in Chapter 4.

4.3.3 Several Atomicity Decompositions for a Single Event

A single event can be decomposed to some sub-events in different styles. In other words

several atomicity decomposition diagrams can be defined for a same root node. An

example is illustrated in Figure 4.3. Event a is decomposed in two different diagrams

in the next refinement level. The Event-B model follows the rules that presented in

patterns, Section 4.2.

The benefits of having several atomicity decompositions for a single event will be high-

lighted later in Section 8.2.
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Event_a

Event_b Event_c

Event_a

Event_loop

*

Event_d Event_c

Figure 4.3: Several Atomicity Decomposition for a Single Event, Event a

4.3.4 Strong Sequencing versus Weak Sequencing

In a combined atomicity decomposition diagram, there are two approaches of sequencing

applied to a single root event: Strong Sequencing and Weak Sequencing. Strong/weak

sequencing property is applied to each single atomicity decomposition of a root event.

If strong sequencing is applied to a root event, then there is a sequencing between all

sub-events of that root and the previous and next sub-events of the earlier refinement

level. Whereas in the case of weak sequencing, the sequencing is applied only to the

sub-event with solid line of the root and the previous and next sub-events of the earlier

refinement level.

To make the point clear, an example of a combined atomicity decomposition diagram is

presented in Figure 4.4. Event a is decomposed to four sub-events, Event b, Event c,

Event d and Event a, in (i)th refinement level. Then Event c is decomposed to three

sub-events, Event f , Event c and Event g in (i+ 1)th refinement level.

Event_a

Event_b Event_aEvent_c

Event_f Event_gEvent_c

Weak Sequencing

Strong Sequencing

Event_d

Figure 4.4: Strong Sequencing, Weak Sequencing

Assume atomicity decomposition of Event c root event has strong sequencing, then the

only possible event trace is:

< Event b, Event f, Event c, Event g,Event d,Event a >

Whereas if atomicity decomposition of Event c has weak sequencing, then on one hand

there is an ordering just between the leaf with solid line, Event c and the previous and
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next leaves in sequence, Event b and Event d respectively. And on the other hand

there is no ordering constraints between Event b and Event f , and between Event g

and Event d. Therefore, because of weak sequencing, there are more than one possible

event trace:

< Event b, Event f, Event c, Event g,Event d,Event a >

< Event b, Event f, Event c, Event d,Event g,Event a >

< Event f,Event b, Event c, Event g,Event d,Event a >

< Event f,Event b, Event c, Event d,Event g,Event a >

In all of possible event traces, Event c executes after execution of Event b, before

Event d. It is important to mention that in a single atomicity decomposition, there

is always an ordering between sub-events of the root event, in both strong and weak

sequencing approaches. For example, Event f , Event c and Event g always execute

in order.

The weak and strong sequencing is managed with some invariants and guards. The

general translation rules to the Event-B model are presented in Chapter 4.

The most abstract atomicity decomposition diagram always has a strong sequencing,

since the most abstract diagram is placed in the top level of combined an atomicity

decomposition diagram.

4.3.5 Loop Resetting Event

As described in the Loop Pattern in Section 4.2.3, if the loop event is a single event, then

we do not consider a variable for the loop event. Considering the example in Figure 4.5,

in decomposing the atomicity of Event a, Event c can execute zero or more time before

execution of Event d. And the execution of Event d here, does not depend on the loop

execution.

In the next refinement level, the loop event is decomposed to some sub-events. So we

have to consider some control variables to manage the ordering between the loop events,

Event e, Event f and Event g. Also a resetting event is needed to reset the loop control

variables to enable more than one execution of the loop. Furthermore an extra guard

is needed in Event d to ensure that Event d does not execute in the middle of the

execution of the loop events.

Loop resetting can be done in three ways. Each of them for the example in Figure 4.5,

is illustrated with a state diagram and its Event-B model in Figure 4.6, Figure 4.7 and

Figure 4.8.

First, as illustrated in Figure 4.6, the reset event is considered as a separate event, called

Reset here. The ordering between loop events are managed with some control variables,
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Event_a

Event_b Event_dEvent_c

Event_e Event_gEvent_f

*

event Event_b where Event_b = FALSE   then Event_b ≔ TRUE end

event Event_c where  Event_b = TRUE ∧

Event_d = FALSE  

then skip end

event Event_d where  Event_b = TRUE ∧

Event_d = FALSE  

then Event_d ≔ TRUE end

Figure 4.5: Loop Resetting Example

Event e, Event f and Event g. The first event in the Loop, Event e checks that the next

event after the loop has not execute before, (Event d = FALSE). A guard in Event d

ensures that it can not execute in the middle of the loop, (Event e = FALSE).

Event_e = FALSE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = TRUE

Event_g = FALSE

Event_b

Event_d

Event_e

Event_fEvent_g

event Event_e where Event_b = TRUE ∧ Event_d = FALSE ∧ Event_e = FALSE then Event_e ≔ TRUE end

event Event_f where Event_e = TRUE ∧ Event_f = FALSE   then Event_f≔ TRUE  end

event Event_g where Event_f = TRUE ∧ Event_g = FALSE then Event_g≔ TRUE end

event Reset where  Event_g = TRUE  then Event_e≔ FALSE, 

Event_f ≔ FALSE, 

Event_g ≔ FALSE end

event Event_d where Event_b = TRUE ∧ Event_e = FALSE ∧ Event_d = FALSE then Event_d ≔ TRUE end

Event_e = TRUE

Event_f = TRUE

Event_g = TRUE

Reset 

Figure 4.6: Loop Resetting as a Separate Event

Second, as illustrated in Figure 4.7, the resetting is merged in the last event of the loop,

Event g. In this case we do not need a control variable for the last event, since the last

event resets the loop.

Last, as illustrated in Figure 4.8, the resetting is merged in the first event of the loop,

Event e. In this case we have to consider a separate event for the first event of the loop,

Event e1. The resetting is done in Event e2. In this case Event d ’s guard is complex,
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Event_e = FALSE

Event_f = FALSE

Event_e = TRUE

Event_f = FALSE

Event_e = TRUE

Event_f = TRUE

Event_b

Event_d

Event_e

Event_f

Event_g

event Event_e where Event_b = TRUE ∧ Event_d = FALSE ∧ Event_e = FALSE then Event_e ≔ TRUE end

event Event_f where  Event_e = TRUE ∧ Event_f = FALSE  then Event_f ≔ TRUE  end

event Event_g where  Event_f = TRUE then Event_e ≔ FALSE,

Event_f≔ FALSE   end

event Event_d where Event_b = TRUE ∧ Event_e = FALSE ∧ Event_d = FALSE then Event_d ≔ TRUE end

Figure 4.7: Loop Resetting in the Last Event

since we need to consider two cases. First zero execution of the loop, (Event e =

FALSE) and second, one or more execution(s) of the loop, (Event g = TRUE).

We adopted the separate resetting event for the loop in Figure 4.6. Considering the

example in Figure 4.9, assume the case when the first sub-event in decomposing the

loop event, Event c, is either the and-constructor or the or-constructor or the xor-

constructor. Then the resetting approach presented in Figure 4.8, needs to be applied

to all of the constructor children, Event e and Event f here. Also in the resetting

approach presented in Figure 4.7, if the last sub-event is either the and-constructor or

the or-constructor or the xor-constructor, then the resetting needs to be applied to all

of the constructor children, and this can make the Event-B model large and complex

comparing to the approach when we provide the separate resetting event.

Using a separate event to reset loop, the Event-B model of the example presented in

Figure 4.5, is presented in Figure 4.10, in the MI case (having one parameter).

4.4 Different Approaches to Model Ordering in Event-B

In the described patterns in Section 4.2, we used subset relationships to manage ordering

between events. A simple example is presented in Figure 4.11. The subset invariant

(B ⊆ A), specifies one variable as a subset of the other. The first event, A, is only

enabled when parameter x is not is the A set. The action of the event adds the parameter
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Event_e = FALSE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = FALSE

Event_g = FALSE

Event_e = TRUE

Event_f = TRUE

Event_g = FALSE

Event_b

Event_d

Event_e1 

Event_fEvent_g

event Event_e1 where Event_b =TRUE ∧ Event_d=FALSE ∧ Event_e =FALSE  then Event_e≔ TRUE end

event Event_e2 where Event_g = TRUE ∧ Event_d= FALSE  then Event_f≔ FALSE,

Event_g≔ FALSE end

event Event_f where  Event_e = TRUE ∧ Event_f = FALSE  then Event_f≔ TRUE  end

event Event_g where  Event_f = TRUE ∧ Event_g = FALSE  then Event_g≔ TRUE end

event Event_d where Event_b = TRUE ∧ ( Event_e = FALSE   ∨ Event_g = TRUE ) ∧ Event_d = FALSE

then Event_d ≔ TRUE end

Event_e = TRUE

Event_f = TRUE

Event_g = TRUE

Event_e2 

Event_d

Figure 4.8: Loop Resetting in the First Event

Event_a

Event_b Event_dEvent_c

Event_e Event_hEvent_g

*

and

Event_f

Figure 4.9: Loop Resetting Example

event Event_e where p1 ∈ Event_b ∧ p1 ∉ Event_d ∧ p1 ∉ Event_e then Event_e ≔ Event_e ∪ { p1}

event Event_f where  p1 ∈ Event_e ∧ p1 ∉ Event_f then Event_f ≔ Event_f ∪ { p1} end

event Event_g where  p1 ∈ Event_f ∧ p1 ∉ Event_g then Event_g ≔ Event_g ∪ { p1}  end

event Reset where  p1 ∈ Event_g then Event_e ≔ Event_e / { p1},

Event_f ≔ Event_f / { p1},

Event_g ≔ Event_g / { p1} end

event Event_d where p1 ∈ Event_b ∧ p1 ∉ Event_e ∧ p1 ∉ Event_d then Event_d ≔ Event_d ∪ { p1}

Figure 4.10: Loop Resetting with Parameter
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to the set variable A. The second event can only execute when the parameter is in A

set and not in B set. The action of the event then adds the parameter to the B set.

RootEvent

A B

event B refines RootEvent

any x

where

@grd1 x ∈ A

@grd2 x ∉ B

then

@act1 B ≔ B ∪ { x }

end

event A

any x

where

@grd1 x ∉ A

then

@act1 A ≔ A ∪ { x }

end

Figure 4.11: Subset Sets

An alternative is to use disjoint sets [60] and to remove the parameter from one set

before it can move to the next set. Figure 4.12 shows an example that used disjoint sets

to model ordering between two events. The variables A and B are modelled as disjoint,

(A ∩ B = ∅). The event A takes a parameter that is neither of the sets and adds it to

A set. The event B takes a parameter that is in the A set, removes it and adds it to B

set.

RootEvent

A B

event B refines RootEvent

any x

where

@grd1 x ∈ A

then

@act1 A ≔ A \ { x }

@act2 B ≔ B ∪ { x }

end

event A

any x

where

@grd1 x ∉ (A ∪ B)

then

@act1 A ≔ A ∪ { x }

end

Figure 4.12: Disjoint Sets

Another alternative is to use function, Figure 4.13. A set represents possible states of a

parameter, and a function shows a relation between a parameter and its state:

STATES = {A,B}
stateFun : PAR SET → STATE

Each event change the value of stateFunc to a new value.

A state machine in UML-B can be encoded in Event-B using disjoint sets representation

or state function representation [61]. This two styles are introduced in [44].
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RootEvent

A B

event B refines RootEvent

any x

where

@grd1 stateFunc(x) = A

then

@act1 stateFunc(x) ≔ B

end

event A

any x

where

@grd1 x ∈ dom(stateFunc)

then

@act1 stateFunc(x) ≔ A

end

Figure 4.13: State Function

In [24], the subset approach is used. We adopted the subset approach as well. One of the

advantages of using the subset relationships in the Event-B models, is that the subset

relationships between the control variables that represent different states of the model

can be specified in the invariants of the model. Considering Figure 4.11, invariant (B ⊆
A) specifies the ordering relationship between A and B control variables. This ensures

that the orderings are upheld in the Event-B model more strongly than if specified only

in the event guards.

Moreover, having disjoint set variables would not allow us to model the and-constructor,

the or-constructor, the all-replicator and one-replicator in a simple way as subset vari-

ables provide. Considering the and-constructor and the or-constructor, a logical and or

a logical or between two events, A and B, means four states as follows:

• none has happened

• A happened but not B

• B happened but not A

• A and B have happened

Using non-disjoint set variables (subset approach) allows us to model these combinations

using two set variables, but disjoint set variables would not allow this by using only two

set variables. Using disjoint set variables to model these combination would requires

four state variables expilicitly. As a result the Event-B models of the and-constructor

and the or-constructor corresponding to the disjoint set approach are larger and more

complex comparing to the subset approach models.

Since the all-replicator and the some-replicator are generalisations of the and-constructor

and the or-constructor respectively, having disjoint set variables make the same com-

plexity in the corresponding Event-B models.
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Considering the Event-B model of the and-constructor pattern presented in Table 4.3,

using disjoint sets results in subtracting the parameter p from the set control variable

Event1, in AndEvent1. Consequently, the ordering between Event1 and the other child

of and-constructor, AndEvent2, is not possible, since we can not track the execution

of Event1. This is true for the or-constructor pattern presented in Table 4.4. Also

considering the Event-B model of the all-replicator pattern in Table 4.6, using disjoint

sets results in subtracting the parameter p1 from set control variable Event1 in the

first execution of AllEvent. As a result, guard (p1 ∈ Event1) does not hold for further

executions of AllEvent. It is true for the some-replicator pattern presented in Table 4.7.

Using the function approach presented in Figure 4.13, can result in complex guards. For

example in the and-constructor pattern presented in Table 4.3, guard (p1 ∈ Event1) in

AndEvent1 is changed as follows:

stateFunc(p) = Event1 ∨ stateFunc(p) = AndEvent2

The more constructor children there are, the more complex the guards.

4.5 Related Works and Comparison

The desire to explicitly model control flow is not restricted to Event-B. To address this

issue usually a combination of two formal methods are suggested. A good example of

such an approach is Circus [62, 63] combining CSP [37] and Z [64]. The combination of

CSP and Classical B [9] has also been investigated in [65, 66].

To provide explicit control flow for an Event-B model a combination of two formal

methods is presented in [67] which is based on using CSP alongside Event-B. Event-B

is a state-based formalism, and as presented in Section 3.3, the control flow can only

be implicitly modelled in state variables and event guards. On the other hand CSP is

a process-based formalism (Section 2.3.4), which supports explicitly specifying control

flow via processes. [67] presents an integrated formal method, a combination of Event-B

as a state-based formalism and CSP as a control-based formalism, to explicitly model

control flow in Event-B.

UML-B [61, 68] provides a “UML-like” graphical front-end for Event-B. It adds support

for class-oriented and state machine modelling. State machines provide us with a graph-

ical notation to explicitly define event sequencing. Events are represented by transitions

on a state machine, and control flow is specified by defining the source and target state

of each transition.

Another method to explicitly define control flow properties of an Event-B model is

suggested in [69, 70]. This method extends Event-B models with expressions, called
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flows, defining event ordering. Flows are written in a language resembling those in

process algebra.

A comparison between the atomicity decomposition approach and other techniques out-

lined above, is provided as follows:

• All outlined techniques only deal with explicit event sequencing; they do not sup-

port the explicit refinement relationship, provided by atomicity decomposition

diagrams. The atomicity decomposition approach provides a graphical front-end

to Event-B along with other features such as supporting explicit event sequenc-

ing and expressing refinement relationships between abstract and concrete events.

Also it can be combined effectively with other techniques such as model decompo-

sition [2]. The graphical front-end of the atomicity decomposition approach can

provide an overall visualisation of the refinement structure, which is not supported

by any of techniques outlined above.

• In integrated formal methods, the control flow constructs rely on the constructs in

the process-based formalism of the integration. CSP constructs are used to model

control flow in integrations of CSP and Z/B/Event-B. CSP constructs, which are

outlined in Section 2.3.4, include prefix, deterministic choice, nondeterministic

choice, parallel, interleaving, hiding and recursion.

Atomicity decomposition control flow constructs are addressed in Chapter 4. Atom-

icity decomposition constructs contain the sequence construct, the loop construct,

logical constructs, e.g. and/or/xor, and all/some/one constructs as generalisation

of the and/or/xor constructs.

The CSP constructs and the atomicity decomposition constructs can be compared

as follows:

– The prefix operator in CSP is used to describe the sequence of events and is

equivalent to the sequence construct in the atomicity decomposition approach.

– The choice operators in CSP are equivalent to the xor construct in the atom-

icity decomposition approach. We do not distinguish between deterministic

and nondeterministic choice in the atomicity decomposition approach. The

one construct in the atomicity decomposition approach is generalisation of

the xor construct; the one construct is also supported in CSP.

– The parallel operator is CSP is equivalent to the all construct in the atomicity

decomposition approach. In the atomicity decomposition approach, the all

construct is generalisation of the and construct; the and construct is also

supported by parallel operator in CSP.

– The interleaving operator is supported in CSP. Also in atomicity decompo-

sition approach, different diagrams can be interleaved based on the Event-B

interleaving.
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– CSP includes an event hiding operator. In the Event-B refinement, a new

event introduced in a refining machine, may be considered as a hidden event

in the abstract machine. In the atomicity decomposition approach, we de-

composed the atomicity of an abstract event to new concrete events and a

refining concrete event. The new events connected with dashed lines to the

abstract event, are considered as hidden events in the abstract machine.

– CSP supports recursion (which makes it possible to model loops). Atomicity

decomposition supports loops but not recursion.

– There is no equivalences for the or construct and the some construct (as gen-

eralisation of or) of the atomicity decomposition approach, in CSP. Recalling

or construct in Section 4.2.5, in (A or B), one or both may occur which is

different to choice and different to interleaving.

The flow language presented in [69, 70] is based on process algebra. The flow

language constructs contain sequential composition, parallel composition, choice

and loop.

Control flow in Event-B can be modelled in state machine supported by UML-

B [61, 68]. Sequencing, choice and loop can be encoded in state machines, state

machines do not have explicit constructs for these. State machines have explicit

constructs for parallel regions. The or construct and the some construct (as gen-

eralisation of or) of the atomicity decomposition approach, are not supported in

UML-B state machine.

• As explained in Section 2.4.6, a Classical B operation can be called by other

operations. It is the responsibility of the caller to ensure that the called operation

pre-conditions are hold. While in Event-B, an event contain guards and the enabled

events are continually executed in a nondeterministic manner.

In the integration of CSP and classical B presented in [65], classical B operations

are called with CSP description. CSP description allows us to make sure that

pre-conditions of called operations hold. In the integration of CSP and Event-B

presented in [67], the authors do not need to deal with pre-conditions, as Event-B

events contain guards rather than preconditions.

• In the integration of CSP and Event-B technique presented in [67], the authors

need to tackle the verification of combined specifications. While in the atomicity

decomposition approach and UML-B state machines the graphical representation

is directly transformable to the Event-B formalism. This in turn means that

verification effort can be carried out in the existing Event-B tool-set, Rodin, which

is already familiar to the Event-B users. Also in the combined CSP with classical

B approach presented in [66], CSP specifications are converted into standard B

specifications.
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• As [67] suggests, in combining formal method descriptions we may not be able to

express all invariants as state predicates; because the control flow requirements are

separated in a process-based description. While in the atomicity decomposition

approach, control flow requirements are translated into Event-B; and Event-B

invariants have access to all state variables in one place, the Event-B model.

4.6 Conclusion

Several atomicity decomposition constructors, which were discovered during case study

developments, have been presented in this chapter. A pattern-based style was used to

present the atomicity decomposition constructors. Each pattern is defined to satisfy a

particular intention in decomposing the atomicity of an abstract event, and contains one

constructor in a single level of refinement. Each pattern is encoded in terms of Event-B

using some variables, invariants, events, guards and actions. The diagrammatic notation

of a constructor and corresponding encoded Event-B model are presented both for single

instance (SI) execution of an event and multiple instance (MI) execution.

In total eight constructors were presented as follows:

• The intention to model a sequential execution of two or more events is represented

by the Sequence pattern.

• The Loop pattern represents zero or more execution of an event.

• The logical constructor patterns (and-constructor, or-constructor and xor-construct-

or) model a logical execution between two or more events.

• The replicator patterns, all-replicator, some-replicator and one-replicator, are gen-

eralisations of the logical constructor patterns, and-constructor, or-constructor and

xor-constructor, respectively.

Each pattern contains three children in decomposition of an abstract event in one re-

finement level. In all patterns, except the sequence pattern, the middle sub-event is

a loop or a logical constructor or a replicator. From a more general and formal point

of view, the combination of constructors in one or more refinement levels is presented

in Chapter 5. The patterns presented in this chapter help to aid understanding of the

contents of Chapter 5.



Chapter 5

Atomicity Decomposition Part 3 -

Language Description and

Translation Rules

5.1 Introduction

In Chapter 4, several atomicity decomposition patterns have been outlined. The atom-

icity decomposition language needs to be described in a more general and formal way.

This chapter addresses this; instead of the patterns described in Chapter 4 in one level

of refinement, we consider all possible combination of patterns in one or more refinement

level(s). In other words, different patterns can be applied in one refinement level.

In this chapter we begin by presenting an example of an atomicity decomposition di-

agram in several refinement levels including different types of atomicity decomposition

constructors. Later this example is used to help explain the language description and

translation rules. Section 5.3 presents a formal description of the syntax of the atom-

icity decomposition language. Then Section 5.4 is dedicated to translation rules which

describe the transformation from the atomicity decomposition language to the Event-B

notation. In this chapter, we use the abbreviation “ADL” to stand for the Atomicity

Decomposition Language.

5.2 An Example

In Section 4.2, we presented each atomicity decomposition constructor in one pattern

and in one refinement level. In this section we present an instance of an atomicity

decomposition diagram combining different constructors and including an abstract level

and two refinement levels, in Figure 5.1.
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Rules

Process‐name(p1)

a(p1)

e(p1)

b(p1, p2)

all(p2)

i(p1, p2)

xor

j(p1, p2)

c(p1)

and

d(p1)

l(p1, p3)

one(p3)

q(p1, p2) t(p1, p2) u(p1, p2, p5)s(p1, p2) v(p1, p3, p6)

some(p6)

f(p1)

*

g(p1) h(p1, p2) k(p1)

w(p1, p3)

Abstract Level

First Refinement

Second Refinement

or

r(p1, p2)

one(p5)all(p4)and

m(p1) n(p1) o(p1) p(p1, p4)

Figure 5.1: An Example of Atomicity Decomposition Diagram

In the most abstract level, there are four abstract events, a, b, c and d. The diagram

indicates the sequencing between these events. First event a(p1) executes, then event

b(p1, p2) for all instances of parameter p2, finally event c(p1) and d(p1) executes in

any order. In first refinement level three events, a, b and c, are decomposed to some

sub-events. And in the second refinement level there are four further atomicity de-

composition. The green leaves present the events in the final refinement level (second

refinement level). These events are leaf nodes (nodes that does not have any children).

In the later sections this example will be followed to explain the language description

and translation rules to Event-B. The selection of constructors and their combination in

this example is chosen in a way that it covers all cases of transformation to the Event-B.

5.3 Atomicity Decomposition Language Specification

To describe the language syntax, we adopt Augmented Backus-Naur Form (ABNF) [71].

ABNF is a metalanguage based on Backus-Naur Form (BNF). BNF is a notation for

context-free grammars, often used to describe the syntax of languages. It is applied

wherever exact descriptions of languages are needed. The differences between standard

BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and

value ranges. In describing ADL, the repetition syntax in ABNF seems more suitable

than in standard BNF.

An ABNF specification is a set of derivation rules, written as

rule = definition
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The ABNF rules for ADL is shown in Figure 5.2. The following ABNF operators are

used in describing ADL:

• Terminal values:

Terminal values are placed between two apostrophes (“Terminal”).

• Alternative: (Rule1 / Rule2)

A rule may be defined by a list of alternative rules separated by a solidus (“/”).

• Variable repetition: (n*m element)

To indicate repetition of an element the form (n*m element) is used. The optional

n gives the minimum number of elements to be included with the default of 0.

The optional m gives the maximum number of elements to be included with the

default of infinity.

We use *element for zero or more elements, 1*element for one or more elements

and 2*element for two or more elements.

flow                     = ''flow'' (name, *par,  sw) ( 1*child (ref) )

child                     = ''leaf'' (name) / constructor  / 1* flow

cons-child           = ''leaf'' (name) / 1* flow

constructor = (''and'' / ''or'' / ''xor'')  ( 2* cons-child )

/ (''all'' / ''some'' / ''one'') (par) ( cons-child ) 

/ ''loop'' ( cons-child ) 

• “sw”: strong or week sequencing flow

• “ref”: refining or non-refining child

• abs-flow is always strong and its children are always non-refining events

• constructor’s leaves inherit the property of “ref” from their constructors

• “and”, “or”, “all”, “some”, “loop” are always non-refining 

• “xor” and “one” can be refining or non-refining

* only one refining child per flow

* each flow/leaf inherits its parameters from its first parent flow and its first parent  

constructor

* where 1*flow have same name 

* where one(1) then Parent-name  ≠  leaf-name

Figure 5.2: Syntax of Atomicity Decomposition Language (ADL)

A flow refers to a single atomicity decomposition for a root node. To describe the refining

and non-refining sub-events, we consider a boolean property, called “ref”. The refining

and non-refining sub-events in an atomicity decomposition diagram are presented by

type of lines, solid lines and dashed lines respectively. When a sub-event refines the

abstract event (solid line) , “ref” is one; otherwise “ref” is zero. Also to distinguish

strong sequencing flow from a weak sequencing flow, another boolean property, called

“sw”, is used. When a flow has strong sequencing, “sw” is one, otherwise “sw” is zero.

Considering Figure 5.2, the ABNF for ADL may be described informally as follows:

• A flow consists of a name, zero or more parameters, an “sw” property, followed by

one or more children. Each child of a flow has a “ref ” property.

• A child is either a “leaf ” with a name, or a constructor or one or more flow(s).

• A constructor is either an “and” or an “or” or a “xor”, with two or more construc-

tor children (cons-child) or an “all” or a “some” or an “one” with a parameter,
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followed by one constructor child (cons-child) or a “loop” with one constructor

child (cons-child).

• A cons-child is either a “leaf ” with a name or one or more flow(s).

There are some properties of the syntax of the ADL which reflect some features of

atomicity decomposition diagrams, which have been discussed in Chapter 4. These

properties are listed below:

• Since a most abstract flow has always strong sequencing, Section 4.3.1, the “sw”

property is always one for an abstract flow. Also since the children of a most

abstract flow are always non-refining, come with dashed lines, Section 4.3.4, so the

“ref” property for its children is always zero.

• A cons-child inherits the value of the “ref” property from its constructor parent.

• Since some constructors including “and”, “or”, “all”, “some” and “loop” always

come with dashed lines, Section 4.2, the value of the “ref” property for these

constructors is always zero. Whereas other constructors including ‘xor” and “one”

can come with dashed or solid lines, therefore the “ref” property for them can be

zero or one.

• One and only one of the children of each flow can refine the root event, as explained

in Section 4.2, therefore in ABNF one and only one of the “ref” property of children

of a flow is allowed to be one.

• Each flow inherits its parameters from its parent flow plus its constructor parent

if exists.

• There can be more than one atomicity decomposition for a single event, as ex-

plained in Section 4.3.3. This feature is specified by (1*flow). All flows in a

collection of (1*flow) should have same name, since they all show decomposition

of the same event.

Considering example in Figure 5.1, the ABNF for each refinement level is presented sep-

arately in Figure 5.3. Although the diagram in Figure 5.1 does not indicate if sequencing

of each flow is strong or weak, the ABNFs in Figure 5.3 presents this as a property of

each flow.

The syntax definition of ADL prevents us from combining constructors at a single re-

finement level, e.g., the diagram presented in Figure 5.4, is not allowed. There are some

reasons for this limitation. First, baseed on our experience during the case study devel-

opments, we have not seen the need to support a combination of constructors at single

refinement level. Moreover, the atomicity decomposition approach is considered as a

technique to partly solve the complexities of the Event-B modelling of large systems;

therefore we try to keep the syntax definition as simple as it solves our requirements.
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Abstract Level:

flow(process-name, p1, 1) ( leaf (a) (0), all (p2) (leaf (b)) (0), and (leaf (c), leaf (d)) (0) )

1st Refinement Level:

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

2nd Refinement Level:

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

Figure 5.3: ABNF of the Diagram in Figure 5.1

root event

or

orevent …

…

…and

Figure 5.4: Invalid Combination of the Constructors

5.4 Atomicity Decomposition Translation Rules (TRs) to

Event-B

5.4.1 Introduction

This section describes the translation rules formally. We outline how the ABNF of ADL

is encoded in the Event-B language. In total 23 rules are presented. Most of these rules

have been introduced informally in Section 4.2.

In the figure of each rule, the first row shows the signature of the rule, the second

row presents the source element(s) of the rule, the ABNF element(s), and the last

row(s) present the destination element(s) of the rule, the Event-B element(s). Each rule
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signature is of the form (ABNF element(s) → Event-B element(s)). There are some

auxiliary functions which are presented in Section 5.4.2. The aim of defining these

functions is to help describing some of the translation rules.

Considering atomicity decomposition patterns in Section 4.2, patterns are encoded in the

Event-B modelling using control variables, invariants, events, guards and actions. These

Event-B elements are transformed from four sources in the atomicity decomposition

diagram: a leaf, the xor-constructor, the one-constructor and the loop constructor. A

leaf is transformed to a variable, an invariant, an event, guard(s) and an action in order

to manage the sequencing between events and to show the relationship between the

abstract event and the refining sub-event. The xor-constructor is transformed to an

invariant and guards to specify the mutual exclusive property of its children. The one-

replicator is transformed to an invariant and a guard to limit the number of executions

of its child to one. The loop constructor is transformed to a guard and a resetting

event. Moreover as presented in Section 4.3.4, a weak sequencing flow is managed with

sequencing invariant(s) and sequencing guard(s) in the Event-B model.

The translation rules are categorised according to their source element. The rules whose

source is a leaf are presented in Section 5.4.3. The rules whose source is the xor-

constructor are presented in Section 5.4.4. The rules whose source is the one-replicator

are presented in Section 5.4.5. The rules whose source is the loop constructor are pre-

sented in Section 5.4.6. Finally the rules whose source is a weak flow is presented in

Section 5.4.7. It is helpful to mention that the and-constructor, the or-constructor,

the all-replicator and some-replicator properties are specified in sequencing invariants

and sequencing guards which are generated in TR leaf4 (Section 5.4.3.4) and TR leaf8

(Section 5.4.3.8) respectively.

In the atomicity decomposition patterns (Section 4.2), the invariants and guards trans-

formed from the xor-constructor, the one-constructor and the loop constructor are la-

belled with “ xor” suffix, “ one” suffix and “ loop” suffix respectively. Sequencing in-

variants and the sequencing guards are labelled with “ seq” suffix. And typing invariants

and gluing invariants are labelled with “ type” suffix and “ gluing” suffix respectively.

This labelling protocol helps to determine the aim of each encoded invariant or guard.

The labelling protocol is followed in the translation rules as well.

Translation rules are presented per ABNF element. For each ABNF element, we present

the resulting variables, events, guards, actions and invariants. We assume that we access

to each ABNF element in an ABNF description of an atomicity decomposition diagram.

The translation rules are presented in a modular way to be encoded in the Event-B

model. For example the events are generated in TR leaf6 (Section 5.4.3.6) and TR leaf7

(Section 5.4.3.7), and later other translation rules, e.g. TR leaf8 (Section 5.4.3.8),

TR leaf9 (Section 5.4.3.9), TR leaf10 (Section 5.4.3.10), TR leaf11 (Section 5.4.3.11)

and TR leaf12 (Section 5.4.3.12), add the guards and actions to the generated events.
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In some similar rules, the translations for a replicator (all-replicator, some-replicator,

one-replicator) leaf and a non-replicator leaf are distinguished. This difference is applied

because of the extra parameter that the replicator adds to the parameter list of its leaf.

This replicator parameter changes the type of the replicator leaf variable. For instance,

a typing invariant is generated for a non-replicator leaf in TR leaf2 (Section 5.4.3.2),

and for a replicator leaf in TR leaf3 (Section 5.4.3.3).

The example that has been presented in Figure 5.1 and Figure 5.3, will be used to show

the application of each translation rule.

5.4.2 Auxiliary Functions Definitions

5.4.2.1 Traversing Functions

Some of the translation rules are applied to an ABNF element placed in the the final

level of refinement in a combined atomicity decomposition diagram. Some other of the

translation rules cover translations from an ABNF element in the earlier refinement

level(s) in a combined atomicity decomposition diagram. In the later translation rules

we need to traverse down the subtree of a child in order to find leaves in the final

refinement level. Some functions are defined in order to traverse the sub-trees in a

combined atomicity decomposition diagram. We use the outputs of these functions to

create invariants and guards as the destination element of the translation rules.

In total six functions are defined. The functions are summarised as follows:

• list of leaves function is presented in Figure 5.5. The function name, list of leaves,

in the traversing steps is abbreviated to f. It is a recursive function that outputs

a list of the leaf events, including their names and parameters.

• disjunction of leaves function is presented in Figure 5.6. The function name,

disjunction of leaves, in the traversing steps is abbreviated to f. It is a recursive

function that computes a predicate representing the disjunction of the invariants

of the leaf events.

• conjunction of leaves function is presented in Figure 5.7. The function name,

conjunction of leaves, in the traversing steps is abbreviated to f. It is a recursive

function that computes a predicate representing the conjunction of the guards of

the leaf events.

• union of leaves function is presented in Figure 5.8. The function name,

union of leaves, in the traversing steps is abbreviated to f. It is a recursive func-

tion that computes a predicate representing the union of the leaf events. domain

function may be applied to each output leaf event, for n times; where n is the

number of existing replicators in the traversing steps.
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• build seq inv function is presented in Figure 5.9. The function name, build seq inv,

in the traversing steps is abbreviated to f. It is a recursive function that computes

an invariant predicate specifying the sequencing between two leaf events. This

function calls another function for the leaf events, to compute the invariant. The

inner function is presented in the next section.

• build seq grd function is presented in Figure 5.10. The function name, build seq grd,

in the traversing steps is abbreviated to f. It is a recursive function that computes

a guard predicate specifying the sequencing between two leaf events. This func-

tion calls another function for the leaf events, to compute the guard. The inner

function is presented in the next section.

In the traversing functions, the first or the last child of an input flow is selected; and

the selected child name is acted as a variable name. Since we do not consider a variable

for a loop (Loop Pattern 4.2.3), we assume that a loop is never placed as the first or the

last child of a flow.

list_of_leaves ( ch: child/cons-child, *par: parameter list of ch ) 

Output operation:

list_of_leaves( leaf(name) , *par ) = leaf(name, *par)

Traversing steps:

f( constructor(c1, …, cn) , *par ) =   f( c1, *par ), …, f( cn , *par )  

where constructor : and/or/xor

f( replicator(p, c) , *par ) =              f( c, (*par, p) )

where replicator : all/some/one

f( 1*flow, *par ) =                             f( flow1, *par ), …, f( flown, *par ) 

f( flow (name, *par, 1) , *par ) =    f(child1 , *par ) 

where child1 is the first child of the strong flow

f( flow (name, *par, 0) , *par ) =    f( childi , *par ) 

where childi is the solid child of the weak flow

(weak-seq, xor-grd, loop-grd)Figure 5.5: list of leaves Function
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disjunction_of_leaves (ch: child/cons-child, parnum: int) 

Output operations:

disjunction_of_leaves( leaf(name), parnum ) = name where parnum = 0

disjunction_of_leaves( leaf(name), parnum ) = name ≠ ∅∅∅∅ where parnum > 0

Traversing Steps:

f( constructor(c1, …, cn), parnum ) = f( c1 , parnum ) ∨ … ∨ f( cn , parnum )  

where constructor : and/or/xor

f( replicator(par, c), parnum ) =           f( c, parnum+1 ) where replicator : all/some/one

f( 1*flow, parnum )=                              f( flow1 , parnum ) ∨ … ∨ f( flown , parnum ) 

f( flow(name, *par, 1), parnum ) =      f( child1 , parnum ) 

where child1 is the first child of the strong flow

f( flow(name, *par, 0), parnum ) =      f( childi , parnum ) 

where childi is the solid child of the weak flow

(xor-inv) Figure 5.6: disjunction of leaves Function

conjunction_of_leaves ( ch: child/cons-child, parnum: int ) 

Output operations:

conjunction_of_leaves( leaf(name), parnum ) = name = FALSE where parnum=0

conjunction_of_leaves( leaf(name) , parnum ) =  name = ∅∅∅∅ where parnum>0

Traversing steps:

f( constructor(c1, …, cn) , parnum ) =   f( c1, parnum ) ∧ … ∧ f( cn, parnum )  

where constructor : and/or/xor

f( replicator(par, c) , parnum ) =           f( c, parnum+1 ) where replicator : all/some/one

f( 1*flow, parnum ) = f( flow1 , parnum ) ∧ … ∧ f( flown , parnum ) 

f( flow(name, *par, 1), parnum ) =       f( child1, parnum ) 

where child1 is the first child of the strong flow

f( flow(name, *par, 0), parnum ) =       f( childi, parnum ) 

where childi is the solid child of the weak flow 

(xor-grd, loop-grd)Figure 5.7: conjunction of leaves Function

union_of_leaves (ch: child/cons-child, n: int) 

Output operation:

union_of_leaves( leaf(name), n) = dom1( ... domn (name) …)

Traversing steps:

f( constructor(c1, …, cn), n) =    f( c1 , n) ∪ … ∪ f( cn , n)     where constructor : and/or/xor

f( replicator(par, c), n) =            f( c, n+1) where replicator : all/some/one

f( 1*flow, n) = f( flow1 , n) ∪ … ∪ f( flown , n) 

f( flow(name, *par, 1), n) =       f( child1 , n)           where child1 is the first child of the strong flow

f( flow(name, *par, 0), n) =       f( childi , n)            where childi is the solid child of the weak flow

(xor-inv)

Figure 5.8: union of leaves Function
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build_seq_inv ( predecessor: child/cons-child, *par1: parameter list of predecessor,

l: leaf, *par2: parameter list of l ) 

Output operation:

build_seq_inv( leaf, *par1, l, *par2 ) = seq_inv( leaf, *par1, l, *par2 )

Traversing steps:

f( and(c1, …, cn), *par1, l, *par2 ) = f( c1, *par1, l, *par2 ) ∧ … ∧ f( cn, *par1, l, *par2 )  

f( or/xor(c1, …, cn), *par1, l, *par2 ) =     f( c1, *par1, l, *par2 ) ∨ … ∨ f( cn, *par1, l, *par2 )  

f( replicator(p, c), *par1, l, *par2 ) =      f( c, (*par1, p) , l, *par2 )

where replicator : all/some/one

f( 1*flow, *par1, l, *par2 ) = f( flow1, *par1, l, *par2 ) ∨ … ∨ f( flown, *par1, l, *par2 ) 

f( flow (… , 1), *par1, l, *par2 ) =            f( childi, *par1, l, *par2 ) 

where childi is the last child of the flow

f( flow (… , 0), *par1, l, *par2 ) =            f( childi, *par1, l, *par2 ) 

where childi is the solid child of the flow

Figure 5.9: build seq inv Function

build_seq_grd ( predecessor: child/cons-child, *par1: parameter list of predecessor,

l: leaf, *par2: parameter list of l ) 

Output operation:

build_seq_grd( leaf, *par1, l, *par2 ) = seq_grd( leaf, *par1, l, *par2 )

Traversing steps:

f( and(c1, …, cn), *par1, l, *par2 ) = f( c1, *par1, l, *par2 ) ∧ … ∧ f( cn, *par1, l, *par2 )  

f( or/xor(c1, …, cn), *par1, l, *par2 ) =     f( c1, *par1, l, *par2 ) ∨ … ∨ f( cn, *par1, l, *par2 )  

f( replicator(p, c), *par1, l, *par2 ) =      f( c, (*par1, p) , l, *par2 )

where replicator : all/some/one

f( 1*flow, *par1, l, *par2 ) = f( flow1, *par1, l, *par2 ) ∨ … ∨ f( flown, *par1, l, *par2 ) 

f( flow (… , 1), *par1, l, *par2 ) =            f( childi, *par1, l, *par2 ) 

where childi is the last child of the flow

f( flow (… , 0), *par1, l, *par2 ) =            f( childi, *par1, l, *par2 ) 

where childi is the solid child of the flow

Figure 5.10: build seq grd Function
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5.4.2.2 Functions to Build Sequencing Invariants/Guards

Recall from Section 4.2 that the sequencing between events is managed with guards

and the sequencing properties are specified with invariants. In Section 4.2, sequencing is

defined between events with the same parent. Therefore the parameters of two sequential

events were always the same (inherits from their parent). In the case of replicators, the

replicator event had one more replicator parameter. Having the same parameters has

made building of the sequencing invariants and guards easy.

Whereas in a combined atomicity decomposition diagram, two sequential events can be

from a different parent, illustrated in Figure 5.11. A leaf from the (i + 1)th child, e2,

may execute only after execution of a leaf from the ith child, e1. The leaves parameters

can be different due to different possible replicators in each child. Assume leaf e1 pa-

rameter list contains (p1
1, ..., p

1
n), and leaf e2 parameter list contains (p2

1, ..., p
2
m). Some of

their parameters which come from their common parent flow may be same, (p1, ..., pi).

The same parameters are always the first parameters in the parameter list, since each

replicator parameter is added to the end of the parameter list. Two functions are de-

fined to build the sequencing guard and invariants. Definitions of X, Y, Z, W and K in

Figure 5.11, are used in defining the functions.

parent(p1 … pi)

… …ith
(i+1)th1st nth

child1 childne2e1

e1:  p1 … pi … p1
j … p1

n             e2:  p1 … pi … p2
m

X = dom1( ... domn-i (e1) …)

Y = dom1( ... domm-i (e2) …)

Z = dom1( ... domn-j (e1) …)

X Y

Z

W K

e1:  p1
1 … p1

k … p1
n             e2:  p2

1 … p2
l … p2

m

W = dom1( ... domn-1 (e1) …)             (k = 1)

W = ran( dom1( ... domn-k (e1) …) ) (k > 1)

K = dom1( ... domm-1 (e2) …) ) (l = 1)

K = ran( dom1( ... domm-l (e2) …) ) (l > 1)

Figure 5.11: Sequencing Between Two Leaf Events

The seq inv and seq grd functions are presented in Figure 5.12 and Figure 5.13 respec-

tively. To generate the sequencing invariants and guards, we need to determine the

possible same parameters from the common parent flow. The possible all-replicator pa-

rameters of e1 have to be determined, since the all-replicator affects the guard of the

next event, e2, and the sequencing invariants (all-replicator Pattern 4.2.7).
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seq_inv ( e1:  leaf, p1 … pn : parameter list of e1,

e2:  leaf, p1 … pm : parameter list of e2 ) =

• e2 = TRUE ⇒ e1 = TRUE where (n = 0) and (m = 0)

• e2 ≠ ∅ ⇒ e1 = TRUE where (n = 0) and (m ≠ 0)

• e2 = TRUE ⇒ e1 ≠ ∅ where (n ≠ 0) and (m = 0) and
(there is no all-replicator parameter in (p1 … pn))

• e2 = TRUE ⇒ W = TYPE(pk) where (n ≠ 0) and (m = 0) and
(pk is an all-replicator parameter (1 ≤ k ≤ n))

• e2 ≠ ∅ ⇒ e1 ≠ ∅ where (n ≠ 0) and (m ≠ 0) and
(there is no common parent parameter) and
(there is no all-replicator parameter in (p1 … pn))

• e2 ≠ ∅ ⇒ W = TYPE(pk)          where (n ≠ 0) and (m ≠ 0) and
(there is no common parent parameter) and
(pk is an all-replicator parameter (1 ≤ k ≤ n)) and
(there is no parameter in (p1 … pm) with same type as pk)

• K ⊆ W where (n ≠ 0) and (m ≠ 0) and
(there is no common parent parameter) and
(pk is an all-replicator parameter (1 ≤ k ≤ n)) and
(type(pk) = type(pl) (1 ≤ l ≤ m))

• Y ⊆ X where (n ≠ 0) and (m ≠ 0) and
(p1 … pi is list of common parent parameter) and
(there is no all-replicator parameter in(pi+1 … pn))

• p1↦ …↦ pi ∈ e2 ⇒ Z [ {p1↦ …↦ pj-1 } ] =  TYPE(pj)   

where (n ≠ 0) and (m ≠ 0) and
(p1 … pi is list of common parent parameter) and
(pj is an all-replicator parameter (i+1 ≤ j ≤ n))

Figure 5.12: seq inv Function

5.4.2.3 Predecessor/Successor Functions

In some of the translation rules we need to find the predecessor or successor of a subtree.

Considering Figure 5.14, the predecessor of a subtree which is the ith child of a flow, is

its left subtree which is the (i− 1)th child of that flow. If the ith child is the first child

of a flow then the predecessor of the ith child is the predecessor of its parent flow.

The predecessor and successor functions are presented in Figure 5.15 and Figure 5.16

respectively. predecessor function is used to find the previous node of a leaf to create

the sequencing invariants and guards, in TR leaf4 (Section 5.4.3.4), TR leaf8 (Sec-

tion 5.4.3.8), TR weak1 (Section 5.4.7.1) and TR weak2 (Section 5.4.7.2). successor

function is used to find the next node of a loop to create the loop guard, in TR loop1

(Section 5.4.6.1) and TR loop2 (Section 5.4.6.2).

Since we do not consider a variable for a loop (Loop Pattern 4.2.3), we move over the

loop in both functions.
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seq_grd ( e1:  leaf, p1 … pn : parameter list of e1,

e2:  leaf, p1 … pm : parameter list of e2 ) =

• e1 = TRUE where (n = 0) 

• e1 ≠ ∅ where (n ≠ 0) and (m = 0) and
(there is no all-replicator parameter in (p1 … pn))

• W = TYPE(pk) where (n ≠ 0) and (m = 0) and
(pk is an all-replicator parameter (1 ≤ k ≤ n)) 

• e1 ≠ ∅ where (n ≠ 0) and (m ≠ 0) and
(there is no common parent parameter)
(there is no all-replicator parameter in (p1 … pn))

• W = TYPE(pk)    where (n ≠ 0) and (m ≠ 0) and
(there is no common parent parameter) and
(pk is an all-replicator parameter (1 ≤ k ≤ n)) and
(there is no parameter in (p1 … pm) with same type as pk)

• pl ⊆ K where (n ≠ 0) and (m ≠ 0) and
(there is no common parent parameter) and
(pk is an all-replicator parameter (1 ≤ k ≤ n)) and
(type(pk) = type(pl) (1 ≤ l ≤ m))

• p1↦ …↦ pi ⊆ X where (n ≠ 0) and (m ≠ 0) and
(p1 … pi is list of common parent parameter) and
(there is no all-replicator parameter in(pi+1 … pn))

• Z [ {p1↦ …↦ pj-1 } ] =  TYPE(pj)   
where (n ≠ 0) and (m ≠ 0) and

(p1 … pi is list of common parent parameter) and
(pj is an all-replicator parameter (i+1 ≤ j ≤ n))

Figure 5.13: seq grd Function

parentFlow

… …(i-1)th ith1st nth

child1 childi-1 childi childn

parentFlow

Predecessor

Figure 5.14: Predecessor of a Subtree
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predecessor ( childi : child/cons-child, *par: list of parameter(s), sw: boolean ) =

• ( childi-1 , *par ) where (i > 1) and (childi-1 ≠ loop)

• predecessor(childi-1 , *par, sw) where (i > 1) and (childi-1 = loop)

• “no predecessor” where (i = 1) and (sw = 0)

• “no predecessor” where (i = 1) and (sw = 1) and 

(parentFlow(childi) is an abstract flow) 

• predecessor(parent(childi), *par, sw) where (i = 1) and (sw = 1) and 

(parentFlow(childi) is not a (all/some/one) child)

• predecessor(parent(childi), *par / p, sw) where (i = 1) and (sw = 1) and 

(parentFlow(childi) is a (all/some/one)(p) child)

Figure 5.15: predecessor Function

Considering Figure 5.15, if the ith child is the first child of an abstract flow (the most

abstract level), then there is no predecessor of that child. An abstract flow in ABNF is

indicated with (sw = 1) and for all of its children (ref = 0); whereas in a non abstract

flow, there is always one child with (ref = 1). If a child is the first child of a weak flow

(sw = 0), then we consider no predecessor for that child. Because there is no sequence

constraint between the first child of a weak flow and the predecessor of it (Section 4.3.4).

successor ( childi : child/cons-child, parnum: int ) =

• ( childi+1 , parnum ) where (i < n) and (childi+1 ≠ loop)

• successor(childi+1 , parnum) where (i < n) and (childi+1 = loop)

Figure 5.16: successor Function

successor, presented in Figure 5.16, is used to find the next node of a loop to create

the loop guard, in TR loop1 (Section 5.53). n is the number of parent flow children

(number of siblings of the input child). A loop is never placed as the first or the last

child of a flow. Therefore in Figure 5.16, we do not consider the ith child as the last

child in successor function, (always i < n).
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5.4.3 Translating a Leaf

5.4.3.1 TR leaf1: mapping a leaf to a variable

A leaf is transformed to a variable with the same name, leaf-name, (Sequence Pattern

4.2.2). No variable is generated for a loop leaf, (Loop Pattern 4.2.3).

This translation rule is called TR leaf1, presented in Figure 5.17. The first row in the

figure is the signature of the rule; the second row presents the source element of the

rule (ABNF element); and the last row shows the target element of the rule (Event-B

element). In TR leaf1, the source element is a leaf (not a loop leaf), and the destination

element is a variable with the same name as the leaf name. The rules are applied to

each matching sub term on the source element and each application of a rule adds a new

element (e.g., variable) to the target model.

The flow that is presented as a part of the source element is the parent flow of the leaf.

In this rule we do not need the properties of the parent flow, but in some of the other

rules, which are described later, we use the parent flow properties for transformation.

We aim to define the translation rules in a consistent way; therefore the parent flow is

shown in all of the translation rules.

The invariant which defines the type of the generated variable is generated later in

TR leaf2 (Section 5.4.3.2), TR leaf3 (Section 5.4.3.3) and TR leaf4 (Section 5.4.3.4).

All generated control variables are initialised to either false or to the empty set depending

on the type of the control variable. The initialisation translation rule is omitted here

since it is a trivial rule.

TR_leaf1:   leaf            variable  

flow(parent-name, (p1 , …, pn), sw)(..., leaf (leaf-name)(ref), ...)

flow(parent-name, (p1 , …, pn), sw)(..., and (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name), ...) (ref), …)

flow(parent-name, (p1 , …, pn), sw)(..., all (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi , leaf(leaf-name))(0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi , leaf(leaf-name)) (ref), …)

variables leaf-name

Figure 5.17: TR leaf1: mapping a leaf to a variable

Figure 5.18 presents multiple applications of the rule in Figure 5.17 in the first refinement

level of the example in Figure 5.1. There are eight leaves in the first refinement level,

that each of them is transformed to a variable.
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Application of TR_leaf1

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

variables e, g, h, i, j, k, l, d

Figure 5.18: Application of TR leaf1 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.2 TR leaf2: mapping a non-replicator leaf to a typing invariant

A leaf is transformed to an invariant which defines the type of the corresponding variable

generated for the leaf in TR leaf1.

TR leaf2, TR leaf3 and TR leaf4 are about this transformation. TR leaf2 generates

a typing invariant for a non-replicator leaf, (Sequence Pattern 4.2.2, and-constructor

Pattern 4.2.4, or-constructor Pattern 4.2.5, xor-constructor Pattern 4.2.6), which has

not got a predecessor node. In this case predecessor function (Section 5.4.2.3) outputs

no predecessor for the leaf.

Type of a replicator leaf, (all-replicator Pattern 4.2.7, some-replicator Pattern 4.2.8), is

defined in a typing invariant generated in TR leaf3 (Section 5.4.3.3).

Finally, if a leaf has got a predecessor as the output of predecessor function, then its type

is defined in a sequencing invariant which is generated in TR leaf4 (Section 5.4.3.4).

TR leaf2 is presented in Figure 5.19. If a leaf has not got any parameter (n = 0), then

its type is boolean. Otherwise (n > 0), its type is the cartesian product of the type of

its parameters.

Figure 5.20 presents the application of this rule in the first refinement level of the example

in Figure 5.1. Leaf e is first node and there is no predecessor for it,

predecessor(leaf(e), p1) = nopredecessor).
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TR_leaf2:   non-replicator leaf typing invariant

flow(parent-name, (p1 , …, pn), sw)(leaf (leaf-name)(ref), ...)

flow(parent-name, (p1 , …, pn), sw)(and (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(xor (…, leaf(leaf-name), ...) (ref), …)

* where (predecessor (leaf, (p1, …, pn), sw) = “no predecessor”)

SI case (n = 0):

invariants

@inv_leaf-name_type leaf-name ∈ BOOL

MI case (n > 0):

invariants

@inv_leaf-name_type leaf-name ⊆ TYPE(p1) × … × TYPE(pn) 

Figure 5.19: TR leaf2: mapping a non-replicator leaf to a typing invariant

Application of TR_leaf2

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

invariants

@inv_e_type e ⊆⊆⊆⊆ TYPE(p1)

Figure 5.20: Application of TR leaf2 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.3 TR leaf3: mapping a replicator leaf to a typing invariant

TR leaf3, Figure 5.21, outlines the typing invariant translation in the case of a replicator

leaf, (all-replicator Pattern 4.2.7, some-replicator Pattern 4.2.8).

Figure 5.22 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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TR_leaf3:   replicator leaf  typing invariant

flow(parent-name, (p1 , …, pn), sw)(..., all (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi , leaf(leaf-name))(0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi , leaf(leaf-name)) (ref), …)

invariants

@inv_leaf-name_type leaf-name ⊆ TYPE(p1) × … × TYPE(pn) × TYPE(pi) 

Figure 5.21: TR leaf3: mapping a replicator leaf to a typing invariant

Application of TR_leaf3

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

invariants

@inv_l_type l ⊆⊆⊆⊆ TYPE(p1) × TYPE(p3) 

Figure 5.22: Application of TR leaf3 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.4 TR leaf4: mapping a leaf to a sequencing invariant

As described in Section 4.2, ordering between events is managed with some guards and

is specified with some invariants.

TR leaf4 presented in Figure 5.23, transforms a leaf to a sequencing invariant. Sequenc-

ing guard is generated in TR leaf8 (Section 5.4.3.8). Considering Figure 5.23, first

predecessor function is applied to the leaf to find the previous child. Then build seq inv

function is applied to the previous child. In build seq inv function first the leaf/leaves

of the final refinement level are found via traversing steps, then seq inv is called inside

build seq inv function for each final refinement level leaf, to generated the appropriate

invariant.

Figure 5.24 presents the application of this rule for leaf k in the second refinement level

of the example in Figure 5.1. Considering leaf k, the previous child is

all(p2)(flow(b, (p1, p2), 1)(...))(0). build seq inv function is applied to this child. The

output leaves of build seq inv function are q(p1, p2), r(p1, p2) and u(p1, p2, p5). For each

of them seq inv is called as follows:

seq inv(q, (p1, p2), k, (p1))

seq inv(r, (p1, p2), k, (p1))
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TR_leaf4:   leaf sequencing invariant

flow(parent-name, (p1 , …, pn), sw)(..., leaf (leaf-name)(ref), ...)

flow(parent-name, (p1 , …, pn), sw)(..., and (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name), ...) (ref), …)

flow(parent-name, (p1 , …, pn), sw)(..., all (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi , leaf(leaf-name))(0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi , leaf(leaf-name)) (ref), …)

flow(parent-name, (p1 , …, pn), sw)(..., loop (leaf(leaf-name)) (0), …)

* where (predecessor (leaf, (p1, …, pn), sw) ≠ “no predecessor”)

predecessor (leaf, (p1, …, pn), sw) = (child, *par)

invariants

@inv_leaf-name_seq build_seq_inv (child, *par, leaf, (p1, …, pn))

Figure 5.23: TR leaf4: mapping a leaf to a sequencing invariant

seq inv(u, (p1, p2, p5), k, (p1))

Considering the seq inv function presented in Section 5.4.2.2, p1 is a common parameter

between k and the other three leaves, q, r and u; and p2 is an all-replicator parameter in

q, r and u leaves; therefore the invariant is build in the last case of the seq inv function.

Application of TR_leaf4

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

invariants

@inv_leaf-name_seq p1 ∈∈∈∈ k ⇒⇒⇒⇒ q [ {p1} ] =  TYPE(p2) ∨∨∨∨

r [ {p1} ] =  TYPE(p2) ∨∨∨∨

dom(u) [ {p1} ] =  TYPE(p2)

Figure 5.24: Application of TR leaf4 in the Example of Figure 5.1, Second
Refinement Level
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5.4.3.5 TR leaf5: mapping a solid leaf to a gluing invariant

Each leaf with a solid line, (refining = 1 ), is transformed to a gluing invariant.

This leaf can be a simple leaf, TR leaf5, or a leaf of a refining xor-constructor, TR xor1,

or a refining one-replicator, TR one1. It is good to recall that other constructors are

always non-refining, come with dashed lines (refining = 0 ).

TR leaf5 outlines this rule for a simple leaf in Figure 5.25, (Sequence Pattern 4.2.2).

Since the corresponding event of the leaf refines the parent event, an invariant describes

the relation between the concrete variable, leaf-name and the abstract variable, parent-

name. It is important to mention that we need this invariant only when the leaf-name

and the parent-name are different.

TR_leaf5:   solid leaf            gluing invariant

flow(parent-name, (p1 , …, pn), sw)(..., leaf(leaf-name)(1), ...)  

* where (parent-name  ≠  leaf-name)

invariants

@inv_leaf-name_gluing leaf-name = parent-name

Figure 5.25: TR leaf5: mapping a solid leaf to a gluing invariant

Figure 5.26 presents the application of this rule in the first refinement level of the example

in Figure 5.1.

Application of TR_leaf5

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (1), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

invariants

@inv_e_gluing g = a

Figure 5.26: Application of TR leaf5 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.6 TR leaf6: mapping a solid leaf to a refining event

A leaf which is connected to its parent with a solid line is transformed to an event which

refines the parent event, (Sequence Pattern 4.2.2).
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In TR leaf6, Figure 5.27, each leaf with a solid line, (refining = 1 ), is transformed to an

event which refines the parent event, parent-name. As described in Section 4.2, between

the logical constructors and replicators, just the xor-constructor and the one-replicator

can refine the parent event, (refining = 1 ). The generated event’s name is the same as

leaf’s name, leaf-name.

The list of parameters of a leaf appears in the parameters of the generated event. These

parameters include the parent flow parameters followed by any possible replicator’s

parameter, the one-replicator in this case.

TR_leaf6:   solid leaf, solid xor leaf, solid one leaf refining event

flow(parent-name, (p1 , …, pn), sw)(..., leaf (leaf-name)(1), ...)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name), ...) (1), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi , leaf(leaf-name)) (1), …)

event leaf-name refines parent-name

any p1 … pn [ pi ]

Figure 5.27: TR leaf6: mapping a solid leaf to a refining event

Figure 5.28 presents multiple applications of this rule in the first refinement level of the

example in Figure 5.1.

• The parameter for leaf l, includes its parent, c, parameter: p1, followed by the

one-replicator parameter: p3.

• leaf i and leaf j inherit their refining value from their parent constructor, xor-

constructor.

Application of TR_leaf6

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

event g refines a

any p1

event i refines b

any p1 p2

event j refines b

any p1 p2

event l refines c

any p1 p3

Figure 5.28: Application of TR leaf6 in the Example of Figure 5.1, First Re-
finement Level
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5.4.3.7 TR leaf7: mapping a dashed leaf to a non-refining event

A leaf which is connected to its parent with a dashed line is transformed to a non-refining

event, (Sequence Pattern 4.2.2).

TR leaf7 is almost same as TR leaf6. It transforms a leaf with (refining = 0 ) to an

event. The difference is that the generated event does not refine the parent event. As

described in Section 4.2, all of the constructors are allowed to use dashed line, therefore

all of them appear in TR leaf7. The rule is presented in Figure 5.29.

TR_leaf7:   dashed leaf non-refining event

flow(parent-name, (p1 , …, pn), sw)(..., leaf (leaf-name)(0), ...)

flow(parent-name, (p1 , …, pn), sw)(..., and (…, leaf(leaf-name) , ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., all (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., loop (leaf(leaf-name)) (0), …)

event leaf-name

any p1 … pn [ pi ]

Figure 5.29: TR leaf7: mapping a dashed leaf to a new event

Figure 5.30 presents multiple applications of this rule in the first refinement level of the

example in Figure 5.1.

Application of TR_leaf7

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), loop ( leaf (g) ) (0) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0))

event e 

any p1

event f 

any p1

event h 

any p1, p2

event k

any p1

event d

any p1

Figure 5.30: Application of TR leaf7 in the Example of Figure 5.1, First Re-
finement Level
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5.4.3.8 TR leaf8: mapping a leaf to a sequencing guard

TR leaf8 presented in Figure 5.31, transforms a leaf to a sequencing guard in the cor-

responding event. In a same way as TR leaf4, build seq grd function first outputs the

leaf/leaves of the final refinement level of the predecessor child,. Then seq grd is called

inside build seq grd function for each final refinement leaf to generated the appropriate

guard.

TR_leaf8:   leaf sequencing guard

flow(parent-name, (p1 , …, pn), sw)(..., leaf (leaf-name)(ref), ...)

flow(parent-name, (p1 , …, pn), sw)(..., and (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name), ...) (ref), …)

flow(parent-name, (p1 , …, pn), sw)(..., all (pi , leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi , leaf(leaf-name))(0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi , leaf(leaf-name)) (ref), …)

flow(parent-name, (p1 , …, pn), sw)(..., loop (leaf(leaf-name)) (0), …)

* where (predecessor (leaf, (p1, …, pn), sw) ≠ “no predecessor”)

predecessor (leaf, (p1, …, pn), sw) = (child, *par)

event leaf-name

@grd_seq build_grd_inv (child, *par, leaf, (p1, …, pn))

Figure 5.31: TR leaf8: mapping a leaf to a sequencing guard

Figure 5.32 presents the application of this rule for leaf k in the second refinement level

of the example in Figure 5.1.

5.4.3.9 TR leaf9: mapping a non-replicator leaf to a guard

Each leaf is transformed to a guard in the corresponding event of the leaf, generated in

TR leaf2 or TR leaf3. This guard ensures that the event has not executed before (for

the same instance of the event parameter(s)).

TR leaf9 and TR leaf10 are about this translation. TR leaf9 outlines this translation in

the case of a non-replicator leaf (Sequence Pattern 4.2.2, and-constructor Pattern 4.2.4,

or-constructor Pattern 4.2.5, xor-constructor Pattern 4.2.6). Considering TR leaf9, Fig-

ure 5.33, if leaf has not got any parameter, (n = 0), then the guard is like “leaf-name =

FALSE”; Otherwise (n > 0) the guard ensures that the event has not executed before

for the same instance of the parameter(s).
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Application of TR_leaf8

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

event k

any p1 where

@grd_k_seq q [ {p1} ] =  TYPE(p2) ∨∨∨∨

r [ {p1} ] =  TYPE(p2) ∨∨∨∨

dom(u) [ {p1} ] =  TYPE(p2)

Figure 5.32: Application of TR leaf8 in the Example of Figure 5.1, Second
Refinement Level

TR_leaf9:   non-replicator leaf          guard  

flow(parent-name, (p1 , …, pn), sw)(..., leaf(leaf-name)(ref), ...)

flow(parent-name, (p1 , …, pn), sw)(..., and (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name), ...) (ref), …)

SI case (n = 0):

event leaf-name

@grd leaf-name = FALSE

MI case (n > 0):

event leaf-name

@grd p1↦ ...↦ pn ∉ leaf-name

Figure 5.33: TR leaf9: mapping a non-replicator leaf to a guard

Figure 5.34 presents multiple applications of this rule in the first refinement level of the

example in Figure 5.1.
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Application of TR_leaf9

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

event e

any p1 where

@grd_e p1 ∉∉∉∉ e

event g refines a

any p1 where

@grd_g p1 ∉∉∉∉ g

event h 

any p1, p2  where

@grd_h p1↦↦↦↦ p2 ∉∉∉∉ h

event i refines b

any p1, p2 where

@grd_i p1↦↦↦↦ p2 ∉∉∉∉ i

event j refines b

any p1, p2 where

@grd_j p1↦↦↦↦ p2 ∉∉∉∉ j

event k

any p1 where

@grd_k p1 ∉∉∉∉ k

event d

any p1 where

@grd_d p1 ∉∉∉∉ d

Figure 5.34: Application of TR leaf9 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.10 TR leaf10: mapping a replicator leaf to a guard

TR leaf10 outlines the guard translation in the case of a replicator leaf (all-replicator

Pattern 4.2.7, some-replicator Pattern 4.2.8, one-replicator Pattern 4.2.9). Therefore

as least one parameter, the replicator parameter, exists. TR leaf10 is presented in

Figure 5.35.

TR_leaf10:   replicator leaf guard  

flow(parent-name, (p1 , …, pn), sw)(..., all (pi, leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi, leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi, leaf(leaf-name)) (ref), …)

event leaf-name

@grd p1↦ ...↦ pn↦ pi ∉ leaf-name

Figure 5.35: TR leaf10: mapping a replicator leaf to a guard

Figure 5.36 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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Application of TR_leaf10

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (1), loop ( leaf (f) ) (0), loop ( leaf (g) ) (0) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

event l 

any p1, p3 where

@grd_l p1↦↦↦↦ p3 ∉∉∉∉ l

Figure 5.36: Application of TR leaf10 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.11 TR leaf11: mapping a non-replicator leaf to an action

Each leaf is transformed to an action in the corresponding event of the leaf, generated in

TR leaf2 and TR leaf3. This action indicates that the event executes (for an instance

of the event parameter(s)).

TR leaf11 and TR leaf12 are about this translation. TR leaf11 outlines this translation

in the case of in the case of a non-replicator leaf (Sequence Pattern 4.2.2, and-constructor

Pattern 4.2.4, or-constructor Pattern 4.2.5, xor-constructor Pattern 4.2.6). In TR leaf6,

Figure 5.37, if leaf has not got any parameter (n = 0) then the action is like “leaf-name

:= TRUE”; Otherwise (n > 0), the action indicates that the event executes for an

instances of the parameter(s).

TR_leaf11:   non-replicator leaf             action  

flow(parent-name, (p1 , …, pn), sw)(..., leaf (leaf-name)(0), ...)

flow(parent-name, (p1 , …, pn), sw)(..., and (…, leaf(leaf-name) , ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., or (…, leaf(leaf-name), ...) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., xor (…, leaf(leaf-name) (ref), ...), …)

SI case (n = 0):

event leaf-name

@act leaf-name ≔ TRUE

MI case (n > 0):

event leaf-name

@act leaf-name ≔ leaf-name ∪ {p1 ↦ … ↦ pn }

Figure 5.37: TR leaf11: mapping a non-replicator leaf to an action

Figure 5.38 presents multiple applications of this rule for in the first refinement level of

the example in Figure 5.1.
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Application of TR_leaf11

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

event e

any p1 where

@grd_e p1 ∉ e

then

@act_e e ≔≔≔≔ e ∪∪∪∪ {p1}

event g refines a

any p1 where 

@grd_g p1 ∉ g

then

@act_g g ≔≔≔≔ g ∪∪∪∪ {p1}

event h 

any p1, p2 where

@grd_h p1↦ p2 ∉ h

then

@act_h h ≔≔≔≔ h ∪∪∪∪ {p1↦↦↦↦ p2}

event i refines b

any p1, p2 where

@grd_i p1↦ p2 ∉ I

then

@act_i i ≔≔≔≔ i ∪∪∪∪ {p1↦↦↦↦ p2}

event j refines b

any p1, p2 where

@grd_j p1↦ p2 ∉ j

then

@act_j j ≔≔≔≔ j ∪∪∪∪ {p1↦↦↦↦ p2}

event k

any p1 where

@grd_k p1 ∉ k

then

@act_k k ≔≔≔≔ k ∪∪∪∪ {p1}

event d

any p1 where

@grd_d p1 ∉ d

then

@act_d d ≔≔≔≔ d ∪∪∪∪ {p1}

Figure 5.38: Application of TR leaf11 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.12 TR leaf12: mapping a replicator leaf to an action

TR leaf12 outlines the action translation in the case of a replicator leaf (all-replicator

Pattern 4.2.7, some-replicator Pattern 4.2.8, one-replicator Pattern 4.2.9). Therefore

as least one parameter, the replicator parameter, exists. TR leaf12 is presented in

Figure 5.39.

TR_leaf12:   replicator leaf action  

flow(parent-name, (p1 , …, pn), sw)(..., all (pi, leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., some (pi, leaf(leaf-name)) (0), …)

flow(parent-name, (p1 , …, pn), sw)(..., one (pi, leaf(leaf-name)) (ref), …)

event leaf-name

@act leaf-name ≔ leaf-name ∪ {p1↦ ...↦ pn↦ pi }

Figure 5.39: TR leaf12: mapping a replicator leaf to an action

Figure 5.40 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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Application of TR_leaf12

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

event l 

any p1, p3 where

@grd_l p1↦ p3 ∉ l

then

@act_l l ≔≔≔≔ l ∪∪∪∪ {p1↦↦↦↦ p3}

Figure 5.40: Application of TR leaf12 in the Example of Figure 5.1, First Re-
finement Level

5.4.4 Translating the xor-constructor

5.4.4.1 TR xor1: mapping a solid xor-constructor to a gluing invariant

TR xor1 describes the gluing invariant translation in the case of a solid xor-constructor,

(xor-constructor Pattern 4.2.6). In this case all leaves of the solid xor-constructor refine

the parent event, as generated in TR leaf6. The gluing invariant describes the relation

between concrete variables of xor-constructor leaves and the abstract variable. Also it

ensures that just one of the xor-constructor leaves is allowed to execute. Figure 5.41

presents TR xor1.

TR_xor1:   solid xor-constructor gluing invariant

flow(parent-name, (p1 , …, pn), sw)(..., xor (leaf(name1), …, leaf(namen)) (1), ...)  

SI case (n = 0):

invariants

@inv_xor_gluing

partition( {parent-name} ∩ {TRUE}, 

{name1} ∩ {TRUE}, …, {namen} ∩ {TRUE}  )

MI case (n > 0):

invariants

@inv_xor_gluing partition(parent-name, name1, …, namen)

* where xor has been placed in last refinement level

(all xor childs are leaf, not flow)

Figure 5.41: TR xor1: mapping a solid xor-constructor to a gluing invariant

Figure 5.42 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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Application of TR_xor1

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

invariants

@inv_xor_gluing partition(b, i, j)

* where xor has been placed in last refinement level

(all xor childs are leaf, not flow)

Figure 5.42: Application of TR xor1 in the Example of Figure 5.1, First Re-
finement Level

5.4.4.2 TR xor2: mapping a xor-constructor to an invariant

For each xor-constructor we need to ensure that just one of its children is allowed to

execute. This constraint is modelled in Event-B with an invariant and a guard in each

generated event of each xor-constructor children, in TR xor2 and TR xor3 respectively,

(xor-constructor Pattern 4.2.6).

TR xor2 transforms the xor-constructor to an invariant, Figure 5.43. In the generated

invariant, we need to specify that the variables corresponding to leaf/leaves of each xor-

constructor child, are mutually exclusive. If the parent flow of the xor-constructor has

no parameter (n = 0), we use disjunction of leaves function to get the proper expression

for each xor-constructor child. Then the invariant specifies a mutual exclusive relation

between the outputs of disjunction of leaves function. In the Event-B language, the xor

operator is not implemented. In the case that there are some parent flow parameter(s)

(n > 0), we can use partition operator to describe the mutual exclusive relationship.

TR_xor2:   xor-constructor             invariant

flow(parent-name, (p1 , …, pn), sw)(..., xor (child1, ..., childm) (ref), …)

SI case (n = 0):

invariants

@inv_xor disjunction_of_leaves (child1, 0)  xor … xor disjunction_of_leaves (childm, 0)

MI case (n > 0):

invariants

@inv_xor partition( ( union_of_leaves (child1, 0) ∪ …∪ union_of_leaves (childm, 0) ), 

union_of_leaves (child1, 0), …, union_of_leaves (childm, 0) )

* where xor(1) has NOT been added during last refinement level 

Figure 5.43: TR xor2: mapping a xor-constructor to an invariant

Figure 5.44 presents the application of this rule in the second refinement level of the

example in Figure 5.1.
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Application of TR_xor2

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, p1, p2, 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, p1, p2, 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p5) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

MI case (n > 0):

invariants

@inv_xor partition( (q ∪∪∪∪ r ∪∪∪∪ dom(u)) , q ∪∪∪∪ r, dom(u))

SI case (n = 0 ):

invariants

@inv_xor (q ∨∨∨∨ r) xor (u ≠ ∅∅∅∅)

Figure 5.44: Application of TR xor2 in the Example of Figure 5.1, Second
Refinement Level

In the last row of the figure we assume that the xor-constructor is included in a parent

flow without parameter.

TR xor1 (Section 5.4.4.1) was about a solid xor-constructor when all of its children are

leaves. Whereas TR xor2 is transformed a dashed xor-constructor, or a (solid or dashed)

xor-constructor witch as least one of its children is a flow, not a leaf.

5.4.4.3 TR xor3: mapping a xor-constructor to guards

TR xor3 in Figure 5.45, presents generation of guards for the xor-constructor. At least

two guards are generated for each xor-constructor since there are at least two children

for each xor-constructor (xor-constructor Pattern 4.2.6). First list of leaves function is

applied to each xor-constructor child. The result would be a list of leaves. Then for

the corresponding event of each leaf in the list (same name as leaf name), one guard

is added. In the guard we aim to check that other xor-constructor children have not

executed before.

Since for each xor-constructor child, we need to check that none of other xor-constructor

children has executed before, conjunction of leaves function, in case of (n = 0), and

union of leaves function, in case of (n > 0), are called for the other child of the xor-

constructor.
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TR_xor3:   xor-constructor  2*guard 

flow(parent-name, (p1 , …, pn), sw)(..., xor (child1, ..., childm) (ref), …)

list_of_leaves (childi , (p1 , …, pn)) =

leaf i1 (leaf-namei
1 , *pari

1), …, leaf ik (leaf-namei
k , *pari

k)     (1 <= i <= m)

SI case (n = 0 ):

event leaf-namei
j (1 <= j <= k)

@grd_xor conjunction_of_leaves (child1, 0) ∧

… ∧

conjunction_of_leaves (childi-1, 0) ∧

conjunction_of_leaves (childi+1, 0) ∧

… ∧

conjunction_of_leaves (childm, 0)

MI case (n > 0):

event leaf-namei
j (1 <= j <= k)

any p1 … pn … where

@grd_xor p1↦ …↦ pn ∉ union_of_leaves (child1, 0) ∪

… ∪

union_of_leaves (childi-1, 0) ∪

union_of_leaves (childi+1, 0) ∪

… ∪

union_of_leaves (childm, 0) 

Figure 5.45: TR xor3: mapping a xor-constructor to guards

Figure 5.46 presents multiple applications of this rule in the second refinement level of

the example in Figure 5.1. In the last row of the figure we assume that xor-constructor

is included in a parent flow without parameter.

Application of TR_xor3

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, p1, p2, 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, p1, p2, 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p5) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

MI case (n > 0):

event q

any p1, p2 where

@grd_q _xor

p1↦↦↦↦ p2 ∉∉∉∉ dom(u)

event r

any p1, p2 where

@grd_r _xor

p1↦↦↦↦ p2 ∉∉∉∉ dom(u)

event u refines j

any p1, p2  p5  where

@grd_u _xor

p1↦↦↦↦ p2 ∉∉∉∉ q ∪∪∪∪ r 

SI case (n = 0 ):

event q

where

@grd_q _xor u = ∅∅∅∅

event r

where

@grd_r _xor u = ∅∅∅∅

event u refines j

any p5 where

@grd_u _xor

q = FALSE ∧∧∧∧ r = FALSE

Figure 5.46: Application of TR xor3 in the Example of Figure 5.1, Second
Refinement Level
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5.4.5 Translating the one-replicator

5.4.5.1 TR one1: mapping a solid one-replicator to a gluing invariant

TR one1 describes the gluing invariant translation in the case of a solid one-replicator,

(one-replicator Pattern 4.2.9). In this case the solid one-replicator leaf event refines

the parent event, as generated in TR leaf6. The gluing invariant describes the relation

between concrete variable of the one-replicator leaf and the abstract variable. Figure 5.47

presents TR one1.

TR_one1:   solid one-replicator  gluing invariant

flow(parent-name, (p1 , …, pn), sw)(..., one (pi, leaf(leaf-name)) (1), ...)  

* where (parent-name  ≠  leaf-name)

SI case (n = 0):

invariants

@inv_one_gluing leaf-name ≠ ∅⇔ parent-name = TRUE

MI case (n > 0):

invariants

@inv_one_gluing dom(leaf-name) = parent-name

* where one has been added during last refinement level 

(all childs are leaf, not flow)

Figure 5.47: TR one1: mapping a solid one-replicator to a gluing invariant

Figure 5.48 presents the application of this rule in the first refinement level of the example

in Figure 5.1.

Application of TR_one1

flow(process-name, p1, 1) ( 

flow(a, p1, 1) ( leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( leaf (i), leaf (j) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( leaf (l) ) (1) ), leaf (d)) (0) )

invariants

@inv_one_gluing dom(l) = c

* where one has been added during last refinement level 

(all childs are leaf, not flow)

Figure 5.48: Application of TR one1 in the Example of Figure 5.1, First Re-
finement Level

5.4.5.2 TR one2: mapping an one-replicator to (an) invariant(s)

The one-replicator child can execute only for one instance of the one-replicator param-

eter. This constraint is modelled in Event-B with (an) invariant(s) and (a) guard(s), in
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TR one2 and TR one3 respectively, (one-replicator Pattern 4.2.9).

In TR one2, presented in Figure 5.49, one or more invariant(s) is generated for an one-

replicator. First list of leaves function is applied to the one-replicator child to find the

list of leaves in the last refinement level of an one-replicator child. Then for each leaf in

the list, one invariant is generated depending on the leaf’s parameter list.

TR_one2 :   one-replicator  1*invariant

flow(parent-name, (p1 , …, pn), sw)(..., one (par-one, child)(ref), … )

list_of_leaves (child, 0) = leaf1(leaf-name1, *par1), …, leafk(leaf-namek, *park)

leaf-namei : p1, …, pn ,  par-one ,  pi
1, …, pi

m 

Where X = dom1( ... domm (leaf-namei) …)

invariants

@inv_one n ≠ 0, mi ≠ 0 : ∀p1, …, pn· card( X [ {p1 ↦ …↦ pn} ] ) ≤ 1

n = 0, mi = 0 : card( leaf-namei ) ≤ 1

n = 0, mi ≠ 0 : card( X ) ≤ 1

n ≠ 0, mi = 0 : ∀p1, …, pn· card( leaf-namei [ {p1 ↦ …↦ pn} ] ) ≤ 1

X

Figure 5.49: TR one2: mapping an one-replicator to (an) invariant(s)

Each leaf inherits its parameter from its parent flow and the possible parent replicator.

As presented in Figure 5.49, in TR one2 each leaf’s parameter list is divided to three

parts. First is the parameters which are the same as the one-replicator parameters,

p1...pn. Second is the one-replicator parameter, par-one. Finally the possible parameters

which can be added from other replicators below the one-replicator, pi1...p
i
m.

The invariant restricts the value of the one-replicator parameter in the different execu-

tions of event leaf-name. In all executions of event leaf-name, par-one can take only one

value per each instance of (p1 7→ ... 7→ pn).

So in the most general case (n 6= 0, m 6= 0), the cardinality of image of X on (p1 7→
... 7→ pn) shows the number of par-one’s value per (p1 → ... → pn), which should be at

most one. It is helpful to represent the definition of relational image operator here:

relation[S] = {y| ∃x.x ∈ S ∧ x 7→ y ∈ relation}

Figure 5.50 presents the application of this rule in the second refinement level of the

example in Figure 5.1.

list of leaves function returns only one leaf, v. Leaf v has three parameters, one before

the one-replicator, p1, the one-replicator parameter, p3, and one after the one-replicator,

p6, added with the some-replicator. The one-parameter p3 can take only one value for
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Application of TR_one2

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

v:   p1 p3 p6  X = dom(v)

invariants

@inv_one ∀∀∀∀p1· card( dom(v) [ {p1} ] ) ≤ 1

fun3(flow(l, p1, p3, 1) ( some (p5) ( leaf (r) ) (0), leaf(s) (1) ) , 0) : r 

r ( p1 ,  p3 ,  p5 ),

Where Y = ran(X)

Where X = dom(r)

X

Figure 5.50: Application of TR one2 in the Example of Figure 5.1, Second
Refinement Level

all executions of event v per each instance of p1. Whereas for each instance of p6, event

v can execute with more than one value for one-parameter p3. To make this point clear

assume :

TY PE(p1) = {a}
TY PE(p3) = {c, d}
TY PE(p6) = {e, f}

Then these two executions of event v(p1, p3, p6) is allowed:

< v(a, c, e), v(a, c, f) >

Whereas after those two execution, v(a, d, e) or v(a, d, f) violates the invariant

(card(dom(v)[{a}]) ≤ 1). Because one-parameter p3, can not take more than one value

per any instance of p1, value a here.

5.4.5.3 TR one3: mapping an one-replicator to (a) guard(s)

In TR one3, presented in Figure 5.51, one or more guard(s) is generated for the one-

replicator. What we do in TR one3 is like TR one2. In the guard of the one-replicator

leaf/leaves, we need to ensure that the one-replicator parameter’s value per (p1 7→ ... 7→
pn) is unique.

Figure 5.52 presents the application of this rule in the second refinement level of the

example in Figure 5.1. Considering the assumption in the example of previous transla-

tion rule, when v = {(a, c, e), (a, c, f)} then the generated guard is false for v(a, d, e) or

v(a, d, f), since d /∈ dom(v)[{a}], where dom(v)[{a}] = {c}.
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TR_one3:   one-replicator  1*guard

flow(parent-name, (p1 , …, pn), sw)(..., one (par-one, child)(ref), … )

list_of_leaves (child, (p1 , …, pn, par-one) = leaf1(leaf-name1, *par1), …, leafk(leaf-namek, *park)

leaf-namei :  p1, …, pn ,  par-one ,  pi
1, …, pi

m 

Where X = dom1( ... domm (leaf-namei) …)

(1 ≤ i ≤ k)

event leaf-namei

any p1 … pn par-one  pi
1 … pi

m where

@grd _one n ≠ 0, mi ≠ 0 : X [ {p1 ↦ …↦ pn} ] ≠ ∅ ⇒ par-one ∈ X [ {p1 ↦ …↦ pn} ]

n = 0, m = 0 : leaf-namei = ∅

n = 0, mi ≠ 0 : leaf-namei ≠ ∅ ⇒ par-one ∈ dom( leaf-namei ) 

n ≠ 0, mi = 0 : p1 ↦ …↦ pn ∉ dom( leaf-namei ) 

X

Figure 5.51: TR one3: mapping an one-replicator to (a) guard(s)

Application of TR_one3

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 0) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

event v

any p1  p3  p6 where

@grd_q _one dom(v) [ {p1} ] ≠ ∅∅∅∅ ⇒⇒⇒⇒ p3 ∈∈∈∈ dom(v) [ {p1} ]

Figure 5.52: Application of TR one3 in the Example of Figure 5.1, Second
Refinement Level
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5.4.6 Translating the Loop Constructor

5.4.6.1 TR loop1: mapping a loop to (a) guard(s)

The loop child can execute zero or more time(s) before execution of next child, (Loop

Pattern 4.2.3). This constraint is modelled in Event-B with a guard added to the loop

child. The guard ensures that next child has not executed yet.

TR loop1 presented in Figure 5.53, transforms a loop to one or more guard(s) in the

loop child event(s).

TR_loop1:   loop 1*guard

flow( parent-name, (p1 , …, pn), sw)(..., loop (loop-child)(0), …)

list_of_leaves (loop-child, (p1 , …, pn)) = 

leaf1(leaf-name1, *par1), …, leafm(leaf-namem, *parm)      (1 ≤ i ≤ m)

successor (loop, n) : (child, parnum)

SI case (n = 0 ):

event leaf-namei

@grd_loop conjunction_of_leaves (child, 0)

MI case (n > 0):

event leaf-namei 

any p1 … pn … where

@grd_loop p1↦ …↦ pn ∉ union_of_leaves (child, 0) 

Figure 5.53: TR loop1: mapping a loop to (a) guard(s)

First list of leaves function is applied to the loop child to find the loop leaf/leaves in the

final refinement level. For each final refinement leaf, we need to generate a guard. We

use successor function to find next child of the loop. Finally if the parent flow of the loop

has no parameter (n = 0), then conjunction of leaves function is applied to the next

child, and a guard is generated in the leaf event. Otherwise (n > 0), union of leaves

function is used to generated the guard.

Figure 5.54 presents the application of this rule in the second refinement level of the

example in Figure 5.1. The leaves of the first Loop child, m and n, can execute until

event g executes. In the last row of the figure we assume that loop is included in a

parent flow without parameter.
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Application of TR_loop1

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

MI case (n > 0):

event m

any p1 where

@grd_m _loop p1 ∉∉∉∉ g

event n

any p1 where

@grd_n _loop p1 ∉∉∉∉ g

SI case (n = 0 ):

event m

where

@grd_m _loop g = ∅∅∅∅

event n

where

@grd_n _loop g = ∅∅∅∅

Figure 5.54: Application of TR loop1 in the Example of Figure 5.1, Second
Refinement Level

5.4.6.2 TR loop2: mapping a loop to (a) guard(s)

The event(s) after a loop can not execute in the middle of execution of the loop events.

This ensures with a guard which is added to the next event(s), (Section 4.3.5).

TR loop2 presented in Figure 5.55, transforms a loop to one or more guard(s) in the

next event(s). This translation is applied to the loop only when the loop contains a flow,

not a single leaf (loop-child 6= leaf). Because as described in Section 4.3.5, when a loop

contain a single leaf we do not need to add an extra guard in the next event(s) after

loop.

First successor function is used to find next child of the loop. Then list of leaves

function is applied to the next child, to find the leaf/leaves of the final refinement level.

Finally in the event of each final refinement leaf of the next child, a guard is generated,

in the same way as TR loop1 (Section 5.4.6.1).

Figure 5.56 presents the application of this rule in the second refinement level of the

example in Figure 5.1. Here leaf g is the next child after loop. The generated guard

ensures that event g does not execute in the middle of execution of loop events, as

described in Section 4.3.5. In the last row of the figure we assume that loop is included

in a parent flow without parameter.
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TR_loop2:   loop 1*guard

flow( parent-name, (p1 , …, pn), sw)(..., loop (loop-child)(0), …)

* where (loop-child ≠ leaf)

successor (loop, n) = (child, parnum)

list_of_leaves (child, (p1 , …, pn)) = 

leaf1(leaf-name1, *par1), …, leafm(leaf-namem, *parm)     (1 ≤ i ≤ m)

SI case (n = 0 ):

event leaf-namei

@grd_loop conjunction_of_leaves (loop-child, 0)

MI case (n > 0):

event leaf-namei

any p1 … pn … where

@grd_loop p1↦ …↦ pn ∉ union_of_levaes (loop-child, 0) 

Figure 5.55: TR loop2: mapping a loop to a resetting event

Application of TR_loop2

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

MI case (n > 0):

event g

any p1 where

@grd_g _loop p1 ∉∉∉∉ m ∪∪∪∪ n

SI case (n = 0 ):

event g

where

@grd_g _loop m = FALSE  ∧∧∧∧ n = FALSE

Figure 5.56: Application of TR loop2 in the Example of Figure 5.1, Second
Refinement Level
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5.4.6.3 TR loop3: mapping a loop to a resetting event

As described in 4.3.5, when a loop contains a flow rather than a single leaf (loop−child 6=
leaf), we need a resetting event in order to reset the loop control variables to enable

more than one execution of the loop events.

TR loop3 presented in Figure 5.57, transforms a loop to a resetting event. First

list of leaves function finds the loop leaves. Then for each output of the list of leaves,

a resetting action is generated in an event. If the parent flow of the loop does not have

any parameter, (n = 0), then the loop control variables are either boolean (ni = 0) or

a set (ni 6= 0), since some parameter can be introduced with some possible replicators.

Otherwise (n > 0), the loop control variables can have same parameter list as the parent

flow of the loop (ni = n), or a longer list of parameters (ni > n) as a result of introducing

some new parameters with possible replicators. In the case of (ni > n), we use domain

subtraction operators to reset the control variable. The domain subtraction operator is

defined as below:

S �− r = {x, y|x 7→ y ∈ r ∧ x /∈ S}

The generated guard ensures that the last child of the loop has been executed. We

use build seq grd function as a same way in TR leaf8 (Section 5.4.3.8) to find the final

refinement leaf/leaves of the loop and generate the proper guard.

TR_loop3:   loop resetting event

flow( parent-name, (p1 , …, pn), sw)(..., loop (loop-child)(0), …)

loop-child ≠ leaf

list_of_leaves (loop-child, (p1 , …, pn)) = 

leaf1(name1, (p11 , …, pn1)), …, leafm(namem, (p1m , …, pnm))       (1 ≤ i ≤ m)

SI case (n = 0):

event reset_loop

where

@grd_reset build_seq_grd (loop-child, null, null, null)

then

@acti_reset ni = 0: namei ≔ FALSE

ni ≠ 0: namei ≔∅

MI case (n > 0):

event reset_loop

any p1 … pn where

@grd_reset build_seq_grd (loop-child, (p1, …, pn), null, (p1, …, pn))

then

@acti_reset ni = n: namei ≔ namei \ { p1 ↦ … ↦ pn }

ni > n: namei ≔ { p1 ↦ … ↦ pn } ⩤ namei

Figure 5.57: TR loop3: mapping a loop to a resetting event

Figure 5.58 presents the application of this rule in the second refinement level of the

example in Figure 5.1. The last child of the loop is an all-replicator. So the guard
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ensures that the all-replicator event, event p, has been executed for all of instances of

the all-replicator parameter, p4. Then all of the loop control variables are reset in the

actions of the resetting event.

Application of TR_loop3

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

MI case (n > 0): SI case (n = 0 ):

event reset_loop

any p1 where

@grd _reset p [ {p1} ] =  TYPE(p4) 

then

@act1_reset m ≔≔≔≔m / { p1 }

@act2_reset n ≔≔≔≔ n / { p1 }

@act3_reset o ≔≔≔≔ o / { p1 }

@act4_reset p ≔≔≔≔ { p1 } ⩤⩤⩤⩤ p

end

event reset_loop

where

@grd _reset p = TYPE(p4)

then

@act1_reset m ≔≔≔≔ FALSE

@act2_reset n ≔≔≔≔ FALSE

@act3_reset o ≔≔≔≔ FALSE

@act4_reset p ≔≔≔≔∅∅∅∅

end

Figure 5.58: Application of TR loop3 in the Example of Figure 5.1, Second
Refinement Level

5.4.7 Translating a Weak Sequencing Flow

5.4.7.1 TR weak1: mapping a weak sequencing flow to (a) invariant(s)

Recall from 4.3.4, considering a weak sequencing flow, the ordering between a weak flow

children and the earlier refinement level children, is applied only to the solid child of the

weak flow. Obviously there is a separate ordering between the children of a weak flow,

managed with TR leaf4 (Section 5.4.3.4) and TR leaf8 (Section 5.4.3.8).

TR weak1 illustrated in Figure 5.59, transforms a weak flow, (sw = 0), to one or more

invariant(s) which specifies the ordering between the solid child of the weak flow and

the previous child. list of leaves function outputs the final refinement leaf/leaves of the

solid child, (refining = 1), of the weak flow. Then predecessor function is applied to the

weak flow to find the previous child of the weak flow. Then in a same way as TR leaf4,

build seq inv function generate the sequencing invariant.

Figure 5.60 presents the application of this rule in the second refinement level of the ex-

ample in Figure 5.1. Flow j is a weak flow (sw = 0). The only leaf found in list of leaves

function is u. The previous child is leaf h.
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TR_weak1:   weak flow 1*sequencing invariant

flow(parent-name, (p1 , …, pn), sw)(

…, weakFlow(parent-name, (p1 , …, pm), 0)(..., child(1), ...)(ref), …)

list_of_leaves (child) = leaf1 (name1, *par1), …, leafk (namek, *park)     

(1 ≤ i ≤ k)

invariants

@inv_leaf-name i _weakSeq

build_seq_inv (leafi , *pari , predecessor (weakFlow, (p1 , …, pn), 0))

Figure 5.59: TR weak1: mapping a weak sequencing flow to (a) guard(s)

Application of TR_weak1

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

invariants

@inv_u_weakSeq dom(u) ⊆⊆⊆⊆ h

Figure 5.60: Application of TR weak1 in the Example of Figure 5.1, Second
Refinement Level

5.4.7.2 TR weak2: mapping a weak sequencing flow to (a) guard(s)

TR weak2 illustrated in Figure 5.61, transforms a weak flow, (sw = 0), to one or

more guard(s) in the solid child of the weak flow. list of leaves function outputs the

final refinement leaf/leaves of the solid child, (refining = 1), of the weak flow. Then

predecessor function is applied to the weak flow to find the previous child of the weak

flow. Then in a same way as TR leaf8, build seq grd function generate the sequencing

guard. Obviously another guard(s) may be generated in TR leaf8 (Section 5.4.3.8) to

manage the ordering between the children of the weak flow. Also the next event after

the weak flow is guarded with solid child of weak flow variable(s) in TR leaf8.

Figure 5.62 presents the application of this rule in the second refinement level of the

example in Figure 5.1.
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TR_weak2:   weak flow 1*sequencing guard

flow(parent-name, (p1 , …, pn), sw)(

…, weakFlow(parent-name, (p1 , …, pm), 0)(..., child(1), ...)(ref), …)

list_of_leaves (child) = leaf1 (name1, *par1), …, leafk (namek, *park)     

(1 ≤ i ≤ k)

event leaf-name 
i

@grd_weakSeq build_seq_grd (leafi , *pari , predecessor (weakFlow, (p1 , …, pn), 0))

Figure 5.61: TR weak2: mapping a weak sequencing flow to (a) guard(s)

Application of TR_weak2

flow (process-name, p1, 1) (

flow (a, p1, 1) ( leaf (e) (0), loop ( flow(f, p1, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4) 

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0), 

all (p2) ( flow(b, (p1, p2), 1) ( leaf (h) (0),  xor ( flow(i, (p1, p2), 1) ( or (leaf (q), leaf (r)) (0) , 

leaf (s) (1) ), flow(j, (p1, p2), 0) ( leaf (t), one (p5) ( leaf(u) ) (1) ) ) (1) ) ) (0), 

and ( flow(c, p1, 1) ( leaf (k) (0), one (p3) ( flow(l, (p1, p3), 1) ( some (p6) ( leaf (v) ) (0), 

leaf(w) (1) ) ) (1) ), leaf (d) ) (0) )

event u

any p1 p2 p5 where

@grd_weakSeq p1↦↦↦↦ p2 ∈∈∈∈ h

Figure 5.62: Application of TR weak2 in the Example of Figure 5.1, Second
Refinement Level

5.5 Conclusion

In this chapter, first the language of the atomicity decomposition diagrams was described

in a formal way using ABNF (Augmented Backus-Naur Form). Then using translation

rules, we defined how an ABNF of an atomicity decomposition diagram can be encoded

in terms of Event-B. The translation rules were categorised according to their source

element.

Each leaf node in an atomicity decomposition diagram is encoded with a variable

(TR leaf1), and an event (TR leaf6 and TR leaf7). The variable corresponding to

a leaf is disabled in the body of the corresponding event (TR leaf11 and TR leaf12).

From a leaf node two guards are encoded in the corresponding event; one guard is to

prevent occurrence of same instance of the event for the second time (TR leaf9 and

TR leaf10); and the aim of the other guard is to control ordering between the corre-

sponding event and the before event (TR leaf8). To create the actions and guards of
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an event, we distinguish between a leaf which is a child of a replicator (all-replicator,

some-replicator, one-replicator), and a leaf which is not is a child of a replicator. This

difference is applied because of the extra replicator parameter which is added to the list

of child replicator parameter.

Three types of invariants are encoded. First the typing invariant (TR leaf2 and TR leaf3),

second the sequencing invariant (TR leaf4) which specifies the ordering between events

and finally the gluing invariant (TR leaf5, TR xor1 and TR one1). A solid line in a

diagram is encoded as a gluing invariant.

An xor-constructor causes encoding an invariant (TR xor2) and a guard (TR xor3) in

each of its children events, to specify the mutual exclusive property between its children.

The one-replicator results in encoding an invariant (TR one2) and a guard (TR one3)

in its child event, to specify the one execution property.

A loop is encoded as one or more guards (TR loop1) to prevent the execution of

loop event(s) after the execution of next event. Moreover another guard is encoded

(TR loop2) in the next event after loop to prevent its execution in the middle of exe-

cutions of the loop events. Also a resetting event is encoded (TR loop3) to reset the

control variables of loop in order to enable the loop to execute for another time.

The child with solid line of a weak sequencing decomposition, is encoded as a sequencing

invariant (TR weak1) and a sequencing guard in the solid child event(s) (TR weak2).

The ordering between the and-constructor, the or-constructor, the all-replicator and the

some-replicator children and next child, is managed with sequencing invariant(s) and

sequencing guard(s) which are encoded in TR leaf4 and TR leaf8 respectively.

The definitions of atomicity decomposition language (ADL) and translation rules helped

us to develop tool support for the atomicity decomposition approach. The tool develop-

ment is presented in Chapter 6. The atomicity decomposition tool makes the process of

modelling in Event-B automatic in terms of controlling ordering and relations between

events of different refinement levels.





Chapter 6

Tool Development: Atomicity

Decomposition Plug-in in Rodin

platform

6.1 Introduction

A tool for the atomicity decomposition approach was developed to support the refine-

ment structuring in Event-B. By taking advantage of the extensibility feature of the

Event-B toolkit (Rodin platform), we have developed a plug-in as tool support for the

atomicity decomposition approach. The Rodin platform serves as a host for the atomic-

ity decomposition plug-in. Developing the atomicity decomposition plug-in in the Rodin

platform, helps developers to make Event-B models easier, since using the atomicity de-

composition plug-in results in automatic generation of a part of the Event-B model

related to the ordering and relationships between events of different refinement levels.

The atomicity decomposition plug-in allows users to structure refinement by using de-

composition of an atomic event of an abstract model into some sub-events of a concrete

model which execute in a sequential style. First the user can define the atomicity decom-

position diagram, then the diagram is automatically transformed to an Event-B model.

Currently the atomicity decomposition diagram is build as an instance of the atomic-

ity decomposition meta-model, included in an Event-B machine. However we consider

developing a graphical environment for the plug-in as future work. The atomicity de-

composition meta-model defines all possible atomicity decomposition models; a model is

a particular instance of the meta-model.

From Section 5.4, the translation rules which correspond to the elements in the last

refinement level in a combined atomicity decomposition diagram have been developed in

the plug-in. The translation which corresponds to the elements in the earlier refinement

113
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levels in a combined atomicity decomposition diagram, are partly developed and need

to be examined more and improved as a future work. The atomicity decomposition

plug-in has been examined via development of two case studies which are explained in

Chapter 7. A perspective of the plug-in in the development of case studies are presented

in Chapter 7.

6.2 Architecture and Technologies

Eclipse [72], is a multi-language software development environment comprising an inte-

grated development environment (IDE) and an extensible plug-in system. The Rodin

Platform is an Eclipse-based IDE for Event-B and is further extendable with plug-ins.

The atomicity decomposition plug-in is developed in the Eclipse environment.

ADL EMF 

Meta-model

Event-B EMF 

Meta-model
Rodin DB

EMF/Emfatic

ETL

Figure 6.1: Atomicity Decomposition Plug-in Architecture

The development architecture is illustrated in Figure 6.1. The architecture is based

on model-driven architecture. In this approach we define the Atomicity Decomposition

Language (ADL) specification in an EMF (Eclipse Modelling Framework) [73] meta-

model, called source meta-model, and then the source meta-model is transformed to the

Event-B EMF meta-model as a target meta-model. The ADL meta-model defines all

possible atomicity decomposition models.

The transformation is done using the Epsilon Transformation Language (ETL) [74].

Finally the destination Event-B model is transformed to the Rodin Data Base (DB). The

Emfatic text editor is used for creating EMF meta-model. All mentioned technologies

are briefly explained below. The explanations are from [72, 75]

Eclipse Modelling Framework (EMF) and Emfatic:

The meta-model describes the structure of the language. EMF [73] can be used to

describe the meta-model of the atomicity decomposition language. We decided to use

EMF technology since it has advantages in our plug-in development, some of them are

listed here:



Chapter 6 Tool Development: Atomicity Decomposition Plug-in in Rodin platform 115

• Once the EMF meta-model is specified, we can generate the corresponding Java

implementation classes from this model. EMF provides the possibility to safely

extended the generated code by hand.

• With EMF we can make our model explicit which helps to provide clear visibility

of the model.

• EMF also provides change notification functionality to the model in case of model

changes.

• EMF will generate interfaces to create our own objects. Therefore it helps us to

keep our application clean from the individual implementation classes.

• Another advantage is that we can regenerate the Java code from the model at any

point in time.

Emfatic [73] is a text editor supporting navigation, editing, and conversion of EMF

models, using a compact and human-readable syntax similar to Java.

Epsilon Transformation Language (ETL):

ETL [74], is a rule-based model-to-model transformation language. We benefit from

features of ETL. The prominent features are as follows:

• Transform many input to many output models

• Ability to query/navigate/modify both source and target models

• Automated rule execution

• Rule inheritance

• Guarded rules

Figure 6.2 presents a view of the ADL EMF meta-model on the left side. Using ETL

rules, some components of this meta-model are transformed to some components of

the Event-B EMF meta-model on the right. As an example, Figure 6.2 illustrates how

the translation rule TR leaf1 (Section 5.4.3.1) is encoded as an ETL rule. This rule

transforms a leaf from the ADL meta-model (as the source meta-model) to a variable

in the Event-B meta-model (as the target meta-model). In the body of rule the name of

the target component (variable) is assigned to the name of the source component (leaf).

Another example of an ETL rule in presented in Figure 6.3. This rule is corresponded to

the translation rule TR xor1 (Section 5.4.4.1) in the MI case, which transforms a solid

xor-constructor to a gluing invariant. The rule is guarded for a solid xor and the MI case.

In the body of the rule, first the name of the invariant is assigned, then the predicate
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ADL Meta Model Event-B Meta Model

ETL

Figure 6.2: Atomicity Decomposition Language, EMF Meta-model

of the invariant is assigned to a partition operator. x.econtainer().econtainer().name

returns the parent name of the xor-constructor and getXorLeaves MI(x.xorLink) out-

puts the list of xor-constructor leaves’ names.

Figure 6.3: An ETL rule, Corresponded to TR xor1 (Section 5.4.4.1)
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6.3 User Interface

This section briefly describes how the atomicity decomposition plug-in is used. As

mentioned in Section 6.1, currently the atomicity decomposition diagram is built as an

instance of the ADL meta-model included in a Event-B machine. The user can add each

element of the atomicity decomposition diagram in the appropriate place when right

clicking on an element. For example, in Figure 6.4(a), a new flow can be added to a leaf

when right clicking on the leaf, in order to define a new decomposition flow of the leaf.

After finishing the atomicity decomposition model, like the example in Figure 6.4(b),

the atomicity decomposition model can be transformed to the Event-B model. The user

accesses the transformation feature when right clicking on the machine, presented in

Figure 6.4(c). Behind the “Transform to Event-B” submenu, the ETL transformation

rules are applied and the Event-B model is generated. Figure 6.5 presents the generated

Event-B model for the atomicity decomposition model of Figure 6.4(b).

6.4 Conclusion

The Rodin platform, as an Event-B tool, serves as a host for the atomicity decompo-

sition plug-in developed to give tool support to the atomicity decomposition approach.

The theory behind the atomicity decomposition plug-in has been gradually presented

in Chapter 3, Chapter 4 and Chapter 5; and the applications to case studies will be

presented in Chapter 7. We benefit from some features of EMF (Eclipse Modelling

Framework) and ETL (Epsilon Transformation Language) to create the ADL meta-

model and transform it to the Event-B meta-model. We consider developing a graphical

user interface to create the ADL meta-model in a diagrammatic view, as future work.

The atomicity decomposition plug-in supports automatic generation of Event-B models

in terms of ordering between events and relationships between refinement levels. Ex-

tra requirements can be added manually to the automatic Event-B model. Automatic

generation aims to decrease the effort of modelling complex systems in Event-B, and

contributes to improve the development process of a complex system.
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(a) Creating an Instance of the Atomicity Decomposition Meta-model

(b) The Atomicity Decomposition Model

(c) Transforming to the Event-B Model

Figure 6.4: User Interface
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Figure 6.5: Event-B Model of the Instance of the Atomicity Decomposition
Model in Figure 6.4





Chapter 7

Case Studies

7.1 Introduction

We have developed two case studies, using the atomicity decomposition approach, ini-

tially manually before the plug-in was developed; and later with the plug-in which has

been outlined in the previous chapter. The existing atomicity decomposition approach,

presented in [24], has been evaluated during manual development of the case studies.

Manual development of these case studies helped us to improve the atomicity decom-

position approach. As a result, some new patterns have been discovered which helped

us to define the atomicity decomposition language and translation rules in a formal de-

scription, followed by developing tool support for the approach. The discovered patterns

have been outlined in Chapter 4, the formal description of atomicity decomposition lan-

guage and translation rules have been defined in Chapter 5 and the tool development

has been described in Chapter 6. The evaluation and methodological results of these

case studies are explained later in Chapter 8. Also Chapter 8 will outline how the man-

ual development helped to improve the atomicity decomposition patterns and language.

Through our experiment in these developments we found out that how the atomicity

decomposition approach can help us to structure refinement and how much it is benefi-

cial in modelling the requirements of different phases using the diagrammatic notation

of the atomicity decomposition approach.

After defining the language and translation rules in a formal description and developing

tool support for the atomicity decomposition approach, we modelled the case studies

for second time using our plug-in in a semi-automatic approach. The reason we call

it semi-automatic is that, part of the Event-B model which is related to the ordering

requirements between events is generated automatically with the plug-in. The other

requirements have been added manually to the generated model, commented with man-

ually in the Event-B model.

121
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This chapter presents the automatic developments of the case studies. The major dif-

ferences between the manual Event-B model and the automatic Event-B model are

presented for each case study.

First, Section 7.2 presents the development of the Media Channel system. The work

presented in this section is published in “Formal Methods for Components and Objects”

(FMCO) 2009 conference [1]. The complete version of the automatic Event-B model of

the media channel system, which is developed using the atomicity decomposition plug-

in, is presented in Appendix A. And the complete version of the manual Event-B model

is available online 1.

The second case study, the BepiColombo system, is presented in Section 7.3, and pub-

lished in the “Nasa Formal Methods” (NFM) 2011 symposium [2]. Applying both atom-

icity decomposition and model decomposition to a large system is one of the motiva-

tions for developing the second case study. Moreover the methodological results reached

during the first case study development, have been evaluated in the development of

second larger system. The complete version of the automatic Event-B model of the

BepiColombo system, which is developed using the atomicity decomposition plug-in, is

presented in Appendix B. And the complete version of the manual Event-B model is

available online 2.

Recall from previous motivations, refinement in Event-B helps developers to do incre-

mental modelling of complex systems. However refinement does not solve the problems

of building the models of complicated and difficult systems completely. Event-B re-

finement is not able to illustrate explicit connections between abstract and concrete

events through different levels of refinement. It motivates us to apply refinement and

the atomicity decomposition approach to large case studies.

Our approach in developing the case studies is incremental. Developing a system in

incremental steps means it starts with a very abstract model and more details are added

to model gradually in the refinement levels. In other words, the gap between refinement

levels is not too great. We add some intermediate model to reduce the abstraction gap

between refinement levels.

The content of each case study section, begins with the review of the requirements of

the system. Then the abstract specification of the system is introduced followed by five

refinement levels for the media channel system, and three refinement levels followed by

a model decomposition followed by two refinement levels for the BepiColombo system.

Finally the major differences between manual Event-B model and the automatic Event-B

model are presented, and it is followed by a review of the proof obligations.

1http://eprints.ecs.soton.ac.uk/21261/
2http://eprints.ecs.soton.ac.uk/22048/

http://eprints.ecs.soton.ac.uk/21261/
http://eprints.ecs.soton.ac.uk/22048/
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7.2 Media Channel System (Published in FMCO 2009 Con-

ference)

7.2.1 Overview of the Media Channel System

The Media Channel Properties: All properties described in this section are from [76].

Each media channel has one source, one sink, a codec type and a specific direction. A

media channel is point-to-point and dynamic, established for transferring data, called

medium. A media channel is established between two endpoints. An endpoint is any

source or sink of a media stream. A point-to-point media channel is simply illustrated

in Figure 7.1.

Media Path

Figure 7.1: A Simple Image of the Media Channel between Two Endpoints

A Codec is a specific data format by which data is encoded. The codec choice in the

media channel is dynamic. This means that each endpoint of the channel is allowed to

change the codec at any time in the middle of data transfer. Although each endpoint

can interpret more than one codec, the source and sink of a media channel have to know

with which codec they are supposed to send or receive. So any two endpoints of a media

channel should have at least one common codec.

The Important Protocol Rules: Either end of a channel, sender or receiver, can

attempt to open a media channel by sending an open signal. The other end can respond

affirmatively with openAck (open acknowledge) or negatively with close. A media flow

can be established between two media endpoints if and only if both media endpoints

agree.

Each open signal carries the medium being requested, and a descriptor. A descriptor is a

record in which an endpoint describes itself as a receiver of media. A descriptor contains

an IP address, port number, and a set of codecs that the endpoint can handle. If the

endpoint does not wish to receive media, then the only offered codec is noMedia. Each

openAck signal also carries a descriptor, describing the channel acceptor as a receiver of

media.

A selector is a response to a descriptor. A selector is a record in which an endpoint

describes itself as a sender of media. It contains the identification of the descriptor it

is responding to, the IP address of the sender, and the port number of the sender. If

the selecting endpoint does not wish to send media, then the selector contains noMedia.

Otherwise, it contains a single codec selected from the set of codecs in the descriptor.

The only legal response to a descriptor noMedia is a selector noMedia.
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7.2.1.1 Requirements for Establishing a Media Channel

After sending an open signal with the initiator side of the channel, and sending an

openAck signal with the other side, called the acceptor, both endpoints have to respond

to descriptors carried by open and openAck signal, by sending a select signal carrying

a selector. As said before, it is a rule of the system that a selector should be sent in

response to receiving a descriptor. A media channel is established with the endpoint

which receives a real codec in a select signal. Figure 7.2 shows the steps involved in

establishing a media channel.

endpoint endpoint

Open(medium,desc1)

Oack(desc2)

select(sel2) select(sel1)Establish select(sel2) select(sel1)

l ( l’ )select(sel’2)

describe(desc3)Modify ( )

select(sel3)

Modify

close

closeackClose

Figure 7.2: Protocol of the Media Channel System

7.2.1.2 Requirements for Modifying an Established Media Channel

Modifying an established media channel may involve changing of the codec used in

transferring data or changing the port of each endpoint. At any time after sending the

first selector in response to a descriptor, an endpoint can choose a new codec from the

set of codecs in the descriptor, send it as a selector in a select signal, and begin to send

media in the new codec. In Figure 7.2, select (sel’2) shows this possibility.

At any time after sending or receiving oAck, an endpoint can send a new descriptor

in a describe signal. The endpoint that receives the new descriptor must begin to act

according to the new descriptor. This might mean sending to a new address or choosing a

new codec. In any case, the receiver of the descriptor must respond with a new selector

in a select signal, if only to show that it has received the descriptor. In Figure 7.2,
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descriptor3 and selector3 illustrate this interaction. Finally at any time after sending or

receiving oAck, an endpoint can send a new port and describe itself by a new port.

7.2.1.3 Requirements for Closing an Established Media Channel

As can be seen in Figure 7.2, either endpoint can close the media channel at any time

by sending a close signal, which must be acknowledged by the other end with a closeAck

(close Acknowledge).

7.2.2 Abstract Specification

7.2.2.1 Static Part of the Specification

The abstract context, C1, consists of five sets and six constants. As mentioned in

Section 2.4.2, the context contains the static part of the system.

ENDPOINT (set of endpoints of system which play the role of source and sink of a

media channel), MEDIUM (set of media which can sent or received in the process of

transferring data), CODEC (set of all existing codecs), MEDIACHANNEL (set of all

potential media channels), DIRECTION (an enumerated set showing the direction of

a media channel which can be form Initiator to Acceptor (ItoA), or from Acceptor to

Initiator (AtoI )).

As mentioned in the previous section, each media channel has a specific endpoint as its

initiator, a specific endpoint as its acceptor, a specific direction, and a specific medium.

These properties are modelled as total functions, illustrated in Figure 7.3. A total

function guarantees that each media channel has exactly one medium, one initiator, one

acceptor and one direction. These functions are considered as constants because they do

not change after establishing a media channel. Whereas the codec property of a media

channel is considered as a variable in the model, since it is a dynamic part and can

change after establishing a media channel.

axioms
@axm1 partition(DIRECTION, {ItoA}, {AtoI} )
@axm2 medium ∈∈∈∈ MEDIACHANNEL → MEDIUM
@axm3 initiator ∈∈∈∈ MEDIACHANNEL → ENDPOINT
@axm4 acceptor ∈∈∈∈ MEDIACHANNEL → ENDPOINT
@axm5 direction ∈∈∈∈ MEDIACHANNEL → DIRECTION

Figure 7.3: Context C1, Media Channel System
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7.2.2.2 Events and Dynamic Part of the Specification

In the abstract model, M0, the main goals of the system are modelled. The most abstract

events are illustrated in Figure 7.4, using the diagram explained in Section 4.3.1. First

a media channel is established by execution of establishMediaChannel event, then it can

be modified for zero or more times by execution of modify event and then can be closed

by execution of close event.

establishMediaChannel (ch) close (ch)modify (ch)
*

Media Channel (ch)

Figure 7.4: The Atomicity Decomposition Diagram, M0, Media Channel System

As explained in Section 4.2, the ordering between events is modelled using some control

variables, invariants and guards. As described in Section 4.2.3 we do not consider a

variable for a loop event. In machine M0, there are two control variables and one manual

variable. Figure 7.5 presents the variables and invariants of M0. Control variables,

invariants, etc, are added automatically by the tool; manual variables, invariants, etc,

are added manually by the user and are commented with manually.

For each event there is a control variable with same name as the event, and if one event

is executed after another one, the later variable is a subset of the former one. For exam-

ple, the close event can be executed only after execution of establishMediaChannel event,

so invariant inv close seq describes the close variable as a subset of the establishMedi-

aChannel variable. Variable codec is modelled manually. It is a total function, specifying

the codec property of an established media channel. Variable codec and the correspond-

ing invariant are added manually, the other invariants and variables are generated with

the tool.

variables establishMediaChannel
close
codec // manually

invariants
@inv_establishMediaChannel establishMediaChannel ⊆ MEDIACHANNEL
@inv_close_seq close ⊆ establishMediaChannel
@inv1 codec ∈ establishMediaChannel → CODEC // manually

Figure 7.5: Variables and Invariants, M0, Media Channel System

The abstract events are illustrated in Figure 7.6. There are some guards for controlling

the sequencing of events. In the first event, establishMediaChannel, one channel, ch,
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is added to the establishMediaChannel variable, and then modify and close events can

executed only for a ch which belongs to establishMediaChannel variable, which is checked

in grd modify seq and grd close seq guards in modify and close events. Guards and

actions related to the codec property of the media channel are modelled manually. As

can be seen in Figure 7.6, in the establishMediaChannel event, the codec property of the

channel is initialized. Later in the modify event, the codec can be changed to a new value.

The Event-B model of loop constructor follows the scheme explained in Section 4.2.3.

event establishMediaChannel
any ch

c // manually
where
@grd_establishMediaChannel ch ∉ establishMediaChannel
@grd1 c ∈ CODEC // manually

then
@act_establishMediaChannel

establishMediaChannel ≔ establishMediaChannel ∪ { ch }
@act1 codec(ch) ≔ c // manually

end

event close
any ch
where
@grd_close_seq ch ∈ establishMediaChannel
@grd_close ch ∉ close

then
@act_close close ≔ close ∪ { ch }

end

event modify
any ch c
where
@grd_modify_seq ch ∈ establishMediaChannel
@grd_modify_loop ch ∉ close
@grd1 c ∈ CODEC // manually

then
@act1 codec(ch) ≔ c // manually

end

*

Media Channel (ch)

Figure 7.6: Event-B Model, M0, Media Channel System

7.2.3 1st Refinement: Breaking the Atomicity of Establish Media Chan-

nel

In the abstract model, we saw that a media channel is established in a single atomic

step. It provides simplicity in the abstract level. However, in the real protocol, explained

in Section 7.2.1, establishing a media channel is not atomic. Instead, an open request

should be sent by the initiator endpoint and should be responded to by an openAck

signal from the acceptor endpoint. After receiving a select signal carrying a real codec,

selected from the set of codecs, the media channel can be established. This scenario is

illustrated in Figure 7.7. Two scenarios are possible. First, as illustrated on the left of

the figure, the requester sends an open signal carrying a descriptor with a real set of

codec. It means the requester is the receiver. The acceptor sends an openAck signal

carrying a descriptor without real codecs, since the acceptor is the sender. In this point,

the acceptor, which has received a real set of codecs, selects a codec from the set and

establishes the channel. The second scenario on the right of the figure illustrates when
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the requester is the sender. In this case the requester sends an open signal carrying a

descriptor without real codec, and the acceptor responds by sending an openAck signal

carrying a descriptor with a real set of codecs. In this point, the requester, which has

received a real set of codecs, selects a codec from the set and establishes the channel.

e2e1

Sender
Acceptor

openWithRealCodecs (IP, port, CodecList)

openAckWithoutCodecs (IP, port, noMedia)

selectAndEstablishByAcceptor (IP, port, Codec)

Initiator
ReceiverSender

Acceptor
Receiver
Initiator

e2e1

openWithoutCodecs (IP, port, noMedia)

openAckWithRealCodecs (IP, port, CodecList)

selectAndEstablishByInitiator (IP, port, Codec)

direction = AtoI direction = ItoA

Figure 7.7: Establish Media Channel Scenario

Breaking the atomicity of establishing a media channel is outlined in the atomicity

decomposition diagrams in Figure 7.8.

establishMediaChannel (ch)

openWithRealCodecs (ch) openAckWithoutCodecs (ch) selectAndEstablishbyAcceptor (ch)

establishMediaChannel (ch)

openWithoutCodecs (ch) openAckWithRealCodecs (ch) selectAndEstablishbyInitiator (ch)

(a)

(b)

Figure 7.8: Breaking the Atomicity of Establish a Media Channel, M1

Possible event traces of establishing a media channel are:

< openWithRealCodecs, openAckWithoutCodecs, selectAndEstablishbyAcceptor >

< openWithoutCodecs, openAckWithRealCodecs, selectAndEstablishbyInitiator >

The control variables and invariants which control the sequencing between events are

generated automatically. There are three manual variables defined in machine M1 in

order to model the initiator port, acceptor port and codec set of a media channel. The

manual variables and invariants are presented in Figure 7.9. inv1, inv2 and inv3 define

the new properties of a media channel. inv5 specifies that the channels which contain an

open signal carrying a real set of codecs are always from acceptor to initiator, (direction

= AtoI). Similarly, inv6 specifies that the channels which contain an open signal without
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real codec are always from initiator to acceptor, (direction = ItoA). Finally inv7 specifies

that these two kinds of channels are disjoint.

variables 
initiatorPort // manually
acceptorPort // manually
codecList // manually

invariants
@inv1 initiatorPort ∈ (openWithRealCodecs ∪ openWithoutCodecs) → PORT // manually
@inv2 acceptorPort ∈ (openAckWithoutCodecs ∪ openAckWithRealCodecs) → PORT // manually
@inv3 codecList ∈ (openWithRealCodecs ∪ openAckWithRealCodecs) → ℙ(CODEC) // manually
@inv5 openWithRealCodecs ⊆ dom(direction ▷▷▷▷ {AtoI}) // manually
@inv6 openWithoutCodecs ⊆ dom(direction ▷▷▷▷ {ItoA}) // manually
@inv7 openWithRealCodecs ∩ openWithoutCodecs = ∅ // manually

Figure 7.9: Manual Variables and Invariants, M1, Media Channel System

There is a gluing invariant in machine M1 which define the relations between abstract

variable and concrete variables. The gluing invariant which generated automatically is :

@inv gluing selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator =

establishMediaChannel

Since two events refine the abstract event, establishMediaChannel, the union of the

corresponding control variables is equal to the abstract variable.

The sequencing guards and actions are generated automatically. The Event-B model of

the first diagram in Figure 7.8 is shown in Figure 7.10, Figure 7.11 and Figure 7.12. Obvi-

ously the sub-events with dashed lines, openWithRealCodecs and openAckWithoutCodecs,

are new events which refine skip and the event with solid line, selectAndEstablishbyAc-

ceptor event refines the abstract event, establishMediaChannel. The other properties of

the media channel is assigned manually in each event. Codec set and initiator port of

a media channel is initialized in openWithRealCodecs event; Acceptor port is initialized

in openAckWithoutCodecs event and the selected codec is initialized in selectAndEstab-

lishbyAcceptor event.

7.2.4 2nd Refinement: Breaking the Atomicity of Modify Media Chan-

nel

Up to this level, modify was considered as an atomic event which was done by one single

event and simply changes the codec of an established media channel. In this refinement

we break the atomicity of the modify event.

As presented in Figures 7.13, 7.14 and 7.15, there are three ways of modifying the

properties of an established channel.

First, as it is presented in Figure 7.13, after establishing a media channel, the sender

endpoint can select a new codec from the set of acceptable codecs of the other endpoint,
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event openWithRealCodecs
any ch

cl // manually
p // manually
i // manually

where
@grd_openWithRealCodecs ch ∉ openWithRealCodecs
@grd1 ch ∉ openWithoutCodecs // manually
@grd2 cl ⊆ CODEC // manually
@grd3 cl ≠ ∅ // manually
@grd4 p ∈ PORT // manually
@grd5 i ∈ IP // manually
@grd6 i ∈ dom(endpointIp∼∼∼∼) // manually
@grd7 initiator(ch) = endpointIp∼∼∼∼(i) // manually
@grd8 direction(ch) = AtoI // manually

then
@act_openWithRealCodecs

openWithRealCodecs ≔ openWithRealCodecs ∪ { ch }
@act1 codecList(ch) ≔ cl // manually
@act2 initiatorPort(ch) ≔ p // manually

end

Figure 7.10: Event-B Model, M1, Media Channel System

event openAckWithoutCodecs
any ch

cl // manually
p // manually
i // manually

where
@grd_openAckWithoutCodecs_seq ch ∈ openWithRealCodecs
@grd_openAckWithoutCodecs ch ∉ openAckWithoutCodecs
@grd1 cl ⊆ CODEC // manually
@grd2 cl = ∅ // manually
@grd3 p ∈ PORT // manually
@grd4 i ∈ IP // manually
@grd5 i ∈ dom(endpointIp∼∼∼∼) // manually 
@grd6 acceptor(ch) = endpointIp∼∼∼∼(i) // manually

then
@act_openAckWithoutCodecs

openAckWithoutCodecs ≔ openAckWithoutCodecs ∪ {ch}
@act1 acceptorPort(ch) ≔ p // manually

end

Figure 7.11: Event-B Model, M1, Media Channel System

event selectAndEstablishbyAcceptor refines establishMediaChannel
any ch

c // manually
where

@grd_selectAndEstablishbyAcceptor_seq ch ∈ openAckWithoutCodecs
@grd_selectAndEstablishbyAcceptor ch ∉ selectAndEstablishbyAcceptor
@grd1 c ∈ codecList(ch) // manually

then
@act_selectAndEstablishbyAcceptor

selectAndEstablishbyAcceptor ≔ selectAndEstablishbyAcceptor ∪ { ch }
@act1 codec(ch) ≔ c // manually

end

Figure 7.12: Event-B Model, M1, Media Channel System
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e2e1

Sender
Acceptor

openWithRealCodecs (IP1, port1, (c1, c2))

openAckWithoutCodecs (IP2, port2, noMedia)

selectAndEstablishByAcceptor (IP2, port2, c1)

Initiator
ReceiverSender

Acceptor
Receiver
Initiator

e2e1

openWithoutCodecs (IP1, port1, noMedia)

openAckWithRealCodecs (IP2, port2, (c1, c2))

selectAndEstablishByInitiator (IP, port, c1)

select (IP2, port2, c2) select (IP1, port1, c2)

direction = AtoI direction = ItoA

Figure 7.13: Modify Set of Codecs of a Media Channel by Selector Scenario

e2e1

Sender
Acceptor

openWithRealCodecs (IP1, port1, (c1, c2))

openAckWithoutCodecs (IP2, port2, noMedia)

selectAndEstablishByAcceptor (IP2, port2, c1)

Initiator
ReceiverSender

Acceptor
Receiver
Initiator

e2e1

openWithoutCodecs (IP1, port1, noMedia)

openAckWithRealCodecs (IP2, port2, (c1, c2))

selectAndEstablishByInitiator (IP, port, c1)

select (IP2, port2, c3) select (IP1, port1, c3)

describe (IP1, port1, (c3, c4)) describe (IP2, port2, (c3, c4))

direction = AtoI direction = ItoA

Figure 7.14: Modify Codec of a Media Channel by Descriptor Scenario

e2e1

Sender
Acceptor

openWithRealCodecs (IP1, port1, (c1, c2))

openAckWithoutCodecs (IP2, port2, noMedia)

selectAndEstablishByAcceptor (IP2, port2, c1)

Initiator
ReceiverSender

Acceptor
Receiver
Initiator

e2e1

openWithoutCodecs (IP1, port1, noMedia)

openAckWithRealCodecs (IP2, port2, (c1, c2))

selectAndEstablishByInitiator (IP, port, c1)

select (IP2, port2, c3) select (IP1, port1, c3)

describe (IP1, port3, (c3, c4)) describe (IP2, port3, (c3, c4))

direction = AtoI direction = ItoA

Figure 7.15: Modify Port of a Media Channel by Descriptor Scenario
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which has been received in the time of establishing the media channel, and start sending

data by the new codec.

Second, considering Figure 7.14, the receiver endpoint, can send a new set of codecs in

a describe signal. As described in Section 7.2.1, the other endpoint, has to respond to

the descriptor by choosing a codec from the new set and sending it via a selector.

Finally, in Figure 7.15, it is shown that each endpoint can describe itself with a new

port by sending a descriptor signal carrying the new port value.

Considering the three described modify scenarios, the modify event is decomposed in four

atomicity diagrams, presented in Figure 7.16. In the first two scenarios in Figure 7.13

and Figure 7.14, one of the properties of the established channel is modified (set of codecs

or selected codec). Whereas Figure 7.15 presents modifying the initiator port property

in the left and modify the acceptor port property in the right. Therefore Figure 7.15

corresponds to two diagrams in Figure 7.16.

First diagram (a), is related to “modify codec of the media channel by selector” scenario

in Figure 7.13. As described before, modifying codec can be done by initiator or acceptor

of the media channel, both of them is done by modifyBySelector event in this level of

refinement. More details are added in the 4th refinement level.

Diagram (b), is related to both types of “modify codec of the media channel by descrip-

tor” scenario in Figure 7.14.

Diagram (c), contains decomposition related to “modify the initiator port” shown on

the left hand side of Figure 7.15.

Finally diagram (d), shows the decomposition related to “modify the acceptor port” on

the right hand side of Figure 7.15.

For instance, the Event-B model of part (b) and part (c) are presented in Figure 7.17

and Figure 7.18 respectively. Considering changing codec scenario in Figure 7.17, the

refining event is a response, whereas in changing port scenario in Figure 7.18, the refining

event is the modify event. As explained in Section 4.2.2, the refining event is the event

which simulates the main behaviour of the abstract event. Here the event which changes

one of the properties of the channel, is considered as the refining event. In Figure 7.17,

the action of changing the codec is done in the respond event, whereas in Figure 7.18,

the modify event changes one of the properties (initiator port) of the channel.

As described in Section 4.3.5, since the modify event in the first refinement is a loop

event, in this level of refinement a loop resetting event is needed for each atomicity

decomposition of the modify event. For instance, the resetting event for part (b) of

Figure 7.16, is presented in Figure 7.19.
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modify (ch)

modifyCodecBySelector (ch)

modify (ch)

respondBySelectorToCodec (ch)modifyCodecListByDescriptor (ch)

modify (ch)

respondBySelectorToInitiatorPort (ch)modifyInitiatorPortByDescriptor (ch)

modify (ch)

respondBySelectorToAcceptorPort (ch)modifyAcceptorPortByDescriptor (ch)

(a) (b)

(c)

(d)

Figure 7.16: Breaking the Atomicity of Modify a Media Channel, M2

modify (ch)

event respondBySelectorToCodec refines 
modify

any ch
c // manually

where
@grd_respondBySelectorToCodec_seq

ch ∈ modifyCodecListByDescriptor
@grd_respondBySelectorToCodec

ch ∉ respondBySelectorToCodec
@grd1 c ∈ codecList2(ch) // manually

then
@act_respondBySelectorToCodec

respondBySelectorToCodec ≔
respondBySelectorToCodec ∪ { ch }

@act2 codec(ch) ≔ c // manually
end

event modifyCodecListByDescriptor
any ch

cl // manually
where
@grd_modifyCodecListByDescriptor_seq

ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

@grd_modifyCodecListByDescriptor
ch ∉ modifyCodecListByDescriptor

@grd_modifyCodecListByDescriptor_loop ch ∉ close
@grd1 cl ⊆ CODEC // manually
@grd2 cl ≠ ∅ // manually

then
@act_modifyCodecListByDescriptor

modifyCodecListByDescriptor ≔
modifyCodecListByDescriptor ∪ { ch }

@act1 codecList2(ch) ≔ cl // manually
end

Figure 7.17: Event-B Model, M2, Media Channel System
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modify (ch)

event respondBySelectorToInitiatorPort
any ch
where
@grd_respondBySelectorToInitiatorPort_seq

ch ∈ modifyInitiatorPortByDescriptor
@grd_respondBySelectorToInitiatorPort

ch ∉ respondBySelectorToInitiatorPort
then
@act_respondBySelectorToInitiatorPort

respondBySelectorToInitiatorPort ≔
respondBySelectorToInitiatorPort ∪ { ch }

end

event modifyInitiatorPortByDescriptor refines modify
any ch

p // manually
where
@grd_modifyInitiatorPortByDescriptor_seq

ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

@grd_modifyInitiatorPortByDescriptor
ch ∉ modifyInitiatorPortByDescriptor

@grd_modifyInitiatorPortByDescriptor_loop ch ∉ close
@grd1 p ≠ initiatorPort2(ch) // manually

then
@act_modifyInitiatorPortByDescriptor

modifyInitiatorPortByDescriptor ≔
modifyInitiatorPortByDescriptor ∪ { ch }

@act1 initiatorPort2(ch) ≔ p // manually
end

Figure 7.18: Event-B Model, M2, Media Channel System

event modify_Loop_Reset1
any ch
where

@grd_reset ch ∈ respondBySelectorToCodec
then

@act_reset_modifyCodecListByDescriptor
modifyCodecListByDescriptor ≔ modifyCodecListByDescriptor ∖ {ch}

@act_reset_respondBySelectorToCodec
respondBySelectorToCodec ≔ respondBySelectorToCodec ∖ {ch}

end

Figure 7.19: Loop Resetting, M2, Media Channel System

Interactive proving: Failing proof obligations can lead to the identification of prob-

lems in the model that needed to be fixed. Discharging proof obligations in an inter-

active way, can lead us to make some changes in the model. In this level there are

three EQL (Equality of a preserved variable) proof obligations which do not discharge

without changing the model. One of them is explained in next paragraph, the other two

are similar.

All variables in one Event-B machine can be changed only with the events of that machine

in order to preserve consistency. evt / v / EQL is a proof obligation which ensures that

abstract variable v is preserved in the concrete event evt. These kind of undischarged

proof obligations occur because some abstract variables change in concrete events whose

corresponding abstract events do not change the same variables. For example in this

refinement level of the media channel development, the undischarged proof obligation

modifyInitiatorPortByDescriptor/initiatorPort/EQL

occurs because the concrete event modifyInitiatorPortByDescriptor changes the abstract

variable initiatorPort whereas the corresponding abstract event, modify, did not change
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the same variable. One solution which Butler used in [44], is defining new variables in

the refinement level which replace the abstract ones. Obviously some gluing invariants

for linking them are necessary.

There are three new variables, initiatorPort2, acceptorPort2 and codecList2, which re-

placed the abstract one, initiatorPort, acceptorPort and codecList respectively.

7.2.5 3rd Refinement: Breaking the Atomicity of Close Media Channel

This is a simple refinement in which the atomicity of the close event is broken into two

sub-events, see Figure 7.20.

close (ch)

closeAck (ch)closeRequest (ch)

Figure 7.20: Breaking the Atomicity of Close a Media Channel, M3

7.2.6 4th Refinement: Second Level Breaking the Atomicity of Modify

Media Channel

Up to the second refinement level, modifying a media channel was an atomic event which

was done in a single step. In the second refinement level, the atomicity of the modify

event has been decomposed, without considering which side of a channel, initiator or

acceptor, is willing to send the modify signal and change the media channel’s codec

set. Considering initiator and acceptor endpoints, the fourth refinement level breaks the

atomicity of modify events in a further level of decomposition. xor-constructor is used in

breaking the atomicity of the modifyBySelector event, modifyCodecByDescriptor event

and respondBySelectortoCodec event, illustrated in Figure 7.21.

Figure 7.22 illustrates the Event-B model of part (a) in Figure 7.21. The decision to use

exclusive choice between sub-events is made based on the direction of the media channel.

As presented in Figure 7.13, if the channel is from initiator to acceptor (ItoA), modelled

in guard grd2, then the codec can be changed only by the initiator. Because the initiator

has received the set of codecs from the acceptor, so the initiator can choose a new codec

from the set. And if the channel is from acceptor to initiator (AtoI), modelled in guard

grd2, then the codec can be changed only by the acceptor. Simply it can be said that

only the sender of a media channel can choose a new codec from the received set of

codecs, and the sender is the initiator when the direction is ItoA and is the acceptor

when the direction is AtoI.
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modifyCodecBySelector (ch)

modifyCodecBySelector_withAcceptor (ch)modifyCodecBySelector_withInitiator (ch)

xor

(a)

modifyCodecListByDescriptor (ch)

modifyCodecListByDescriptor_withAcceptor (ch)modifyCodecListByDescriptor_withInitiator (ch)

(b)

respondBySelectorToCodec (ch)

respondBySelectorToAcceptorCodec (ch)respondBySelectorToInitiatorCodec (ch)

(c)

xor

xor

Figure 7.21: Further Breaking the Atomicity of Modify a Media Channel, M4

modifyCodecBySelector (ch)

event modifyCodecBySelector_withAcceptor
refines modifyCodecBySelector

any ch
c // manually

where
@grd_modifyCodecBySelector_withAcceptor_seq

ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

@grd_modifyCodecBySelector_withAcceptor
ch ∉ modifyCodecBySelector_withAcceptor

@grd_modifyCodecBySelector_withAcceptor_xor
ch ∉ modifyCodecBySelector_withInitiator

@grd_modifyCodecBySelector_withAcceptor_loop
ch ∉ closeRequest

@grd1 c ∈ codecList2(ch) // manually
@grd2 direction(ch) = AtoI // manually

then
@act_modifyCodecBySelector_withAcceptor

modifyCodecBySelector_withAcceptor ≔
modifyCodecBySelector_withAcceptor ∪ { ch }

@act1 codec(ch) ≔ c // manually
end

event modifyCodecBySelector_withInitiator
refines modifyCodecBySelector

any ch
c // manually

where
@grd_modifyCodecBySelector_withInitiator_seq

ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

@grd_modifyCodecBySelector_withInitiator
ch ∉ modifyCodecBySelector_withInitiator

@grd_modifyCodecBySelector_withInitiator_xor
ch ∉ modifyCodecBySelector_withAcceptor

@grd_modifyCodecBySelector_withInitiator_loop
ch ∉ closeRequest

@grd1 c ∈ codecList2(ch) // manually
@grd2 direction(ch) = ItoA // manually

then
@act_modifyCodecBySelector_withInitiator

modifyCodecBySelector_withInitiator ≔
modifyCodecBySelector_withInitiator ∪ { ch }

@act1 codec(ch) ≔ c // manually
end

xor

Figure 7.22: Event-B Model, M4, Media Channel System
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7.2.7 5th Refinement: Second Level Breaking the Atomicity of Close

Media Channel

Up to this refinement level closing a media channel is done with execution of the

closeRequest event and closeAck event, without considering the direction of the channel.

As presented in Figure 7.23, a closeRequest can be sent by either side of a channel, when

the direction is either AtoI or ItoA.

e2e1

Sender
Acceptor Initiator

ReceiverSender

Acceptor
Receiver
Initiator

e2e1

closeRequestAtoI

closeAckAtoI

closeRequestItoA

closeAckItoA

closeRequestAtoI

closeAckAtoI

closeRequestItoA

closeAckItoA

direction = AtoI direction = ItoA

Figure 7.23: Close a Media Channel Scenarios

The final refinement level of the media channel system development contains further

breaking of the atomicity of the close events. The atomicity decomposition diagrams

of the 5th refinement level is illustrated in Figure 7.24. In the sub-events’ guards the

direction of the media channel is distinguished. As instance, the Event-B model of part

(a) is presented in Figure 7.25.

closeRequest (ch)

closeRequestItoA (ch)closeRequestAtoI (ch)

xor

(a)

closeAck (ch)

closeAckItoA (ch)closeAckAtoI (ch)

xor

(b)

Figure 7.24: Further Breaking the Atomicity of Close a Media Channel, M5
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closeRequest (ch)

event closeRequestItoA refines closeRequest
any ch
where
@grd_closeRequestItoA_sequencing

ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

@grd_closeRequestItoA ch ∉ closeRequestItoA
@grd_closeRequestItoA_xor ch ∉ closeRequestAtoI
@grd1 direction(ch) = ItoA //manually

then
@act_closeRequestItoA

closeRequestItoA ≔ closeRequestItoA ∪ { ch }
end

event closeRequestAtoI refines closeRequest
any ch
where
@grd_closeRequestAtoI_sequencing

ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

@grd_closeRequestAtoI ch ∉ closeRequestAtoI
@grd_closeRequestAtoI_xor ch ∉ closeRequestItoA
@grd1 direction(ch) = AtoI //manually

then
@act_closeRequestAtoI

closeRequestAtoI ≔ closeRequestAtoI ∪ { ch }
end

xor

Figure 7.25: Event-B Model, M5, Media Channel System

7.2.8 Evaluation of Manual Event-B Model and Automatic Event-B

Model

Use of the atomicity decomposition plug-in in creating the Event-B model of a system,

ensures a consistent encoding of the atomicity decomposition diagrams in a systematic

way. The manual version is less systematic and less consistent. Although the manual

model and the automatic model, which is created with the plug-in, capture the same

behaviours, there are some differences. Some of the differences of the automatic Event-B

model, and the manual one in developing the media channel system, are described here.

These differences can justify the higher level consistency of the Event-B model which is

created with the plug-in.

7.2.8.1 Variable Naming Protocol

In the automatic Event-B model, following the patterns in Section 4.2 and translation

rules in Section 5.4, each control variable has same name as the events’ name. Whereas

in the manual Event-B model, there is no specific naming protocol for variables’ name.

Providing a unique naming protocol helps to understand the model easier, and can help

to track the ordering between events.

7.2.8.2 Different Approaches to Model Ordering In Event-B Model

As described in Section 4.4, there are different approaches to modelling ordering in

Event-B. As justified in Section 4.4, we adopted the subset sets to model ordering.

Therefore the automatic Event-B model of the media channel system, uses the subset

sets. Whereas the manual Event-B model is a combination of subset sets and disjoint
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sets. In the manual Event-B model, in close event, the parameter ch is removed from

set of established media channels. The Event-B model of establishMediaChannel event

and close event in the abstract level of manual model are presented in Figure 7.26,

which can be compared with the automatic Event-B model in Figure 7.6. The figure

shows that the control variable name, aMediaChannel, is not same as the event name,

establishMediaChannel, as explained in Section 7.2.8.1.

event establishMediaChannel
any ch c
where

@grd1 ch ∉ aMediaChannel
@grd2 c ∈ CODEC

then
@act1 aMediaChannel ≔ aMediaChannel ∪ { ch }
@act2 codec(ch) ≔ c

end

event close
any ch
where

@grd1 ch ∈ aMediaChannel
then

@act1 aMediaChannel ≔ aMediaChannel ∖ {ch}
@act2 codec ≔ {ch} ⩤ codec

end

Figure 7.26: Manual Event-B Model, M0, Media Channel System

As a result, in the manual Event-B model, the relation between different states of a

media channel, establishMediaChannel state and close state, can not be specified in the

invariant. Whereas in the automatic Event-B model, invariant inv close seq presented

in Figure 7.5, specifies the ordering between the establishMediaChannel event and the

close event. This ensures that the abstract orderings are upheld in the refinement of the

Event-B models more strongly than if specified only in the close event guard.

Having one more invariant in the automatic Event-B model, invariant inv close seq pre-

sented in Figure 7.5, slightly increases the number of proof obligations in the automatic

Event-B model. The summary of proof obligations is reviewed in Section 7.2.9.

7.2.8.3 One More Refinement Level in the Manual Model

In the manual Event-B model, there was not a one-to-one relation between control vari-

ables and the events. For example considering the manual events in the first refinement

level, presented in Figure 7.27, both openWithRealCodecs event and openWithoutCodecs

event change the state of a channel, ch, to open. And both openAckWithoutCodecs event

and openAckWithrealCodecs event change the state of a channel, ch, to openAck. And

both selectAndEstablishbyAcceptor event and selectAndEstablishbyInitiator event change

the state of a channel, ch, to establishMediaChannel.
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event openWithRealCodes
any ch …
where

@grd1 ch ∉ open
…

then
@act1 open ≔ open ∪ { ch }
…

end

event openWithoutCodes
any ch …
where

@grd1 ch ∉ open
…

then
@act1 open ≔ open ∪ { ch }
…

end

event openAckWithoutCodecs
any ch …
where

@grd1 ch ∈ open
@grd2 ch ∉ openAck
...

then
@act1 openAck ≔ openAck ∪ {ch}
…

end

event openAckWithRealCodecs
any ch …
where

@grd1 ch ∈ open
@grd2 ch ∉ openAck
...

then
@act1 openAck ≔ openAck ∪ {ch}
…

end

event selectAndEstablishbyAcceptor
refines establishMediaChannel

any ch …
where

@grd1 ch ∈ openAck
@grd2 ch ∉ establishMediaChannel
…

then
@act1 establishMediaChannel ≔

establishMediaChannel ∪ {ch}
…

end

event selectAndEstablishbyInitiator
refines establishMediaChannel

any ch …
where

@grd1 ch ∈ openAck
@grd2 ch ∉ establishMediaChannel
…

then
@act1 establishMediaChannel ≔

establishMediaChannel ∪ {ch}
…

end

establishMediaChannel (ch)

establishMediaChannel (ch)

Figure 7.27: Manual Event-B Model, M1, Media Channel System

Whereas in the automatic Event-B model, as presented in Figure 7.28, there is a one-to-

one relation between control variables and the events, and each event change the state

of a media channel to a unique state with same name as the event.

In the manual model there is a further refinement level in order to introduced an unique

state for each event, for instance, concrete variables: openAckWithoutCodecs and ope-

nAckWithrealCodecs which replace the single abstract variable open. The further re-

finement level makes the manual model larger and more complex, comparing to the

automatic model. Also more effort is need to define the gluing invariants between ab-

stract variables and concrete variables. The gluing invariants makes the proving more

complex, it will explained later in Section 7.2.9.

7.2.8.4 Weak Guard versus Strong Guard

The combined atomicity decomposition of the modify event, including machine M2 and

machine M4 refinements, is presented in Figure 7.29. In the automatic Event-B model,

as the result of the xor-constructor, event respondBySelectorToInitiatorCodec is guarded

with modifyCodecListByDescriptor withInitiator variable and

modifyCodecListByDescriptor withAcceptor variable. The sequencing guard in respond-

BySelectorToInitiatorCodec event is as follows:
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event openWithRealCodes
any ch …
where
@grd1 ch ∉ openWithRealCodes
…

then
@act1
openWithRealCodes ≔
openWithRealCodes ∪ { ch }
…

end

event openWithoutCodes
any ch …
where
@grd1 ch ∉ openWithoutCodes
…

then
@act1
openWithoutCodes ≔
openWithoutCodes ∪ { ch }
…

end

event openAckWithoutCodecs
any ch …
where
@grd1 ch ∈ openWithRealCodes
@grd2 ch ∉ openAckWithoutCodecs
...

then
@act1
openAckWithoutCodecs ≔
openAckWithoutCodecs∪ {ch}
…

end

event openAckWithRealCodecs
any ch …
where
@grd1 ch ∈ openWithoutCodes
@grd2 ch ∉ openAckWithRealCodecs
...

then
@act1
openAckWithRealCodecs≔
openAckWithRealCodecs∪ {ch}
…

end

event selectAndEstablishbyAcceptor
refines establishMediaChannel

any ch …
where
@grd1 ch ∈ openAckWithoutCodecs
@grd2 ch ∉ selectAndEstablishbyAcceptor
…

then
@act1 selectAndEstablishbyAcceptor ≔

selectAndEstablishbyAcceptor ∪ {ch}
…

end

event selectAndEstablishbyInitiator
refines establishMediaChannel

any ch …
where
@grd1 ch ∈ openAckWithRealCodecs
@grd2 ch ∉ selectAndEstablishbyInitiator
…

then
@act1 selectAndEstablishbyInitiator ≔

selectAndEstablishbyInitiator ∪ {ch}
…

end

establishMediaChannel (ch)

establishMediaChannel (ch)

Figure 7.28: Automatic Event-B Model, M1, Media Channel System

@grd respondBySelectorToInitiatorCodec seq

ch ∈ modifyCodecListByDescriptor withInitiator ∪
modifyCodecListByDescriptor withAcceptor

However based on the requirements, the respondBySelectorToInitiatorCodec event exe-

cutes to respond only to modifyCodecListByDescriptor withInitiator event. So the stated

guard is too weak to model the requirement. The requirement is satisfied with another

guard in both modifyCodecListByDescriptor withInitiator event and respondBySelector-

ToInitiatorCodec event:

@grd2 direction(ch) = AtoI

Therefore if direction(ch) = ItoA, then the guards of respondBySelectorToInitiator-

Codec event does not hold and the event can not execute.

In the manual Event-B model, the sequencing guard in respondBySelectorToInitiator-

Codec event is enough strong to satisfy the requirement:

@grd1 ch ∈ modifyCodecListByDescriptor withInitiator

Although respondBySelectorToInitiatorCodec event in the manual model is still guarded

with the direction guard:

@grd2 direction(ch) = AtoI
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modify (ch)

respondBySelectorToCodec (ch)modifyCodecListByDescriptor (ch)

modifyCodecListByDescriptor_withAcceptor (ch)modifyCodecListByDescriptor_withInitiator (ch)

xor

respondBySelectorToAcceptorCodec (ch)respondBySelectorToInitiatorCodec (ch)

xor

Figure 7.29: Combined Atomicity Decomposition Diagram of modify Event,
Media Channel System

7.2.8.5 Tool Application: Atomicity Decomposition Model of the Media

Channel System

The atomicity Decomposition model of the final refinement of the media channel system,

generated with the atomicity decomposition plug-in is presented in Figure 7.30.

7.2.9 Overview of Proof Obligations

The result of the proof effort in the Rodin for the automatic Event-B model, is outlined

in Figure 7.31. The Total column shows the total number of proof obligations gener-

ated for each level. The Auto column represents the number of those proof obligations

that proved automatically by the prover and the Manual column shows the number of

proof obligations which proved interactively. In the automatic model, almost all proof

obligations are proved automatically.

Figure 7.32 presents the proof effort for the manual Event-B model. The total number

of proofs are predominantly more then the total number of proofs in the automatic

model, since the extra refinement level in the manual model, Machine6, as explained in

Section 7.2.8.3, significantly increase the number of proof obligations. A large number of

proof obligations are caused because of gluing invariants, that are needed to define the

relations between the abstract non-unique states and concrete unique states. Also there

are six proof obligations in Machine6 which proved interactively. The interactive proofs

are the gluing invariant preservation proofs. Therefore, as explained in Section 7.2.8.3,

introducing the unique states in an extra refinement level, not only makes the model

large and complex, but also it makes the proof more complex.
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Figure 7.30: Atomicity Decomposition Model of the Media Channel System

Figure 7.31: Proof Obligation Statistics for the Automatic Media Channel
Event-B Model
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Figure 7.32: Proof Obligation Statistics for the Manual Media Channel Event-B
Model

7.3 BepiColombo Space Craft System (Published in NFM

2011 Symposium)

7.3.1 Overview of the BepiColombo System

BepiColombo mission [77] is one of the case studies of the DEPLOY project [78]. The

overview of the BepiColombo space craft system in this section is based on the informa-

tion of the Space System Finland Ltd [79, 80].

Exploration of the planet Mercury is the main goal of the BepiColombo mission. Two or-

biters are sent by BepiColombo. One of these is the Mercury Planetry Orbiters (MPO).

It carries remote sensing and radioscience instrumenation. The MIXS/SIXS data Pro-

cessing Unit (DPU) is the important part of this orbiter. One of the responsibilities of

MIXS/SIXS DPU is handling Telecommand (TC) and Telemetry (TM) communication.

There are two instruments which are controlled by MIXS/SIXS DPU: Solar Intensity

X-ray and Spectrometer (SIXS) and Mercury Imaging X-ray Spectrometer (MIXS).

Each instrument contains two sensors: SIXS-X (X-ray spectrometer), SIXS-P (Particle

spectrometer), and MIXS-T (Telescope), MIXS-C (Collimator).

The MIXS/SIXS On-Board Software (OBSW) running on the DPUs’ CPU consists

of five different software components: the Core Software (CSW), SIXS-P ASW (Ap-

plication Software), SIXS-X ASW, MIXS-T ASW and MIXS-C ASW. The high-level

architecture of BepiColombo SIXS/MIXS OBSW is presented in Figure 7.33.

In our development as an abstract view all application softwares are seen as a single

component called devices, presented in a single box in Figure 7.33. Developing the

mode management particulary for each application software is a subject that requires

further work.
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CSW
TC/TMManagementTC/TM Management

Devices

MIXS‐C MIXS‐T SIXS‐X SIXS‐P

Figure 7.33: High-level Architecture of BepiColombo SIXS/MIXS OBSW

Here is the summary of the system requirements in a simple scenario:

• A TC (Telecommand) is received in the core from the earth.

• The Core Software (CSW) checks the syntax of the received TC.

• Further semantics checking have to be done for the validated TC. If the TC contains

a message for one of the devices, it will send it to the device for semantics checking,

otherwise the semantics checking in done in the core.

• For each valid TC, a control TM (Telemetry) is generated and sent to the earth.

• For some particular types of TC, some data TMs are generated and sent back to

the earth.

As illustrated in Figure 7.33, the Core Software (CSW) plays a management role over

the devices. CSW is responsible for communication with the earth on one hand and

with the devices on the other hand. It plays a role of an interface between the earth and

the devices.

7.3.2 Modelling Architecture

Figure 7.34 presents the development architecture of Event-B model of the BepiColombo

system. M0 is the abstract model of the system. After the abstraction there are three

levels of refinement. In these models, M1, M2 and M3, those events are refined which are

not purely allocated to core side or device side of the system. In other words, in these

models, refining an event results in a collection of sub-events which are a combination of

core actions, device actions and shared actions between core and device. This concept

will be more explained in Section 7.3.7. After three levels of refinement the model is

decomposed to two sub-models, called core sub-model and device sub-model. Finally, the

core sub-model is refined in two more refinement levels, called M4, M5. The atomicity

decomposition approach is applied to the refinement levels both before and after model

decomposition.
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Refinement
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Figure 7.34: Development Architecture of the BepiColombo Event-B Model

In the abstraction the main goals of the system are modelled and the details of the

protocol are added through refinement levels. The atomicity decomposition diagrams

present explicit relationships between events of refinement levels. Table 7.1 summarizes

new details which are added to each level of refinement.

• Machine M0 models goals of the BepiColombo system. Three main phases are

modelled. Receiving a TC, Validating the received TC, and if it is needed gener-

ating one or more TM(s).

• In machine M1 the validation phase is refined and further details of the validation

protocol are added.

• Machine M2 distinguishes between validation of core TCs and device TCs.

• In machine M3 the protocol of sending a device TC to the device for validation

and sending back the validation result is modelled.

• Machine M4 models processing TMs in the core.

• Machine M5 models producing and sending TMs in the core.

7.3.3 Abstract Specification

7.3.3.1 Static Part of the Specification

The abstract context, C0, which models the static part of the abstract model contains

two sets. TC is the set of existing telecommands which would be received in the core,

and TC Types Set shows types of a TC. There are four TC’s types :
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Machine Summary of the Model

M0 Receiving, validating a TC and generating TMs.

M1 Refining validation phase.

M2 Distinguishing difference between validating core TCs and device
TCs.

M3 Refining validation phase of a device TC.

M4 Refining processing TMs in the core.

M5 Producing and sending TMs in the core.

Table 7.1: Summary of Event-B Refinements, BepiColombo System

• HK on TC (Housekeeping On TC)

• HK off TC (Housekeeping Off TC)

• SCI on TC (Science On TC)

• SCI off TC (Science Off TC)

A part of the abstract context, C0, is displayed in Figure 7.35. TC Type is a total

function from TC set to TC Types Set set. A total function guarantees that each TC

has exactly one type.

axioms
@axm1 partition( TC_Types_Set, 

{HK_on_TC}, {HK_off_TC}, {SCI_on_TC}, {SCI_off_TC} )
@axm2 TC_Type ∈∈∈∈ TC → TC_Types_Set

Figure 7.35: Context C0, BepiColombo System

For an off TC (SCI off TC, HK off TC), only a control Telemetry (TM) is produced,

whereas for an on TC (SCI on TC, HK on TC) one or more data TMs are produced

as well. This requirement is specified by a guard in the event of generating data TMs.

It is shown later.

7.3.3.2 Events and Dynamic Part of the Specification

In the abstract model, the main goals of the system are modelled. The most abstract

events are illustrated in Figure 7.36, using the diagram explained in Section 4.3.1. Three

different scenarios are possible:

• (a) As it is presented in part (a) of Figure 7.36, first a TC is received by execution

of ReceiveTC event, then it is validated by execution of TC Validation Ok event.

In this case the TC’s type is HK off TC or Sci off TC, so there is no need to

generate data TMs in response. Producing a control TM is later done by refining

the TC Validation Ok event.
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ReceiveTC (tc) TC_Validation_Ok (tc)

ReceiveTC (tc) TCValid_ReplyDataTM (tc)TC_Validation_Ok (tc) TCValid_GenerateData (tc)

ReceiveTC (tc) TC_Validation_Fail (tc) 

(a)

(b)

(c)

BepiColombo (tc)

BepiColombo (tc)

BepiColombo (tc)

Figure 7.36: The Atomicity Decomposition Diagrams, M0, BepiColombo Sys-
tem

• (b) Another case is illustrated in part (b) of Figure 7.36. After receiving and

validating a TC with type HK on TC or Sci on TC, some bunches of data are

generated by execution of TC GenerateData event in one of the devices, and finally

by execution of TCValid ReplyDataTM event in the core, one or more data TM(s)

are produced and sent back to the earth.

• (c) Part (c) of Figure 7.36 shows the case when the received TC’s validation is

failed. This is modelled by the TC Validation Fail event.

As explained in Section 4.2, the ordering between events is modelled using some control

variables, invariants and guards. In machine M0 there are five control variables. Fig-

ure 7.37 presents the control variables and invariants of M0. For each event there is a

variable with the same name as the event, and if one event is executed after another

one, the later variable is a subset of the former one. For example, TC Validation Ok

event can be executed only after execution of the ReceiveTC event, so invariant

inv TC Validation Ok seq describes TC Validation Ok variable as a subset of the Re-

ceiveTC variable. Only invariant inv1 is modelled manually. The other invariants and

variables are generated by the tool. Invariant inv1 describes that TC Validation Ok

and TC Validation Fail are disjoint.

There are some guards for controlling the sequencing of events. As you can see in

Figure 7.38 in the first event, ReceiveTC, one TC is added to the ReceiveTC set vari-

able, and then TC Validation Ok event can executed only for a TC which belongs to
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variables ReceiveTC
TC_Validation_Ok
TCValid_GenerateData
TCValid_ReplyDataTM
TC_Validation_Fail

invariants
@inv_ReceiveTC ReceiveTC ⊆ TC
@inv_TC_Validation_Ok_seq TC_Validation_Ok ⊆ ReceiveTC
@inv_TCValid_GenerateData_seq TCValid_GenerateData ⊆ TC_Validation_Ok
@inv_TCValid_ReplyDataTM_seq TCValid_ReplyDataTM ⊆ TCValid_GenerateData
@inv_TC_Validation_Fail_seq TC_Validation_Fail ⊆ ReceiveTC
@inv1 TC_Validation_Ok ∩ TC_Validation_Fail = ∅ // manually

Figure 7.37: Variables and Invariants, M0, BepiColombo System

the ReceiveTC variable, which is checked in grd TC Validation Ok seq guard in the

TC Validation Ok event. Figure 7.38 is the Event-B model of the part (a) in Fig-

ure 7.36.

event ReceiveTC
any tc
where

@grd_ReceiveTC tc ∉ ReceiveTC
then

@act_ReceiveTC
ReceiveTC ≔ ReceiveTC ∪ {tc}

end

event TC_Validation_Ok
any tc
where

@grd_TC_Validation_Ok_seq tc ∈ ReceiveTC
@grd_TC_Validation_Ok tc ∉ TC_Validation_Ok
@grd1 tc ∉ TC_Validation_Fail // manually

then
@act_TC_Validation_Ok

TC_Validation_Ok ≔ TC_Validation_Ok ∪ {tc}
end

BepiColombo (tc)

Figure 7.38: Event-B Model, M0, BepiColombo System

This sequence is repeated in Figure 7.39 for the TC Validation Fail event. It is the

Event-B model of part (c) in Figure 7.36. The difference between the TC Validation Ok

event and the TC Validation Fail event is that the TC is added to different variables in

each event. In each of the TC Validation Ok event and the TC Validation Fail event,

there is one guard, grd1, added manually. These guards ensure the invariant inv1.

If a received TC is added to the TC Validation Ok variable and it’s an on TC, the

sequence can continue by execution of the TCValid GenerateData event and then the

TCValid ReplyDataTM event. The Event-B model is illustrated in Figure 7.40. Guard

grd1 of the TCValid GenerateData event checks the type of TC. If its type is either

SCI on TC or HK on TC then the event can be executed.
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event TC_Validation_Fail
any tc
where

@grd_TC_Validation_Fail_seq tc ∈ ReceiveTC
@grd_TC_Validation_Fail tc ∉ TC_Validation_Fail
@grd1 tc ∉ TC_Validation_Ok // manually

then
@act_TC_Validation_Fail

TC_Validation_Fail ≔ TC_Validation_Fail ∪ {tc}
end

event ReceiveTC
any tc
where

@grd_ReceiveTC tc ∉ ReceiveTC
then

@act_ReceiveTC
ReceiveTC ≔ ReceiveTC ∪ {tc}

end

BepiColombo (tc)

Figure 7.39: Event-B Model, M0, BepiColombo System

event TCValid_GenerateData
any tc
where

@grd_TCValid_GenerateData_seq tc ∈ TC_Validation_Ok
@grd_TCValid_GenerateData tc ∉ TCValid_GenerateData
@grd1 TC_Type(tc) ∈∈∈∈ {HK_on_TC, SCI_on_TC} // manually

then
@act_TCValid_GenerateData

TCValid_GenerateData ≔ TCValid_GenerateData ∪ {tc}
end

event TCValid_ReplyDataTM
any tc
where

@grd_TCValid_ReplyDataTM_seq tc ∈ TCValid_GenerateData
@grd_TCValid_ReplyDataTM tc ∉ TCValid_ReplyDataTM

then
@act_TCValid_ReplyDataTM

TCValid_ReplyDataTM ≔ TCValid_ReplyDataTM ∪ {tc}
end

Figure 7.40: Event-B Model, M0, BepiColombo System

7.3.4 1st Refinement: Refining the Validation Phase

In the abstract model, the validation phase is done by execution of one of two single

atomic events, TC Validation Ok and TC Validation Fail. However validating a re-

ceived TC is not atomic. It is done in two steps, checking the syntax and the semantics

of a received TC. After syntax and semantics checks, in the third step a control TM is

produced and sent back to the earth.

These details are modelled in the first refinement level, machine M1. TC Validation Ok

and TC Validation Fail are decomposed to some sub-events which show further de-

tails of the validation phase. The atomicity decomposition diagrams are shown in Fig-

ure 7.41. Checking the syntax of a received TC is done by execution of TCCheck Ok

and TCCheck Fail events and semantics checking is done by TCExecute Ok and

TCExecute Fail events. TCExecOk ReplyCtrlTM, TCExecFail ReplyCtrlTM and
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TCCheckFail ReplyCtrlTM are events for generating control TMs. Considering Fig-

ure 7.41, part(a) illustrates the case when both syntax and semantic checks are ok;

part(b) presented the case when syntax check is ok but semantic check is failed, and

part(c) shows the case when syntax is failed.

As explained in Section 4.2.2, the refining event is the event which simulates the main

behaviour of the abstract event. The behaviour of TC Validation Ok event is exhibited

in the refinement level by a valid syntax check followed by a valid semantics check,

therefore TCExecute Ok event is the refining event in part(a). And The behaviour of

TC Validation Fail event is exhibited in the refinement level either when syntax check

is valid and semantics check is failed, part(b), or syntax check is failed, part(c), therefore

TCExecute Fail event and TCCheck Fail are the refining events.

TC_Validation_Ok (tc)

TCCheck_Ok (tc) TCExecute_Ok (tc) TCExecOk_ReplyCtrlTM (tc)

TC V lid ti F il (t )

(a)

TC_Validation_Fail (tc)

TCCheck_Ok (tc) TCExecute_Fail (tc) TCExecFail_ReplyCtrlTM (tc)

(b)

TC_Validation_Fail (tc)

(b)

TCCheck_Fail (tc) TCCheckFail_ReplyCtrlTM (tc)

(c)

Figure 7.41: The Atomicity Decomposition Diagrams, M1, BepiColombo Sys-
tem

Considering a successful validation, the Event-B model is presented in Figure 7.42.

TCCheck OK, TCExecute Ok and TCExecOk ReplyCtrlTM are control variables. Clearly

the sub-events with dashed lines, TCCheck Ok and TCExecOk ReplyCtrlTM, are new

events which refine skip and the event with solid line, TCExecute Ok, refines the abstract

event, TC Validation Ok.

There are two gluing invariants in machine M1 which define the relations between ab-

stract variables and concrete variables. These invariants are shown in Figure 7.43.

inv TCExecute Ok gluing shows that concrete variable of TCExecute Ok is equal to

the abstract variable TC Validation Ok, since the TCExecute Ok event refines

TC Validation Ok event. Since two events refine the abstract event TC Validation Fail,
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TC_Validation_Ok (tc)

event TCCheck_Ok
any tc
where
@grd_TCCheck_Ok_seq tc ∈ ReceiveTC
@grd_TCCheck_Ok tc ∉ TCCheck_Ok
@grd1 tc ∉ TCCheck_Fail // manually

then
@act_TCCheck_Ok

TCCheck_Ok ≔ TCCheck_Ok ∪ {tc}
end

event TCExecOk_ReplyCtrlTM
any tc
where
@grd_TCExecOk_ReplyCtrlTM_seq tc ∈ TCExecute_Ok
@grd_TCExecOk_ReplyCtrlTM tc ∉ TCExecOk_ReplyCtrlTM

then
@act_TCExecOk_ReplyCtrlTM

TCExecOk_ReplyCtrlTM ≔ TCExecOk_ReplyCtrlTM ∪ {tc}
end

event TCExecute_Ok refines TC_Validation_Ok
any tc
where
@grd_TCExecute_Ok_seq tc ∈ TCCheck_Ok
@grd_TCExecute_Ok tc ∉ TCExecute_Ok
@grd1 tc ∉ TCExecute_Fail // manually

then
@act_TCExecute_Ok

TCExecute_Ok ≔ TCExecute_Ok ∪ {tc}
end

Figure 7.42: Event-B Model, M1, BepiColombo System

the union of the corresponding variables is equal to the abstract variable, shown in

inv gluing invariant.

@inv_TCExecute_Ok_gluing TCExecute_Ok = TC_Validation_Ok
@inv_gluing TCExecute_Fail ∪ TCCheck_Fail = TC_Validation_Fail

Figure 7.43: Gluing Invariants, M1, BepiColombo System

7.3.5 2nd Refinement: Refining the Semantic Check

As it is presented in Figure 7.34, the next level of refinement, machine M2, sees context

C1. There is a new field defined for TC called PID and it is a total function which shows

the type of TC. A TC belongs to the core (csw) , or one of four devices, (mixsc, mixst,

sixsp, sixsx). The properties are presented in Figure 7.44.

axioms
@axm1 partition( PIDS, {csw}, {mixsc}, {mixst}, {sixsp}, {sixsx} )
@axm2 PID ∈∈∈∈ TC → PIDS

Figure 7.44: Context C1, BepiColombo System

Up to this level of modelling, semantics checking of a received TC is done regardless of

considering the type of TC. If a received TC belongs to the core, its semantics should

be checked in the core. Otherwise it should be sent to a proper device and validating

its semantics is done in the device. These details of the semantics checking are applied

in the second refinement level, machine M2. The atomicity decomposition diagrams are
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illustrated in Figure 7.45. TCExecute Ok event and TCExecute Fail event are split into

two sub-events identifying the type of a received TC. It’s helpful to recall that syntax

checking is always done in the core before semantics checking, and a received TC needs

to be semantics checked only when its syntax check is ok.

TCExecute_Ok (tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

TCExecute_Fail (tc)

xor

TCDevice_Execute_Fail (tc)TCCore_Execute_Fail (tc)

(a)

(b)

Figure 7.45: The Atomicity Decomposition Diagram, M2, BepiColombo System

TCExecute_Ok (tc)

xor

event TCCore_Execute_Ok refines TCExecute_Ok
any tc
where

@grd_TCCore_Execute_Ok_seq tc ∈ TCCheck_Ok
@grd_TCCore_Execute_Ok tc ∉ TCCore_Execute_Ok
@grd_TCCore_Execute_Ok_xor tc ∉ TCDevice_Execute_Ok
@grd1 tc ∉ TCCore_Execute_Fail // manually
@grd2 tc ∉ TCDevice_Execute_Fail // manually
@grd3 PID(tc) = csw // manually

then
@act_TCCore_Execute_Ok

TCCore_Execute_Ok ≔ TCCore_Execute_Ok ∪ {tc}
end

event TCDevice_Execute_Ok refines TCExecute_Ok
any tc
where

@grd_TCDevice_Execute_Ok_seq tc ∈ TCCheck_Ok
@grd_TCDevice_Execute_Ok tc ∉ TCDevice_Execute_Ok
@grd_TCDevice_Execute_Ok_xor tc ∉ TCCore_Execute_Ok
@grd1 tc ∉ TCDevice_Execute_Fail // manually
@grd2 tc ∉ TCCore_Execute_Fail // manually
@grd3 PID(tc) ∈∈∈∈ {mixsc, mixst, sixsp, sixsx} // manually

then
@act_TCDevice_Execute_Ok

TCDevice_Execute_Ok ≔ TCDevice_Execute_Ok ∪ {tc}
end

Figure 7.46: Event-B Model, M2, BepiColombo System

In the Event-B model, as shown in Figure 7.46, both sub-events refine the abstract event

the only difference is the guard, grd3, which checks the type of TC.

7.3.6 3rd Level of Refinement

In the third refinement level, machine M3, the atomicity of three events are decom-

posed, see Figure 7.47. For checking the semantics of a received TC which belongs
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TC_GenerateData_in_Device(tc, d) TC_TransferData_Device_to_Core(tc)

TCValid_GenerateData(tc) 

(a)

(b)

(c)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) 

TCDevice_Execute_Ok (tc) 

SendOkTC_Device_to_Core (tc)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Fail (tc)

TCDevice_Execute_Fail (tc) 

SendFailTC_Device_to_Core (tc)

some(d)

Figure 7.47: The Atomicity Decomposition Diagrams, M3, BepiColombo Sys-
tem

to one of the devices, the TC is sent to the proper device, SendTC Core to Device

event, the device checks the semantics of the TC , CheckTC in Device Ok event and

CheckTC in Device Fail event, and finally the device sends back the result of semantics

checking to the core, SendOkTC Device to Core event and SendFailTC Device to Core

event. Part (a) shows a successful semantics checking, and part (b) shows when the TC

is failed in semantics checking.

The TCValid GenerateData event is decomposed to two sub-events, part (c) of Fig-

ure 7.47. As described before for an on TC, some data TMs are generated. Up to

this level the generation is done in one atomic event. In machine M3 the abstract

event is broken to two sub-events. The data is generated in the device by execution of

TC GenerateData in Device event and then it is transferred to the core by execution

of TC TransferData Device to Core event. Later details of producing data TMs from

the transferred data in the core are added to the model, in the M4 and M5 machines.

The control stream and gluing invariants in Event-B model are same as the ones in the

Event-B models described before. As described in Section 4.2.2, the refining event is

the event which simulates the main behaviour of the abstract event. Considering part

(a) and (b) of Figure 7.47, CheckTC in Device Ok event and CheckTC in Device Fail

event exhibit the behaviours of TCDevice Execute Ok abstract event and

TCDevice Execute Fail abstract event respectively, and the other sub-events model the

data transformation from core to device or device to core. Considering part (c), as
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explained in Section 4.2.8, some-replicator has to be only with a dashed line. Therefore

in part (c) the refining event (event with a solid line) is the other event.

7.3.7 Decomposing BepiColombo Model to Core and Device Sub-models

7.3.7.1 Combining Atomicity Decomposition and Model Decomposition in

Event-B

So far we have decomposed the atomicity of those events which are not purely belonging

to the core or the device part of the system. Refining purely core events, such as

events which are related to generating data TMs and control TMs, are postponed after

model decomposition for simplicity, since after decomposition of the model to some sub-

models, the sub-models are smaller than the main model. Refinement has continued

until reaching the state that all events are purely core events or device events or shared

events between core and device. For instance, in the first refinement level, M1, the

TC Validation Ok event has been decomposed to some sub-events, because validating

a TC is an action which is composed of checking syntax of a received TC which should

be done in core, checking the semantics of that TC which is a device action if the TC

belongs to device. After three levels of refinement in the BepiColombo development

process, all events can be allocated to core or device.

In this level the model is decomposed to two separate sub-models (Core and Device), as

shown in Figure 7.34.

7.3.7.2 Shared Event Model Decomposition

We use the shared-event style decomposition, as described in Section 2.5.2.2, for decom-

posing the system to the core and device sub-models. The variables of M3 are partitioned

among the core and device sub-models, see Figure 7.48. Events using variables allocated

to one sub-models are allocated to that sub-model. There are seven events using some

variables allocated to the core and some variables allocated to the devices. These events,

called shared events, are split.

Figure 7.49 shows shared events. Each of the shared events uses some core variables,

which is at left hand side of Figure 7.49 and one device variables, at right of the figure.

For simplicity just one of the core variables is shown in the figure. For instance, as

shown in Figure 7.50, the SendTC Core to Device event uses some core variables, i.e.,

TCCheck Ok, TCCore Execute Ok and TCCore Execute Fail, and a device variable

SendTC Core to Device.

Thus far the model contains sixteen events and sixteen variables. After decomposition

the events and variables are divided to sub-models, so each sub-model becomes simpler
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M3

Core
Core Events, Shared Events Core Variables

ReceiveTC ReceiveTC

TCCheck_Ok
ReceiveTC, TCCheck_Ok, 

TCCheck_Fail

TCCheck_Fail
ReceiveTC, TCCheck_Ok, 

TCCheck_Fail

TCCheckFail_ReplyCtrlTM
TCCheck_Fail, 

TCCheckFail_ReplyCtrlTM

TCExecOk_ReplyCtrlTM

TCCore_Execute_Ok, 

SendOkTC_Device_to_Core, 

TCExecOk_ReplyCtrlTM

TCExecFail_ReplyCtrlTM

TCCore_Execute_Fail, 

SendFailTC_Device_to_Core, 

TCExecFail_ReplyCtrlTM

TCValid_ReplyDataTM
TC_TransferData_Device_to_Core, 

TCValid_ReplyDataTM

SendTC_Core_to_Device
TCCheck_Ok, TCCore_Execute_Ok,

TCCore_Execute_Fail

SendOkTC_Device_to_Core SendOkTC_Device_to_Core

SendFailTC_Device_to_Core SendFailTC_Device_to_Core

TC_TransferData_Device_to_Core TC_TransferData_Device_to_Core

TCCore_Execute_Ok
TCCheck_Ok, TCCore_Execute_Ok, 

TCCore_Execute_Fail

TCCore_Execute_Fail
TCCheck_Ok, TCCore_Execute_Ok, 

TCCore_Execute_Fail

TC_GenerateData_in_Device
TCCore_Execute_Ok, 

SendOkTC_Device_to_Core, 

Device
Device Events, Shared Events Device Variables

CheckTC_in_Device_Ok

SendTC_Core_to_Device, 

CheckTC_in_Device_Ok, 

CheckTC_in_Device_Fail

CheckTC_in_Device_Fail

SendTC_Core_to_Device, 

CheckTC_in_Device_Ok, 

CheckTC_in_Device_Fail

SendTC_Core_to_Device SendTC_Core_to_Device

SendOkTC_Device_to_Core CheckTC_in_Device_Ok

SendFailTC_Device_to_Core CheckTC_in_Device_Fail

TC_TransferData_Device_to_Core TC_GenerateData_in_Device

TCCore_Execute_Ok SendTC_Core_to_Device

TCCore_Execute_Fail SendTC_Core_to_Device

TC_GenerateData_in_Device TC_GenerateData_in_Device

Figure 7.48: Model Decomposition, Shared Events Style, BepiColombo System

TCCheck_Ok

SendFailTC_Device_to_Core

SendOkTC_Device_to_Core

SendTC_Core_to_Device (tc)SendTC_Core_to_Device (tc)

SendFailTC_Device_to_Core (tc)SendFailTC_Device_to_Core (tc)

SendOkTC_Device_to_Core (tc)SendOkTC_Device_to_Core (tc)

SendTC_Core_to_Device

CheckTC_in_Device_Ok

CheckTC_in_Device_Fail

TC_TransferData_Device_to_Core (tc)TC_TransferData_Device_to_Core (tc)

TC_TransferData_Device_to_Core TC_GenerateData_in_Device

TCCore_Execute_Ok (tc)TCCore_Execute_Ok (tc)

TCCheck_Ok SendTC_Core_to_Device

TCCore_Execute_Fail (tc)TCCore_Execute_Fail (tc)

TCCheck_Ok SendTC_Core_to_Device

TC_GenerateData_in_Device (tc)TC_GenerateData_in_Device (tc)

TCCore_Execute_Ok TC_GenerateData_in_Device

Figure 7.49: Shared Events, BepiColombo System
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event SendTC_Core_to_Device
any tc
where

@grd_SendTC_Core_to_Device_seq tc ∈ TCCheck_Ok
@grd_SendTC_Core_to_Device tc ∉ SendTC_Core_to_Device
@grd_SendTC_Core_to_Device_xor1 tc ∉ TCCore_Execute_Ok
@grd_SendTC_Core_to_Device_xor2 tc ∉ TCCore_Execute_Fail
@grd1 PID(tc) ∈∈∈∈ {mixsc, mixst, sixsp, sixsx}

then
@act_SendTC_Core_to_Device

SendTC_Core_to_Device ≔ SendTC_Core_to_Device ∪ {tc}
end

Figure 7.50: An Instance of a Shared Event Before Model Decomposition, Bepi-
Colombo System

and easier to manage. The division is illustrated in Figure 7.48. Shared events appear

in both sub-models. The last six events in each sub-model are shared events.

The shared event’s guards and actions are divided to two separate events, each in dif-

ferent sub-models. The division is done based on using sub-models variables. Each

shared event in each sub-model only contains the guards and actions which use its own

sub-model variables.

For example Figure 7.51 presents the SendTC Core to Device shared events after model

decomposition. Considering Figure 7.51 comparing to Figure 7.50,

SendTC Core to Device event in the core sub-model contains

grd SendTC Core to Device seq, grd SendTC Core to Device xor1 and

grd SendTC Core to Device xor2 which use core variables, and in the device sub-

model, it contains grd SendTC Core to Device and act SendTC Core to Device that

use the device variable.

Since no core variable is modified in the action of the SendTC Core to Device event,

the core on its own does not know that it has send a TC. Therefore the

SendTC Core to Device event in the core sub-model would be enabled more often; the

action which disables the SendTC Core to Device event is in the device sub-model.

One solution to disable the core shared event, is providing a preparation in the atom-

icity decomposition approach before applying model decomposition. As a preparation,

one action can be added to the SendTC Core to Device event which disables one core

variable. As a result the action would be placed in the core sub-model when model

decomposed. This case can be considered as future work in combining atomicity decom-

position approach and model decomposition approach.

The decomposition was performed using the decomposition plug-in [21, 56]. The typing

guard in each event (Figure 7.51) are added by the decomposition plug-in.



158 Chapter 7 Case Studies

Core Sub-model

event SendTC_Core_to_Device
any tc
where

@typing_tc tc ∈ TC
@grd_SendTC_Core_to_Device_seq tc ∈ TCCheck_Ok
@grd_SendTC_Core_to_Device_xor1 tc ∉ TCCore_Execute_Ok
@grd_SendTC_Core_to_Device_xor2 tc ∉ TCCore_Execute_Fail
@grd1 PID(tc) ∈∈∈∈ {mixsc, mixst, sixsp, sixsx}

end

Device Sub-model

event SendTC_Core_to_Device
any tc
where

@typing_tc tc ∈ TC
@grd_SendTC_Core_to_Device tc ∉ SendTC_Core_to_Device
@grd1 PID(tc) ∈∈∈∈ {mixsc, mixst, sixsp, sixsx}

then
@act_SendTC_Core_to_Device

SendTC_Core_to_Device ≔ SendTC_Core_to_Device ∪ {tc}
end

Figure 7.51: Instances of a Shared Event After Model Decomposition, Bepi-
Colombo System

7.3.8 4th and 5th Refinements: Core Sub-model Refinements

After model decomposition, each sub-model can be refined independently. It is one

of the benefits of decomposing big models to some smaller sub-models, as described in

Section 2.5. There are two more refinement levels for the core sub-model. In these refine-

ments, the atomicity of four core events which are related to generating data TMs and

control TMs, is decomposed in two levels, machine M4 and machine M5 in Figure 7.34.

The atomicity decomposition sequencing in the second refinement level, machine M5

follows an approach called weak sequencing, which is described in Section 4.3.4. Consid-

ering atomicity decomposition of the TCValid ReplyCtrlTM event in Figure 7.52, in first

level, machine M4, it decomposed to two sub-events, and in the second level, machine M5,

the TCValid ProcessCtrlTM event decomposed to Produce DataTM and Send DataTM

sub-events. The weak sequencing is applied to the atomicity decomposition of the

TCValid ProcessCtrlTM event. Considering weak sequencing, there is a sequence be-

tween the Produce DataTM event, with solid line, and the TCValid CompleteCtrlTM

event. It means that before completing the process of generating data TMs for a valid

TC, the corresponding data TMs should be produced. In contrast when sending pro-

duced TMs, the Send DataTM event with a dashed line, can executed before or after

the TCValid CompleteCtrlTM event.

In the Event-B model, weak sequencing is applied using some control variables in guards

like described before. Figure 7.53 presents the Event-B model of weak sequencing be-

tween Send DataTM event and TCValid CompleteCtrlTM event. In
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TCValid_ProcessDataTM (tc, tm) TCValid_CompleteDataTM (tc)

TCValid_ReplyDataTM (tc)

Produce_DataTM (tc, tm) Send_DataTM (tc, tm)

some(tm)

Figure 7.52: The Atomicity Decomposition Diagram in the Core Sub-Model,
M4 and M5, BepiColombo System

grd TCValid CompleteCtrlTM of TCValid CompleteCtrlTM event, tc is checked for be-

longing to TCProduce DataTM variable which has been assigned in Produce DataTM

event, so there is no sequencing between Send DataTM event and

TCValid CompleteCtrlTM event.

TCValid_ProcessDataTM (tc, tm)

event TCValid_CompleteDataTM refines TCValid_CompleteDataTM
any tc
where

@grd_TCValid_CompleteCtrlTM_seq tc ∈∈∈∈ dom(Produce_DataTM)
@grd_TCValid_CompleteCtrlTM tc ∉ TCValid_CompleteCtrlTM

then
@act_TCValid_CompleteCtrlTM

TCValid_CompleteCtrlTM ≔ TCValid_CompleteCtrlTM ∪ { tc }
end

TCValid_ReplyDataTM (tc)

event Produce_DataTM refines TCValid_ProcessCtrlTM
any tc tm
where

@grd_Produce_DataTM_seq tc ∈ TC_TransferData_Device_to_Core
@grd_Produce_DataTM tc ↦ tm ∉ Produce_DataTM
@grd TM_Type(tm) ∈∈∈∈ {HK_TM, SCI_TM}

then
@act_Produce_DataTM

Produce_DataTM ≔ Produce_DataTM ∪ { tc ↦ tm }
end

event Send_DataTM
any tc tm
where

@grd_Send_DataTM_sequencing
tc ↦ tm ∈ Produce_DataTM ∖ Send_DataTM

then
@act_Send_DataTM

Send_DataTM ≔ Send_DataTM ∪ { tc ↦ tm }
end

some(tm)

Figure 7.53: Event-B Model of Weak Sequencing in the Core Sub-Model, M4
and M5, BepiColombo System

The some-replicator, described in Section 4.2.8, is used in the first refinement level. It

adds a new parameter to the related sub-event, in this case tm is added to

TCValid ProcessCtrlTM in the first refinement and Produce DataTM and Send DataTM

events in the second refinement.

This pattern is repeated for the other three events in production of control TMs. It is

presented in Figure 7.54.

The difference between processing of control TMs and data TMs is that for each TC

only one control TM is produced and sent from the core to the earth but for each on
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TCExecOk_ProcessCtrlTM (tc, tm) TCExecOk_CompleteCtrlTM (tc)

TCExecOk_ReplyCtrlTM (tc)

TCExecFail_ProcessCtrlTM (tc, tm) TCExecFail_CompleteCtrlTM (tc)

TCExecFail_ReplyCtrlTM (tc)

Produce_ExecOkTM (tc, tm) Send_ExecOkTM (tc, tm)

Produce_ExecFailTM (tc, tm) Send_ExecFailTM (tc, tm)

TCCheckFail_ProcessCtrlTM (tc, tm) TCCheckFail_CompleteCtrlTM (tc)

TCCheckFail_ReplyCtrlTM (tc)

Produce_CheckFailTM (tc, tm) Send_CheckFailTM (tc, tm)

one(tm)

one(tm)

one(tm)

Figure 7.54: The Atomicity Decomposition Diagrams in the Core Sub-Model,
M4 and M5, BepiColombo System

TC one or more data TM(s) are produced and sent from the core to the earth. So the

one-replicator, described in Section 4.2.9, is used in processing of control TMs. The

invariants which specify the one-replicator properties are presented in Figure 7.55 for

the first refinement, machine M4, and in Figure 7.56 for the second refinement, machine

M5.

@inv_TCExecOk_ProcessCtrlTM_one ∀tc· card(TCExecOk_ProcessCtrlTM[{tc}]) ≤ 1
@inv_TCExecFail_ProcessCtrlTM_one ∀tc· card(TCExecFail_ProcessCtrlTM[{tc}]) ≤ 1
@inv_TCCheckFail_ProcessCtrlTM_one ∀tc· card(TCCheckFail_ProcessCtrlTM[{tc}]) ≤ 1

@inv_TCExecOk_ProcessCtrlTM_one ∀tc· card(Produce_ExecOkTM[{tc}]) ≤ 1
@inv_TCExecFail_ProcessCtrlTM_one ∀tc· card(Produce_ExecFailTM[{tc}]) ≤ 1
@inv_TCCheckFail_ProcessCtrlTM_one ∀tc· card(Produce_CheckFailTMtc}]) ≤ 1

Figure 7.55: one-replicator Invariants, M4, BepiColombo System

@inv_TCExecOk_ProcessCtrlTM_one ∀tc· card(TCExecOk_ProcessCtrlTM[{tc}]) ≤ 1
@inv_TCExecFail_ProcessCtrlTM_one ∀tc· card(TCExecFail_ProcessCtrlTM[{tc}]) ≤ 1
@inv_TCCheckFail_ProcessCtrlTM_one ∀tc· card(TCCheckFail_ProcessCtrlTM[{tc}]) ≤ 1

@inv_TCExecOk_ProcessCtrlTM_one ∀tc· card(Produce_ExecOkTM[{tc}]) ≤ 1
@inv_TCExecFail_ProcessCtrlTM_one ∀tc· card(Produce_ExecFailTM[{tc}]) ≤ 1
@inv_TCCheckFail_ProcessCtrlTM_one ∀tc· card(Produce_CheckFailTMtc}]) ≤ 1

Figure 7.56: one-replicator Invariants, M5, BepiColombo System

Figure 7.57 presents the Event-B model of the first decomposition in Figure 7.54. Guard

grd Produce ExecOkTM one in the Produce ExecOkTM event models the one-replicator

property.



Chapter 7 Case Studies 161

TCExecOk_ProcessCtrlTM (tc, tm)

event TCExecOk_CompleteCtrlTM refines TCExecOk_CompleteCtrlTM
any tc
where

@grd_TCExecOk_CompleteCtrlTM_seq tc ∈ dom(Produce_ExecOkTM)
@grd_TCExecOk_CompleteCtrlTM tc ∉ TCExecOk_CompleteCtrlTM

then
@act_TCExecOk_CompleteCtrlTM

TCExecOk_CompleteCtrlTM ≔ TCExecOk_CompleteCtrlTM ∪ { tc }
end

TCExecOk_ReplyCtrlTM (tc)

event Produce_ExecOkTM refines TCExecOk_ProcessCtrlTM
any tc tm
where

@grd_Produce_ExecOkTM_seq
tc ∈ TCCore_Execute_Ok ∪ SendOkTC_Device_to_Core

@grd_Produce_ExecOkTM tc ↦ tm ∉ Produce_ExecOkTM
@grd_Produce_ExecOkTM_one tc ∉∉∉∉ dom(Produce_ExecOkTM)
@grd1 TM_Type(tm) = Exec_ok_TM

then
@act_Produce_ExecOkTM

Produce_ExecOkTM ≔ Produce_ExecOkTM ∪ { tc ↦ tm }
end

event Send_ExecOkTM
any tc tm
where

@grd_Send_ExecOkTM_seq
tc ↦ tm ∈ Produce_ExecOkTM ∖ Send_ExecOkTM

@grd_Send_ExecOkTM tc ↦ tm ∉ Send_ExecOkTM
then

@act_Send_ExecOkTM
Send_ExecOkTM ≔ Send_ExecOkTM ∪ { tc ↦ tm }

end

one(tm)

Figure 7.57: Event-B Model of one-replicator and Weak Sequencing in the Core
Sub-Model, M4 and M5, BepiColombo System

7.3.9 Evaluation of Manual Event-B Model and Automatic Event-B

Model

As described in the media channel system evaluation in Section 7.2.8, use of atomicity

decomposition plug-in in creating the Event-B model of a system, ensures a higher

level of consistency in encoding of the atomicity decomposition diagrams comparing to

the manual version. Some differences between the automatic Event-B model, which is

created with the plug-in, and the manual one in developing the BepiColombo system

are presented here.

7.3.9.1 A Merged Guard versus Separate Guards

In the automatic Event-B model, there is a separate guard for each predicate generated

in a separate translation rule, whereas in the manual Event-B model, we modelled all

of the predicates in one unique guard. For instance here we compare three events from

machine M1 in the automatic Event-B model presented in Figure 7.42, and in the man-

ual Event-B model presented in Figure 7.58. For example, considering TCExecute Ok

event in Figure 7.42, a sequencing guard called grd TCExecute Ok seq is generated in

TR leaf8 (Section 5.4.3.8), a guard called grd TCExecute Ok is generated via TR leaf9

(Section 5.4.3.9) and finally grd1 is added manually to the event. Whereas in Figure 7.58,

the predicates are merged in one guard called grd1.
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TC_Validation_Ok (tc)

event TCCheck_Ok
any tc
where
@grd1 tc ∈ ReceiveTC ∖

(TCCheck_Ok ∪ TCCheck_Fail )
then
@act1

TCCheck_Ok ≔ TCCheck_Ok ∪ {tc}
end

event TCExecOk_ReplyCtrlTM
any tc
where
@grd1 tc ∈ TCExecute_Ok ∖ TCExecOk_ReplyCtrlTM

then
@act1

TCExecOk_ReplyCtrlTM ≔ TCExecOk_ReplyCtrlTM ∪ {tc}
end

event TCExecute_Ok refines TC_Validation_Ok
any tc
where
@grd1 tc ∈ TCCheck_Ok ∖ (TCExecute_Ok ∪ TCExecute_Fail)

then
@act1 TCExecute_Ok ≔ TCExecute_Ok ∪ {tc}

end

Figure 7.58: Manual Event-B Model, M1, BepiColombo System

Having separate guards slightly increases the number of GRD proof obligations, Sec-

tion 2.4.4, which are generated for a refining event in the next refinement level; Since

for each separate guard, a separate GRD proof is generated. Whereas in the manual

Event-B model, just one GRD proof is generated for the merged guard. However the

generated proof obligations in the automatic Event-B model are slightly simpler, because

the corresponding separated guards are slightly simpler. In both manual and automatic

Event-B models, the generated GRD proof obligations are discharged automatically.

7.3.9.2 Gluing Invariants

In the automatic Event-B model, a gluing invariant specifies an equality relationship

between an abstract variable and the corresponding concrete variable. Whereas in the

manual Event-B model, we specified a gluing invariant as a subset relationship between

an abstract variable and the corresponding concrete variable. Because when the manual

model was developed, the patterns for gluing invariants were insufficient.

As an instance, in the automatic Event-B model of machine M1 as presented in Sec-

tion 7.3.4, a gluing invariant is defined as follow:

@inv TCExecute Ok gluing TCExecute Ok = TC V alidation Ok

Whereas in the manual Event-B model the gluing invariant was defined as a subset

relationship:

@inv9 TCExecute Ok ⊆ TC V alidation Ok
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The later invariant causes some non-discharged proof obligations. For instance the

TCExecute Ok/grd TC Validation Ok/GRD proof can not be proved in the manual

model. To prove the stated proof obligation, we needed to add some more invariants.

The extra invariants made the model complex and large and results in more number of

proof obligations.

7.3.9.3 Model Decomposition

Decomposing the automatic Event-B model of machine M3 to the core and device sub-

models, results in seven shared events, presented in Figure 7.49. Whereas in model

decomposition of the manual Event-B model to core and device sub-models, there were

four shared events. TCCore Execute Ok, TCCore Execute Fail and

TC GenerateData in Device are shared events in the automatic model; Whereas in

the manual model, TCCore Execute Ok and TCCore Execute Fail are core events, and

TC GenerateData in Device is a device event. The reason is explained in next para-

graph.

TCExecute_Ok (tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)

Figure 7.59: Combined Atomicity Decomposition Diagram of TCExecute Ok
Event, BepiColombo System

Considering machine M2, Figure 7.45, and machine M3, Figure 7.47, the combined

atomicity decomposition diagram of TCExecute Ok event is presented in Figure 7.59.

As the result of TR xor3 (Section 5.4.4.3), in machine M3, a guard is generated for

TCCore Execute Ok event to ensure that the other xor child is not executed before:

@grd TCCore Execute Ok xor tc /∈ SendTC Core to Device

On one hand SendTC Core to Device is a device variable, while TCCore Execute Ok

event uses other core variables, i.e., TCCheck Ok in below guard:

@grd TCCore Execute Ok seq tc ∈ TCCheck Ok

Therefore the xor guard which uses a device variable make the TCCore Execute Ok

event as a shared event in the automatic event-B model. Whereas in the manual Event-B

model we did not add the xor guard, since, as presented in Figure 7.46, guard grd3 ensures
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the mutual exclusiveness of TCCore Execute Ok event and SendTC Core to Device

event. In the automatic Event-B model, guard @grd TCCore Execute Ok xor is gener-

ated automatically from TR xor3 (Section 5.4.4.3), and guard grd3 is added manually

to the automatic Event-B model.

7.3.9.4 some-replicator, one-replicator

In the manual Event-B model, we did not explicitly specify the tms associated with a

valid tc. For instance part of the Produce DataTM event in the manual Event-B model is

presented in Figure 7.60. As the result of the some-replicator there is one new parameter

called tm added to the Produce DataTM event. The Produce DataTM variable is a one

dimension set and, tms are added to a separate set called Produced TMs. As a result in

the manual model we were not able to track the tms produced for a specific valid tc.

event Produce_DataTM refines TCValid_ProcessDataTM
any tc tm
where …

then
@act1 Produce_DataTM ≔ Produce_DataTM ∪ {tc}
@act2 Produced_TMs ≔ Produced_TMs ∪ {tm}

End

Figure 7.60: some-replicator Event, Manual Event-B Model, BepiColombo Sys-
tem

Whereas in the automatic Event-B model, as presented in Figure 7.53, the

Produce DataTM variable is a cartesian product of TC and TM as a result of being a

child of a some-replicator. Therefore in the automatic model tracking tms associated

with a valid tc is possible, and the model is more accurate. The same modelling style is

used for the one-replicator in the atomicity decompositions presented in Figure 7.54.

7.3.9.5 Naming Protocol

In the automatic Event-B model, invariants and guards have clear labels following a

unique labelling protocol which is used in the patterns in Section 4.2 and the translation

rules in Section 5.4. Whereas in the manual Event-B model the invariants and guards

do not follow a specific labelling protocol, for example see Figure 7.58. Having a clear

labelling protocol helps to understand the model easily as it can help to recognise the

aim of each invariant or guard. For example, in the automatic Event-B model, invariants

and guards which describe the sequencing between events are labelled with seq suffix.
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7.3.9.6 Tool Application: Atomicity Decomposition Model of the Bepi-

Colombo System

Tha atomicity Decomposition model of the third refinement level of the BepiColombo

system, generated with the atomicity decomposition plug-in is presented in Figure 7.61.

Figure 7.61: Atomicity Decomposition Model of the BepiColombo System

7.3.10 Overview of Proof Obligation

The entire development of the BepiColombo system involves one abstract model followed

by three refinement levels before model decomposition and two refinement levels of the

core sub-model after model decomposition. In the last refinement level before model

decomposition, M3, there are 16 variables and 16 events as seen in Table 7.2. After

model decomposition Core M3 contains 12 variables and 14 events; and Device M3
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contains 4 variables and 9 events. It shows one of the benefits of model decomposition

in breaking a big model into some smaller sub-models. The sum of the variables for each

sub-model is equal to the number of variables of non-decomposed model M3. That is not

a coincidence since in a shared event model decomposition, the variables are partitioned

among sub-models. However the sum of the events of Core M3 and Device M3 is not

equal to the number of events of M3, since there are seven shared events which appear

in both sub-models, as seen Figure 7.48.

Component variables Events

M0 5 5

M1 10 10

M2 12 12

M3 16 16

Core M3 12 14

Device M3 4 9

Core M4 16 18

Core M5 20 22

Table 7.2: Summary of the Automatic BepiColombo Development, Number of
Variables and Events

Table 7.3 shows the number of variables and events for the manual Event-B model.

As can be seen in the table, the number of variables in machine M3 of the manual

Event-B model is more than the one in the automatic Event-M model. As explained in

Section 7.3.9.4, considering a separate variable for the new some-replicator parameter

causes in greater number of variables in the manual Event-B model.

Component variables Events

M0 5 5

M1 10 10

M2 12 12

M3 18 16

Core M3 13 13

Device M3 5 7

Core M4 21 17

Core M5 29 21

Table 7.3: Summary of the Manual BepiColombo Development, Number of
Variables and Events

A summary of the proof obligations for the automatic Event-B model can be seen in

Figure 7.62. The overall 205 generated proof obligations discharged automatically. Most

of the proof obligations are related to gluing invariants and guard strengthening. Gluing

invariants which show connections between abstract variables and concrete variables,

should be proved to be preserved by each action of each event. In guard strengthening

proof obligations it should be proved that for refining events the concrete guards are

stronger than the abstract guards.
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Figure 7.62: Proof Obligation Statistics for the Automatic BepiColombo Event-
B Model

Figure 7.63 presents the summary of the proof obligations for the manual Event-B

model. The number of proof obligations in the manual model is slightly less than the

automatic ones. As described in Section 7.3.9.1, having separate guards in the automatic

model increases the number of proof obligations. However all of the automatic model’s

proofs are discharged automatically, whereas in the manual model, nine proofs had to

be discharged interactively.

Figure 7.63: Proof Obligation Statistics for the Manual BepiColombo Event-B
Model

7.4 Conclusion

We modelled the media channel system and the BepiColombo system, a space craft,

using the atomicity decomposition approach. The developments of both case studies

have been done first manually and later using our atomicity decomposition tool support.

The automatic models, created by our atomicity decomposition tool support, have been

outlined and then an evaluation to compare the manual models with the automatic

ones have been presented. Although the manual and automatic models capture the

same behaviours, as a result of using our atomicity decomposition plug-in in creating
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the automatic model of the systems, the automatic models are more consistent and

systematic in encoding of the diagrams.

Since the atomicity decomposition approach and the model decomposition approach aim

to tackle the difficulties of modelling complex systems in Event-B, combining them is

of interest. The BepiColombo development addresses the combination of the atomic-

ity decomposition approach and model decomposition approach. Further refinements

structured with the atomicity decomposition diagrams, have been applied to the Bepi-

Colombo system after decomposing it to the core and device sub-models using model

decomposition.

The major benefit of using atomicity decomposition diagrams in structuring refinement

were highlighted in the development of the case studies. During manual development of

the case studies, the atomicity decomposition approach has been improved. Some new

constructors and features have been discovered. The assessment results gained from the

development of the case studies are presented in Chapter 8.



Chapter 8

Evaluation of Atomicity

Decomposition in Case Study

Developments

8.1 Introduction

The major benefit of using atomicity decomposition diagrams in showing the explicit

relationships between events of different levels of refinement and presenting the dia-

grammatic notation of event sequencing were highlighted in the development of both

case studies.

Moreover, in the media channel development the diagrams facilitated the linking of

requirements of the different protocol phases (establish, modify and close) with the

formal development. As presented in the initial model of the system in Figure 7.4,

each phase corresponds to one node in a diagram which is modelled in one event in the

Event-B model. Then, in each level of refinement we focused on breaking the atomicity

of a specific phase, the establish phase in the first refinement, the modify phase in the

second refinement, the close phase in the third refinement and so on.

This chapter discusses how the atomicity decomposition approach helped us in the de-

velopment of the media channel system and the BepiColombo system. We will explain

what we have discovered in terms of methodological results, new constructors and new

features in the atomicity decomposition approach. Finally we will outline how the out-

puts of the case studies influenced the definition of the atomicity decomposition diagram

patterns.

169
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8.2 Exploring Alternatives

The possibility of a diagrammatic view of the developments has given us the chance

to decide about alternatives in atomicity decomposition of an event. This decision

can be done before taking the effort of changing the Event-B model. For instance in

the media channel development, for refining the modify event we had two possible

ways. The first one is shown in Figure 8.1, and the second is shown in Figure 8.2.

The atomicity decomposing of the modify event is done in two levels of refinement in

Figure 8.1 whereas by using the second decomposition in Figure 8.2, we can reduce

it to one level of refinement. In the second way we separate the case splitting in two

separate decomposition diagrams, shown in Figure 8.2, We use the technique presented

in Section 4.3.3. In the media channel system development, as presented in Section 7.2.4,

we chose the atomicity decomposition in Figure 8.2 with fewer number of refinements

to reduce the effort of modelling. This case shows how we can explore event refinement

alternatives using atomicity decomposition diagrams before creating the Event-B model.

modify

modifyCodecBySelector modifyByDescriptor

modifyCodecListByDescriptor respondBySelectortoCodec

Two Refinement Levels

xor

Figure 8.1: Decomposing Atomicity of modify Event in Two Levels of Refine-
ment

modify

modifyCodecBySelector modifyCodecListByDescriptor respondBySelectortoCodec

modify One Refinement Level

Figure 8.2: Decomposing Atomicity of modify Event in One Level of Refinement

Therefore the atomicity decomposition approach can help us find good ways of refining

events before getting involved with the complex Event-B model, and this output can be

highlighted as one of the outcomes of using the atomicity decomposition approach.

8.3 Preventing of Wrong Event Decomposition

Using atomicity decomposition diagrams can prevent wrong event refinement before

starting Event-B modelling . It can result in earlier detection of wrong refinements in

the modelling process. Figure 8.3 presents one possible way of decomposing the atom-

icity of validation phase in the development of BepiColombo system. Figure 8.3 states
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that a validation can succeed, TC Validation Ok event, or fail, TC Validation Fail

event. Then a successful validation means successful syntax validation, TCCheck Ok

event, followed by a successful semantic validation, TCExecute Ok event. And a failed

validation fails either in the syntax check, TCCheck Fail event, or the semantics check,

TCExecute Fail.

xor

TC_Validation_Ok (tc)

TCCheck_Ok (tc) TCExecute_Ok (tc)

TC_Validation_Fail (tc)

TCCheck_Fail (tc)

xor

TC_Validation (tc)

TCExecute_Fail (tc)

Figure 8.3: Wrong Atomicity Decomposition

Considering xor-constructor and sequencing definitions, in the diagram, the possible

event executions are:

< TCCheck OK(tc), TCExecute OK(tc) >

< TCCheck Fail(tc) >

< TCExecute Fail(tc) >

Therefore this decomposition does not cover all necessary event execution according to

the requirements, explained in Section 7.3.4. It does not cover the following trace:

< TCCheck OK(tc), TCExecute Fail(tc) >

Therefore using atomicity decomposition diagram helped us to prevent a wrong refine-

ment before doing the effort of Event-B modelling. As a result, we have changed the

decomposition of the validation phase to a valid one which was presented in Section 7.3.4.

8.4 Events Tracking

A combined atomicity decomposition diagram provides the overall visualization of re-

finement structure. Figure 8.4 presents a part of the overall refinement structure of the

BepiColombo system.

Using the overall view of refinement structure gives us the chance of tracking possible

event execution traces by following leaf events from left to right. It provides the visu-

alization of the entire Event-B model which is not possible by just using the refinement

process. Event tracking helps us to describe the system requirements which can help us

to identify requirement coverage.
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ReceiveTC(tc)
TCValid_ReplyDataTM(tc)

TC_Validation_Ok(tc)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

SendOkTC_Device_to_Core (tc)

TCValid_GenerateData(tc)

TC_GenerateData_in_Device(tc, d) TC_TransferData_Device_to_Core(tc)

TCExecOk_ProcessCtrlTM(tc, tm)

Produce_ExecOkTM(tc, tm) Send_ExecOkTM(tc, tm)

TCExecOk_CompleteCtrlTM(tc)

Produce_DataTM(tc, tm) Send_DataTM(tc, tm)

TCValid_ProcessDataTM(tc, tm) TCValid_CompleteDataTM(tc)

some(d)

some(tm)

one(tm)

BepiColombo(tc)

Figure 8.4: Overall Refinement Structure After Model Decomposition, Bepi-
Colombo System

For instance, in Figure 8.4 one of the possible execution traces is shown below. It shows

the model covers the requirements in the case that the validation is ok and the TC

belongs to a device.

< ReceiveTC,

TCCheck Ok,

SendTC Core to Device, CheckTC in Device Ok, SendOkTC Device to Core,

Produce ExecOkTM,Send ExecOkTM, TCExecOk CompleteCtrlTM,

TC GenerateData in Device, TC TransferData Device to Core,

Produce DataTM,Send DataTM, TCV alid CompleteDataTM >

Having xor-constructor and weak sequencing result in possibilities of other event traces.

For instance considering xor-constructor in decomposing the TCExecute Ok event into

TCCore Execute Ok and TCDevice Execute Ok sub-events, another possible event

trace, when the TC belongs to the core, is to the replace execution of

< SendTC Core to Device, CheckTC in Device Ok, SendOkTC Device to Core >

with TCCore Execute Ok. Also considering weak interpretation between

Send ExecOkTM and TCExecOk CompleteCtrlTM , we can swap the place of

Send ExecOkTM and TCExecOk CompleteCtrlTM in the previous execution trace.
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8.5 Requirements Clarification

We experienced clarifying and re-structuring requirements during the BepiColombo de-

velopment using atomicity decomposition diagrams. As presented in the previous section

the diagrams help us to identify the possible events execution, and it can result in clar-

ifying the requirements.

In the BepiColombo development, in the second refinement level, we recognised that

the difference between TCs belong to the core and TCs belong to one of the devices

should be distinguished. This recognition which is a result of diagrams, helped us to

structure the requirements related to the core and device TCs in the next refinement

level. As shown in Section 7.3.5, using the xor-constructor to split the core case and the

device case, the requirements related to the core and devices are explicitly structure in

the diagram.

As another example, we came up with the diagram shown in Figure 8.5 in the third

refinement level. Reviewing the event traces, showed us that it does not cover the data

generation which should be done in a device. Therefore we ended up with the diagram

shown in Figure 8.6. In this diagram the data generation, TCValid GenerateData event,

is added and refined in one level.

BepiColombo(tc)

ReceiveTC(tc) TCValid_ReplyDataTM(tc)TC_Validation_Ok(tc)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)

Figure 8.5: Atomicity Decomposition Diagram Without Considering Data Gen-
eration Requirement, BepiColombo System

Atomicity decomposition diagrams make the process of clarifying and re-structuring

requirements easier comparing with just using the Event-B textual model, since dealing

with the visual view of the event sequencing of the model is easier than dealing with the

textual model only.
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BepiColombo(tc)

ReceiveTC(tc) TCValid_ReplyDataTM(tc)TC_Validation_Ok(tc)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

TCValid_GenerateData(tc)

TC_TransferData_Device_to_Core(tc)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)

TC_GenerateData_in_Device(tc, d)

some(d)

Figure 8.6: Atomicity Decomposition Diagram After Clarifying Data Genera-
tion Requirement, BepiColombo System

8.6 Combining Atomicity Decomposition and Model De-

composition

Development of the BepiColombo system addresses the use of atomicity decomposition

and model decomposition together in Event-B modelling. Atomicity decomposition di-

agrams help us find the appropriate point to apply model decomposition. Atomicity

decomposition provides an overall visualization of the refinement process which helps us

to decide about decomposing atomicity of those events which lead us to an appropriate

point to apply model decomposition. This decision can be made in a visual diagram-

matic environment of atomicity decomposition which is easier to deal with compared to

getting involved in difficulties of a complex Event-B model. The strategy to decide about

an appropriate point of applying model decomposition in this case study, is explained

in the next paragraph.

Figure 8.7 illustrates the overall refinement view of the abstract model followed by

two refinement levels. At this point without getting involved in the complications of

the Event-B model, we can decide about having more atomicity decomposition before

model decomposition. Our strategy in this case study is to end up with leaf events which

belong to one of these categories before starting model decomposition: core sub-model

events, device sub-model events or shared events. A leaf event is a node without any

child, which appears as an event of the last refinement level in the Event-B model. The

ReceiveTC, TCCheck Ok, TCExecOk ReplyCtrlTM and TCV alid ReplyDataTM

events are the core events, and the TCCore Execute Ok event is a shared event. On

the other hand the TCDevice Execute Ok event and the TCV alid GenerateData
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event partly belong to the device and are partly related to a shared activity between

the core and devices. So we come up with one more atomicity decomposition level

which is shown in Figure 8.6. In this figure, including the abstract model followed

by three refinement levels, all leaf events belong to one of the mentioned categories.

Among the newest events CheckTC in Device Ok belongs to the device sub-model

and TC GenerateData in Device, SendTC Core to Device,

SendOkTC Device to Core and TC TransferData Device to Core belong to the

shared events category. Considering our strategy for this case study, this step is a ap-

propriate point to apply model decomposition, since each leaf event belongs to one of

these categories: core sub-model events device sub-model events or shared events.

BepiColombo(tc)

ReceiveTC(tc) TCValid_ReplyDataTM(tc)TC_Validation_Ok(tc)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

TCValid_GenerateData(tc)

Figure 8.7: Overall Refinement Structure, Abstract Model and Two Refinement
Levels, BepiColombo System

Model decomposition preserves refinement including event sequencing of the overall sys-

tem in atomicity decomposition. Event sequencing in the atomicity decomposition ap-

proach is preserved after applying model decomposition to the Event-B model. Consider

atomicity decomposition of TCDevice Execute Ok in the last refinement level before

model decomposition in Figure 8.8. As described before, the sequencing is managed

with some control variables added in some guards and actions of the events. Figure 8.9

presents the device sub-model events after applying shared-event model decomposition.

The event sequencing is preserved in the device sub-model, although variables are di-

vided between two sub-models. CheckTC in Device Ok is a device event and is left

without any change. SendTC Core to Device and SendOkTC Device to Core are

shared events. As a result of model decomposition the guards which use core variables,

TCCkeck Ok, TCCore Execute Ok and SendOkTC Device to Core, are removed.

This does not affect the sequencing since the control variable, SendTC Core to Device

and CheckTC in Device Ok, are device variables.

Finally, as shown in Figure 7.34, atomicity decomposition can be continued after model

decomposition. So based on our experience we believe that applying atomicity decom-

position and model decomposition together can be beneficial in Event-B modelling since

both of them are intend to manage complexity in developing the model of large systems.
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TCDevice_Execute_Ok (tc)

event SendTC_Core_to_Device
any tc
where
@grd_SendTC_Core_to_Device_seq

tc ∈ TCCheck_Ok
@grd_SendTC_Core_to_Device

tc ∉ SendTC_Core_to_Device
@grd_SendTC_Core_to_Device_xor1

tc ∉ TCCore_Execute_Ok
@grd_SendTC_Core_to_Device_xor2

tc ∉ TCCore_Execute_Fail
@grd1 PID(tc) ∈ {mixsc, mixst, sixsp, sixsx}

then
@act_SendTC_Core_to_Device

SendTC_Core_to_Device ≔≔≔≔

SendTC_Core_to_Device ∪∪∪∪ {tc}
end

event SendOkTC_Device_to_Core
any tc
where
@grd_SendOkTC_Device_to_Core_seq

tc ∈∈∈∈ CheckTC_in_Device_Ok
@grd_SendOkTC_Device_to_Core

tc ∉ SendOkTC_Device_to_Core
then
@act_SendOkTC_Device_to_Core

SendOkTC_Device_to_Core ≔
SendOkTC_Device_to_Core ∪ {tc}

end

event CheckTC_in_Device_Ok refines TCDevice_Execute_Ok
any tc
where
@grd_CheckTC_in_Device_Ok_seq tc ∈∈∈∈ SendTC_Core_to_Device
@grd_CheckTC_in_Device_Ok tc ∉ CheckTC_in_Device_Ok
@grd1 tc ∉ CheckTC_in_Device_Fail

then
@act_CheckTC_in_Device_Ok CheckTC_in_Device_Ok ≔≔≔≔

CheckTC_in_Device_Ok ∪∪∪∪ {tc}
end

Figure 8.8: Event Sequencing Before Model Decomposition, BepiColombo Sys-
tem

TCDevice_Execute_Ok (tc)

event SendTC_Core_to_Device
any tc
where
@grd_SendTC_Core_to_Device

tc ∉ SendTC_Core_to_Device
@grd1 PID(tc) ∈ {mixsc, mixst, sixsp, sixsx}

then
@act_SendTC_Core_to_Device

SendTC_Core_to_Device ≔≔≔≔

SendTC_Core_to_Device ∪∪∪∪ {tc}
end

event SendOkTC_Device_to_Core
any tc
where
@grd_SendOkTC_Device_to_Core_seq

tc ∈∈∈∈ CheckTC_in_Device_Ok
end

event CheckTC_in_Device_Ok
any tc
where
@grd_CheckTC_in_Device_Ok_seq tc ∈∈∈∈ SendTC_Core_to_Device
@grd_CheckTC_in_Device_Ok tc ∉ CheckTC_in_Device_Ok
@grd1 tc ∉ CheckTC_in_Device_Fail

then
@act_CheckTC_in_Device_Ok CheckTC_in_Device_Ok ≔≔≔≔

CheckTC_in_Device_Ok ∪∪∪∪ {tc}
end

Figure 8.9: Event Sequencing Preserved After Model Decomposition, Bepi-
Colombo System
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8.7 New Constructors and Features

8.7.1 Introduction

This section outlines how the manual development of case studies led us to improve-

ments in the atomicity decomposition approach. During manual development of case

studies, the need for some new constructors and features was discovered. The discovered

constructors and features helped us to define the atomicity decomposition patterns and

features, presented in Chapter 4. And then they helped us to describe the language and

translation rules in a formal description, presented in Chapter 5. Finally based on the

patterns, the language description and translation rules, tool support was developed,

presented in Chapter 6.

This section first addresses identified constructors and then identified features.

8.7.2 New Constructors

In the media channel development, two constructors have been identified. First, the

loop constructor in the most abstract level, presented in Section 7.2.2. Second, the

xor-constructor in the fourth and fifth refinement levels, presented in Section 7.2.6 and

Section 7.2.7 respectively. Later the loop constructor was presented as a pattern in

Section 4.2.3, and the xor-constructor was presented as a pattern in Section 4.2.6. The

xor-constructor motivated us to define other logic operators: the and-constructor pre-

sented in Section 4.2.4 and the or-constructor is presented in Section 4.2.5.

The xor-constructor later has been applied to the second refinement level of the Bepi-

Colombo development as presented in Section 7.3.5. In the BepiColombo development,

the need for some-replicator has been discovered, and some-replicator is used in the

third refinement level, presented in Section 7.3.6. Also it is applied to the fourth re-

finement level of the core sub-model for several times, presented in Section 7.3.8. The

some-replicator pattern is presented in Section 4.2.8. The some-replicator motivated

us to define all-replicator (Section 4.2.7) and the one-replicator (Section 4.2.9). The

all-replicator is first introduced in [24], and the some-replicator is first introduced in the

presentation slides of [24].

We believe that these new constructors would be practical in the future.

8.7.3 Additional Features

The features that were explained in Section 4.3, are derived from case study develop-

ments. These features are addressed here.
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In both case studies, we found that describing the most abstract level in an informal

diagram, can help understanding. Therefore the most abstract level diagram defined

and presented in Section 4.3.1.

As have been seen in previous sections of this chapter, combining atomicity diagrams

of different refinement levels is beneficial in our developments. A combined atomicity

decomposition diagram provides an overall visualization of the refinement structure in

Event-B modelling. This feature was presented in Section 4.3.2.

Multiple atomicity decompositions in the process of refining a single event have been

used during both case study developments. In the media channel development, it is used

in the first and the second refinement levels. And in the BepiColombo development, it is

used in the first refinement level. As described in Section 8.2, having multiple atomicity

decompositions for a single event can reduce the number of refinement levels and as a

result can reduce the complexity of a Event-B model. This feature was presented in

Section 4.3.3.

In the refinements after model decomposition in the BepiColombo system, presented

in Section 7.3.8, we found out that, a weaker interpretation of sequencing is needed. It

motivated us to define the strong and weak sequencing, which presented in Section 4.3.4.

Different atomicity decomposition diagrams can share a single sub-event. The shared

sub-event is transformed into a single event in the Event-B model. Considering the

BepiColombo development in Figure 7.41, TCCheck Ok sub-event node is shared in the

first two atomicity decomposition diagrams. In the Event-B model, it is modelled with

a single TCCheck Ok event.

We have tried all alternatives presented in Section 4.3.5, for loop resetting in the manual

development of the media channel system. As a result, as justified in Section 4.3.5, we

decided to use a separate event as a loop resetting event, as presented for the media

channel system in Section 7.2.4.

Finally, we have applied different approaches to model ordering in Event-B, presented

in Section 4.4, for the media channel development. And as justified in Section 4.4,

we adopted to use the subset approach. Considering the subset approach which was

used in both case studies, each node in diagram corresponds to a set in each Event-B

event. These sets play the role of control variables for controlling event sequences. This

experience helps us to define the translation rules from diagram to the Event-B model.

8.8 Conclusion

The benefits of the atomicity decomposition approach were gradually presented via an

overview of the approach in Chapter 3, and the presentation of patterns in Chapter 4.
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The methodological results of using this approach in the development of two complex

case studies have been reviewed in the current chapter.

The benefits of the atomicity decomposition approach are summarised as follows:

• The atomicity decomposition diagrams explicitly illustrate the relationships be-

tween refinement levels, which is not explicit just using the Event-B notation.

• The explicit ordering between events are presented in a diagrammatic notation

of the atomicity decomposition approach. Whereas the Event-B text can model

ordering in an implicit way.

• Using atomicity decomposition diagrams enables us to explore alternatives of re-

fining an abstract event before getting involved with the complexity of Event-B

modelling.

• Earlier detection of wrong refinement in the modelling process is one of the benefits

of using atomicity decomposition diagrams.

• The atomicity decomposition approach provides the overall visualization of re-

finement structure, which gives us the ability to track events and requirement

clarification via a combined atomicity decomposition diagram.

• The atomicity decomposition approach can be combined effectively with model de-

composition. Since these two techniques aim to tackle the difficulties of modelling

complex systems, combining them is of interest.

• The atomicity decomposition approach provided with tool support, can address

automatic model generation in Event-B, which can decrease the modelling effort.





Chapter 9

Conclusions and Future Works

9.1 Conclusion

It was mentioned that modelling should be considered as an early stage in the software

development process. However we are aware of difficulties in building models of complex

systems. If these difficulties make software engineers reluctant to do modelling, it will

be left out from the developing cycle. Thus some techniques are required to solve these

difficulties.

The key factor in this thesis was presenting the atomicity decomposition approach and

improving its methodology, as a technique helping us to model complex systems in

Event-B notation using the Rodin tool. We have outlined how atomicity decomposition

can be beneficial in the incremental development of two large case studies, and how

the formal description of atomicity decomposition language and translation rules can be

helpful in improving the methodology of the atomicity decomposition approach. The

atomicity decomposition tool was developed as a plug-in supported by Event-B toolkit,

Rodin.

The contributions we have completed consist of five parts:

• (i) Modelling and proof of the media channel system which contains a level of

abstraction followed by five refinement layers (published in “Formal Methods

for Components and Objects” (FMCO) 2009 conference [1]). In developing the

Event-B model of the system we focus on evaluating the atomicity decomposi-

tion approach using structural diagrams in modelling the requirements of different

phases.

From the evaluation we outlined how using atomicity decomposition augmented

with refinement in Event-B can be useful in the modelling process of a complex

system. Exploring alternatives of decomposing atomicity of an event using the

181
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atomicity decomposition diagrams before getting involved with complexity of an

Event-B model is evaluated. Also we have shown how using atomicity decomposi-

tion diagrams can prevent a wrong event refinement.

Some new construct patterns such as the loop constructor and xor-constructor

have been discovered. The media channel development presented how different

atomicity decomposition constructs, such as sequential events, loop constructor

and case splitting (xor-constructor) are modelled in Event-B model by providing

some refining/non-refining events, guards and invariants.

• (ii) Modelling and proof of the BepiColombo system which contains a level of ab-

straction followed by three levels of refinement followed by a model decomposition

and two more refinement levels of one of the sub-models (published in “Formal

Methods for Components and Objects” (FMCO) 2009 conference [1]). This de-

velopment experience showed the benefits of using the atomicity decomposition

approach with the model decomposition approach together. During development,

the some-replicator construct and weak sequencing feature have been discovered

and modelled in the Event-B model.

Case study developments (Chapter 7), helped us to define some features which

improved the atomicity decomposition approach. These features include the defi-

nitions of the most abstract level diagram, the combined atomicity decomposition

diagram and multiple diagrams for a single root event. Different alternatives to

model ordering in Event-B have been evaluated and the subset approach is chosen.

The justification of choosing the subset approach has been presented (Section 4.4).

• (iii) As stated above, during the development of case studies, some new construct

patterns and features were discovered. The discovered patterns and features were

presented (Chapter 4). Each pattern was allocated to illustrate one constructor

in a single refinement level. For each pattern the diagrammatic notation and the

corresponding Event-B model have been described.

• (iv) We presented a formal and general description of the atomicity decomposi-

tion language (ADL) and translation rules to the Event-B model (Chapter 5).

The ADL is described using Augmented Backus-Naur Form (ABNF) and includes

the semantics to present the general combination of constructors in one or more

refinement levels. Translation rules were presented per construct in a modular

way.

• (v) We developed a plug-in that supports the atomicity decomposition approach in

the Event-B toolkit, Rodin, (Chapter 6). The developed tool helps the automatic

generation of the Event-B model from a graphical environment, which can results

in making the modelling process of complex systems more manageable in Event-B.
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Based on our experience - specifying, modelling and proving the media channel system

and the BepiColombo system using the Event-B notation in the Rodin toolkit - the most

difficult part in mathematical modelling using Rodin is dealing with complex and large

models. Building the large model of media channel and BepiColombo showed how the

atomicity decomposition approach can facilitate the use of the Event-B notation. The

atomicity decomposition approach provides a graphical notation to explicitly illustrate

the refinement structure in Event-B. The ordering between events are explicitly shown in

the atomicity decomposition diagram. Different constructors of atomicity decomposition

graphical notation have been discovered and presented. However, still some difficulties

in building large and complex models are a notable barrier when encouraging developers

to build mathematical models of their systems before implementing them. In summary

it is hoped that the atomicity decomposition approach makes it convenient to model

complicated systems using the Rodin toolkit.

The multiple instance (MI) style (Section 4.2.2) is applied to the case studies presented in

Chapter 7. The single instance (SI) style is applied to a Controller Area Network (CAN)

bus case study [81, 82]. Also a SI case example from [24] is addressed in Chapter 3.

9.2 Future Works

The work described in the thesis leaves open some opportunities for improvement. We

list the future works as follows:

• Developing a graphical environment for the atomicity decomposition plug-in.

To develop this graphical environment, the Eclipse Graphical modelling Framework

(GMF) [83] and EuGENia [84] tool can be considered as two useful technologies.

The Eclipse Graphical Modelling Framework (GMF) provides a generative com-

ponent (GMF Tooling) and runtime infrastructure (GMF Runtime) for developing

graphical editors based on EMF. EuGENia is a tool that automatically generates

the models needed to implement a GMF editor from an EMF meta-model.

• Improving tool support by developing all translation rules.

As described in Chapter 6, some of the defined translation rules, presented in

Chapter 5, are not included in the current plug-in. The plug-in can be improved

by providing all translation rules.

• Identifying other potential atomicity decomposition constructors.

We believe that there can be other potential constructs for the atomicity decompo-

sition approach. These constructs can be identified by developing more industrial

and complex case studies. After identifying the potential constructors, they need

to be defined as patterns and included as a part of the ADL and translation rules.





Appendix A

The Event-B Model of the Media

Channel System

A.1 Abstract Specification

A.1.1 Context: C1

CONTEXT C1

SETS

ENDPOINT, MEDIUM, CODEC, MEDIACHANNEL, DIRECTION

CONSTANTS

ItoA, AtoI, medium, initiator, acceptor, direction

AXIOMS

axm1 : partition(DIRECTION , {ItoA}, {AtoI})
axm2 : medium ∈ MEDIACHANNEL→MEDIUM

axm3 : initiator ∈ MEDIACHANNEL→ ENDPOINT

axm4 : acceptor ∈ MEDIACHANNEL→ ENDPOINT

axm5 : direction ∈ MEDIACHANNEL→DIRECTION

END

A.1.2 Machine: M0

MACHINE M0

SEES C1

VARIABLES

establishMediaChannel, close, code \\ manually

INVARIANTS

inv establishMediaChannel : establishMediaChannel ⊆ MEDIACHANNEL

inv close seq : close ⊆ establishMediaChannel

inv1 : codec ∈ establishMediaChannel → CODEC \\ manually

EVENTS

Initialisation

begin

act establishMediaChannel : establishMediaChannel := ∅



act close : close := ∅
act1 : codec := ∅ \\ manually

end

Event establishMediaChannel =̂

any

ch, c \\ manually
where

grd establishMediaChannel : ch /∈ establishMediaChannel

grd1 : c ∈ CODEC \\ manually

then

act establishMediaChannel : establishMediaChannel := establishMediaChannel ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modify =̂

any

ch, c
where

grd modify seq : ch ∈ establishMediaChannel

grd modify loop : ch /∈ close

grd1 : c ∈ CODEC \\ manually

then

act1 : codec(ch) := c \\ manually

end

Event close =̂

any

ch
where

grd close seq : ch ∈ establishMediaChannel

grd close : ch /∈ close

then

act close : close := close ∪ {ch}
end

END

A.2 1st Refinement

A.2.1 Context: C2

CONTEXT C2

EXTENDS C1

SETS

PORT, IP

CONSTANTS

endpointIp

AXIOMS

axm1 : endpointIp ∈ ENDPOINT � IP

END

A.2.2 Machine: M1

MACHINE M1

REFINES M0

SEES C2
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VARIABLES

openWithRealCodecs, openAckWithoutCodecs, selectAndEstablishbyAcceptor, openWithoutCodecs,

openAckWithRealCodecs, selectAndEstablishbyInitiator, close, codec \\ manually, initiatorPort \\ man-

ually, acceptorPort \\ manually, codecList \\ manually

INVARIANTS

inv openWithRealCodecs : openWithRealCodecs ⊆ MEDIACHANNEL

inv openAckWithoutCodecs seq : openAckWithoutCodecs ⊆ openWithRealCodecs

inv selectAndEstablishbyAcceptor seq : selectAndEstablishbyAcceptor ⊆ openAckWithoutCodecs

inv openWithoutCodecs : openWithoutCodecs ⊆ MEDIACHANNEL

inv openAckWithRealCodecs seq : openAckWithRealCodecs ⊆ openWithoutCodecs

inv selectAndEstablishbyInitiator seq : selectAndEstablishbyInitiator ⊆ openAckWithRealCodecs

inv close seq : close ⊆ selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv gluing : selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator = establishMediaChannel

inv1 : initiatorPort ∈ (openWithRealCodecs ∪ openWithoutCodecs)→ PORT \\ manually

inv2 : acceptorPort ∈ (openAckWithoutCodecs ∪ openAckWithRealCodecs)→ PORT \\ manually

inv3 : codecList ∈ (openWithRealCodecs ∪ openAckWithRealCodecs)→ P(CODEC ) \\ manually

inv5 : openWithRealCodecs ⊆ dom(direction � {AtoI}) \\ manually

inv6 : openWithoutCodecs ⊆ dom(direction � {ItoA}) \\ manually

inv7 : openWithRealCodecs ∩ openWithoutCodecs = ∅
\\ manually, derived from inv5, inv6, added to prove (SelectAndEstablishby.../GRD)

EVENTS

Initialisation

begin

act openWithRealCodecs : openWithRealCodecs := ∅
act openAckWithoutCodecs : openAckWithoutCodecs := ∅
act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := ∅
act openWithoutCodecs : openWithoutCodecs := ∅
act openAckWithRealCodecs : openAckWithRealCodecs := ∅
act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator := ∅
act close : close := ∅
act1 : codec := ∅ \\ manually

act2 : initiatorPort := ∅ \\ manually

act3 : acceptorPort := ∅ \\ manually

act4 : codecList := ∅ \\ manually

end

Event openWithRealCodecs =̂

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithRealCodecs : ch /∈ openWithRealCodecs

grd1 : ch /∈ openWithoutCodecs

\\ manually, derived from direction(ch) = AtoI, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl 6= ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1 (i) \\ manually

grd8 : direction(ch) = AtoI \\ manually

then

act openWithRealCodecs : openWithRealCodecs := openWithRealCodecs ∪ {ch}
act1 : codecList(ch) := cl \\ manually

act2 : initiatorPort(ch) := p \\ manually

end

Event openAckWithoutCodecs =̂
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any

ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV) in M2
where

grd openAckWithoutCodecs seq : ch ∈ openWithRealCodecs

grd openAckWithoutCodecs : ch /∈ openAckWithoutCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl = ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1 (i) \\ manually

grd7 : t = codecList(ch)

\\ manually, to prove (openAckWithoutCodecs/inv5/INV) in M2

then

act openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs ∪ {ch}
act1 : acceptorPort(ch) := p \\ manually

act2 : codecList(ch) := t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV) in M2

end

Event selectAndEstablishbyAcceptor =̂

refines establishMediaChannel

any

ch, c \\ manually
where

grd selectAndEstablishbyAcceptor seq : ch ∈ openAckWithoutCodecs

grd selectAndEstablishbyAcceptor : ch /∈ selectAndEstablishbyAcceptor

grd1 : c ∈ codecList(ch) \\ manually

then

act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=

selectAndEstablishbyAcceptor ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event openWithoutCodecs =̂

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithoutCodecs : ch /∈ openWithoutCodecs

grd9 : ch /∈ openWithRealCodecs

\\ manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl = ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1 (i) \\ manually

grd8 : direction(ch) = ItoA \\ manually

then

act openWithoutCodecs : openWithoutCodecs := openWithoutCodecs ∪ {ch}
act1 : initiatorPort(ch) := p \\ manually

end

Event openAckWithRealCodecs =̂

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openAckWithRealCodecs seq : ch ∈ openWithoutCodecs

grd openAckWithRealCodecs : ch /∈ openAckWithRealCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually



grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1 (i) \\ manually

then

act openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs ∪
{ch}

act1 : codecList(ch) := cl \\ manually

act2 : acceptorPort(ch) := p \\ manually

end

Event selectAndEstablishbyInitiator =̂

refines establishMediaChannel

any

ch, c \\ manually
where

grd selectAndEstablishbyInitiator seq : ch ∈ openAckWithRealCodecs

grd selectAndEstablishbyInitiator : ch /∈ selectAndEstablishbyInitiator

grd1 : c ∈ codecList(ch) \\ manually

then

act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=

selectAndEstablishbyInitiator ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modify =̂

refines modify

any

ch, c
where

grd modify sequencing : ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

grd modify loop : ch /∈ close

grd1 : c ∈ CODEC \\ manually

then

act1 : codec(ch) := c \\ manually

end

Event close =̂

refines close

any

ch

where

grd close seq : ch ∈ selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd close : ch /∈ close

then

act close : close := close ∪ {ch}
end

END

A.3 2nd Refinement

A.3.1 Machine: M2

MACHINE M2

REFINES M1

SEES C2
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VARIABLES

openWithRealCodecs, openAckWithoutCodecs, selectAndEstablishbyAcceptor, openWithoutCodecs, ope-

nAckWithRealCodecs, selectAndEstablishbyInitiator, modifyCodecListByDescriptor, respondBySelector-

ToCodec, modifyInitiatorPortByDescriptor, respondBySelectorToInitiatorPort, modifyAcceptorPortBy-

Descriptor, respondBySelectorToAcceptorPort, close, codec \\ manually, initiatorPort2 \\ manually, ac-

ceptorPort2 \\ manually, codecList2 \\ manually

INVARIANTS

inv modifyCodecByDescriptor seq : modifyCodecListByDescriptor ⊆ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

inv respondBySelectortoCodec seq : respondBySelectorToCodec ⊆ modifyCodecListByDescriptor

inv modifyInitiatorPortByDescriptor seq : modifyInitiatorPortByDescriptor ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv respondBySelectorToInitiatorPort seq : respondBySelectorToInitiatorPort ⊆
modifyInitiatorPortByDescriptor

inv modifyAcceptorPortByDescriptor seq : modifyAcceptorPortByDescriptor ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv respondBySelectorToAcceptorPort seq : respondBySelectorToAcceptorPort ⊆
modifyAcceptorPortByDescriptor

inv1 : initiatorPort2 ∈ (openWithRealCodecs ∪ openWithoutCodecs)→ PORT

\\ manually, to prove (EQL)

inv2 : acceptorPort2 ∈ (openAckWithoutCodecs ∪ openAckWithRealCodecs)→ PORT \\ manually

inv3 : codecList2 ∈ (openWithRealCodecs ∪ openAckWithRealCodecs)→ P(CODEC ) \\ manually

inv4 : ∀ ch ·
(ch ∈ openAckWithRealCodecs ∧
ch /∈ selectAndEstablishbyInitiator

⇒
codecList2 (ch) = codecList(ch))

\\ manually, to prove (selectAndEstablishbyInitiator/grd1/GRD)

inv5 : ∀ ch ·
(ch ∈ openAckWithoutCodecs ∧

ch /∈ selectAndEstablishbyAcceptor

⇒
codecList2 (ch) = codecList(ch))

\\ manually, to prove (selectAndEstablishbyAcceptor/grd1/GRD)

inv6 : ∀ ch ·
(ch ∈ openWithRealCodecs ∧
ch /∈ openAckWithoutCodecs

⇒
codecList2 (ch) = codecList(ch))

\\ manually, to prove (openAckWithoutCodecs/grd7/GRD)

EVENTS

Initialisation

begin

act openWithRealCodecs : openWithRealCodecs := ∅
act openAckWithoutCodecs : openAckWithoutCodecs := ∅
act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := ∅
act openWithoutCodecs : openWithoutCodecs := ∅
act openAckWithRealCodecs : openAckWithRealCodecs := ∅
act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator := ∅
act modifyCodecListByDescriptor : modifyCodecListByDescriptor := ∅
act respondBySelectorToCodec : respondBySelectorToCodec := ∅
act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor := ∅
act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort := ∅
act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := ∅
act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := ∅
act close : close := ∅
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act1 : codec := ∅ \\ manually

act2 : initiatorPort2 := ∅ \\ manually

act3 : acceptorPort2 := ∅ \\ manually

act4 : codecList2 := ∅ \\ manually

end

Event openWithRealCodecs =̂

refines openWithRealCodecs

any

ch

cl manually

p manually

i manually

where

grd openWithRealCodecs : ch /∈ openWithRealCodecs

grd1 : ch /∈ openWithoutCodecs

\\ manually, derived from direction(ch) = AtoI, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl 6= ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1 (i) \\ manually

grd8 : direction(ch) = AtoI \\ manually

then

act openWithRealCodecs : openWithRealCodecs := openWithRealCodecs ∪ {ch}
act1 : codecList2 (ch) := cl \\ manually

act2 : initiatorPort2 (ch) := p \\ manually

end

Event openAckWithoutCodecs =̂

refines openAckWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV)
where

grd openAckWithoutCodecs seq : ch ∈ openWithRealCodecs

grd openAckWithoutCodecs : ch /∈ openAckWithoutCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl = ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1 (i) \\ manually

grd7 : t = codecList2 (ch)

\\ manually, to prove (openAckWithoutCodecs/inv5/INV)

then

act openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs ∪ {ch}
act1 : acceptorPort2 (ch) := p \\ manually

act2 : codecList2 (ch) := t \\ manually, to prove (openAckWithoutCodecs/inv5/INV)

end

Event selectAndEstablishbyAcceptor =̂

refines selectAndEstablishbyAcceptor

any

ch, c \\ manually
where

grd selectAndEstablishbyAcceptor seq : ch ∈ openAckWithoutCodecs

grd selectAndEstablishbyAcceptor : ch /∈ selectAndEstablishbyAcceptor

grd1 : c ∈ codecList2 (ch) \\ manually

then
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act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=

selectAndEstablishbyAcceptor ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event openWithoutCodecs =̂

refines openWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithoutCodecs : ch /∈ openWithoutCodecs

grd9 : ch /∈ openWithRealCodecs

\\ manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl = ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1 (i) \\ manually

grd8 : direction(ch) = ItoA \\ manually

then

act openWithoutCodecs : openWithoutCodecs := openWithoutCodecs ∪ {ch}
act1 : initiatorPort2 (ch) := p \\ manually

end

Event openAckWithRealCodecs =̂

refines openAckWithRealCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openAckWithRealCodecs seq : ch ∈ openWithoutCodecs

grd openAckWithRealCodecs : ch /∈ openAckWithRealCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1 ) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1 (i) \\ manually

then

act openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs ∪ {ch}
act1 : codecList2 (ch) := cl \\ manually

act2 : acceptorPort2 (ch) := p \\ manually

end

Event selectAndEstablishbyInitiator =̂

refines selectAndEstablishbyInitiator

any

ch, c \\ manually
where

grd selectAndEstablishbyInitiator seq : ch ∈ openAckWithRealCodecs

grd selectAndEstablishbyInitiator : ch /∈ selectAndEstablishbyInitiator

grd1 : c ∈ codecList2 (ch) \\ manually

then

act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=

selectAndEstablishbyInitiator ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modifyCodecBySelector =̂

refines modify

any

ch, c \\ manually
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where

grd modifyCodecBySelector seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecBySelector loop : ch /∈ close

grd1 : c ∈ codecList2 (ch) \\ manually

then

act1 : codec(ch) := c \\ manually

end

Event modifyCodecListByDescriptor =̂

any

ch, cl \\ manually
where

grd modifyCodecListByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecListByDescriptor : ch /∈ modifyCodecListByDescriptor

grd modifyCodecListByDescriptor loop : ch /∈ close

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually

then

act modifyCodecListByDescriptor : modifyCodecListByDescriptor :=

modifyCodecListByDescriptor ∪ {ch}
act1 : codecList2 (ch) := cl \\ manually

end

Event respondBySelectorToCodec =̂

refines modify

any

ch, c \\ manually
where

grd respondBySelectorToCodec seq : ch ∈ modifyCodecListByDescriptor

grd respondBySelectorToCodec : ch /∈ respondBySelectorToCodec

grd1 : c ∈ codecList2 (ch) \\ manually

grd2 : ch /∈ close \\ manually, to prove (respondBySelectorToCodec/GRD)

then

act respondBySelectorToCodec : respondBySelectorToCodec := respondBySelectorToCodec∪{ch}
act2 : codec(ch) := c \\ manually

end

Event modify Loop Reset1 =̂

any

ch

where

grd reset : ch ∈ respondBySelectorToCodec

then

act reset modifyCodecListByDescriptor : modifyCodecListByDescriptor :=

modifyCodecListByDescriptor \ {ch}
act reset respondBySelectorToCodec : respondBySelectorToCodec :=

respondBySelectorToCodec \ {ch}
end

Event modifyInitiatorPortByDescriptor =̂

refines modify

any

ch, p \\ manually
where

grd modifyInitiatorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyInitiatorPortByDescriptor : ch /∈ modifyInitiatorPortByDescriptor

grd modifyInitiatorPortByDescriptor loop : ch /∈ close

grd1 : p 6= initiatorPort2 (ch) \\ manually

with
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c : c = codec(ch) \\ manually

then

act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor ∪ {ch}
act1 : initiatorPort2 (ch) := p \\ manually

end

Event respondBySelectorToInitiatorPort =̂

any

ch

where

grd respondBySelectorToInitiatorPort seq : ch ∈ modifyInitiatorPortByDescriptor

grd respondBySelectorToInitiatorPort : ch /∈ respondBySelectorToInitiatorPort

then

act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort ∪ {ch}
end

Event modify Loop Reset2 =̂

any

ch

where

grd reset : ch ∈ respondBySelectorToInitiatorPort

then

act reset modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor \ {ch}
act reset respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =̂

refines modify

any

ch, p \\ manually
where

grd modifyAcceptorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyAcceptorPortByDescriptor : ch /∈ modifyAcceptorPortByDescriptor

grd modifyAcceptorPortByDescriptor loop : ch /∈ close

grd1 : p 6= acceptorPort2 (ch) \\ manually

with

c : c = codec(ch) \\ manually

then

act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor ∪ {ch}
act1 : acceptorPort2 (ch) := p \\ manually

end

Event respondBySelectorToAcceptorPort =̂

any

ch

where

grd respondBySelectorToAcceptorPort seq : ch ∈ modifyAcceptorPortByDescriptor

grd respondBySelectorToAcceptorPort : ch /∈ respondBySelectorToAcceptorPort

then

act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort ∪ {ch}
end

Event modify Loop Reset3 =̂

any

ch



where

grd reset : ch ∈ respondBySelectorToAcceptorPort

then

act reset modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor \ {ch}
act reset respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort \ {ch}
end

Event close =̂

extends close

any

ch

where

grd close seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd close : ch /∈ close

then

act close : close := close ∪ {ch}
end

END

A.4 3rd Refinement

A.4.1 Machine: M3

MACHINE M3

REFINES M2

SEES C2

VARIABLES

openWithRealCodecs, openAckWithoutCodecs, selectAndEstablishbyAcceptor,

openWithoutCodecs, openAckWithRealCodecs, selectAndEstablishbyInitiator,

modifyCodecListByDescriptor, respondBySelectorToCodec, modifyInitiatorPortByDescriptor,

respondBySelectorToInitiatorPort, modifyAcceptorPortByDescriptor,

respondBySelectorToAcceptorPort, closeRequest, closeAck, codec \\ manually,

initiatorPort2 \\ manually, acceptorPort2 \\ manually, codecList2 \\ manually

INVARIANTS

inv closeRequest seq : closeRequest ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv closeAck seq : closeAck ⊆ closeRequest

inv closeAck gluing : closeAck = close

EVENTS

Initialisation

begin

act openWithRealCodecs : openWithRealCodecs := ∅
act openAckWithoutCodecs : openAckWithoutCodecs := ∅
act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := ∅
act openWithoutCodecs : openWithoutCodecs := ∅
act openAckWithRealCodecs : openAckWithRealCodecs := ∅
act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator := ∅
act modifyCodecListByDescriptor : modifyCodecListByDescriptor := ∅
act respondBySelectorToCodec : respondBySelectorToCodec := ∅
act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor := ∅
act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort := ∅
act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := ∅
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act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := ∅
act closeRequest : closeRequest := ∅
act closeAck : closeAck := ∅
act1 : codec := ∅ \\ manually

act2 : initiatorPort2 := ∅ \\ manually

act3 : acceptorPort2 := ∅ \\ manually

act4 : codecList2 := ∅ \\ manually

end

Event openWithRealCodecs =̂

extends openWithRealCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithRealCodecs : ch /∈ openWithRealCodecs

grd1 : ch /∈ openWithoutCodecs

\\ manually, derived from direction(ch) = AtoI, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl 6= ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1(i) \\ manually

grd8 : direction(ch) = AtoI \\ manually

then

act openWithRealCodecs : openWithRealCodecs := openWithRealCodecs ∪ {ch}
act1 : codecList2(ch) := cl \\ manually

act2 : initiatorPort2(ch) := p \\ manually

end

Event openAckWithoutCodecs =̂

extends openAckWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV)
where

grd openAckWithoutCodecs seq : ch ∈ openWithRealCodecs

grd openAckWithoutCodecs : ch /∈ openAckWithoutCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl = ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1(i) \\ manually

grd7 : t = codecList2(ch) \\ manually, to prove (openAckWithoutCodecs/inv5/INV)

then

act openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs ∪ {ch}
act1 : acceptorPort2(ch) := p \\ manually

act2 : codecList2(ch) := t \\ manually, to prove (openAckWithoutCodecs/inv5/INV)

end

Event selectAndEstablishbyAcceptor =̂

extends selectAndEstablishbyAcceptor

any

ch, c \\ manually
where

grd selectAndEstablishbyAcceptor seq : ch ∈ openAckWithoutCodecs

grd selectAndEstablishbyAcceptor : ch /∈ selectAndEstablishbyAcceptor

grd1 : c ∈ codecList2(ch) \\ manually

then
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act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=

selectAndEstablishbyAcceptor ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event openWithoutCodecs =̂

extends openWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithoutCodecs : ch /∈ openWithoutCodecs

grd9 : ch /∈ openWithRealCodecs

\\ manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl = ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1(i) \\ manually

grd8 : direction(ch) = ItoA \\ manually

then

act openWithoutCodecs : openWithoutCodecs := openWithoutCodecs ∪ {ch}
act1 : initiatorPort2(ch) := p \\ manually

end

Event openAckWithRealCodecs =̂

extends openAckWithRealCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openAckWithRealCodecs seq : ch ∈ openWithoutCodecs

grd openAckWithRealCodecs : ch /∈ openAckWithRealCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1(i) \\ manually

then

act openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs ∪ {ch}
act1 : codecList2(ch) := cl \\ manually

act2 : acceptorPort2(ch) := p \\ manually

end

Event selectAndEstablishbyInitiator =̂

extends selectAndEstablishbyInitiator

any

ch, c \\ manually
where

grd selectAndEstablishbyInitiator seq : ch ∈ openAckWithRealCodecs

grd selectAndEstablishbyInitiator : ch /∈ selectAndEstablishbyInitiator

grd1 : c ∈ codecList2(ch) \\ manually

then

act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=

selectAndEstablishbyInitiator ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modifyCodecBySelector =̂

refines modifyCodecBySelector

any

ch, c \\ manually
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where

grd modifyCodecBySelector seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecBySelector loop : ch /∈ closeRequest

grd1 : c ∈ codecList2 (ch) \\ manually

then

act1 : codec(ch) := c \\ manually

end

Event modifyCodecListByDescriptor =̂

refines modifyCodecListByDescriptor

any

ch, cl \\ manually
where

grd modifyCodecListByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecListByDescriptor : ch /∈ modifyCodecListByDescriptor

grd modifyCodecListByDescriptor loop : ch /∈ closeRequest

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually

then

act modifyCodecListByDescriptor : modifyCodecListByDescriptor :=

modifyCodecListByDescriptor ∪ {ch}
act1 : codecList2 (ch) := cl \\ manually

end

Event respondBySelectorToCodec =̂

refines respondBySelectorToCodec

any

ch, c \\ manually
where

grd respondBySelectorToCodec seq : ch ∈ modifyCodecListByDescriptor

grd respondBySelectorToCodec : ch /∈ respondBySelectorToCodec

grd1 : c ∈ codecList2 (ch) \\ manually

grd2 : ch /∈ closeRequest \\ manually, to prove (respondBySelectorToCodec/GRD)

then

act respondBySelectorToCodec : respondBySelectorToCodec := respondBySelectorToCodec∪{ch}
act2 : codec(ch) := c \\ manually

end

Event modify Loop Reset1 =̂

extends modify Loop Reset1

any

ch

where

grd reset : ch ∈ respondBySelectorToCodec

then

act reset modifyCodecListByDescriptor : modifyCodecListByDescriptor :=

modifyCodecListByDescriptor \ {ch}
act reset respondBySelectorToCodec : respondBySelectorToCodec :=

respondBySelectorToCodec \ {ch}
end

Event modifyInitiatorPortByDescriptor =̂

refines modifyInitiatorPortByDescriptor

any

ch, p \\ manually
where

grd modifyInitiatorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyInitiatorPortByDescriptor : ch /∈ modifyInitiatorPortByDescriptor
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grd modifyInitiatorPortByDescriptor loop : ch /∈ closeRequest

grd1 : p 6= initiatorPort2 (ch) \\ manually

then

act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor ∪ {ch}
act1 : initiatorPort2 (ch) := p \\ manually

end

Event respondBySelectorToInitiatorPort =̂

extends respondBySelectorToInitiatorPort

any

ch

where

grd respondBySelectorToInitiatorPort seq : ch ∈ modifyInitiatorPortByDescriptor

grd respondBySelectorToInitiatorPort : ch /∈ respondBySelectorToInitiatorPort

then

act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort ∪ {ch}
end

Event modify Loop Reset2 =̂

extends modify Loop Reset2

any

ch

where

grd reset : ch ∈ respondBySelectorToInitiatorPort

then

act reset modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor \ {ch}
act reset respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =̂

refines modifyAcceptorPortByDescriptor

any

ch, p \\ manually
where

grd modifyAcceptorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyAcceptorPortByDescriptor : ch /∈ modifyAcceptorPortByDescriptor

grd modifyAcceptorPortByDescriptor loop : ch /∈ closeRequest

grd1 : p 6= acceptorPort2 (ch) \\ manually

then

act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor ∪ {ch}
act1 : acceptorPort2 (ch) := p \\ manually

end

Event respondBySelectorToAcceptorPort =̂

extends respondBySelectorToAcceptorPort

any

ch

where

grd respondBySelectorToAcceptorPort seq : ch ∈ modifyAcceptorPortByDescriptor

grd respondBySelectorToAcceptorPort : ch /∈ respondBySelectorToAcceptorPort

then

act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort ∪ {ch}
end

Event modify Loop Reset3 =̂



extends modify Loop Reset3

any

ch

where

grd reset : ch ∈ respondBySelectorToAcceptorPort

then

act reset modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor \ {ch}
act reset respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort \ {ch}
end

Event closeRequest =̂

any

ch

where

grd closeRequest seq : ch ∈ selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd closeRequest : ch /∈ closeRequest

then

act closeRequest : closeRequest := closeRequest ∪ {ch}
end

Event closeAck =̂

refines close

any

ch

where

grd closeAck seq : ch ∈ closeRequest

grd closeAck : ch /∈ closeAck

then

act closeAck : closeAck := closeAck ∪ {ch}
end

END

A.5 4th Refinement

A.5.1 Machine: M4

MACHINE M4

REFINES M3

SEES C2

VARIABLES

openWithRealCodecs, openAckWithoutCodecs, selectAndEstablishbyAcceptor, openWithoutCodecs, ope-

nAckWithRealCodecs, selectAndEstablishbyInitiator, modifyCodecBySelector withInitiator,

modifyCodecBySelector withAcceptor, modifyCodecListByDescriptor withInitiator,

modifyCodecListByDescriptor withAcceptor, respondBySelectorToInitiatorCodec, respondBySelectorToAc-

ceptorCodec, modifyInitiatorPortByDescriptor, respondBySelectorToInitiatorPort, modifyAcceptorPort-

ByDescriptor, respondBySelectorToAcceptorPort, closeRequest, closeAck, codec \\ manually, initiator-

Port2 \\ manually, acceptorPort2 \\ manually, codecList2 \\ manually

INVARIANTS

inv modifyCodecBySelector withInitiator seq : modifyCodecBySelector withInitiator ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv modifyCodecBySelector withAcceptor seq : modifyCodecBySelector withAcceptor ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv modifyCodecListByDescriptor withInitiator seq : modifyCodecListByDescriptor withInitiator ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator
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inv modifyCodecListByDescriptor withAcceptor seq : modifyCodecListByDescriptor withAcceptor ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv respondBySelectorToInitiatorCodec seq : respondBySelectorToInitiatorCodec ⊆
modifyCodecListByDescriptor withInitiator ∪ modifyCodecListByDescriptor withAcceptor

inv respondBySelectorToAcceptorCodec seq : respondBySelectorToAcceptorCodec ⊆
modifyCodecListByDescriptor withInitiator ∪ modifyCodecListByDescriptor withAcceptor

inv modifyCodecBySelector xor gluing : partition(modifyCodecBySelector withInitiator ∪
modifyCodecBySelector withAcceptor ,modifyCodecBySelector withInitiator ,

modifyCodecBySelector withAcceptor)

inv modifyCodecListByDescriptor xor gluing : partition(modifyCodecListByDescriptor ,

modifyCodecListByDescriptor withInitiator ,modifyCodecListByDescriptor withAcceptor)

inv respondBySelectorToCodec xor gluing : partition(respondBySelectorToCodec,

respondBySelectorToInitiatorCodec, respondBySelectorToAcceptorCodec)

EVENTS

Initialisation

begin

act openWithRealCodecs : openWithRealCodecs := ∅
act openAckWithoutCodecs : openAckWithoutCodecs := ∅
act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := ∅
act openWithoutCodecs : openWithoutCodecs := ∅
act openAckWithRealCodecs : openAckWithRealCodecs := ∅
act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator := ∅
act modifyCodecBySelector withInitiator : modifyCodecBySelector withInitiator := ∅
act modifyCodecBySelector withAcceptor : modifyCodecBySelector withAcceptor := ∅
act modifyCodecListByDescriptor withInitiator : modifyCodecListByDescriptor withInitiator

:= ∅
act modifyCodecListByDescriptor withAcceptor : modifyCodecListByDescriptor withAcceptor

:= ∅
act respondBySelectorToInitiatorCodec : respondBySelectorToInitiatorCodec := ∅
act respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec := ∅
act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor := ∅
act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort := ∅
act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := ∅
act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := ∅
act closeRequest : closeRequest := ∅
act closeAck : closeAck := ∅
act1 : codec := ∅ \\ manually

act2 : initiatorPort2 := ∅ \\ manually

act3 : acceptorPort2 := ∅ \\ manually

act4 : codecList2 := ∅ \\ manually

end

Event openWithRealCodecs =̂

extends openWithRealCodecs

any

ch

cl manually

p manually

i manually

where

grd openWithRealCodecs : ch /∈ openWithRealCodecs

grd1 : ch /∈ openWithoutCodecs

manually, derived from direction(ch) = AtoI, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl 6= ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1)

manually - WD
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grd7 : initiator(ch) = endpointIp−1(i) \\ manually

grd8 : direction(ch) = AtoI \\ manually

then

act openWithRealCodecs : openWithRealCodecs := openWithRealCodecs ∪ {ch}
act1 : codecList2(ch) := cl \\ manually

act2 : initiatorPort2(ch) := p \\ manually

end

Event openAckWithoutCodecs =̂

extends openAckWithoutCodecs

any

ch

cl manually

p manually

i manually

t manually, to prove (openAckWithoutCodecs/inv5/INV)

where

grd openAckWithoutCodecs seq : ch ∈ openWithRealCodecs

grd openAckWithoutCodecs : ch /∈ openAckWithoutCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl = ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1)

manually - WD

grd6 : acceptor(ch) = endpointIp−1(i) \\ manually

grd7 : t = codecList2(ch)

manually, to prove (openAckWithoutCodecs/inv5/INV)

then

act openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs ∪ {ch}
act1 : acceptorPort2(ch) := p \\ manually

act2 : codecList2(ch) := t

manually, to prove (openAckWithoutCodecs/inv5/INV)

end

Event selectAndEstablishbyAcceptor =̂

extends selectAndEstablishbyAcceptor

any

ch

c manually

where

grd selectAndEstablishbyAcceptor seq : ch ∈ openAckWithoutCodecs

grd selectAndEstablishbyAcceptor : ch /∈ selectAndEstablishbyAcceptor

grd1 : c ∈ codecList2(ch) \\ manually

then

act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=

selectAndEstablishbyAcceptor ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event openWithoutCodecs =̂

extends openWithoutCodecs

any

ch

cl manually

p manually

i manually

where

grd openWithoutCodecs : ch /∈ openWithoutCodecs

grd9 : ch /∈ openWithRealCodecs

manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)
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grd2 : cl ⊆ CODEC \\ manually

grd3 : cl = ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1)

manually - WD

grd7 : initiator(ch) = endpointIp−1(i) \\ manually

grd8 : direction(ch) = ItoA \\ manually

then

act openWithoutCodecs : openWithoutCodecs := openWithoutCodecs ∪ {ch}
act1 : initiatorPort2(ch) := p \\ manually

end

Event openAckWithRealCodecs =̂

extends openAckWithRealCodecs

any

ch

cl manually

p manually

i manually

where

grd openAckWithRealCodecs seq : ch ∈ openWithoutCodecs

grd openAckWithRealCodecs : ch /∈ openAckWithRealCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1)

manually - WD

grd6 : acceptor(ch) = endpointIp−1(i) \\ manually

then

act openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs ∪ {ch}
act1 : codecList2(ch) := cl \\ manually

act2 : acceptorPort2(ch) := p \\ manually

end

Event selectAndEstablishbyInitiator =̂

extends selectAndEstablishbyInitiator

any

ch

c manually

where

grd selectAndEstablishbyInitiator seq : ch ∈ openAckWithRealCodecs

grd selectAndEstablishbyInitiator : ch /∈ selectAndEstablishbyInitiator

grd1 : c ∈ codecList2(ch) \\ manually

then

act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=

selectAndEstablishbyInitiator ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modifyCodecBySelector withInitiator =̂

refines modifyCodecBySelector

any

ch

c manually

where

grd modifyCodecBySelector withInitiator seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecBySelector withInitiator : ch /∈ modifyCodecBySelector withInitiator
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grd modifyCodecBySelector withInitiator xor : ch /∈ modifyCodecBySelector withAcceptor

grd modifyCodecBySelector withInitiator loop : ch /∈ closeRequest

grd1 : c ∈ codecList2 (ch) \\ manually

grd2 : direction(ch) = ItoA \\ manually

then

act modifyCodecBySelector withInitiator : modifyCodecBySelector withInitiator :=

modifyCodecBySelector withInitiator ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modifyCodecBySelector withAcceptor =̂

refines modifyCodecBySelector

any

ch

c manually

where

grd modifyCodecBySelector withAcceptor seq : ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

grd modifyCodecBySelector withAcceptor : ch /∈ modifyCodecBySelector withAcceptor

grd modifyCodecBySelector withAcceptor xor : ch /∈ modifyCodecBySelector withInitiator

grd modifyCodecBySelector withAcceptor loop : ch /∈ closeRequest

grd1 : c ∈ codecList2 (ch) \\ manually

grd2 : direction(ch) = AtoI \\ manually

then

act modifyCodecBySelector withAcceptor : modifyCodecBySelector withAcceptor :=

modifyCodecBySelector withAcceptor ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modify Loop Reset0 =̂

any

ch

where

grd reset : ch ∈ modifyCodecBySelector withInitiator ∪ modifyCodecBySelector withAcceptor

then

act reset modifyCodecListByDescriptor : modifyCodecBySelector withInitiator :=

modifyCodecBySelector withInitiator \ {ch}
act reset modifyCodecBySelector withAcceptor : modifyCodecBySelector withAcceptor :=

modifyCodecBySelector withAcceptor \ {ch}
end

Event modifyCodecListByDescriptor withInitiator =̂

refines modifyCodecListByDescriptor

any

ch

cl

where

grd modifyCodecListByDescriptor withInitiator seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecListByDescriptor withInitiator : ch /∈
modifyCodecListByDescriptor withInitiator

grd modifyCodecListByDescriptor withInitiator xor : ch /∈
modifyCodecListByDescriptor withAcceptor

grd modifyCodecListByDescriptor withInitiator loop : ch /∈ closeRequest

grd1 : cl ⊆ CODEC

grd2 : cl 6= ∅
grd3 : direction(ch) = AtoI

then

act modifyCodecListByDescriptor withInitiator : modifyCodecListByDescriptor withInitiator

:= modifyCodecListByDescriptor withInitiator ∪ {ch}
act1 : codecList2 (ch) := cl
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end

Event modifyCodecListByDescriptor withAcceptor =̂

refines modifyCodecListByDescriptor

any

ch

cl

where

grd modifyCodecListByDescriptor withAcceptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecListByDescriptor withAcceptor : ch /∈
modifyCodecListByDescriptor withAcceptor

grd modifyCodecListByDescriptor withAcceptor xor : ch /∈
modifyCodecListByDescriptor withInitiator

grd modifyCodecListByDescriptor withAcceptor loop : ch /∈ closeRequest

grd1 : cl ⊆ CODEC

grd2 : cl 6= ∅
grd3 : direction(ch) = ItoA

then

act modifyCodecListByDescriptor withAcceptor : modifyCodecListByDescriptor withAcceptor

:= modifyCodecListByDescriptor withAcceptor ∪ {ch}
act1 : codecList2 (ch) := cl

end

Event respondBySelectorToInitiatorCodec =̂

refines respondBySelectorToCodec

any

ch

c

where

grd respondBySelectorToInitiatorCodec seq : ch ∈ modifyCodecListByDescriptor withInitiator

∪ modifyCodecListByDescriptor withAcceptor

grd respondBySelectorToInitiatorCodec : ch /∈ respondBySelectorToInitiatorCodec

grd respondBySelectorToInitiatorCodec xor : ch /∈ respondBySelectorToAcceptorCodec

grd1 : c ∈ codecList2 (ch)

grd2 : direction(ch) = AtoI

grd3 : ch /∈ closeRequest

manually, from M3 to prove GRD

then

act respondBySelectortoInitiatorCodec : respondBySelectorToInitiatorCodec :=

respondBySelectorToInitiatorCodec ∪ {ch}
act1 : codec(ch) := c

end

Event respondBySelectorToAcceptorCodec =̂

refines respondBySelectorToCodec

any

ch

c

where

grd respondBySelectorToAcceptorCodec seq : ch ∈ modifyCodecListByDescriptor withInitiator

∪ modifyCodecListByDescriptor withAcceptor

grd respondBySelectorToAcceptorCodec : ch /∈ respondBySelectorToAcceptorCodec

grd respondBySelectorToAcceptorCodec xor : ch /∈ respondBySelectorToInitiatorCodec

grd1 : c ∈ codecList2 (ch)

grd2 : direction(ch) = ItoA

grd3 : ch /∈ closeRequest

manually, from M3 to prove GRD

then

act respondBySelectortoAcceptorCodec : respondBySelectorToAcceptorCodec :=

respondBySelectorToAcceptorCodec ∪ {ch}



206 Appendix A The Event-B Model of the Media Channel System

act1 : codec(ch) := c

end

Event modify Loop Reset1 =̂

refines modify Loop Reset1

any

ch

where

grd reset : ch ∈ respondBySelectorToInitiatorCodec ∪ respondBySelectorToAcceptorCodec

then

act reset modifyCodecListByDescriptor withInitiator :

modifyCodecListByDescriptor withInitiator := modifyCodecListByDescriptor withInitiator\
{ch}

act reset modifyCodecListByDescriptor withAcceptor :

modifyCodecListByDescriptor withAcceptor := modifyCodecListByDescriptor withAcceptor\
{ch}

act reset respondBySelectorToInitiatorCodec : respondBySelectorToInitiatorCodec :=

respondBySelectorToInitiatorCodec \ {ch}
act reset respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec :=

respondBySelectorToAcceptorCodec \ {ch}
end

Event modifyInitiatorPortByDescriptor =̂

extends modifyInitiatorPortByDescriptor

any

ch

p manually

where

grd modifyInitiatorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyInitiatorPortByDescriptor : ch /∈ modifyInitiatorPortByDescriptor

grd modifyInitiatorPortByDescriptor loop : ch /∈ closeRequest

grd1 : p 6= initiatorPort2(ch) \\ manually

then

act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor ∪ {ch}
act1 : initiatorPort2(ch) := p \\ manually

end

Event respondBySelectorToInitiatorPort =̂

extends respondBySelectorToInitiatorPort

any

ch

where

grd respondBySelectorToInitiatorPort seq : ch ∈ modifyInitiatorPortByDescriptor

grd respondBySelectorToInitiatorPort : ch /∈ respondBySelectorToInitiatorPort

then

act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort ∪ {ch}
end

Event modify Loop Reset2 =̂

extends modify Loop Reset2

any

ch

where

grd reset : ch ∈ respondBySelectorToInitiatorPort

then

act reset modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor \ {ch}
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act reset respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =̂

extends modifyAcceptorPortByDescriptor

any

ch

p manually

where

grd modifyAcceptorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyAcceptorPortByDescriptor : ch /∈ modifyAcceptorPortByDescriptor

grd modifyAcceptorPortByDescriptor loop : ch /∈ closeRequest

grd1 : p 6= acceptorPort2(ch) \\ manually

then

act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor ∪ {ch}
act1 : acceptorPort2(ch) := p \\ manually

end

Event respondBySelectorToAcceptorPort =̂

extends respondBySelectorToAcceptorPort

any

ch

where

grd respondBySelectorToAcceptorPort seq : ch ∈ modifyAcceptorPortByDescriptor

grd respondBySelectorToAcceptorPort : ch /∈ respondBySelectorToAcceptorPort

then

act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort ∪ {ch}
end

Event modify Loop Reset3 =̂

extends modify Loop Reset3

any

ch

where

grd reset : ch ∈ respondBySelectorToAcceptorPort

then

act reset modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor \ {ch}
act reset respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort \ {ch}
end

Event closeRequest =̂

extends closeRequest

any

ch

where

grd closeRequest seq : ch ∈ selectAndEstablishbyAcceptor ∪
selectAndEstablishbyInitiator

grd closeRequest : ch /∈ closeRequest

then

act closeRequest : closeRequest := closeRequest ∪ {ch}
end

Event closeAck =̂

extends closeAck

any



ch

where

grd closeAck seq : ch ∈ closeRequest

grd closeAck : ch /∈ closeAck

then

act closeAck : closeAck := closeAck ∪ {ch}
end

END

A.6 5th Refinement

A.6.1 Machine: M5

MACHINE M5

REFINES M4

SEES C2

VARIABLES

openWithRealCodecs, openAckWithoutCodecs, selectAndEstablishbyAcceptor,

openWithoutCodecs, openAckWithRealCodecs, selectAndEstablishbyInitiator,

modifyCodecBySelector withInitiator, modifyCodecBySelector withAcceptor,

modifyCodecListByDescriptor withInitiator, modifyCodecListByDescriptor withAcceptor,

respondBySelectorToInitiatorCodec, respondBySelectorToAcceptorCodec,

modifyInitiatorPortByDescriptor, respondBySelectorToInitiatorPort,

modifyAcceptorPortByDescriptor, respondBySelectorToAcceptorPort, closeRequestAtoI,

closeRequestItoA, closeAckAtoI, closeAckItoA, codec \\ manually, initiatorPort2 \\ manually,

acceptorPort2 \\ manually, codecList2 \\ manually

INVARIANTS

inv closeRequestAtoI seq : closeRequestAtoI ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv closeRequestItoA seq : closeRequestItoA ⊆
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

inv closeAckAtoI seq : closeAckAtoI ⊆ closeRequestAtoI ∪ closeRequestItoA

inv closeAckItoA seq : closeAckItoA ⊆ closeRequestAtoI ∪ closeRequestItoA

inv closeRequest xor gluing : partition(closeRequest , closeRequestAtoI , closeRequestItoA)

inv closeAck xor gluing : partition(closeAck , closeAckAtoI , closeAckItoA)

EVENTS

Initialisation

begin

act openWithRealCodecs : openWithRealCodecs := ∅
act openAckWithoutCodecs : openAckWithoutCodecs := ∅
act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := ∅
act openWithoutCodecs : openWithoutCodecs := ∅
act openAckWithRealCodecs : openAckWithRealCodecs := ∅
act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator := ∅
act modifyCodecBySelector withInitiator : modifyCodecBySelector withInitiator := ∅
act modifyCodecBySelector withAcceptor : modifyCodecBySelector withAcceptor := ∅
act modifyCodecListByDescriptor withInitiator : modifyCodecListByDescriptor withInitiator

:= ∅
act modifyCodecListByDescriptor withAcceptor : modifyCodecListByDescriptor withAcceptor

:= ∅
act respondBySelectorToInitiatorCodec : respondBySelectorToInitiatorCodec := ∅
act respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec := ∅
act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor := ∅
act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort := ∅
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act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := ∅
act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := ∅
act closeAckAtoI : closeAckAtoI := ∅
act closeAckItoA : closeAckItoA := ∅
act closeRequestAtoI : closeRequestAtoI := ∅
act closeRequestItoA : closeRequestItoA := ∅
act1 : codec := ∅ \\ manually

act2 : initiatorPort2 := ∅ \\ manually

act3 : acceptorPort2 := ∅ \\ manually

act4 : codecList2 := ∅ \\ manually

end

Event openWithRealCodecs =̂

extends openWithRealCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithRealCodecs : ch /∈ openWithRealCodecs

grd1 : ch /∈ openWithoutCodecs

\\ manually, derived from direction(ch) = AtoI, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl 6= ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1(i) \\ manually

grd8 : direction(ch) = AtoI \\ manually

then

act openWithRealCodecs : openWithRealCodecs := openWithRealCodecs ∪ {ch}
act1 : codecList2(ch) := cl \\ manually

act2 : initiatorPort2(ch) := p \\ manually

end

Event openAckWithoutCodecs =̂

extends openAckWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV)
where

grd openAckWithoutCodecs seq : ch ∈ openWithRealCodecs

grd openAckWithoutCodecs : ch /∈ openAckWithoutCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl = ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1(i) \\ manually

grd7 : t = codecList2(ch) \\ manually, to prove (openAckWithoutCodecs/inv5/INV)

then

act openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs ∪ {ch}
act1 : acceptorPort2(ch) := p \\ manually, to prove (openAckWithoutCodecs/inv5/INV)

act2 : codecList2(ch) := t \\ manually, to prove (openAckWithoutCodecs/inv5/INV)

end

Event selectAndEstablishbyAcceptor =̂

extends selectAndEstablishbyAcceptor

any

ch, c \\ manually
where

grd selectAndEstablishbyAcceptor seq : ch ∈ openAckWithoutCodecs

grd selectAndEstablishbyAcceptor : ch /∈ selectAndEstablishbyAcceptor
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grd1 : c ∈ codecList2(ch) \\ manually

then

act selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=

selectAndEstablishbyAcceptor ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event openWithoutCodecs =̂

extends openWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openWithoutCodecs : ch /∈ openWithoutCodecs

grd9 : ch /∈ openWithRealCodecs

manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)

grd2 : cl ⊆ CODEC \\ manually

grd3 : cl = ∅ \\ manually

grd4 : p ∈ PORT \\ manually

grd5 : i ∈ IP \\ manually

grd6 : i ∈ dom(endpointIp−1) \\ manually, WD

grd7 : initiator(ch) = endpointIp−1(i) \\ manually

grd8 : direction(ch) = ItoA \\ manually

then

act openWithoutCodecs : openWithoutCodecs := openWithoutCodecs ∪ {ch}
act1 : initiatorPort2(ch) := p \\ manually

end

Event openAckWithRealCodecs =̂

extends openAckWithRealCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd openAckWithRealCodecs seq : ch ∈ openWithoutCodecs

grd openAckWithRealCodecs : ch /∈ openAckWithRealCodecs

grd1 : cl ⊆ CODEC \\ manually

grd2 : cl 6= ∅ \\ manually

grd3 : p ∈ PORT \\ manually

grd4 : i ∈ IP \\ manually

grd5 : i ∈ dom(endpointIp−1) \\ manually, WD

grd6 : acceptor(ch) = endpointIp−1(i) \\ manually

then

act openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs ∪ {ch}
act1 : codecList2(ch) := cl \\ manually

act2 : acceptorPort2(ch) := p \\ manually

end

Event selectAndEstablishbyInitiator =̂

extends selectAndEstablishbyInitiator

any

ch, c \\ manually
where

grd selectAndEstablishbyInitiator seq : ch ∈ openAckWithRealCodecs

grd selectAndEstablishbyInitiator : ch /∈ selectAndEstablishbyInitiator

grd1 : c ∈ codecList2(ch) \\ manually

then

act selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=

selectAndEstablishbyInitiator ∪ {ch}
act1 : codec(ch) := c \\ manually

end

Event modifyCodecBySelector withInitiator =̂

refines modifyCodecBySelector withInitiator
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any

ch, c \\ manually
where

grd modifyCodecBySelector withInitiator seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecBySelector withInitiator : ch /∈ modifyCodecBySelector withInitiator

grd modifyCodecBySelector withInitiator xor : ch /∈ modifyCodecBySelector withAcceptor

grd modifyCodecBySelector withInitiator loop : ch /∈ closeRequestAtoI ∪ closeRequestItoA

grd1 : c ∈ codecList2 (ch)

grd2 : direction(ch) = ItoA

then

act modifyCodecBySelector withInitiator : modifyCodecBySelector withInitiator :=

modifyCodecBySelector withInitiator ∪ {ch}
act1 : codec(ch) := c

end

Event modifyCodecBySelector withAcceptor =̂

refines modifyCodecBySelector withAcceptor

any

ch, c \\ manually
where

grd modifyCodecBySelector withAcceptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecBySelector withAcceptor : ch /∈ modifyCodecBySelector withAcceptor

grd modifyCodecBySelector withAcceptor xor : ch /∈ modifyCodecBySelector withInitiator

grd modifyCodecBySelector withAcceptor loop : ch /∈ closeRequestAtoI ∪ closeRequestItoA

grd1 : c ∈ codecList2 (ch)

grd2 : direction(ch) = AtoI

then

act modifyCodecBySelector withAcceptor : modifyCodecBySelector withAcceptor :=

modifyCodecBySelector withAcceptor ∪ {ch}
act1 : codec(ch) := c

end

Event modify Loop Reset0 =̂

extends modify Loop Reset0

any

ch

where

grd reset : ch ∈ modifyCodecBySelector withInitiator∪modifyCodecBySelector withAcceptor

then

act reset modifyCodecListByDescriptor : modifyCodecBySelector withInitiator :=

modifyCodecBySelector withInitiator \ {ch}
act reset modifyCodecBySelector withAcceptor : modifyCodecBySelector withAcceptor :=

modifyCodecBySelector withAcceptor \ {ch}
end

Event modifyCodecListByDescriptor withInitiator =̂

refines modifyCodecListByDescriptor withInitiator

any

ch, cl \\ manually
where

grd modifyCodecListByDescriptor withInitiator seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecListByDescriptor withInitiator : ch /∈
modifyCodecListByDescriptor withInitiator

grd modifyCodecListByDescriptor withInitiator xor : ch /∈
modifyCodecListByDescriptor withAcceptor

grd modifyCodecListByDescriptor withInitiator loop : ch /∈
closeRequestAtoI ∪ closeRequestItoA

grd1 : cl ⊆ CODEC
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grd2 : cl 6= ∅
grd3 : direction(ch) = AtoI

then

act modifyCodecListByDescriptor withInitiator : modifyCodecListByDescriptor withInitiator

:= modifyCodecListByDescriptor withInitiator ∪ {ch}
act1 : codecList2 (ch) := cl

end

Event modifyCodecListByDescriptor withAcceptor =̂

refines modifyCodecListByDescriptor withAcceptor

any

ch, cl \\ manually
where

grd modifyCodecListByDescriptor withAcceptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyCodecListByDescriptor withAcceptor : ch /∈
modifyCodecListByDescriptor withAcceptor

grd modifyCodecListByDescriptor withAcceptor xor : ch /∈
modifyCodecListByDescriptor withInitiator

grd modifyCodecListByDescriptor withAcceptor loop : ch /∈
closeRequestAtoI ∪ closeRequestItoA

grd1 : cl ⊆ CODEC

grd2 : cl 6= ∅
grd3 : direction(ch) = ItoA

then

act modifyCodecListByDescriptor withAcceptor : modifyCodecListByDescriptor withAcceptor

:= modifyCodecListByDescriptor withAcceptor ∪ {ch}
act1 : codecList2 (ch) := cl

end

Event respondBySelectorToInitiatorCodec =̂

refines respondBySelectorToInitiatorCodec

any

ch, c \\ manually
where

grd respondBySelectorToInitiatorCodec seq : ch ∈
modifyCodecListByDescriptor withInitiator ∪ modifyCodecListByDescriptor withAcceptor

grd respondBySelectorToInitiatorCodec : ch /∈ respondBySelectorToInitiatorCodec

grd respondBySelectorToInitiatorCodec xor : ch /∈ respondBySelectorToAcceptorCodec

grd1 : c ∈ codecList2 (ch)

grd2 : direction(ch) = AtoI

grd3 : ch /∈ closeRequestAtoI ∪ closeRequestItoA \\ manually, from M3 to prove GRD

then

act respondBySelectortoInitiatorCodec : respondBySelectorToInitiatorCodec :=

respondBySelectorToInitiatorCodec ∪ {ch}
act1 : codec(ch) := c

end

Event respondBySelectorToAcceptorCodec =̂

refines respondBySelectorToAcceptorCodec

any

ch, c \\ manually
where

grd respondBySelectorToAcceptorCodec seq : ch ∈ modifyCodecListByDescriptor withInitiator

∪ modifyCodecListByDescriptor withAcceptor

grd respondBySelectorToAcceptorCodec : ch /∈ respondBySelectorToAcceptorCodec

grd respondBySelectorToAcceptorCodec xor : ch /∈ respondBySelectorToInitiatorCodec

grd1 : c ∈ codecList2 (ch)

grd2 : direction(ch) = ItoA

grd3 : ch /∈ closeRequestAtoI ∪ closeRequestItoA \\ manually, from M3 to prove GRD

then
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act respondBySelectortoAcceptorCodec : respondBySelectorToAcceptorCodec :=

respondBySelectorToAcceptorCodec ∪ {ch}
act1 : codec(ch) := c

end

Event modify Loop Reset1 =̂

extends modify Loop Reset1

any

ch

where

grd reset : ch ∈
respondBySelectorToInitiatorCodec ∪ respondBySelectorToAcceptorCodec

then

act reset modifyCodecListByDescriptor withInitiator :

modifyCodecListByDescriptor withInitiator :=

modifyCodecListByDescriptor withInitiator \ {ch}
act reset modifyCodecListByDescriptor withAcceptor :

modifyCodecListByDescriptor withAcceptor :=

modifyCodecListByDescriptor withAcceptor \ {ch}
act reset respondBySelectorToInitiatorCodec : respondBySelectorToInitiatorCodec

:= respondBySelectorToInitiatorCodec \ {ch}
act reset respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec

:= respondBySelectorToAcceptorCodec \ {ch}
end

Event modifyInitiatorPortByDescriptor =̂

refines modifyInitiatorPortByDescriptor

any

ch, p \\ manually
where

grd modifyInitiatorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyInitiatorPortByDescriptor : ch /∈ modifyInitiatorPortByDescriptor

grd modifyInitiatorPortByDescriptor loop : ch /∈ closeRequestAtoI ∪ closeRequestItoA

grd1 : p 6= initiatorPort2 (ch) \\ manually

then

act modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor ∪ {ch}
act1 : initiatorPort2 (ch) := p \\ manually

end

Event respondBySelectorToInitiatorPort =̂

extends respondBySelectorToInitiatorPort

any

ch

where

grd respondBySelectorToInitiatorPort seq : ch ∈ modifyInitiatorPortByDescriptor

grd respondBySelectorToInitiatorPort : ch /∈ respondBySelectorToInitiatorPort

then

act respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort ∪ {ch}
end

Event modify Loop Reset2 =̂

extends modify Loop Reset2

any

ch

where

grd reset : ch ∈ respondBySelectorToInitiatorPort

then
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act reset modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor \ {ch}
act reset respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=

respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =̂

refines modifyAcceptorPortByDescriptor

any

ch, p \\ manually
where

grd modifyAcceptorPortByDescriptor seq : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd modifyAcceptorPortByDescriptor : ch /∈ modifyAcceptorPortByDescriptor

grd modifyAcceptorPortByDescriptor loop : ch /∈ closeRequestAtoI ∪ closeRequestItoA

grd1 : p 6= acceptorPort2 (ch) \\ manually

then

act modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor ∪ {ch}
act1 : acceptorPort2 (ch) := p \\ manually

end

Event respondBySelectorToAcceptorPort =̂

extends respondBySelectorToAcceptorPort

any

ch

where

grd respondBySelectorToAcceptorPort seq : ch ∈ modifyAcceptorPortByDescriptor

grd respondBySelectorToAcceptorPort : ch /∈ respondBySelectorToAcceptorPort

then

act respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort ∪ {ch}
end

Event modify Loop Reset3 =̂

extends modify Loop Reset3

any

ch

where

grd reset : ch ∈ respondBySelectorToAcceptorPort

then

act reset modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=

modifyAcceptorPortByDescriptor \ {ch}
act reset respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=

respondBySelectorToAcceptorPort \ {ch}
end

Event closeRequestAtoI =̂

refines closeRequest

any

ch

where

grd closeRequestAtoI seq : ch ∈ selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd closeRequestAtoI : ch /∈ closeRequestAtoI

grd closeRequestAtoI xor : ch /∈ closeRequestItoA

grd1 : direction(ch) = AtoI \\ manually

then

act closeRequestAtoI : closeRequestAtoI := closeRequestAtoI ∪ {ch}
end

Event closeRequestItoA =̂

refines closeRequest
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any

ch

where

grd closeRequestItoA sequencing : ch ∈
selectAndEstablishbyAcceptor ∪ selectAndEstablishbyInitiator

grd closeRequestItoA : ch /∈ closeRequestItoA

grd closeRequestItoA xor : ch /∈ closeRequestAtoI

grd1 : direction(ch) = ItoA \\ manually

then

act closeRequestItoA : closeRequestItoA := closeRequestItoA ∪ {ch}
end

Event closeAckAtoI =̂

refines closeAck

any

ch

where

grd closeAckAtoI sequencing : ch ∈ closeRequestAtoI ∪ closeRequestItoA

grd closeAckAtoI : ch /∈ closeAckAtoI

grd closeAckAtoI xor : ch /∈ closeAckItoA

grd1 : direction(ch) = AtoI \\ manually

then

act closeAckAtoI : closeAckAtoI := closeAckAtoI ∪ {ch}
end

Event closeAckItoA =̂

refines closeAck

any

ch

where

grd closeAckItoA sequencing : ch ∈ closeRequestAtoI ∪ closeRequestItoA

grd closeAckItoA : ch /∈ closeAckItoA

grd closeAckItoA xor : ch /∈ closeAckAtoI

grd1 : direction(ch) = ItoA \\ manually

then

act closeAckItoA : closeAckItoA := closeAckItoA ∪ {ch}
end

END





Appendix B

The Event-B Model of the

BepiColombo System

B.1 Abstract Specification

B.1.1 Context: C0

CONTEXT C0

SETS

TC \\ Telecommand, TC Types Set

CONSTANTS

SCI on TC, HK off TC, HK on TC, TC Type, SCI off TC

AXIOMS

axm1 : partition(TC Types Set , {HK on TC}, {HK off TC}, {SCI on TC}, {SCI off TC})
axm2 : TC Type ∈ TC → TC Types Set

END

B.1.2 Machine: M0

MACHINE M0

SEES C0

VARIABLES

ReceiveTC, TC Validation Ok, TCValid GenerateData, TCValid ReplyDataTM, TC Validation Fail

INVARIANTS

inv ReceiveTC : ReceiveTC ⊆ TC

inv TC Validation Ok seq : TC Validation Ok ⊆ ReceiveTC

inv TCValid GenerateData seq : TCValid GenerateData ⊆ TC Validation Ok

inv TCValid ReplyDataTM seq : TCValid ReplyDataTM ⊆ TCValid GenerateData

inv TC Validation Fail seq : TC Validation Fail ⊆ ReceiveTC

inv1 : TC Validation Ok ∩ TC Validation Fail = ∅ \\ manually

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅



act TC Validation Ok : TC Validation Ok := ∅
act TCValid GenerateData : TCValid GenerateData := ∅
act TCValid ReplyDataTM : TCValid ReplyDataTM := ∅
act TC Validation Fail : TC Validation Fail := ∅

end

Event ReceiveTC =̂

any

tc

where

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TC Validation Ok =̂

any

tc

where

grd TC Validation Ok seq : tc ∈ ReceiveTC

grd TC Validation Ok : tc /∈ TC Validation Ok

grd1 : tc /∈ TC Validation Fail \\ manually

then

act TC Validation Ok : TC Validation Ok := TC Validation Ok ∪ {tc}
end

Event TCValid GenerateData =̂

any

tc

where

grd TCValid GenerateData seq : tc ∈ TC Validation Ok

grd TCValid GenerateData : tc /∈ TCValid GenerateData

grd1 : TC Type(tc) ∈ {HK on TC ,SCI on TC} \\ manually

then

act TCValid GenerateData : TCValid GenerateData := TCValid GenerateData ∪ {tc}
end

Event TCValid ReplyDataTM =̂

any

tc

where

grd TCValid ReplyDataTM seq : tc ∈ TCValid GenerateData

grd TCValid ReplyDataTM : tc /∈ TCValid ReplyDataTM

then

act TCValid ReplyDataTM : TCValid ReplyDataTM := TCValid ReplyDataTM ∪ {tc}
end

Event TC Validation Fail =̂

any

tc

where

grd TC Validation Fail seq : tc ∈ ReceiveTC

grd TC Validation Fail : tc /∈ TC Validation Fail

grd1 : tc /∈ TC Validation Ok \\ manually

then

act TC Validation Fail : TC Validation Fail := TC Validation Fail ∪ {tc}
end

END
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B.2 1st Refinement

B.2.1 Machine: M1

MACHINE M1

REFINES M0

SEES C0

VARIABLES

ReceiveTC, TCCheck Ok, TCExecute Ok, TCExecOk ReplyCtrlTM, TCValid GenerateData,

TCValid ReplyDataTM, TCCheck Fail, TCExecute Fail, TCExecFail ReplyCtrlTM,

TCCheckFail ReplyCtrlTM

INVARIANTS

inv TCCheck Ok seq : TCCheck Ok ⊆ ReceiveTC

inv TCExecute Ok seq : TCExecute Ok ⊆ TCCheck Ok

inv TCExecOk ReplyCtrlTM seq : TCExecOk ReplyCtrlTM ⊆ TCExecute Ok

inv TCCheck Fail seq : TCCheck Fail ⊆ ReceiveTC

inv TCExecute Fail seq : TCExecute Fail ⊆ TCCheck Ok

inv TCExecFail ReplyCtrlTM seq : TCExecFail ReplyCtrlTM ⊆ TCExecute Fail

inv TCCheckFail ReplyCtrlTM seq : TCCheckFail ReplyCtrlTM ⊆ TCCheck Fail

inv TCValid GenerateData seq : TCValid GenerateData ⊆ TCExecute Ok \\ weak seq

inv TCExecute Ok gluing : TCExecute Ok = TC Validation Ok

inv gluing : TCExecute Fail ∪ TCCheck Fail = TC Validation Fail

inv1 : TCCheck Ok ∩ TCCheck Fail = ∅ \\ manually

inv2 : TCExecute Ok ∩ TCExecute Fail = ∅ \\ manually

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅
act TCCheck Ok : TCCheck Ok := ∅
act TCExecute Ok : TCExecute Ok := ∅
act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM := ∅
act TCValid GenerateData : TCValid GenerateData := ∅
act TCValid ReplyDataTM : TCValid ReplyDataTM := ∅
act TCCheck Fail : TCCheck Fail := ∅
act TCExecute Fail : TCExecute Fail := ∅
act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM := ∅
act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM := ∅

end

Event ReceiveTC =̂

refines ReceiveTC

any

tc

where

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TCCheck Ok =̂

any

tc

where

grd TCCheck Ok seq : tc ∈ ReceiveTC \\ although in both weak and strong seq

grd TCCheck Ok : tc

/∈ TCCheck Ok
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grd1 : tc /∈ TCCheck Fail \\ manually

then

act TCCheck Ok : TCCheck Ok := TCCheck Ok ∪ {tc}
end

Event TCExecute Ok =̂

refines TC Validation Ok

any

tc

where

grd TCExecute Ok seq : tc ∈ TCCheck Ok

grd TCExecute Ok : tc /∈ TCExecute Ok

grd1 : tc /∈ TCExecute Fail \\ manually

then

act TCExecute Ok : TCExecute Ok := TCExecute Ok ∪ {tc}
end

Event TCExecOk ReplyCtrlTM =̂

any

tc

where

grd TCExecOk ReplyCtrlTM seq : tc ∈ TCExecute Ok

grd TCExecOk ReplyCtrlTM : tc /∈ TCExecOk ReplyCtrlTM

then

act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM := TCExecOk ReplyCtrlTM ∪ {tc}
end

Event TCValid GenerateData =̂

refines TCValid GenerateData

any

tc

where

grd TCValid GenerateData seq : tc ∈ TCExecute Ok

grd TCValid GenerateData : tc /∈ TCValid GenerateData

grd1 : TC Type(tc) ∈ {HK on TC ,SCI on TC} \\ manually

then

act TCValid GenerateData : TCValid GenerateData := TCValid GenerateData ∪ {tc}
end

Event TCValid ReplyDataTM =̂

extends TCValid ReplyDataTM

any

tc

where

grd TCValid ReplyDataTM seq : tc ∈ TCValid GenerateData

grd TCValid ReplyDataTM : tc /∈ TCValid ReplyDataTM

then

act TCValid ReplyDataTM : TCValid ReplyDataTM := TCValid ReplyDataTM ∪ {tc}
end

Event TCExecute Fail =̂

refines TC Validation Fail

any

tc

where

grd TCExecute Fail seq : tc ∈ TCCheck Ok

grd TCExecute Fail : tc /∈ TCExecute Ok

grd1 : tc /∈ TCExecute Fail

then

act TCExecute Fail : TCExecute Fail := TCExecute Fail ∪ {tc}
end



Event TCExecFail ReplyCtrlTM =̂

any

tc

where

grd TCExecFail ReplyCtrlTM seq : tc ∈ TCExecute Fail

grd TCExecFail ReplyCtrlTM : tc /∈ TCExecFail ReplyCtrlTM

then

act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM :=

TCExecFail ReplyCtrlTM ∪ {tc}
end

Event TCCheck Fail =̂

refines TC Validation Fail

any

tc

where

grd TCCheck Fail seq : tc ∈ ReceiveTC

grd TCCheck Fail : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Fail : TCCheck Fail := TCCheck Fail ∪ {tc}
end

Event TCCheckFail ReplyCtrlTM =̂

any

tc

where

grd TCCheckFail ReplyCtrlTM seq : tc ∈ TCCheck Fail

grd TCCheckFail ReplyCtrlTM : tc /∈ TCCheckFail ReplyCtrlTM

then

act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM :=

TCCheckFail ReplyCtrlTM ∪ {tc}
end

END

B.3 2nd Refinement

B.3.1 Context: C1

CONTEXT C1

EXTENDS C0

SETS

PIDS

CONSTANTS

PID, csw, sixsp, sixsx, mixst, mixsc

AXIOMS

axm1 : partition(PIDS , {csw}, {mixsc}, {mixst}, {sixsp}, {sixsx})
axm2 : PID ∈ TC → PIDS

END
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B.3.2 Machine: M2

MACHINE M2

REFINES M1

SEES C1

VARIABLES

ReceiveTC, TCCheck Ok, TCCore Execute Ok, TCDevice Execute Ok, TCCheck Fail,

TCCore Execute Fail, TCDevice Execute Fail, TCExecOk ReplyCtrlTM, TCValid ReplyDataTM,

TCExecFail ReplyCtrlTM, TCCheckFail ReplyCtrlTM, TCValid GenerateData

INVARIANTS

inv TCCore Execute Ok seq : TCCore Execute Ok ⊆ TCCheck Ok

inv TCDevice Execute Ok seq : TCDevice Execute Ok ⊆ TCCheck Ok

inv TCExecOk ReplyCtrlTM seq : TCExecOk ReplyCtrlTM ⊆
TCCore Execute Ok ∪ TCDevice Execute Ok

inv TCCore Execute Fail seq : TCCore Execute Fail ⊆ TCCheck Ok

inv TCDevice Execute Fail seq : TCDevice Execute Fail ⊆ TCCheck Ok

inv TCExecFail ReplyCtrlTM seq : TCExecFail ReplyCtrlTM ⊆
TCCore Execute Fail ∪ TCDevice Execute Fail

inv TCValid GenerateData seq : TCValid GenerateData ⊆
TCCore Execute Ok ∪ TCDevice Execute Ok \\ weak seq

inv xor gluing1 : partition(TCExecute Ok ,TCCore Execute Ok ,TCDevice Execute Ok)

inv xor gluing2 : partition(TCExecute Fail ,TCCore Execute Fail ,TCDevice Execute Fail)

inv1 : partition(TCCore Execute Ok ∪ TCCore Execute Fail ∪ TCDevice Execute Ok

∪ TCDevice Execute Fail ,TCCore Execute Ok ,TCCore Execute Fail ,

TCDevice Execute Ok ,TCDevice Execute Fail) \\ manually

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅
act TCCheck Ok : TCCheck Ok := ∅
act TCCore Execute Ok : TCCore Execute Ok := ∅
act TCDevice Execute Ok : TCDevice Execute Ok := ∅
act TCCheck Fail : TCCheck Fail := ∅
act TCCore Execute Fail : TCCore Execute Fail := ∅
act TCDevice Execute Fail : TCDevice Execute Fail := ∅
act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM := ∅
act TCValid GenerateData : TCValid GenerateData := ∅
act TCValid ReplyDataTM : TCValid ReplyDataTM := ∅
act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM := ∅
act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM := ∅

end

Event ReceiveTC =̂

refines ReceiveTC

any

tc

where

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TCCheck Ok =̂

refines TCCheck Ok

any

tc

where
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grd TCCheck Ok seq : tc ∈ ReceiveTC

grd TCCheck Ok : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Ok : TCCheck Ok := TCCheck Ok ∪ {tc}
end

Event TCCheck Fail =̂

refines TCCheck Fail

any

tc

where

grd TCCheck Fail seq : tc ∈ ReceiveTC

grd TCCheck Fail : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Fail : TCCheck Fail := TCCheck Fail ∪ {tc}
end

Event TCCore Execute Ok =̂

refines TCExecute Ok

any

tc

where

grd TCCore Execute Ok seq : tc ∈ TCCheck Ok

grd TCCore Execute Ok : tc /∈ TCCore Execute Ok

grd TCCore Execute Ok xor : tc /∈ TCDevice Execute Ok

grd1 : tc /∈ TCCore Execute Fail \\ manually

grd2 : tc /∈ TCDevice Execute Fail \\ manually

grd3 : PID(tc) = csw \\ manually

then

act TCCore Execute Ok : TCCore Execute Ok := TCCore Execute Ok ∪ {tc}
end

Event TCDevice Execute Ok =̂

refines TCExecute Ok

any

tc

where

grd TCDevice Execute Ok seq : tc ∈ TCCheck Ok

grd TCDevice Execute Ok : tc /∈ TCDevice Execute Ok

grd TCDevice Execute Ok xor : tc /∈ TCCore Execute Ok

grd1 : tc /∈ TCDevice Execute Fail \\ manually

grd2 : tc /∈ TCCore Execute Fail \\ manually

grd3 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx} \\ manually

then

act TCDevice Execute Ok : TCDevice Execute Ok := TCDevice Execute Ok ∪ {tc}
end

Event TCCore Execute Fail =̂

refines TCExecute Fail

any

tc

where

grd TCCore Execute Fail seq : tc ∈ TCCheck Ok

grd TCCore Execute Fail : tc /∈ TCCore Execute Fail

grd TCCore Execute Fail xor : tc /∈ TCDevice Execute Fail

grd1 : tc /∈ TCCore Execute Ok \\ manually

grd2 : tc /∈ TCDevice Execute Ok \\ manually

grd3 : PID(tc) = csw \\ manually

then
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act TCCore Execute Fail : TCCore Execute Fail := TCCore Execute Fail ∪ {tc}
end

Event TCDevice Execute Fail =̂

refines TCExecute Fail

any

tc

where

grd TCDevice Execute Fail seq : tc ∈ TCCheck Ok

grd TCDevice Execute Fail : tc /∈ TCDevice Execute Fail

grd TCDevice Execute Fail xor : tc /∈ TCCore Execute Fail

grd1 : tc /∈ TCDevice Execute Ok \\ manually

grd2 : tc /∈ TCCore Execute Ok \\ manually

grd3 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx} \\ manually

then

act TCDevice Execute Fail : TCDevice Execute Fail := TCDevice Execute Fail ∪ {tc}
end

Event TCValid GenerateData =̂

refines TCValid GenerateData

any

tc

where

grd TCValid GenerateData seq : tc ∈ TCCore Execute Ok ∪ TCDevice Execute Ok

grd TCValid GenerateData : tc /∈ TCValid GenerateData

grd1 : TC Type(tc) ∈ {HK on TC ,SCI on TC} \\ manually

grd2 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx} \\ manually, it limits to tc : TCDevice Execute Ok

then

act TCValid GenerateData : TCValid GenerateData := TCValid GenerateData ∪ {tc}
end

Event TCValid ReplyDataTM =̂

extends TCValid ReplyDataTM

any

tc

where

grd TCValid ReplyDataTM seq : tc ∈ TCValid GenerateData

grd TCValid ReplyDataTM : tc /∈ TCValid ReplyDataTM

then

act TCValid ReplyDataTM : TCValid ReplyDataTM := TCValid ReplyDataTM ∪ {tc}
end

Event TCExecFail ReplyCtrlTM =̂

refines TCExecFail ReplyCtrlTM

any

tc

where

grd TCExecFail ReplyCtrlTM seq : tc ∈ TCCore Execute Fail ∪ TCDevice Execute Fail

grd TCExecFail ReplyCtrlTM : tc /∈ TCExecFail ReplyCtrlTM

then

act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM := TCExecFail ReplyCtrlTM ∪ {tc}
end

Event TCCheckFail ReplyCtrlTM =̂

refines TCCheckFail ReplyCtrlTM

any

tc

where

grd TCCheckFail ReplyCtrlTM seq : tc ∈ TCCheck Fail

grd TCCheckFail ReplyCtrlTM : tc /∈ TCCheckFail ReplyCtrlTM

then



act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM :=

TCCheckFail ReplyCtrlTM ∪ {tc}
end

Event TCExecOk ReplyCtrlTM =̂

refines TCExecOk ReplyCtrlTM

any

tc

where

grd TCExecOk ReplyCtrlTM seq : tc ∈ TCCore Execute Ok ∪ TCDevice Execute Ok

grd TCExecOk ReplyCtrlTM : tc /∈ TCExecOk ReplyCtrlTM

then

act1 : TCExecOk ReplyCtrlTM := TCExecOk ReplyCtrlTM ∪ {tc}
end

END

B.4 3rd Refinement

B.4.1 Context: C2

CONTEXT C2

EXTENDS C1

SETS

DATA

END

B.4.2 Machine: M3

MACHINE M3

REFINES M2

SEES C2

VARIABLES

ReceiveTC, TCCheck Ok, TCCore Execute Ok, SendTC Core to Device,

CheckTC in Device Ok, SendOkTC Device to Core, TCCheck Fail, TCCore Execute Fail,

CheckTC in Device Fail, SendFailTC Device to Core, TC GenerateData in Device,

TC TransferData Device to Core, TCValid ReplyDataTM, TCExecOk ReplyCtrlTM,

TCExecFail ReplyCtrlTM, TCCheckFail ReplyCtrlTM

INVARIANTS

inv SendTC Core to Device seq : SendTC Core to Device ⊆ TCCheck Ok

inv CheckTC in Device Ok seq : CheckTC in Device Ok ⊆ SendTC Core to Device

inv CheckTC in Device Fail : CheckTC in Device Fail ⊆ SendTC Core to Device

inv SendOkTC Device to Core seq : SendOkTC Device to Core ⊆ CheckTC in Device Ok

inv SendFailTC Device to Core seq : SendFailTC Device to Core ⊆
CheckTC in Device Fail

inv TCExecOk ReplyCtrlTM seq : TCExecOk ReplyCtrlTM ⊆
TCCore Execute Ok ∪ SendOkTC Device to Core

linv TCExec ReplyCtrlTM seq : TCExecFail ReplyCtrlTM ⊆
TCCore Execute Fail ∪ SendFailTC Device to Core

inv TC GenerateData in Device : TC GenerateData in Device ⊆ TC ×DATA

inv TC GenerateData in Device seq : dom(TC GenerateData in Device) ⊆
TCCore Execute Ok ∪ SendOkTC Device to Core \\ weak seq

inv TC TransferData Device to Core seq : TC TransferData Device to Core ⊆
dom(TC GenerateData in Device)
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inv xor1 : partition(TCCore Execute Ok ∪ CheckTC in Device Ok ,

TCCore Execute Ok ,CheckTC in Device Ok)

inv xor2 : partition(TCCore Execute Fail ∪ CheckTC in Device Fail ,

TCCore Execute Fail ,CheckTC in Device Fail)

inv CheckTC in Device Ok gluing : CheckTC in Device Ok = TCDevice Execute Ok

inv CheckTC in Device Fail gluing : CheckTC in Device Fail = TCDevice Execute Fail

inv TC TransferData Device to Core gluing : TC TransferData Device to Core =

TCValid GenerateData

inv2 : partition(TCCore Execute Ok ∪ TCCore Execute Fail ∪ SendTC Core to Device,

TCCore Execute Ok ,TCCore Execute Fail ,SendTC Core to Device) \\ manually

inv5 : CheckTC in Device Ok ∩ CheckTC in Device Fail = ∅ \\ manually

inv6 : ∀ tc ·(tc ∈ dom(TC GenerateData in Device)⇒
TC Type(tc) ∈ {HK on TC ,SCI on TC})
\\ manually, proving (TransferData Device to Core/GRD)

inv7 : ∀ tc ·(tc ∈ dom(TC GenerateData in Device)⇒ PID(tc) ∈ {mixsc,mixst , sixsp, sixsx})
\\ manually, proving (TransferData Device to Core/GRD)

inv8 : ∀ tc ·(tc ∈ SendTC Core to Device⇒ PID(tc) ∈ {mixsc,mixst , sixsp, sixsx})
\\ manually, proving (CheckTC in Device Fail/GRD)

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅
act TCCheck Ok : TCCheck Ok := ∅
act TCCore Execute Ok : TCCore Execute Ok := ∅
act SendTC Core to Device : SendTC Core to Device := ∅
act CheckTC in Device Ok : CheckTC in Device Ok := ∅
act SendOkTC Device to Core : SendOkTC Device to Core := ∅
act TCCheck Fail : TCCheck Fail := ∅
act TCCore Execute Fail : TCCore Execute Fail := ∅
act CheckTC in Device Fail : CheckTC in Device Fail := ∅
act SendFailTC Device to Core : SendFailTC Device to Core := ∅
act TC GenerateData in Device : TC GenerateData in Device := ∅
act TC TransferData Device to Core : TC TransferData Device to Core := ∅
act TCValid ReplyDataTM : TCValid ReplyDataTM := ∅
act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM := ∅
act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM := ∅
act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM := ∅

end

Event ReceiveTC =̂

extends ReceiveTC

any

tc

where

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TCCheck Ok =̂

extends TCCheck Ok

any

tc

where

grd TCCheck Ok seq : tc ∈ ReceiveTC

grd TCCheck Ok : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then
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act TCCheck Ok : TCCheck Ok := TCCheck Ok ∪ {tc}
end

Event TCCore Execute Ok =̂

refines TCCore Execute Ok

any

tc

where

grd TCCore Execute Ok seq : tc ∈ TCCheck Ok

grd TCCore Execute Ok : tc /∈ TCCore Execute Ok

grd TCCore Execute Ok xor : tc /∈ SendTC Core to Device

grd2 : tc /∈ TCCore Execute Fail \\ manually

grd3 : PID(tc) = csw \\ manually

then

act TCCore Execute Ok : TCCore Execute Ok := TCCore Execute Ok ∪ {tc}
end

Event SendTC Core to Device =̂

any

tc

where

grd SendTC Core to Device seq : tc ∈ TCCheck Ok

grd SendTC Core to Device : tc /∈ SendTC Core to Device

grd SendTC Core to Device xor1 : tc /∈ TCCore Execute Ok

grd SendTC Core to Device xor2 : tc /∈ TCCore Execute Fail

grd1 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx}
then

act SendTC Core to Device : SendTC Core to Device := SendTC Core to Device ∪ {tc}
end

Event CheckTC in Device Ok =̂

refines TCDevice Execute Ok

any

tc

where

grd CheckTC in Device Ok seq : tc ∈ SendTC Core to Device

grd CheckTC in Device Ok : tc /∈ CheckTC in Device Ok

grd1 : tc /∈ CheckTC in Device Fail

then

act CheckTC in Device Ok : CheckTC in Device Ok :=

CheckTC in Device Ok ∪ {tc}
end

Event SendOkTC Device to Core =̂

any

tc

where

grd SendOkTC Device to Core seq : tc ∈ CheckTC in Device Ok

grd SendOkTC Device to Core : tc /∈ SendOkTC Device to Core

then

act SendOkTC Device to Core : SendOkTC Device to Core :=

SendOkTC Device to Core ∪ {tc}
end

Event TCCore Execute Fail =̂

refines TCCore Execute Fail

any

tc

where

grd TCCore Execute Fail seq : tc ∈ TCCheck Ok

grd TCCore Execute Fail : tc /∈ TCCore Execute Fail

grd TCCore Execute Fail xor : tc /∈ SendTC Core to Device
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grd2 : tc /∈ TCCore Execute Ok \\ manually

grd3 : PID(tc) = csw \\ manually

then

act TCCore Execute Fail : TCCore Execute Fail := TCCore Execute Fail ∪ {tc}
end

Event CheckTC in Device Fail =̂

refines TCDevice Execute Fail

any

tc

where

grd CheckTC in Device Fail seq : tc ∈ SendTC Core to Device

grd CheckTC in Device Fail : tc /∈ CheckTC in Device Fail

grd1 : tc /∈ CheckTC in Device Ok

then

act CheckTC in Device Fail : CheckTC in Device Fail :=

CheckTC in Device Fail ∪ {tc}
end

Event SendFailTC Device to Core =̂

any

tc

where

grd SendFailTC Device to Core seq : tc ∈ CheckTC in Device Fail

grd SendFailTC Device to Core : tc /∈ SendFailTC Device to Core

then

act SendFailTC Device to Core : SendFailTC Device to Core :=

SendFailTC Device to Core ∪ {tc}
end

Event TCCheck Fail =̂

extends TCCheck Fail

any

tc

where

grd TCCheck Fail seq : tc ∈ ReceiveTC

grd TCCheck Fail : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Fail : TCCheck Fail := TCCheck Fail ∪ {tc}
end

Event TC GenerateData in Device =̂

any

tc

d

where

grd TC GenerateData in Device seq : tc ∈
TCCore Execute Ok ∪ SendOkTC Device to Core

grd TC GenerateData in Device : tc 7→ d /∈ TC GenerateData in Device

grd1 : TC Type(tc) ∈ {HK on TC ,SCI on TC} \\ manually

grd2 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx}
manually, it limits to tc : SendOkTC Device to Core

then

act TC GenerateData in Device : TC GenerateData in Device :=

TC GenerateData in Device ∪ {tc 7→ d}
end

Event TC TransferData Device to Core =̂

refines TCValid GenerateData

any

tc



data

where

grd TC TransferData Device to Core seq : tc ∈ dom(TC GenerateData in Device)

grd TC TransferData Device to Core : tc /∈ TC TransferData Device to Core

grd1 : data = TC GenerateData in Device[{tc}] \\ manually

then

act TC TransferData Device to Core : TC TransferData Device to Core :=

TC TransferData Device to Core ∪ {tc}
end

Event TCValid ReplyDataTM =̂

refines TCValid ReplyDataTM

any

tc

where

grd TCValid ReplyDataTM seq : tc ∈ TC TransferData Device to Core

grd TCValid ReplyDataTM : tc /∈ TCValid ReplyDataTM

then

act TCValid ReplyDataTM : TCValid ReplyDataTM := TCValid ReplyDataTM ∪ {tc}
end

Event TCExecOk ReplyCtrlTM =̂

refines TCExecOk ReplyCtrlTM

any

tc

where

grd TCExecOk ReplyCtrlTM seq : tc ∈
TCCore Execute Ok ∪ SendOkTC Device to Core \\ weak seq

grd TCExecOk ReplyCtrlTM : tc /∈ TCExecOk ReplyCtrlTM

then

act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM :=

TCExecOk ReplyCtrlTM ∪ {tc}
end

Event TCExecFail ReplyCtrlTM =̂

refines TCExecFail ReplyCtrlTM

any

tc

where

grd TCExecFail ReplyCtrlTM seq : tc ∈
TCCore Execute Fail ∪ SendFailTC Device to Core

grd TCExecFail ReplyCtrlTM : tc /∈ TCExecFail ReplyCtrlTM

then

act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM :=

TCExecFail ReplyCtrlTM ∪ {tc}
end

Event TCCheckFail ReplyCtrlTM =̂

extends TCCheckFail ReplyCtrlTM

any

tc

where

grd TCCheckFail ReplyCtrlTM seq : tc ∈ TCCheck Fail

grd TCCheckFail ReplyCtrlTM : tc /∈ TCCheckFail ReplyCtrlTM

then

act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM :=

TCCheckFail ReplyCtrlTM ∪ {tc}
end

END



B.5 Core Sub-model

B.5.1 Context: Context M3

CONTEXT Context M3

SETS

TC, PIDS, TC Types Set

CONSTANTS

PID, csw, mixsc, mixst, sixsp, sixsx, TC Type, HK on TC, SCI on TC

AXIOMS

typing PID : PID ∈ P(TC × PIDS)

typing csw : csw ∈ PIDS

typing mixsc : mixsc ∈ PIDS

typing mixst : mixst ∈ PIDS

typing sixsp : sixsp ∈ PIDS

typing sixsx : sixsx ∈ PIDS

typing TC Type : TC Type ∈ P(TC × TC Types Set)

typing HK on TC : HK on TC ∈ TC Types Set

typing SCI on TC : SCI on TC ∈ TC Types Set

C0 axm2 : TC Type ∈ TC → TC Types Set

C1 axm1 : partition(PIDS , {csw}, {mixsc}, {mixst}, {sixsp}, {sixsx})
C1 axm2 : PID ∈ TC → PIDS

END

B.5.2 Machine: M3

MACHINE M3

SEES Context M3

VARIABLES

ReceiveTC, TCCheck Ok, TCCore Execute Ok, SendOkTC Device to Core, TCCheck Fail,

TCCore Execute Fail, SendFailTC Device to Core, TC TransferData Device to Core,

TCValid ReplyDataTM, TCExecOk ReplyCtrlTM, TCExecFail ReplyCtrlTM,

TCCheckFail ReplyCtrlTM

INVARIANTS

typing TCCheck Fail : TCCheck Fail ∈ P(TC )

typing TCCheck Ok : TCCheck Ok ∈ P(TC )

typing TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM ∈ P(TC )

typing ReceiveTC : ReceiveTC ∈ P(TC )

typing TCValid ReplyDataTM : TCValid ReplyDataTM ∈ P(TC )

typing TCCore Execute Ok : TCCore Execute Ok ∈ P(TC )

typing SendFailTC Device to Core : SendFailTC Device to Core ∈ P(TC )

typing TCCore Execute Fail : TCCore Execute Fail ∈ P(TC )

typing TC TransferData Device to Core : TC TransferData Device to Core ∈ P(TC )

typing SendOkTC Device to Core : SendOkTC Device to Core ∈ P(TC )

typing TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM ∈ P(TC )

typing TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM ∈ P(TC )

M0 inv ReceiveTC : ReceiveTC ⊆ TC

M1 inv TCCheck Ok seq : TCCheck Ok ⊆ ReceiveTC

M1 inv TCCheck Fail seq : TCCheck Fail ⊆ ReceiveTC

M1 inv TCCheckFail ReplyCtrlTM seq : TCCheckFail ReplyCtrlTM ⊆ TCCheck Fail

M1 inv1 : TCCheck Ok ∩ TCCheck Fail = ∅
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M2 inv TCCore Execute Ok sequencing : TCCore Execute Ok ⊆ TCCheck Ok

M2 inv TCCore Execute Fail sequencing : TCCore Execute Fail ⊆ TCCheck Ok

M3 inv TCExecOk ReplyCtrlTM seq : TCExecOk ReplyCtrlTM ⊆
TCCore Execute Ok ∪ SendOkTC Device to Core

M3 linv TCExec ReplyCtrlTM seq : TCExecFail ReplyCtrlTM ⊆
TCCore Execute Fail ∪ SendFailTC Device to Core

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅
act TCCheck Ok : TCCheck Ok := ∅
act TCCore Execute Ok : TCCore Execute Ok := ∅
act SendOkTC Device to Core : SendOkTC Device to Core := ∅
act TCCheck Fail : TCCheck Fail := ∅
act TCCore Execute Fail : TCCore Execute Fail := ∅
act SendFailTC Device to Core : SendFailTC Device to Core := ∅
act TC TransferData Device to Core : TC TransferData Device to Core := ∅
act TCValid ReplyDataTM : TCValid ReplyDataTM := ∅
act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM := ∅
act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM := ∅
act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM := ∅

end

Event ReceiveTC =̂

any

tc

where

typing tc : tc ∈ TC

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TCCheck Ok =̂

any

tc

where

typing tc : tc ∈ TC

grd TCCheck Ok seq : tc ∈ ReceiveTC

grd TCCheck Ok : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Ok : TCCheck Ok := TCCheck Ok ∪ {tc}
end

Event TCCore Execute Ok =̂

any

tc

where

typing tc : tc ∈ TC

grd TCCore Execute Ok seq : tc ∈ TCCheck Ok

grd TCCore Execute Ok : tc /∈ TCCore Execute Ok

grd2 : tc /∈ TCCore Execute Fail

grd3 : PID(tc) = csw

then

act TCCore Execute Ok : TCCore Execute Ok := TCCore Execute Ok ∪ {tc}
end

Event SendTC Core to Device =̂

any

tc
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where

typing tc : tc ∈ TC

grd SendTC Core to Device seq : tc ∈ TCCheck Ok

grd SendTC Core to Device xor1 : tc /∈ TCCore Execute Ok

grd SendTC Core to Device xor2 : tc /∈ TCCore Execute Fail

grd1 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx}
then

skip

end

Event SendOkTC Device to Core =̂

any

tc

where

typing tc : tc ∈ TC

grd SendOkTC Device to Core : tc /∈ SendOkTC Device to Core

then

act SendOkTC Device to Core : SendOkTC Device to Core :=

SendOkTC Device to Core ∪ {tc}
end

Event TCCore Execute Fail =̂

any

tc

where

typing tc : tc ∈ TC

grd TCCore Execute Fail seq : tc ∈ TCCheck Ok

grd TCCore Execute Fail : tc /∈ TCCore Execute Fail

grd2 : tc /∈ TCCore Execute Ok

grd3 : PID(tc) = csw

then

act TCCore Execute Fail : TCCore Execute Fail := TCCore Execute Fail ∪ {tc}
end

Event SendFailTC Device to Core =̂

any

tc

where

typing tc : tc ∈ TC

grd SendFailTC Device to Core : tc /∈ SendFailTC Device to Core

then

act SendFailTC Device to Core : SendFailTC Device to Core :=

SendFailTC Device to Core ∪ {tc}
end

Event TCCheck Fail =̂

any

tc

where

typing tc : tc ∈ TC

grd TCCheck Fail seq : tc ∈ ReceiveTC

grd TCCheck Fail : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Fail : TCCheck Fail := TCCheck Fail ∪ {tc}
end

Event TC GenerateData in Device =̂

any

tc

where

typing tc : tc ∈ TC
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grd TC GenerateData in Device seq : tc ∈ TCCore Execute Ok ∪ SendOkTC Device to Core

grd1 : TC Type(tc) ∈ {HK on TC ,SCI on TC}
grd2 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx}

then

skip

end

Event TC TransferData Device to Core =̂

any

tc

where

typing tc : tc ∈ TC

grd TC TransferData Device to Core : tc /∈ TC TransferData Device to Core

then

act TC TransferData Device to Core : TC TransferData Device to Core :=

TC TransferData Device to Core ∪ {tc}
end

Event TCValid ReplyDataTM =̂

any

tc

where

typing tc : tc ∈ TC

grd TCValid ReplyDataTM seq : tc ∈ TC TransferData Device to Core

grd TCValid ReplyDataTM : tc /∈ TCValid ReplyDataTM

then

act TCValid ReplyDataTM : TCValid ReplyDataTM := TCValid ReplyDataTM ∪ {tc}
end

Event TCExecOk ReplyCtrlTM =̂

any

tc

where

typing tc : tc ∈ TC

grd TCExecOk ReplyCtrlTM seq : tc ∈
TCCore Execute Ok ∪ SendOkTC Device to Core

grd TCExecOk ReplyCtrlTM : tc /∈ TCExecOk ReplyCtrlTM

then

act TCExecOk ReplyCtrlTM : TCExecOk ReplyCtrlTM :=

TCExecOk ReplyCtrlTM ∪ {tc}
end

Event TCExecFail ReplyCtrlTM =̂

any

tc

where

typing tc : tc ∈ TC

grd TCExecFail ReplyCtrlTM seq : tc ∈
TCCore Execute Fail ∪ SendFailTC Device to Core

grd TCExecFail ReplyCtrlTM : tc /∈ TCExecFail ReplyCtrlTM

then

act TCExecFail ReplyCtrlTM : TCExecFail ReplyCtrlTM :=

TCExecFail ReplyCtrlTM ∪ {tc}
end

Event TCCheckFail ReplyCtrlTM =̂

any

tc

where

typing tc : tc ∈ TC

grd TCCheckFail ReplyCtrlTM seq : tc ∈ TCCheck Fail

grd TCCheckFail ReplyCtrlTM : tc /∈ TCCheckFail ReplyCtrlTM



then

act TCCheckFail ReplyCtrlTM : TCCheckFail ReplyCtrlTM :=

TCCheckFail ReplyCtrlTM ∪ {tc}
end

END

B.5.3 1st Refinement

B.5.3.1 Context: Context M4

CONTEXT Context M4

EXTENDS Context M3

SETS

TM

END

B.5.3.2 Machine: M4

MACHINE M4

REFINES M3

SEES Context M4

VARIABLES

ReceiveTC, TCCheck Ok, TCCore Execute Ok, SendOkTC Device to Core, TCCheck Fail,

TCCore Execute Fail, SendFailTC Device to Core, TC TransferData Device to Core,

TCValid ProcessCtrlTM, TCValid CompleteCtrlTM, TCExecOk ProcessCtrlTM, TCExecOk CompleteCtrlTM,

TCExecFail ProcessCtrlTM, TCExecFail CompleteCtrlTM, TCCheckFail ProcessCtrlTM,

TCCheckFail CompleteCtrlTM

INVARIANTS

inv TCValid ProcessCtrlTM : TCValid ProcessCtrlTM ⊆ TC × TM

inv TCValid ProcessCtrlTM seq : dom(TCValid ProcessCtrlTM ) ⊆
TC TransferData Device to Core

inv TCValid CompleteCtrlTM seq : TCValid CompleteCtrlTM ⊆
dom(TCValid ProcessCtrlTM )

inv TCExecOk ProcessCtrlTM : TCExecOk ProcessCtrlTM ⊆ TC × TM

inv TCExecOk ProcessCtrlTM seq : dom(TCExecOk ProcessCtrlTM ) ⊆
TCCore Execute Ok ∪ SendOkTC Device to Core

inv1 : ∀ tc ·finite(TCExecOk ProcessCtrlTM [{tc}])
manually, to prove (inv TCExecOk ProcessCtrlTM one/WD)

inv TCExecOk ProcessCtrlTM one : ∀ tc ·card(TCExecOk ProcessCtrlTM [{tc}]) ≤ 1

inv TCExecOk CompleteCtrlTM seq : TCExecOk CompleteCtrlTM ⊆ dom(TCExecOk ProcessCtrlTM )

inv TCExecFail ProcessCtrlTM : TCExecFail ProcessCtrlTM ⊆ TC × TM

inv TCExecFail ProcessCtrlTM seq : dom(TCExecFail ProcessCtrlTM ) ⊆
TCCore Execute Fail ∪ SendFailTC Device to Core

inv2 : ∀ tc ·finite(TCExecFail ProcessCtrlTM [{tc}]) \\ manually

inv TCExecFail ProcessCtrlTM one : ∀ tc ·card(TCExecFail ProcessCtrlTM [{tc}]) ≤ 1

inv TCExecFail CompleteCtrlTM seq : TCExecFail CompleteCtrlTM ⊆
dom(TCExecFail ProcessCtrlTM )

inv TCCheckFail ProcessCtrlTM : TCCheckFail ProcessCtrlTM ⊆ TC × TM

inv TCCheckFail ProcessCtrlTM seq : dom(TCCheckFail ProcessCtrlTM ) ⊆ TCCheck Fail

inv3 : ∀ tc ·finite(TCCheckFail ProcessCtrlTM [{tc}]) \\ manually

inv TCCheckFail ProcessCtrlTM one : ∀ tc ·card(TCCheckFail ProcessCtrlTM [{tc}]) ≤ 1
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inv TCCheckFail CompleteCtrlTM seq : TCCheckFail CompleteCtrlTM ⊆
dom(TCCheckFail ProcessCtrlTM )

inv TCValid CompleteCtrlTM gluing : TCValid CompleteCtrlTM = TCValid ReplyDataTM

inv TCExecOk CompleteCtrlTM gluing : TCExecOk CompleteCtrlTM = TCExecOk ReplyCtrlTM

inv TCExecFail CompleteCtrlTM gluing : TCExecFail CompleteCtrlTM =

TCExecFail ReplyCtrlTM

inv TCCheckFail CompleteCtrlTM gluing : TCCheckFail CompleteCtrlTM =

TCCheckFail ReplyCtrlTM

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅
act TCCheck Ok : TCCheck Ok := ∅
act TCCore Execute Ok : TCCore Execute Ok := ∅
act SendOkTC Device to Core : SendOkTC Device to Core := ∅
act TCCheck Fail : TCCheck Fail := ∅
act TCCore Execute Fail : TCCore Execute Fail := ∅
act SendFailTC Device to Core : SendFailTC Device to Core := ∅
act TC TransferData Device to Core : TC TransferData Device to Core := ∅
act TCValid ProcessCtrlTM : TCValid ProcessCtrlTM := ∅
act TCValid CompleteCtrlTM : TCValid CompleteCtrlTM := ∅
act TCExecOk ProcessCtrlTM : TCExecOk ProcessCtrlTM := ∅
act TCExecOk CompleteCtrlTM : TCExecOk CompleteCtrlTM := ∅
act TCExecFail ProcessCtrlTM : TCExecFail ProcessCtrlTM := ∅
act TCExecFail CompleteCtrlTM : TCExecFail CompleteCtrlTM := ∅
act TCCheckFail ProcessCtrlTM : TCCheckFail ProcessCtrlTM := ∅
act TCCheckFail CompleteCtrlTM : TCCheckFail CompleteCtrlTM := ∅

end

Event ReceiveTC =̂

extends ReceiveTC

any

tc

where

typing tc : tc ∈ TC

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TCCheck Ok =̂

extends TCCheck Ok

any

tc

where

typing tc : tc ∈ TC

grd TCCheck Ok seq : tc ∈ ReceiveTC

grd TCCheck Ok : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Ok : TCCheck Ok := TCCheck Ok ∪ {tc}
end

Event TCCore Execute Ok =̂

extends TCCore Execute Ok

any

tc

where

typing tc : tc ∈ TC
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grd TCCore Execute Ok seq : tc ∈ TCCheck Ok

grd TCCore Execute Ok : tc /∈ TCCore Execute Ok

grd2 : tc /∈ TCCore Execute Fail

grd3 : PID(tc) = csw

then

act TCCore Execute Ok : TCCore Execute Ok := TCCore Execute Ok ∪ {tc}
end

Event SendTC Core to Device =̂

extends SendTC Core to Device

any

tc

where

typing tc : tc ∈ TC

grd SendTC Core to Device seq : tc ∈ TCCheck Ok

grd SendTC Core to Device xor1 : tc /∈ TCCore Execute Ok

grd SendTC Core to Device xor2 : tc /∈ TCCore Execute Fail

grd1 : PID(tc) ∈ {mixsc, mixst, sixsp, sixsx}
then

skip

end

Event SendOkTC Device to Core =̂

extends SendOkTC Device to Core

any

tc

where

typing tc : tc ∈ TC

grd SendOkTC Device to Core : tc /∈ SendOkTC Device to Core

then

act SendOkTC Device to Core : SendOkTC Device to Core :=

SendOkTC Device to Core ∪ {tc}
end

Event TCCore Execute Fail =̂

extends TCCore Execute Fail

any

tc

where

typing tc : tc ∈ TC

grd TCCore Execute Fail seq : tc ∈ TCCheck Ok

grd TCCore Execute Fail : tc /∈ TCCore Execute Fail

grd2 : tc /∈ TCCore Execute Ok

grd3 : PID(tc) = csw

then

act TCCore Execute Fail : TCCore Execute Fail := TCCore Execute Fail ∪ {tc}
end

Event SendFailTC Device to Core =̂

extends SendFailTC Device to Core

any

tc

where

typing tc : tc ∈ TC

grd SendFailTC Device to Core : tc /∈ SendFailTC Device to Core

then

act SendFailTC Device to Core : SendFailTC Device to Core := SendFailTC Device to Core

∪ {tc}
end

Event TCCheck Fail =̂

extends TCCheck Fail
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any

tc

where

typing tc : tc ∈ TC

grd TCCheck Fail seq : tc ∈ ReceiveTC

grd TCCheck Fail : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Fail : TCCheck Fail := TCCheck Fail ∪ {tc}
end

Event TC GenerateData in Device =̂

extends TC GenerateData in Device

any

tc

where

typing tc : tc ∈ TC

grd TC GenerateData in Device seq : tc ∈ TCCore Execute Ok ∪ SendOkTC Device to Core

grd1 : TC Type(tc) ∈ {HK on TC, SCI on TC}
grd2 : PID(tc) ∈ {mixsc, mixst, sixsp, sixsx}

then

skip

end

Event TC TransferData Device to Core =̂

extends TC TransferData Device to Core

any

tc

where

typing tc : tc ∈ TC

grd TC TransferData Device to Core : tc /∈ TC TransferData Device to Core

then

act TC TransferData Device to Core : TC TransferData Device to Core :=

TC TransferData Device to Core ∪ {tc}
end

Event TCValid ProcessCtrlTM =̂

any

tc

tm

where

grd TCValid ProcessCtrlTM seq : tc ∈ TC TransferData Device to Core

grd TCValid ProcessCtrlTM : tc 7→ tm /∈ TCValid ProcessCtrlTM

then

act TCValid ProcessCtrlTM : TCValid ProcessCtrlTM := TCValid ProcessCtrlTM ∪{tc 7→ tm}
end

Event TCValid CompleteCtrlTM =̂

refines TCValid ReplyDataTM

any

tc

where

grd TCValid CompleteCtrlTM seq : tc ∈ dom(TCValid ProcessCtrlTM )

grd TCValid CompleteCtrlTM : tc /∈ TCValid CompleteCtrlTM

then

act TCValid CompleteCtrlTM : TCValid CompleteCtrlTM := TCValid CompleteCtrlTM ∪ {tc}
end

Event TCExecOk ProcessCtrlTM =̂

any

tc

tm
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where

grd TCExecOk ProcessCtrlTM seq : tc ∈ TCCore Execute Ok ∪ SendOkTC Device to Core

grd TCExecOk ProcessCtrlTM : tc 7→ tm /∈ TCExecOk ProcessCtrlTM

grd TCExecOk ProcessCtrlTM one : tc /∈ dom(TCExecOk ProcessCtrlTM )

then

act TCExecOk ProcessCtrlTM : TCExecOk ProcessCtrlTM :=

TCExecOk ProcessCtrlTM ∪ {tc 7→ tm}
end

Event TCExecOk CompleteCtrlTM =̂

refines TCExecOk ReplyCtrlTM

any

tc

where

grd TCExecOk CompleteCtrlTM seq : tc ∈ dom(TCExecOk ProcessCtrlTM )

grd TCExecOk CompleteCtrlTM : tc /∈ TCExecOk CompleteCtrlTM

then

act TCExecOk CompleteCtrlTM : TCExecOk CompleteCtrlTM := TCExecOk CompleteCtrlTM ∪
{tc}

end

Event TCExecFail ProcessCtrlTM =̂

any

tc

tm

where

grd TCExecFail ProcessCtrlTM seq : tc ∈ TCCore Execute Fail ∪SendFailTC Device to Core

grd TCExecFail ProcessCtrlTM : tc 7→ tm /∈ TCExecFail ProcessCtrlTM

grd TCExecFail ProcessCtrlTM one : tc /∈ dom(TCExecFail ProcessCtrlTM )

then

act TCExecFail ProcessCtrlTM : TCExecFail ProcessCtrlTM := TCExecFail ProcessCtrlTM ∪
{tc 7→ tm}

end

Event TCExecFail CompleteCtrlTM =̂

refines TCExecFail ReplyCtrlTM

any

tc

where

grd TCExecFail CompleteCtrlTM seq : tc ∈ dom(TCExecFail ProcessCtrlTM )

grd TCExecFail CompleteCtrlTM : tc /∈ TCExecFail CompleteCtrlTM

then

act TCExecFail CompleteCtrlTM : TCExecFail CompleteCtrlTM :=

TCExecFail CompleteCtrlTM ∪ {tc}
end

Event TCCheckFail ProcessCtrlTM =̂

any

tc

tm

where

grd TCCheckFail ProcessCtrlTM seq : tc ∈ TCCheck Fail

grd TCCheckFail ProcessCtrlTM : tc 7→ tm /∈ TCCheckFail ProcessCtrlTM

grd TCCheckFail ProcessCtrlTM one : tc /∈ dom(TCCheckFail ProcessCtrlTM )

then

act TCCheckFail ProcessCtrlTM : TCCheckFail ProcessCtrlTM :=

TCCheckFail ProcessCtrlTM

∪ {tc 7→ tm}
end

Event TCCheckFail CompleteCtrlTM =̂

refines TCCheckFail ReplyCtrlTM



any

tc

where

grd TCCheckFail CompleteCtrlTM seq : tc ∈ dom(TCCheckFail ProcessCtrlTM )

grd TCCheckFail CompleteCtrlTM : tc /∈ TCCheckFail CompleteCtrlTM

then

act TCCheckFail CompleteCtrlTM : TCCheckFail CompleteCtrlTM :=

TCCheckFail CompleteCtrlTM ∪ {tc}
end

END

B.5.4 2nd Refinement

B.5.4.1 Context: Context M5

CONTEXT Context M5

EXTENDS Context M4

SETS

TM Types Set

CONSTANTS

Exec nok TM, Exec ok TM, SCI TM, HK TM, TM Type, Check nok TM

AXIOMS

axm3 : TM Types Set = {Check nok TM ,Exec ok TM ,Exec nok TM ,HK TM ,SCI TM}
axm4 : TM Type ∈ TM → TM Types Set

END

B.5.4.2 Machine: M5

MACHINE M5

REFINES M4

SEES Context M5

VARIABLES

ReceiveTC, TCCheck Ok, TCCore Execute Ok, SendOkTC Device to Core, TCCheck Fail,

TCCore Execute Fail, SendFailTC Device to Core, TC TransferData Device to Core,

Produce DataTM, Send DataTM, TCValid CompleteCtrlTM, Produce ExecOkTM,

Send ExecOkTM, TCExecOk CompleteCtrlTM, Produce ExecFailTM, Send ExecFailTM,

TCExecFail CompleteCtrlTM, Produce CheckFailTM, Send CheckFailTM,

TCCheckFail CompleteCtrlTM

INVARIANTS

inv Produce DataTM : Produce DataTM ⊆ TC × TM

inv Produce DataTM seq : dom(Produce DataTM ) ⊆ TC TransferData Device to Core

inv Send DataTM seq : Send DataTM ⊆ Produce DataTM

inv TCValid CompleteCtrlTM seq : TCValid CompleteCtrlTM ⊆ dom(Produce DataTM )

inv Produce ExecOkTM : Produce ExecOkTM ⊆ TC × TM

inv Produce ExecOkTM seq : dom(Produce ExecOkTM ) ⊆
TCCore Execute Ok ∪ SendOkTC Device to Core

inv1 : ∀ tc ·finite(Produce ExecOkTM [{tc}])
inv Produce ExecOkTM one : ∀ tc ·card(Produce ExecOkTM [{tc}]) ≤ 1

inv Send ExecOkTM seq : Send ExecOkTM ⊆ Produce ExecOkTM

inv TCExecOk CompleteCtrlTM seq : TCExecOk CompleteCtrlTM ⊆
dom(Produce ExecOkTM )

inv Produce ExecFailTM : Produce ExecFailTM ⊆ TC × TM
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inv Produce ExecFailTM seq : dom(Produce ExecFailTM ) ⊆
TCCore Execute Fail ∪ SendFailTC Device to Core

inv2 : ∀ tc ·finite(Produce ExecFailTM [{tc}])
inv Produce ExecFailTM one : ∀ tc ·card(Produce ExecFailTM [{tc}]) ≤ 1

inv Send ExecFailTM seq : Send ExecFailTM ⊆ Produce ExecFailTM

inv TCExecFail CompleteCtrlTM seq : TCExecFail CompleteCtrlTM ⊆ dom(Produce ExecFailTM )

inv Produce CheckFailTM : Produce CheckFailTM ⊆ TC × TM

inv Produce CheckFailTM seq : dom(Produce CheckFailTM ) ⊆ TCCheck Fail

inv3 : ∀ tc ·finite(Produce CheckFailTM [{tc}])
inv Produce CheckFailTM one : ∀ tc ·card(Produce CheckFailTM [{tc}]) ≤ 1

inv Send CheckFailTM seq : Send CheckFailTM ⊆ Produce CheckFailTM

inv TCCheckFail CompleteCtrlTM seq : TCCheckFail CompleteCtrlTM ⊆
dom(Produce CheckFailTM )

inv Produce DataTM gluing : Produce DataTM = TCValid ProcessCtrlTM

inv Produce ExecOkTM gluing : Produce ExecOkTM = TCExecOk ProcessCtrlTM

inv Produce ExecFailTM gluing : Produce ExecFailTM = TCExecFail ProcessCtrlTM

inv Produce CheckFailTM gluing : Produce CheckFailTM = TCCheckFail ProcessCtrlTM

EVENTS

Initialisation

begin

act ReceiveTC : ReceiveTC := ∅
act TCCheck Ok : TCCheck Ok := ∅
act TCCore Execute Ok : TCCore Execute Ok := ∅
act SendOkTC Device to Core : SendOkTC Device to Core := ∅
act TCCheck Fail : TCCheck Fail := ∅
act TCCore Execute Fail : TCCore Execute Fail := ∅
act SendFailTC Device to Core : SendFailTC Device to Core := ∅
act TC TransferData Device to Core : TC TransferData Device to Core := ∅
act Produce DataTM : Produce DataTM := ∅
act Send DataTM : Send DataTM := ∅
act TCValid CompleteCtrlTM : TCValid CompleteCtrlTM := ∅
act Produce ExecOkTM : Produce ExecOkTM := ∅
act Send ExecOkTM : Send ExecOkTM := ∅
act TCExecOk CompleteCtrlTM : TCExecOk CompleteCtrlTM := ∅
act Produce ExecFailTM : Produce ExecFailTM := ∅
act Send ExecFailTM : Send ExecFailTM := ∅
act TCExecFail CompleteCtrlTM : TCExecFail CompleteCtrlTM := ∅
act Produce CheckFailTM : Produce CheckFailTM := ∅
act TCCheckFail CompleteCtrlTM : TCCheckFail CompleteCtrlTM := ∅
act Send CheckFailTM : Send CheckFailTM := ∅

end

Event ReceiveTC =̂

extends ReceiveTC

any

tc

where

typing tc : tc ∈ TC

grd ReceiveTC : tc /∈ ReceiveTC

then

act ReceiveTC : ReceiveTC := ReceiveTC ∪ {tc}
end

Event TCCheck Ok =̂

extends TCCheck Ok

any

tc
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where

typing tc : tc ∈ TC

grd TCCheck Ok seq : tc ∈ ReceiveTC

grd TCCheck Ok : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Ok : TCCheck Ok := TCCheck Ok ∪ {tc}
end

Event TCCore Execute Ok =̂

extends TCCore Execute Ok

any

tc

where

typing tc : tc ∈ TC

grd TCCore Execute Ok seq : tc ∈ TCCheck Ok

grd TCCore Execute Ok : tc /∈ TCCore Execute Ok

grd2 : tc /∈ TCCore Execute Fail

grd3 : PID(tc) = csw

then

act TCCore Execute Ok : TCCore Execute Ok := TCCore Execute Ok ∪ {tc}
end

Event SendTC Core to Device =̂

extends SendTC Core to Device

any

tc

where

typing tc : tc ∈ TC

grd SendTC Core to Device seq : tc ∈ TCCheck Ok

grd SendTC Core to Device xor1 : tc /∈ TCCore Execute Ok

grd SendTC Core to Device xor2 : tc /∈ TCCore Execute Fail

grd1 : PID(tc) ∈ {mixsc, mixst, sixsp, sixsx}
then

skip

end

Event SendOkTC Device to Core =̂

extends SendOkTC Device to Core

any

tc

where

typing tc : tc ∈ TC

grd SendOkTC Device to Core : tc /∈ SendOkTC Device to Core

then

act SendOkTC Device to Core : SendOkTC Device to Core := SendOkTC Device to Core ∪ {tc}
end

Event TCCore Execute Fail =̂

extends TCCore Execute Fail

any

tc

where

typing tc : tc ∈ TC

grd TCCore Execute Fail seq : tc ∈ TCCheck Ok

grd TCCore Execute Fail : tc /∈ TCCore Execute Fail

grd2 : tc /∈ TCCore Execute Ok

grd3 : PID(tc) = csw

then

act TCCore Execute Fail : TCCore Execute Fail := TCCore Execute Fail ∪ {tc}
end



242 Appendix B The Event-B Model of the BepiColombo System

Event SendFailTC Device to Core =̂

extends SendFailTC Device to Core

any

tc

where

typing tc : tc ∈ TC

grd SendFailTC Device to Core : tc /∈ SendFailTC Device to Core

then

act SendFailTC Device to Core : SendFailTC Device to Core := SendFailTC Device to Core∪
{tc}

end

Event TCCheck Fail =̂

extends TCCheck Fail

any

tc

where

typing tc : tc ∈ TC

grd TCCheck Fail seq : tc ∈ ReceiveTC

grd TCCheck Fail : tc /∈ TCCheck Ok

grd1 : tc /∈ TCCheck Fail

then

act TCCheck Fail : TCCheck Fail := TCCheck Fail ∪ {tc}
end

Event TC GenerateData in Device =̂

extends TC GenerateData in Device

any

tc

where

typing tc : tc ∈ TC

grd TC GenerateData in Device seq : tc ∈ TCCore Execute Ok ∪ SendOkTC Device to Core

grd1 : TC Type(tc) ∈ {HK on TC, SCI on TC}
grd2 : PID(tc) ∈ {mixsc, mixst, sixsp, sixsx}

then

skip

end

Event TC TransferData Device to Core =̂

extends TC TransferData Device to Core

any

tc

where

typing tc : tc ∈ TC

grd TC TransferData Device to Core : tc /∈ TC TransferData Device to Core

then

act TC TransferData Device to Core : TC TransferData Device to Core :=

TC TransferData Device to Core ∪ {tc}
end

Event Produce DataTM =̂

refines TCValid ProcessCtrlTM

any

tc

tm

where

grd Produce DataTM seq : tc ∈ TC TransferData Device to Core

grd Produce DataTM : tc 7→ tm /∈ Produce DataTM

grd1 : TM Type(tm) ∈ {HK TM ,SCI TM}
then

act Produce DataTM : Produce DataTM := Produce DataTM ∪ {tc 7→ tm}
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end

Event Send DataTM =̂

any

tc

tm

where

grd Send DataTM sequencing : tc 7→ tm ∈ Produce DataTM \ Send DataTM

then

act Send DataTM : Send DataTM := Send DataTM ∪ {tc 7→ tm}
end

Event TCValid CompleteCtrlTM =̂

refines TCValid CompleteCtrlTM

any

tc

where

grd TCValid CompleteCtrlTM seq : tc ∈ dom(Produce DataTM )

grd TCValid CompleteCtrlTM : tc /∈ TCValid CompleteCtrlTM

then

act TCValid CompleteCtrlTM : TCValid CompleteCtrlTM := TCValid CompleteCtrlTM ∪ {tc}
end

Event Produce ExecOkTM =̂

refines TCExecOk ProcessCtrlTM

any

tc

tm

where

grd Produce ExecOkTM seq : tc ∈ TCCore Execute Ok ∪ SendOkTC Device to Core

grd Produce ExecOkTM : tc 7→ tm /∈ Produce ExecOkTM

grd Produce ExecOkTM one : tc /∈ dom(Produce ExecOkTM )

grd1 : TM Type(tm) = Exec ok TM

then

act Produce ExecOkTM : Produce ExecOkTM := Produce ExecOkTM ∪ {tc 7→ tm}
end

Event Send ExecOkTM =̂

any

tc

tm

where

grd Send ExecOkTM seq : tc 7→ tm ∈ Produce ExecOkTM \ Send ExecOkTM

grd Send ExecOkTM : tc 7→ tm /∈ Send ExecOkTM

then

act Send ExecOkTM : Send ExecOkTM := Send ExecOkTM ∪ {tc 7→ tm}
end

Event TCExecOk CompleteCtrlTM =̂

refines TCExecOk CompleteCtrlTM

any

tc

where

grd TCExecOk CompleteCtrlTM seq : tc ∈ dom(Produce ExecOkTM )

grd TCExecOk CompleteCtrlTM : tc /∈ TCExecOk CompleteCtrlTM

then

act TCExecOk CompleteCtrlTM : TCExecOk CompleteCtrlTM := TCExecOk CompleteCtrlTM ∪
{tc}

end

Event Produce ExecFailTM =̂

refines TCExecFail ProcessCtrlTM
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any

tc

tm

where

grd Produce ExecFailTM seq : tc ∈ TCCore Execute Fail ∪ SendFailTC Device to Core

grd Produce ExecFailTM : tc 7→ tm /∈ Produce ExecFailTM

grd Produce ExecFailTM one : tc /∈ dom(Produce ExecFailTM )

grd1 : TM Type(tm) = Exec nok TM

then

act Produce ExecFailTM : Produce ExecFailTM := Produce ExecFailTM ∪ {tc 7→ tm}
end

Event Send ExecFailTM =̂

any

tc

tm

where

grd Send ExecFailTM seq : tc 7→ tm ∈ Produce ExecFailTM

grd Send ExecFailTM : tc 7→ tm /∈ Send ExecFailTM

then

act Send ExecFailTM : Send ExecFailTM := Send ExecFailTM ∪ {tc 7→ tm}
end

Event TCExecFail CompleteCtrlTM =̂

refines TCExecFail CompleteCtrlTM

any

tc

where

grd TCExecFail CompleteCtrlTM seq : tc ∈ dom(Produce ExecFailTM )

grd TCExecFail CompleteCtrlTM : tc /∈ TCExecFail CompleteCtrlTM

then

act TCExecFail CompleteCtrlTM : TCExecFail CompleteCtrlTM :=

TCExecFail CompleteCtrlTM ∪ {tc}
end

Event Produce CheckFailTM =̂

refines TCCheckFail ProcessCtrlTM

any

tc

tm

where

grd Produce CheckFailTM seq : tc ∈ TCCheck Fail

grd Produce CheckFailTM : tc 7→ tm /∈ Produce CheckFailTM

grd Produce CheckFailTM one : tc /∈ dom(Produce CheckFailTM )

grd1 : TM Type(tm) = Check nok TM

then

act Produce CheckFailTM : Produce CheckFailTM := Produce CheckFailTM ∪ {tc 7→ tm}
end

Event Send CheckFailTM =̂

any

tc

tm

where

grd Send CheckFailTM seq : tc 7→ tm ∈ Produce CheckFailTM

grd Send CheckFailTM sequencing : tc 7→ tm /∈ Send CheckFailTM

then

act Send CheckFailTM : Send CheckFailTM := Send CheckFailTM ∪ {tc 7→ tm}
end

Event TCCheckFail CompleteCtrlTM =̂

refines TCCheckFail CompleteCtrlTM



any

tc

where

grd TCCheckFail CompleteCtrlTM seq : tc ∈ dom(Produce CheckFailTM )

grd TCCheckFail CompleteCtrlTM : tc /∈ TCCheckFail CompleteCtrlTM

then

act TCCheckFail CompleteCtrlTM : TCCheckFail CompleteCtrlTM :=

TCCheckFail CompleteCtrlTM ∪ {tc}
end

END

B.6 Device Sub-model

B.6.1 Context: Context M3

CONTEXT Context M3

SETS

TC, DATA, TC Types Set, PIDS

CONSTANTS

TC Type, HK on TC, SCI on TC, PID, mixsc, mixst, sixsp, sixsx, csw

AXIOMS

typing TC Type : TC Type ∈ P(TC × TC Types Set)

typing HK on TC : HK on TC ∈ TC Types Set

typing SCI on TC : SCI on TC ∈ TC Types Set

typing PID : PID ∈ P(TC × PIDS)

typing mixsc : mixsc ∈ PIDS

typing mixst : mixst ∈ PIDS

typing sixsp : sixsp ∈ PIDS

typing sixsx : sixsx ∈ PIDS

typing csw : csw ∈ PIDS

C0 axm2 : TC Type ∈ TC → TC Types Set

C1 axm1 : partition(PIDS , {csw}, {mixsc}, {mixst}, {sixsp}, {sixsx})
C1 axm2 : PID ∈ TC → PIDS

END

B.6.2 Machine: M3

MACHINE M3

SEES Context M3

VARIABLES

CheckTC in Device Ok, CheckTC in Device Fail, TC GenerateData in Device,

SendTC Core to Device

INVARIANTS

typing TC GenerateData in Device : TC GenerateData in Device ∈ P(TC ×DATA)

typing CheckTC in Device Ok : CheckTC in Device Ok ∈ P(TC )

typing SendTC Core to Device : SendTC Core to Device ∈ P(TC )

typing CheckTC in Device Fail : CheckTC in Device Fail ∈ P(TC )

M3 inv CheckTC in Device Ok seq : CheckTC in Device Ok ⊆ SendTC Core to Device

M3 inv CheckTC in Device Fail : CheckTC in Device Fail ⊆ SendTC Core to Device

M3 inv TC GenerateData in Device : TC GenerateData in Device ⊆ TC ×DATA

M3 inv5 : CheckTC in Device Ok ∩ CheckTC in Device Fail = ∅
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M3 inv6 : ∀ tc ·(tc ∈ dom(TC GenerateData in Device)⇒
TC Type(tc) ∈ {HK on TC ,SCI on TC})

M3 inv7 : ∀ tc ·(tc ∈ dom(TC GenerateData in Device)⇒
PID(tc) ∈ {mixsc,mixst , sixsp, sixsx})

M3 inv8 : ∀ tc ·(tc ∈ SendTC Core to Device⇒ PID(tc) ∈ {mixsc,mixst , sixsp, sixsx})

EVENTS

Initialisation

begin

act SendTC Core to Device : SendTC Core to Device := ∅
act CheckTC in Device Ok : CheckTC in Device Ok := ∅
act CheckTC in Device Fail : CheckTC in Device Fail := ∅
act TC GenerateData in Device : TC GenerateData in Device := ∅

end

Event TCCore Execute Ok =̂

any

tc

where

typing tc : tc ∈ TC

grd TCCore Execute Ok xor : tc /∈ SendTC Core to Device

grd3 : PID(tc) = csw

then

skip

end

Event SendTC Core to Device =̂

any

tc

where

typing tc : tc ∈ TC

grd SendTC Core to Device : tc /∈ SendTC Core to Device

grd1 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx}
then

act SendTC Core to Device : SendTC Core to Device := SendTC Core to Device ∪ {tc}
end

Event CheckTC in Device Ok =̂

any

tc

where

typing tc : tc ∈ TC

grd CheckTC in Device Ok seq : tc ∈ SendTC Core to Device

grd CheckTC in Device Ok : tc /∈ CheckTC in Device Ok

grd1 : tc /∈ CheckTC in Device Fail

then

act CheckTC in Device Ok : CheckTC in Device Ok := CheckTC in Device Ok ∪ {tc}
end

Event SendOkTC Device to Core =̂

any

tc

where

typing tc : tc ∈ TC

grd SendOkTC Device to Core seq : tc ∈ CheckTC in Device Ok

then

skip

end

Event TCCore Execute Fail =̂

any

tc
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where

typing tc : tc ∈ TC

grd TCCore Execute Fail xor : tc /∈ SendTC Core to Device

grd3 : PID(tc) = csw

then

skip

end

Event CheckTC in Device Fail =̂

any

tc

where

typing tc : tc ∈ TC

grd CheckTC in Device Fail seq : tc ∈ SendTC Core to Device

grd CheckTC in Device Fail : tc /∈ CheckTC in Device Fail

grd1 : tc /∈ CheckTC in Device Ok

then

act CheckTC in Device Fail : CheckTC in Device Fail := CheckTC in Device Fail ∪ {tc}
end

Event SendFailTC Device to Core =̂

any

tc

where

typing tc : tc ∈ TC

grd SendFailTC Device to Core seq : tc ∈ CheckTC in Device Fail

then

skip

end

Event TC GenerateData in Device =̂

any

tc

d

where

typing d : d ∈ DATA

typing tc : tc ∈ TC

grd TC GenerateData in Device : tc 7→ d /∈ TC GenerateData in Device

grd1 : TC Type(tc) ∈ {HK on TC ,SCI on TC}
grd2 : PID(tc) ∈ {mixsc,mixst , sixsp, sixsx}

then

act TC GenerateData in Device : TC GenerateData in Device :=

TC GenerateData in Device ∪ {tc 7→ d}
end

Event TC TransferData Device to Core =̂

any

tc

data

where

typing tc : tc ∈ TC

typing data : data ∈ P(DATA)

grd TC TransferData Device to Core seq : tc ∈ dom(TC GenerateData in Device)

grd1 : data = TC GenerateData in Device[{tc}]
then

skip

end

END
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