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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

AN APPROACH TO ATOMICITY DECOMPOSITION IN THE EVENT-B
FORMAL METHOD

by Asieh Salehi Fathabadi

Formal methods are mathematically based techniques and tools to model software and
hardware systems. Event-B is a formal method that emerged over the last decade as
an evolution of classical B. Event-B is supported by an open and extensible Eclipse-
based tool-set, called Rodin. Rodin provides an integrated environment supporting the
whole process of multi-stage modelling and handling of the associated proofs. Rodin
extensibility is exploited by developing a number of plug-ins to extend the main plat-
form capabilities. During recent years, Event-B and Rodin have been used to model
some real-world complex systems and prove consistency properties of them. However
developing models of large and complex systems is not an easy task, since it can result
in complex models and difficult proofs. There are some techniques in Event-B which
can help to tackle the difficulties of modelling complex systems; refinement and model
decomposition are two examples. Atomicity decomposition was recently introduced as
another technique to help with the structuring of refinement-based development of com-

plex systems in Event-B.

In this research, we have investigated how the development process with Event-B can be
enriched further by using the atomicity decomposition approach. The atomicity decom-
position approach provides a graphical notation to structure refinement and to support
the explicit sequencing of events in an Event-B model. In this approach, modelling
usually starts with a single atomic event of the system which is split to two or more

sub-events in the next refinement level.

We have further developed the atomicity decomposition patterns and features. A formal
description of the atomicity decomposition language is presented. The transformation
rules from an atomicity decomposition diagram to the Event-B model are defined. The
atomicity decomposition diagrams can be transformed to Event-B models using these
rules. Exploiting the extensibility of the Rodin platform, a Rodin plug-in tool was
developed to provide atomicity decomposition support in Event-B. The modelling and
tool extensions developed in this thesis are applied to two complex case studies, the
Media Channel System and the BepiColombo System. We present an evaluation of the

atomicity decomposition approach using insights gained from these case studies.
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Chapter 1

Introduction

Formal Methods [3, 4] are mathematically based modelling techniques used to specify
and verify hardware and software systems. Z [5, 6], VDM [7, 8] and B-Method (also

known as classical B) [9, 10, 11, 12] are among the most recent formal methods.

Event-B [4, 13, 14] is an evolution of the classical B. Event-B uses the concept of Re-
finement [8] in modelling. Event-B modelling starts with an abstract specification of a
system. Details are added during refinement steps in order to arrive at a more detailed
model. The mathematical language of Event-B is base on set theory and first order logic.
Based on the Event-B language, a set of proofs can be produced and discharged for each
Event-B model. Rodin [13, 15, 16, 17] is an open source, extensible and integrated mod-
elling tool supporting Event-B. This tool is not only used as a modelling environment,
but also provides an integrated environment for proving properties of models. Formal
modelling is not just about constructing descriptions, but proving some properties about
the formal models is equally important. Rodin provides an integrated environment for
both modelling and proving. Extensibility of Rodin makes it easy for new features to be
added to it. During recent years, some Eclipse based plug-ins were developed and added
to Rodin. ProB [18] as an animator, UML-B [19] as graphical environment provider,
B2Latex [20] as a translator from B to Latex and model decomposition [21] which allows

decomposition of a model into sub-models, have been developed and added to Rodin.

Recently Event-B has been applied to developing some notable industrial cases [22, 23].
However building models of large and complex systems results in large and complex
models and proofs. Dealing with large and complex models and proofs is a difficult and
time consuming task. Some techniques such as Atomicity Decomposition [24] sometimes
called Event Decomposition can help to solve this difficulty. Atomicity decomposition

augments refinement in Event-B in order to structure the refinement process.

This thesis focusses on atomicity decomposition as an approach for modelling large and
complex systems using Event-B. This approach enables developers to structure the re-

finement process in Event-B. Refinement in Event-B is too general. It does not explicitly

1
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show all of the relations between behaviors of the abstract model, called abstract events,
and the behaviors of the refinement, called the concrete events. Atomicity decomposi-
tion diagrams enables us to explicitly show the relationships between abstract events
and concrete events. It also imposes an explicit ordering between events within a single

level of refinement.

Based on the atomicity decomposition approach, during each refinement level, abstract
events can be decomposed into several sub-events using a provided graphical notation.
This approach demonstrates how coarse-grained atomicity is refined to more fine-grained
atomicity. This approach is also capable of showing an overall structure of several re-
finement levels. Therefore it provides an effective way to handle complex development.
On the other hand, providing decomposition constructs and patterns, makes the mod-
elling of large systems more manageable. Using constructs and patterns, we can achieve
reusability in Event-B development. In the atomicity decomposition approach, patterns

refer to common atomicity decomposition styles.

To implement atomicity decomposition, tool support has been developed as a plug-in
for the Rodin platform. This tool provides an environment to define atomicity decom-
position rules and patterns. The developed atomicity decomposition plug-in can help to

ease the burden of the manual work.

1.1 Thesis Motivation and Contribution

The modelling of large and complex systems can result in large and complex models, and
proofs [25]. Refinement, generic instantiation and decomposition, are three techniques
which can help us to overcome this difficulty [25]. Decomposition [24, 26] in Event-
B has two types; Model Decomposition and Atomicity Decomposition. In the case of
model decomposition, which will be explained in Section 2.5, when a model becomes too
large, we can split it into small sub-models which are much easier to tackle. Through
generic instantiation an existing model can be used as generic and instantiated to be
used in another development [27]. Our focus in this thesis is the latest, Atomicity

Decomposition.

We are aware that refinement, as will be explained in Sections 2.2.3 and 2.4.3, is a useful
modelling technique and can be a good solution for those difficulties, but it can not solve
all complexity problems since it does not show the relations between refinement levels.
Clear relationships between actions of refinement levels in a graphical environment,
which is done using the atomicity decomposition approach, make complex models more

understandable.

This thesis contributes to the development of systems using the Event-B formal method

and Rodin tool-set. Thesis contributions are listed below :
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e Structure Refinement in Event-B
One of the important contributions of the atomicity decomposition approach,
which is first outlined in [24], is that it shows the relationships between the earlier
level of modelling called the abstract model and the corresponding later refinement
level called the concrete model. Whereas just by applying refinement technique
into the Event-B text we are not able to show the relationships between refinement
levels, Section 3.3. Therefore we can say that atomicity decomposition is an ap-

proach in Event-B which augments Event-B refinement with additional structure.

Atomicity decomposition is a representation of the refinement process in Event-
B which explicitly presents relationships between actions of different refinement
levels. Using atomicity decomposition diagrams through refinement levels make
this technique a visual refinement strategy. Also it has the ability to show the

explicit ordering between actions of one level of refinement, Section 3.2.

e Evaluation via Complex Case Studies

The atomicity decomposition approach has been applied to the development pro-
cess of two complex case studies, the Media Channel System and the BepiColombo
System (Chapter 7). These developments highlight the benefits of the atomicity
decomposition approach, during the development process of a complex system.
An evaluation of the atomicity decomposition approach using insights gained from
these case studies is outlined in Chapter 8. The application of the atomicity de-
composition approach in development of the media channel system is published
in “Formal Methods for Components and Objects” (FMCO) 2009 conference [1].
And the BepiColombo development using the atomicity decomposition approach
is published in “Nasa Formal Methods” (NFM) 2011 symposium [2].

e Constructs and Patterns
Atomicity decomposition assists us in the development of refinement patterns, and
this result can decrease the modelling effort. As a result of developing the case
studies some new construct patterns and features have been discovered which are

presented in Chapter 4.

e Language Description and Translation Rules
Defining atomicity decomposition patterns helped us to describe the atomicity
decomposition language in a formal way. The general and formal description of
the language of atomicity decomposition diagrams and rules of translating each

element of diagram to Event-B model are presented in Chapter 5.

e Tool Support and Automatic Generation of Models
Developing the atomicity decomposition plug-in in the Rodin platform as tool
support for this approach; this results in automatic generation of an Event-B
model from an atomicity decomposition diagram, which can decrease the modelling

effort in complex systems. The tool development is presented in Chapter 6. We
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present the work developed for the atomicity decomposition approach including
the theory behind it (Chapter 5), the extension to tool support (Chapter 6) and
the application to case studies (Chapter 7).

1.2 Outcomes and Thesis Organisation

This Report is organised as follows. Chapter 2 introduces the necessary background to
understand the rest of the document. Some background knowledge about the formal
method is outlined in Section 2.2, followed by introducing existing formal methods in
Section 2.3. Then Section 2.4 focuses on Event-B and its structure and refinement.
Finally Section 2.5 explains the background definition of model decomposition in Event-

B which is used later in developing a case study, the BepiColombo system.

The atomicity decomposition approach is first introduced by Butler in [24]. Chapter 3
is a literature review of atomicity decomposition presented in [24]. In this chapter, the
benefits of the approach in structuring refinement in Event-B is highlighted and two

small examples are presented.

We manually applied the approach presented in [24] to two complex case studies, the
media channel system and the BepiColombo system, an on-board instrument controller
for a space craft. Some new construct patterns and features were discovered during the
case study developments. These new patterns and features together with the existing

ones from [24] are presented in Chapter 4.

Later using the pattern definitions, the general and formal description of the atomicity
decomposition approach and rules of translating to Event-B model are presented in
Chapter 5. The tool supported the atomicity decomposition approach is presented in
Chapter 6.

Instead of the manual modelling, using the developed tool support we have developed the
model of case studies for the second time in a semi-automatic way. Chapter 7 presents
the application of the atomicity decomposition approach in the developments of case
studies including manual and semi-automatic models. Then in Chapter 8 a critical
evaluation of the atomicity decomposition approach is presented based on experience of
the case study developments. Finally, there is a conclusion and explanation of future

work.



Chapter 2

Background

2.1 Introduction

This chapter presents relevant background on modelling, formal methods and Event-
B. Section 2.2 will give a brief overview of modelling, its difficulties and outlines the
significant role of it as an early stage in the software development process. Then formal
methods as modelling techniques will be presented. And it is followed by an overview
of some formal methods in Section 2.3. Event-B as a formal method for specifying
and proving about software and hardware systems, its notation and structure will be
described in Section 2.4. This section also outlines the definition of refinement in Event-
B and a brief explanation of Rodin, an open Eclipse based toolkit for modelling in
Event-B. Finally an overview of model decomposition in Event-B which is later used in

development of a case study is described in Section 2.5.

2.2 Formal Methods

2.2.1 Overview of Modelling

There is a big difference between modelling and programming. First the model of a
system is not exactly the system; it means the model of a system is not executable like
the program of a system. For example, one can not play with the model of a computer
game. Moreover as Abrial says [3, 4], a program contains the algorithm whereas a model
describes the properties of a program; in other words, the initial model of a program
describes the way by which we can finally judge that the final program is correct. For
example, the initial model of an array sorting program does not explain how to sort
it. It rather explains what the properties of a sorted array are and what the relation is

between the initial non-sorted array and the final sorted one.
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One of the benefits of using modelling as a step in the development process of a system
is minimizing failure risks and cost in the testing phase [3]. A model of a program comes
with proofs which related to the program. In proving we make certain that all properties
can be proved to be consistent. With using proofs, we reason about our models [25].
More precisely, the model of a program is not just descriptions of it; modelling can be

accompanied by proving some consistency properties [3, 4].

2.2.2 Definition of Formal Methods

Formal methods can be defined as mathematically-based techniques which are used to
specifying and reasoning about software and hardware systems [3, 4]. Holloway believes

that engineers will consider formal methods [28].

The language of most formal methods is a language of classical logic and set theory.
Abrial states that it is convenient to communicate models to everyone that has some
mathematical background. Also using mathematical language will allow us to do some

reasoning in the form of proofs [4, 29].

Rangarajan believes that using formal methods as a collection of mathematical activities
and formal logic to specify and prove about systems has many valuable benefits [30].
First, considering formal methods as an early phase in the development process life cycle,
results in early detection of defects, so it can play the role of a solution to heavy testing
phase on final product which is well known to happen quite often too late in development
process life cycle. Moreover, in the testing phase it is impossible to provide coverage
of all possible interleaving and event orderings, whereas, by using model checkers and
provers as formal analysis tools we can reach more fault conditions, so another benefit
of using formal methods can be guarantee of correctness. Finally, the analytical nature
of formal methods results in more reliable verification in large and complex systems

compared to testing alone.

2.2.3 Refinement

Building a model, usually starts with a very abstract model of the system, and then
gradually details are added through several modelling steps in such a way that leads
us towards a suitable implementation; this approach is called refinement [8]. In other
words, during refinement levels, the model becomes more and more precise and closer
to the requirements. Roever and Engelhardt in [8], state that a useful analogy is that of
the scientist looking through a microscope. The microscope does not change anything,

some previously invisible parts of the reality are now revealed by the microscope.
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From a given model M1, a new model M2 can be built as a refinement of M1. In this
case, model M1 is called an abstraction of M2, and model M2 will said to be a concrete

version of M1. A concrete model is said to refine its abstraction.

Refinement allows us to tackle the system complexity. Using refinement, instead of
building a single model in a flat manner, we have a sequence of models, where each of

them is supposed to be a refinement of the previous [25].

Refinement calculus is a formalized approach to stepwise refinement for program con-
struction. The refinement calculus is a calculus of program transformation. It starts from
abstract specification of a system. It is then refined by a series of transformations into
executable program. Refinement calculus is originated by Back [31] and Morgan [32].
In Morgan’s book the motivation was to link Z notation to an executable programming

notation.

2.3 Overview of Some Formal Modelling Languages

Many formal methods have been proposed in recent years to improve software qual-
ity. These include specification and modelling languages as well as formal verification
techniques, such as model checking, and theorem proving. Here we are going to briefly

summaries some well known existing formal modelling languages:

2.3.1 VDM

The VDM [7, 8], (Vienna Development Method) is one of the longest-established formal
methods for the development of computer-based systems, introduced by a research group
of IBM laboratory in Vienna in the 1970s. It has grown to include a group of techniques
and tools based on a formal specification language - the VDM Specification Language
(VDM-SL). Jones claimed that it was developed in an industrial environment and was
one of the most widely used formal methods in 1990s [7]. VDM supports writing speci-
fication and also discharging proof obligations that ensure that the specification can be
proven to be consistent. All specification and proof obligation are written in term of

predicates.

Use of VDM starts with a very abstract model and develops this into an implementation.
Each step involves Data Reification, then Operation Decomposition. Data reification
develops the abstract data types into more concrete data structures, while operation
decomposition develops the (abstract) implicit specifications of operations and functions

into algorithms that can be directly implemented in a computer language of choice [7].
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232 Z

In 1977, Abrial proposed Z with the help of Schuman and Meyer [33]. It was devel-
oped further at Oxford University. The Z notation [5, 6], (pronounced zed) is a formal
modelling language based on standard mathematical notation used in set theory and
logic. The set theory used includes standard set operators, set comprehension, cartesian
products, and power sets. The mathematical logic is a first-order predicate calculus.
The Z notation is used for specifying, modelling and reasoning about computing sys-
tems. Jacky states that Z is just a notation, it is not a method and it can support many
different methods [5]. Also as it mentioned in Section 2.2.1 like other formal notations,
Z in not a programming language, so it is not an executable notation. Although Z is

more popular than VDM, VDM has the composition and decomposition features [34].

A 7 specification describes the state space together with a collection of operations. The
7 refinement is defined between two Z specifications, allows both the state space and
the individual operations to be refined. Operation refinement is the process of recasting
each abstract operation into a concrete operation. Data refinement extends operation
refinement by allowing the state space of the concrete operations to be different from
the state space of the abstract operations. In order to specification structuring in Z,
a schema notation is included in it [6]. Schema notation provides a framework for a
textual combination of sections of mathematics. These sections of mathematics are

called schemas.

2.3.3 B-Method

The B-Method (also known as classical B) [9, 10, 11, 12] is originally developed by Abrial
in the mid 1980s. The B-Method is a model-based method for formal development of
computer software systems. It has been used in major safety-critical system applications
such as Metro Line 14 in Paris [10].

The B language is based on set theory including sets, relations and functions to define
variables and predicate logic to specify invariants (constraints of variables). Generalized
substitutions are used to specify operations, which allow deterministic and nondeter-
ministic state transitions. B uses structuring mechanisms (machine, refinement and

implementation) in organization of a development.

Compared to Z, B is more focused on refinement rather than just formal specification.
In particular, there is better tool support [10] such as Atelier-B [35]. These tools support
two main proof activities in B: consistency checking, shows that invariants are preserved
by machine operations, and refinement checking, which prove the validity of each refined

machine.
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2.3.4 CSP

CSP (Communicating Sequential Processes) [36, 37| is a process algebra for modelling
parallel processing and interaction between processes. A process in CSP is considered
as a mathematical abstraction of interactions between a system and its environment.
The behaviour of a system is described through processes. CSP allows the refinement

of models.

The set of events in which a process P can engage is called its alphabet, written aP
and represents the visible interface between the process and its environment [38]. The
processes are constrained in the way they can engage in the events of its alphabet. A
process interacts with its environment by synchronously engaging in atomic events. A
sequence of events is described using a prefix operator “—”. The expression a — P
describes the process that engages in the event a and then behaves as process P. The
environment can decide between two processes using the choice operator “00”. P O Q
represents the process that offers the choice to the environment between behaving as
process P or as process (). There is also a nondeterministic choice operator “r1”: P 1 Q)
represents the process that internally chooses between behaving as P or ), without any
environment control. Another operator in CSP in parallel composition of two processes.
P and @ interact by synchronising over common events in aP N a@), while events not in
aPNa@ can occur independently. The parallel composition of two processes P and @ is
shown by expression P H Q. An event common to both P and @, becomes a single event
in P H (@ and can be offered by P and @ only when both P and () are prepared to offer it.
The interleaving operator represents completely independent concurrent activity. The
process P ||| @ behaves as both P and @ simultaneously. The hiding operator provides
a way to abstract processes, by making some events unobservable. A trivial example of

hiding is (a — P) \ {a} which, assuming that the event a doesn’t appear in P.

2.3.5 Action Systems

Action systems [39, 40] provide a method to program distributed systems in a way
that the overall behavior of the system is emphasized. In this manner, the behavior
of the system is described in terms of the possible interactions, called actions, that the

processes can engage in, rather than in terms of a sequential execution of the processes.

The behavior of a distributed system was usually described in process-based manner.
Each process interacts with other processes by sending and receiving messages in a
execution of a sequential piece of program. In a process-based approach it is difficult to
get a picture of the overall behavior of the system. Whereas action system is a state-
based description of a distributed system that concentrates on the overall behavior of

the system by defining states and actions, rather than sequential processes.
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2.3.6 A Comparison

This section compares the mentioned formalisms, based on comparisons which have been
presented in [34], [41] and [42].

Z, VDM and B are model-based methods. In model-based methods, the states and op-
erations are explicitly modelled and the operations transform the system from a state
to another state. In model-based approach there is no explicit representation of con-
currency. Therefore Z, VDM and B do not support representation and reasoning of

concurrency.

Temporal Logic is a logic-based formalism. In Logic-based approach, logics are used
to describe system desired properties, including low-level specification, temporal and

probabilistic behaviors. Temporal logic and CSP can handle concurrency.

Another common classification of formal approaches from behavioral point is to parti-
tion them to state-based and event-based [43]. From this point of view, Z, VDM, B and
Temporal logic are state-based, whereas CSP is a event-based formalism. Considering
state-based, there is explicit definition of states. Operations have an effect of trans-
forming the system from a state to another state. Whereas in event-based, the focus is
on identifying events of the system and then describing in what order these events are

allowed to happen.

2.4 Event-B

2.4.1 The Event-B Definition

Event-B [4, 14, 26, 44] is a formal method for specifying, modelling and reasoning about
systems. Event-B is an evolution of B-Method [9] developed by Jean-Raymond Abrial.
Hallerstede states that Event-B has evolved from B-Method and Action Systems [39, 40].
On the one hand Event-B is a simplification as well as an evolution of B-Method; on
the other hand Event-B is influenced by the action systems approach. It has a same
structure as an action system which describes the behavior of a reactive system in terms

of the guarded actions that can take place during its execution.

Event-B is different than the B-Method in some aspects. The B-Method is organized in
a way that is suitable for the development of non-concurrent programs, whereas Event-B

is geared toward the development of systems including reactive and concurrent systems.

Event-B is used in modelling and verifying. The modelling notation has been designed to
be simple and easily teachable, which is based on set theory and logics. Building a model
in Event-B starts with a very abstract level, and continues in different abstraction levels

by use of refinement, which will be explained in Section 2.4.3. Event-B use mathematical
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proof to verify consistency between refinement levels. Association of proof obligations
in Event-B permits us to reason about it, see Section 2.4.4. Rodin is a tool platform for

modelling and proving in Event-B, will be explained in Section 2.4.5.

2.4.2 Event-B Structure and Notation

A model in Event-B [4, 13, 14] consists of Contexts and Machines. In other words, a

model is made of several components of these two types.

Contexts contain the static part (types and constants) of a model while Machines contain
the dynamic part (variables and events). Contexts provide axiomatic properties of an
Event-B model, whereas Machines provide behavioural properties of an Event-B model.

Items of machines and contexts are called modelling elements presented in this section.

There are various relationships between contexts and machines. A context can be “ex-
tended” by other contexts and “referenced” or “seen” by machines. A Machine can be
“refined” by other machines and can reference to contexts as its static part. Refinement

is described more in Section 2.4.3. Machine and context relationship are illustrated in

Figure 2.1.

abstract - sees

. Machine(1) Context(1)
machine

refines extends
concrete | Machine(2) Context(2)
machine
' ) extends
refines

sees

Machine(i)

Figure 2.1: Machine and Context Relationships

Recall from Section 2.2.3, from a given machine, Machinel in this case, a new machine,
Machine2, can be built as a refinement of Machinel. In this case, Machinel is called an

abstraction of Machine2, and Machine2 will said to be a concrete version of Machinel.

2.4.2.1 Context Structure

The modelling elements of a context [4, 13, 14] are from four types: sets, constants,
axioms and theorems. It is illustrated in Figure 2.2. Axioms are various predicate
describe the property of sets, constants, theorems. A context can extend more than one

context, and also can be seen by several machines in a direct or indirect way. By indirect,
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we mean that a context may be referenced by a machine whose abstract machine sees
that context. Clause “Theorems” lists the various theorems which have to be proved

within the context.

Context

Sets
Constants
Axioms
Theorems

Figure 2.2: Structure of a Context

2.4.2.2 Machine Structure

A Machine [4, 13, 14] consists of variables, invariants, events, theorems and variants,
illustrated in Figure 2.3. Variables, v, define the state of a model. Invariants, I(v),
constrain variables, and are supposed to hold whenever variables are changed by an
event. New events can be defined in a concrete machine, will be described more in
Section 2.4.3. In order to prove that they do not take control forever, a new event must

decrease a natural number expression called variant [45].

Machine

Variables
Invariants
Theorems
Variants
Events

Figure 2.3: Structure of a Machine

2.4.2.3 Events

In Event-B, state of a model is changed by means of event execution. Each event is com-
posed of a name, a set of guards G(t,v) and some actions S(t,v), where t are parameters
of the event and v is state of the system which is defined by variables. All events are
atomic and can be executed only when their guards hold. When the guards of several
events hold at the same time, then only one of those events is chosen nondeterministi-
cally to be executed. An event can appear in three forms presented in Table 2.1. In the
simplest term, an event contains only some actions, in second form it can composed of
guards and actions without parameters, and finally in third form an event has guards,

actions and some parameters.
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Three Possible Forms of an Event
E = begin S(v) end

E = when G(v) then S(v) end

E = any t when G(t,v) then S(t,v) end

Table 2.1: Event Forms

The action of an event can have a few forms of assignments [13], illustrated in Table 2.2.
Here z is a variable, E(t,v) is an expressions, and P(t,v,2’) is a predicate. The first
assignment form is deterministic. In the second row, the assignment is nondeterministic
(for instance, assign a value within a non-empty set). The third row assigns a value to

x according to the predicate defined and it is also considered nondeterministic.

Type Generalized Substitution
Deterministic x = E(t, v)
Nondeterministic | z :€ E(t,v)
Nondeterministic | x :| P(t,v,z")

Table 2.2: Action Forms

2.4.3 Refinement in Event-B

In the Event-B development, rather than having a single large model, it is encouraged
to construct the system in a series of successive layers, starting with an abstract repre-
sentation of the system. The abstract model should provide a simple view of the system,
focusing on the main purpose and key features of the system. The details of how the
purpose is achieved are ignored in abstraction. Details of functionality of the system
are added gradually to the abstract model in a stepwise manner. This process is called

refinement.

In the Event-B modelling, we use proof to verify the consistency of a refinement. The

semantic of some refinement proof obligations are described in Section 2.4.4.
Types of Refinement in Event-B [8, 13, 46]:

Refining an Event-B model can consist of Context extension and Machine refinement.
Considering context extension, it is possible to add new sets, constants and properties

while retaining the old ones.

Refinement in Event-B has different views or classification. From Event-B notation point

of view, refinement of a machine consists of:

1. Refining existing events:
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(a) Add new parameters, guards and actions to the existing abstract event: in
this case the resulting concrete event is labeled as extended. In an extended

event, the existing parameters, guards and actions can not be modified.

(b) Modify parameters, guards and actions of the existing abstract event: in
this case the resulting concrete event is labeled as non — extended (refine).

Adding new parameters, guards and actions are allowed too.

In both types the guards of the concrete event must be proved to be stronger than

its abstraction (guard strengthening).

2. Add new events
The new event refines a dummy event in the abstraction which does nothing (skip).
The new event does not diverge. It means that it should not take control forever.

The new event can be labeled as:

e Convergent: Each convergent event requires a variant ro ensure non-divergence.

e Anticipated: Events that will be introduced in a future refinement but are

declared in anticipation.

e Ordinary: None of the others and the most commonly used.

3. Add new variables and invariants:
Introducing new variables usually results in (2) or (1.a) types of refinement. Some-
times abstract variables can be replaced by new concrete variables. In this case
the refinement can result in (1.b). Variable replacement is called data-refinement.
Sometimes variable replacement results in redundant variables which can be re-

moved.

A gluing invariant connects the abstract variables to the concrete variables. In
other words, it glues the state of the concrete model to that of its abstraction. The
invariant of the concrete model including gluing invariants should be preserved for

every event.

Fach abstract event should be refined by at least one concrete event. One abstract event
can be refined by more than one concrete event. It is called event splitting, examples
are presented in the case study developments. Also one concrete event can refine more

than one abstract event. It is called event merging.

Refinement is the process of enriching or modifying the abstract model in order to
introduce new functionality or add details of current functionality. From another view,

there are two forms of refinement:

e Vertical Refinement (Structural Refinement): In this from, design details of current
functionalities are added. This form of refinement may involve data-refinement (3)
and modifying abstract events (1.b). In refinement level the modified events are

labeled as non-extended events.
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e Horizontal Refinement (Superposition Refinement or Feature Augmentation): New
functionalities of the system, which are not addressed in abstract level, are intro-
duced. Usually it can be achieved by introducing new events (2), new variables
(3) or extending abstract events (1.a). In refinement level these concrete events

are labeled as extended events.

2.4.4 Proof Obligations

There are different proof obligations which are generated by the Event-B tool, Rodin,
during development of a system using Event-B [47, 48]. Here we describe some of those
which are most important. Considering Figure 2.4, machine M2 refines machine M 1.
Both of them see context C'tx. M2 contains two events, evt3 as a new event and evt2

as a refining event. Also it contains some gluing invariants.

machine M1 sees Ctx machine M2 refines M1 sees Ctx
variables v1 variables v2
invariants invl refines | invariants inv2, gluing_inv
variant n
events
events
event evtl
any x1 event evt2 refines evtl
where grd1l any x2
then actl where grd2
end then act2
end
end
convergent event evt3
sees any x3
where grd3
context Ctx sees then act3
- | end
constants ¢
sets s
. end
axioms axm
end

Figure 2.4: An Event-B Model (Context Ctx, Abstract Machine M1, Concrete
Machine M?2)

Table 2.3 contains a list of important proof obligation in Event-B modelling.

The last four proof obligations are refinement proof obligations and the last two are
the proof obligation generated for defining new events in concrete machine in a new

refinement level. Here are some explanation for each mentioned proof obligations:

e Well-definedness (WD): Ensure that a potential ill-defined axiom, theorem,
invariant, guard, action, variant is indeed well-defined. For instance for having
cardinality of a set, card(S) it should be proved that the set, S, in finite.
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Well-definedness x / WD x is the name of axiom, theorem,
invariant, guard, action, variant

Invariant Preservation evt / inv [ INV | evt is the event name, inv is the
invariant name

Feasibility of a nondetermin- | evt / act / FIS evt is the event name, act is the

istic event action action name

Guard Strengthening evt / grd / GRD | evt is the concrete event name,
grd is the abstract guard name

Action Simulation evt [ act / SIM | evt is the concrete event name,
act is the abstract action name

Natural number for a numeric | evt / NAT evt is the new event name

Variant

Decreasing of Variant evt / VAR evt is the new event name

Table 2.3: Proof Obligations in Event-B

e Invariant Preservation (INT): Ensure that each invariant is preserved by
each event. For instance in Figure 2.4, one of generated proof obligation is

evtl/invl/INV, ensuring that invl is preserved by event evtl in machine M1.

e Feasibility (FIS): Ensure that each nondeterministic action is feasible. In Fig-
ure 2.4, for event evtl in machine M1, this proof obligation is given: evtl / actl
/ FIS; it means there should exist values for variable v1 such that the assignment

actl is feasible.

e Guard Strengthening (GRD): Ensure that each abstract guard is no stronger
than the concrete ones in the refining event. As a result, when a concrete event is
enabled the corresponding abstract one is also enabled. For instance for the model
in Figure 2.4, evt2 / grdl / GRD ensure that abstract guard grdl is weaker than

the guards of the concrete event evt2.

e Simulation (SIM): Ensure that each action in a concrete event simulates the
corresponding abstract action. When a concrete event executes, the corresponding
abstract event is not contradicted. In Figure 2.4 the simulation proof is evt2 / actl
/ SIM.

e Numeric Variant (NAT): Ensures that under the guards of each convergent
event a proposed numeric variant is indeed a natural number. evt3 / NAT is the

proof obligation generated for the model of Figure 2.4.

e Decreasing of Variant (VAR): Ensures that each convergent event decreases
the proposed numeric variant. As a consequence the new event does not take
control forever. evt3 / VAR in Figure 2.4 ensures that event evt3 does not take

control forever.
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2.4.5 Rodin as an Event-B Tool

Rodin [3, 13, 16, 49] is a software tool for formal modelling and proving in Event-B.
Rodin has an open platform, and is an extensible and adaptable modelling tool. Butler
and Hallerstede state that “the aim with Rodin open tools kernel is to greatly extend
the state of the art in formal methods tools, allowing multiple parties to integrate their
tools as plug-ins to support rigorous development methods” [16]. They believe that
this is likely to have a significant impact on future research in formal methods tools
and will encourage greater industrial uptake of these tools. The ProB animator [1§],
UML-B [19], B2LaTeX [20] and model decomposition [50] are good examples of plug-in
developments; ProB is a model checker which checks the consistency of B machines;
UML-B maps a graphical formal modelling notation to the Event-B language; B2LaTex
is used for translating Event-B models into LaTeX documents; and model decomposition

which allows to decomposed a model into sub-models, it will be explained in Section 2.5.

Like programming tools, Rodin carries out many tasks automatically, and provides fast
feedback in the case of changes in a model text. Instead of compiling automatically
in programming tools, Rodin generates proof obligations and discharges trivial ones
automatically; and instead of running a program, Rodin is used to reason about a

model.

Rodin is an integration between modelling and proving. As described in previous sec-
tions, proving is an essential part of modelling. The proof obligations define what is
to be proved for an Event-B model. Discharging all proof obligations of a model shows
that all model properties are consistent. Sometimes a model can be changed using proofs
errors. When a proof obligation can not be charged, it shows that there is an inconsis-
tency in the model. This leads us to learn more about the system in order to change the
model in a consistence way. Therefore during modelling we can learn about system and
we can eliminate misunderstandings and learn new requirements by proving the failed

proof obligations.

2.4.6 A Comparison Between Event-B and Other Formal Methods

Classical B, Z and VDM have a one-to-one operation refinement, meaning that one
abstract operation is refined by only one concrete operation. There is no feature of
introducing new events in these formal methods. Whereas Event-B is flexible as it
inherits a refinement property from action systems. It is possible to introduce new
events during the stepwise refinement steps. Also event merging and event splitting are

provided in Event-B refinement.

Although Event-B is an extension of Classical B, there are some differences between

them:
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e The model structure is different. In Event-B, the context as the static part of the
system and the machine as the dynamic part of the system are explicitly separated.

Whereas in the B-Method a machine contains both parts.

e In the B-Method, operations are called by other operations. While in Event-B
the enabled events are continually executed in a nondeterministic manner. Since
in Event-B, we are modelling reactive systems, the events are not called and the

model controls its behaviour by nondeterministically choosing the enabled events.

e A B-Method operation contains pre-conditions which express formally what is to be
proved when the operation is invoked [51]. The caller of an operation is responsible
to make sure that pre-conditions of the called operation are hold before calling it.
The called operation can assume that its pre-conditions hold, and it does not need

to check its pre-conditions.

Whereas an Event-B event contain guards. An event can be executed only when
its guards hold. In Event-B, enabled events are nondeterministically chosen to

execute.

e Refinement is more general in Event-B. Introducing new events is an important

ability in Event-B refinement.

2.5 Event-B Model Decomposition

2.5.1 Overview

Model decomposition predated Event-B and is found in action systems [40]. In devel-
oping a model in Event-B, one of the key features is introducing new events and new
state variables during refinement. As a consequence it usually ends up with many events
and many variables in the last refinement level. Dealing with a large number of events
and variables can be complex, particulary in some points we need to refine just a few

variables and events and so other variables and events play no role in the refinement [52].

Model decomposition in Event-B [53], is intended to decrease the complexity and increase
the modularity of a large Event-B model, especially after several layers of refinements.
The idea of model decomposition is cutting a huge model into smaller pieces called sub-
models, which can more easily deal with than the first model, and each of them can be

refined separately.

Distribution of proof obligations into several sub-models is one of the major results
of model decomposition, which is expected to be easier to discharge. The further re-
finements of independent sub-models in parallel is a benefit of model decomposition.
Moreover the possibility of team development after model decomposition seems useful

in developing a big system.
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An overview of the model decomposition in Event-B is illustrated in Figure 2.5. As
presented the model becomes bigger during refinement layers and with decomposition it

is split into smaller sub-models, then each sub-model can be refined independently.

Model (n)

/lemposition

Refinement
After Decomposition

i t

Sub-Model (1m) Sub-Model (nm)

Figure 2.5: Model Decomposition in Event-B

2.5.2 Decomposition Styles

There are two ways of decomposing an Event-B model, shared variable and shared
event [54]. The shared event approach seems particularly suitable for message-passing
distributed programs, whereas the shared variable approach seems more suitable for con-
current programs [55]. In shared event model decomposition, variables are partitioned
among the sub-models, whereas in shared variable approach, events are partitioned

among the sub-models. Details are explained in the next section.

A model decomposition plug-in [21, 50, 56] in Rodin platform provides tool support for

both styles of model decomposition.

Later in Chapter 7.3, we will see how model decomposition approach in developing
the Event-B model of a complex system is useful together with using the atomicity

decomposition approach which is the main contribution of this thesis.
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2.5.2.1 Shared Variable Style

Shared variable decomposition illustrated in Figure 2.6 is proposed by Abrial [52], Meta-
yar [57] and Hallerstede [58]. Machine M is decomposed into machine M1 and M2. The

solid lines show relationships between events and variables in each machine.

The shared variable decomposition does not permit events sharing and a variable can
be split into different sub-models, this variable is called a shared variable. First the
events of M are partitioned among M1 and M2. Then the variables of M are distributed
according to the event partition. v and v3 are private variables, since they are accessed
by events of only one sub-model, el in M1 and e4 in M2 respectively. v2 is a shared
variable which is accessed by event e2 in M1 and e3 in M2. External event of e2_ext is
built in M2, since e2 modifies the shared variable v2 in M. The invariant distribution
is done according to variable distribution. An invariant belongs to a sub-model if all

variables used in that invariant belong to that sub-model.

Machine M

|el| |e2|l|e3||e4|
1
1
1

Machine M1 /\ Machine M2

e3_ e2_
ext ext

el e2 e3 e4

Figure 2.6: Shared Variable Decomposition

2.5.2.2 Shared Event Style

Figure 2.7 illustrates shared event decomposition proposed by Butler [59]. Variables of
the machine M are partition among the sub-models, M1 and M2. After the variable
partition it is necessary to split the events according to the variable partition. Events
using variables allocated to different sub-models, e2 using vi from M1 and v2 from
M2, are called shared events and must be split. Part of the shared event which is
corresponding to each variable, e2_1 and e2_2, is used to build sub-models events.

Invariant distribution is similar to shared variable decomposition.
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Machine M

Machine M1 /\ Machine M2

(2] [o] [et]

Figure 2.7: Shared Event Decomposition






Chapter 3

Atomicity Decomposition Part 1 -

Overview and Background

3.1 Introduction

The atomicity decomposition approach was first introduced by Butler in [24]. In this
chapter we present the atomicity decomposition approach from [24], in Section 3.2. As
mentioned in Section 1.2, a major contribution of atomicity decomposition approach is
structuring refinement in Event-B. To highlight this contribution, Section 3.3 outlines
the role of atomicity decomposition diagrams in structuring refinement in Event-B. It
is followed by two examples of the atomicity decomposition application from [24], in
Section 3.4.

3.2 Overview of Atomicity Decomposition Diagram in Event-
B

Although the refinement approach in Event-B, as explained in Sections 2.2.3 and 2.4.3,
provides a flexible approach to modelling, it does not have the ability to show the
relationship between one abstract event and the corresponding concrete events. The
atomicity decomposition approach is intended to make the relationships between ab-
stract and concrete events clearer and easier to manage than simply using the standard
Event-B refinement technique. In this approach course-grained atomicity can be refined

to more fine-grained atomicity.

The tree structure notation of the atomicity decomposition approach is first introduced
by Butler in [24]. The diagrammatic notation is based on JSD structure diagrams by

Jackson [7]. In [24] the atomicity decomposition diagram is presented in two examples

23
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containing a parallel execution of an event. Before introducing the parallel notation, we
generate a simple view of the atomicity decomposition diagram in order to explain the

basic features. It is shown in Figure 3.1. The features explained here are from [24].

[ Root, abstract event, is decomposed into some sub events ]

N\
[AbstractEvent]

A dashed line: L7
Eventl refines skip R

A solid line:
Event3 refines AbstractEvent

— 5 =

[ The sub events are read from left to right and indicate sequential control ]

Figure 3.1: Atomicity Decomposition Diagram

The abstract atomic event, AbstractEvent, appears in the root node. The diagram
shows how the root is decomposed into some sub-events in the refinement model. The
number of sub-events can be one or more. In this case we consider three sub-events to
explain the features of the diagram. An important feature of diagram, in common with
JSD structure diagrams, is that the sub-events are read from left to right and indicate
sequential control from left to right. This means that our diagram indicates that the
abstract event is realised in the refinement by firstly executing Fventi, then executing

Event2 and then executing Event3.

Sub-events are treated in two ways, one refines abstract event and the others are viewed
as hidden events in the abstract model which refine skip in the refinement model. So
another important feature is types of lines, solid line and dashed line. The sub-events
corresponding to dashed lines, Fventl, Event2, are new events which refine skip in the
abstract model. The sub-event with a solid line, Fvent3, is a refining event which must
be proven to refine the abstract event, AbstractEvent. A new event introduced in the
refinement model which refines skip, can be viewed as a hidden event in the abstract
model. This kind of event is not visible to the environment of a system in the abstract

model, and therefore they are outside the control of the environment [24].

In this case, Fvent!l should execute before Event2. Also Fvent2 should execute before
FEvent3. This is done by some control variables in the refinement model. We will see

more about control variables later in this chapter.
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With the aim of making the point more clear, the possible execution traces of the model,

called event trace [24], are presented here.

The execution trace of the abstract model contains a single event and is represented as
< AbstractEvent >. The execution trace of the refinement model events, Fvent!, Fvent2
and Fvent3, is < Fventl, Fvent2, Event3 >.

3.3 Event-B Refinement and Atomicity Decomposition Di-

agrams

One of the important motivations of the atomicity decomposition approach is that it
explicitly shows the event ordering and the relationship between an abstract event and
the corresponding concrete events, whereas the Event-B text is not able to explicitly

show these properties. This can be seen by comparing Figure 3.2 and Figure 3.3.

Assume Event E21 should execute before event EF22. And event E22 should execute
before event E23. Considering Figure 3.2, the ordering between these events is implicit.
Whereas the atomicity decomposition diagram in Figure 3.3, explicitly shows the event

ordering by a sequence execution of events from left to right.

(evens I

event E21
where
@grd1 VareE21 = FALSE
then
@actl VarE21 := TRUE
end

event E22
where
@grd1 VareE21 = TRUE
@grd2 VareE22 = FALSE
then
@actl Vare22 := TRUE
end

event E23 refines E1
where
@grd1 VarE22 = TRUE
@qgrd2 VareE23 = FALSE
then
@actl VarE23 := TRUE
end

& y

Figure 3.2: Event-B Model of Atomicity Decomposition Diagram in Figure 3.3

Considering Figure 3.2, the ordering is implicitly specified by some control variables in
the Event-B model. VarE21, VarE22 and VarE23 are boolean control variables which
are initialised to FALSE. First event E21 executes and enables VarE21 variable. Event
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E22 is guarded by VarE21 variable, grd1. Therefore event E22 can execute only after
event F21 executes. Also event E23 is guarded by VarE22, grdl. So event E23 can

execute only after event E22 executes.

event E1
=T
- 1
- 1
-7 1
- - l
event E21 event E22 event E23 refines E1
where where where
’ - @grd1 Vare21 = TRUE @grd1 VarE22 = TRUE
th@Zgldl Var2l = FALSE @qgrd2 VarE22 = FALSE @grd2 VarE23 = FALSE
then then
en?aetl VarE21 := TRUE @actl VarE22 = TRUE ot VarE23 o TRUE
end end

Figure 3.3: Atomicity Decomposition Diagram of Event-B Model in Figure 3.2

Moreover the diagram explicitly illustrates our intention that the effect achieved by
event F1 at the abstract model is realized at the refinement model by execution of event
E21 followed by event E22 followed by event F23, Figure 3.3. Whereas in the standard
Event-B model, Figure 3.2, events £21 and E22 are refinements of skip and there is no
explicit connection to abstract event E1. Technically, event E23 is the only event that
refines event F1 but the diagram indicates that we break the atomicity of abstract event
E1 into three sub-events F21, E2 and FE23.

3.4 Examples of Application

With the aim of making the application of atomicity decomposition diagrams more clear,

two examples from [24] are presented here.

Assume the abstract machine contains a single event Out, that simply outputs N exactly
for one time. Considering Figure 3.4, there is only one boolean control variable in the
machine, called Out, which initialised to false. Out event can execute only when it has
not executed before, grdl. In execution it disabled itself, actl. The output value is

represented in the parameter v, grd2.

The output is produced in an atomic event in the abstract machine. We wish to refine
the abstract machine by a machine modelling a concurrent accumulation of the output
value before outputting it. The refinement structure is presented in an atomicity de-
composition diagram in Figure 3.5. The diagram shows that we break the atomicity
of abstract Out event, to three sub-events. This means that the abstract Out event
is realised in the refinement by firstly executing the initialisation, then executing the

Increase event in parallel and then executing Out event. The parallel execution here
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machine MO
variables Out
invariants

@invl Out € BOOL

events
event INITIALISATION
then
@actl Out := FALSE
end

event Out
any v
where
@grd1 Out = FALSE
@grd2v =N
then
@actl Out := TRUE
end

End

Figure 3.4: Abstract Model of an Outputting System

is illustrated with a circle containing “all” and name of a parameter. We call it all-
replicator, since it replicates the corresponding sub-events with a new parameter, p, and
Increase event needs to executes for all instances of parameter p before Out event exe-
cution. Figure 3.5 is slightly different to what Butler presented in [24]. Butler illustrates
the parallel execution with a circle containing “par(p)”. Since we have improved the
atomicity decomposition notations, which will be presented in Chapter 4, we found it
more understandable if the diagram presented here is compatible with the improvement

of notations in Chapter 4.

L 1
[Initialisation] [Increase (p)] [ Out ]

Figure 3.5: Atomicity Decomposition Diagram of an Outputting System

The Event-B model of the refinement machine is presented in Figure 3.6. Each parallel
execution of Increase event, increments the variable z exactly once. When all N sub-

events have incremented z, the value of z is output with execution of Out event.

Consider the case where we have two subprocesses, PROC = {p1,p2}, and N = 2. The

event traces of the refinement model are as below:

< Initialisation, Increase(p1), Increase(p2), Out(2) >
< Initialisation, Increase(p2), Increase(pl), Out(2) >
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event INITIALISATION event Increase event Out refines Out
then any p any v
@actlx=0 where where
@act? Increase == 0 @grdl p ePROC @grd1 Out = FALSE
@act3 Out := FALSE @grd2 p €Increase @grd2 Increase = PROC
end then @grd3 v =x
@actl Increase := Increase U {p} then
@act2 x:==x +1 @actl Out :== TRUE
end end

Figure 3.6: Event-B Refinement of an Outputting System

The two possible interleaving of Increase(p1) and Increase(p2), represented by two events

traces, model their concurrent execution.

As presented in the first example, Out event needs to execute only for one time. There-
fore we defined the control variable, Out, as a boolean variable, which is disabled in the
body of Out event after the first execution. Whereas sometimes we wish to model a
sequence of events which can execute more than one time for different instances of one
or more parameters. Second example presents this case. Later in Chapter 4, first case
is called Single Instance (SI) and second case is called Multiple Instance (MI). The type
of control variables are different in SI and MI. Considering SI, as seen in first example,
control variables are boolean, whereas in the MI case, control variables are sets. Having

set type enables multiple instances of an event and event interleaving.

As the second example, consider the atomicity decomposition diagram of a file write
system in Figure 3.7. The atomicity of the abstract Write event is break to three sub-
events in the refinement machine, in order to model the writing of individual pages,
PageWrite event. The writing of the entire file is no longer atomic. The writing of a file
is initiated by StartWrite event and ended by EndWrite event. Multiple file writes are
allowed to be taking place simultaneously in an interleaved fashion. This is indicated
by a parameter provided in abstract Write event, f, and inherited with all sub-events.
Also in the refinement model, the pages of an individual file f can be written in parallel

hence an all-replicator over Page Write event replicates its parameter with p.

[Startw:ite (f)] [PageWrite (f, p) ] [ EndWrite (f) ]

Figure 3.7: Atomicity Decomposition Diagram of File Write
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The control variables are sets and the invariants to model event sequencing implied in
Figure 3.7 are presented in Figure 3.8. StartWrite is a subset of FILE, because it is
bounded by parameter f, (invl). PageWrite is a subset of FILE x PAGE, because it
is bounded by parameter f and all-replicator parameter p, (inv2). If a page has been

written for a file, then StartWrite will already have executed for the file, (inv3).

invariants
@inv1 StartWrite € FILE
@inv2 PageWrite € FILE x PAGE
@inv3 dom(PageWrite) < StartWrite

Figure 3.8: Invariants of File Write Refinement Model

The Event-B model of StartWrite and Page Write events are presented in Figure 3.9. The
event sequencing is managed with some guards. PageWrite is guarded with Start Write,

grd1, which indicates ordering between Start Write event and each Page Write event.

event StartWrite
any f
where
@qgrd1 f efile
@grd2 f ¢ StartWrite
then
@actl StartWrite := StartWrite U {f}
end

event PageWrite
any fp
where
@qgrd1 f € StartWrite
@qgrd2 f » p ¢ PageWrite
then
@actl PageWrite := PageWrite U {f » p }
end

Figure 3.9: Event-B Model of File Write

The accurate explanation of Event-B model derived from atomicity decomposition dia-
grams are presented in a pattern based style in Chapter 4. In this section, by using some
examples, we tries to make the overall benefits of the atomicity decomposition approach

more clear.

3.5 Conclusion

This chapter introduced the atomicity decomposition diagram notation. We have out-
lined how atomicity decomposition diagrams help to structure refinement in Event-B by
showing the relationships between events of different refinement levels and by providing
an explicit visual view of the ordering between events. Each node presents one event.

The root node contains the name of an abstract event and the child nodes contain the
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names of concrete sub-events. A refining relationship between an abstract event and
a concrete event is indicated with a solid line in the diagram between these two event
nodes, and a non-refining relationship is indicated with a dashed line. The ordering

between events is indicated with a sequence from left to right in the diagram.

To make the application of atomicity decomposition diagrams more clear and to high-
light the benefits of atomicity decomposition diagrams in structuring refinement, two
examples have been outlined. First example covers the case when a single instance (SI)
of event executions is need, whereas the second one shows the multiple instance (MI)

case.

This chapter presented background material required to understand the atomicity de-
composition patterns in Chapter 4 and description of the atomicity decomposition lan-

guage in Chapter 5.



Chapter 4

Atomicity Decomposition Part 2 -

Patterns and Features

4.1 Introduction

The features of the atomicity decomposition approach in [24] are introduced in Chap-
ter 3. Using these features we have developed two case studies. These developments
helped us to improve and expand the atomicity decomposition approach by discovering
new constructors and features. This chapter presents the constructor patterns and fea-
tures in Section 4.2 and Section 4.3 respectively. Each pattern outlines the intention and
diagrammatic notation of a decomposing constructor and the way that it is encoded in
the Event-B model. The related works are compared with the atomicity decomposition

approach in Section 4.5.

More formal and general descriptions of the atomicity decomposition semantic and trans-
lation rules to the Event-B are presented in Chapter 5. This chapter helps to understand
the contents of Chapter 5.

4.2 Atomicity Decomposition Diagram Patterns

4.2.1 Introduction

This section presents the atomicity decomposition constructors in a pattern-based style.
Each pattern outlines one constructor in one level of refinement. The combination of
different patterns in more than one level of refinement will be presented via formal

description of the atomicity decomposition language and translation rules in Chapter 5.

31
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In the atomicity decomposition approach, we found some common and reusable con-
structors (as solutions) to some common intentions (as problems). These recurring
problem-solution pairings motivated us to use a pattern-based approach to introduce
the atomicity decomposition constructors. Moreover organizing the problems and solu-

tions in a pattern-based approach is easy to read, understand and apply.

In total, eight constructor patterns have been delineated. The constructor patterns are

divided to four distinct groups:

e Sequence pattern, Section 4.2.2.
e Loop pattern, Section 4.2.3.

e Logical constructor patterns: and-constructor, Section 4.2.4, or-constructor, Sec-

tion 4.2.5, xor-constructor, Section 4.2.6.

e Replicator patterns: all-replicator, Section 4.2.7, some-replicator, Section 4.2.8,

one-replicator, Section 4.2.9.

The logical constructors, including the and-constructor, the or-constructor and the xor-

constructor, introduce logical relations between two or more sub-events.

Each replicator constructor, including the all-replicator, the some-replicator and the
one-replicator, introduces a new parameter to its related sub-event and replicates the

dimension of the related sub-event.

The sequence pattern and the all-replicator pattern have been introduced in [24]. The
examples of these two constructors from [24] have been presented in Section 3.4. Here
we present them in a way that follows the pattern based style. The other constructs and
corresponding Event-B models are derived from developing our case studies. The case

study developments are presented in Chapter 7.

4.2.2 Sequence Pattern

Each pattern is presented in a table. The sequence pattern is presented in Table 4.1.
Each pattern table includes the name of the pattern in the first row, followed by a
diagrammatic representation of the atomicity decomposition diagram of the pattern for
single instance execution (SI) on the left and multiple instances execution (MI) on the
right. It is followed by the Event-B model generated from the atomicity decomposition
diagrams. The Event-B model contains the invariants and events separately for the SI
case and the MI case, labeled as “SI/MI Invariants” and “SI/MI Events”. The Event-
B model shown in the table is part of the model which is generated from atomicity
decomposition diagrams, user defined Event-B elements like events can be included
in the Event-B model but not in any atomicity decomposition diagram. The table

interpretation just described, is used for all patterns’ tables.
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Name: Sequence

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent [ AbstractEvent (p) ]

-
e
-
-
-
-

[ Eve;tl ] [ Evelntz ] [ Event3 ] [ Event;(p) ] [ Event2 (p) ] [ Event3 (p) ]

Event-B Model

Single Instance(SI) Invariants:

invariants
@inv_Eventl type Eventl € BOOL
@inv_Event2_seq Event2 = TRUE = Eventl = TRUE
@inv_Event3 seq Event3 = TRUE = Event2 = TRUE
@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants
@inv_Eventl_type Eventl € TYPE(p)
@inv_Event2_seq Event2 € Eventl
@inv_Event3_seq Event2 € Event3
@inv_Event3 gluing Event3 = AbstractEvent

Single Instance(SI) Events: | Multiple Instance(MI) Events:
event Eventl event Eventl
where any p where
@grd Eventl = FALSE @grd p & Eventl
then then
@act Eventl := TRUE @act Eventl :=Eventl U {p}
end end
event Event2 event Event2
where any p where
@grd_seq Eventl = TRUE @grd_seq p € Eventl
@grd Event2 = FALSE @grd p & Event2
then then
@act Event2 := TRUE @act Event2 :=Event2 U{p}
end end
event Event3 refines AbstractEvent event Event3 refines AbstractEvent
where any p where
@grd_seq Event2 = TRUE @grd_seq p € Event2
@grd Event3 = FALSE @grd p & Event3
then then
@act Event3 := TRUE @act Event3 :=Event3U{p}
end end

Table 4.1: Sequence Pattern
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Intention: The atomicity of an abstract event, AbstractEvent, is decomposed to se-
quencing of two or more concrete sub-events. In other words, the behaviour exhibited
by an abstract event is realised by the sequential execution of one or more concrete
events in the refinement level. Since we are able to describe the features of the sequence
pattern by having three sub-events, we minimise the number of sub-events to three,
Fventl, Event2 and Event3.

Diagrammatic Representation: The name of the abstract event appears in the root
node, and sub-events’ names appear in leaf nodes in sequence from left to right. A leaf

is a node without any child node.

In decomposing the atomicity of an event, two cases are considered. First when a single
execution of an event is needed. In this case, there is no control parameter for the
event. Moreover control variables are defined with boolean type, since we do not need
to record the execution of events for different instances of the parameter(s). This case is
called Single Instance (SI). The second case is when multiple instances of an event are
needed. It is called Multiple Instances (MI). In this case, there are one or more control
parameters for the events. In the diagrammatic representation, control parameter(s)
name(s) appear in between parentheses after the event name. In the table, p represents
a list of parameters, p1, ..., p,. We use a set type for control variables. Using sets, enables

multiple instances of an event and event interleaving.

Restrictions: One and only one of the leaves in an atomicity decomposition diagram is
connected to the root event with a solid line. Other leaves have to connect with dashed

lines. This restriction is referred to as the “single solid line” rule in the rest of patterns.

This restriction can raise two questions:

e First, where is the leaf placed with solid line in the sequence of sub-events in the

atomicity decomposition of an abstract event?

e Second, why only one leaf with the solid line can be placed in the atomicity de-

composition of an abstract event?

The first question is answered in the next two paragraphs. The short answer for the
second question is that this restriction is a result of restrictions in the Event-B model.
Since there can be only one occurrence of the abstract event in the refinement level,
there is only one refining event (leaf with the solid line). The second question is clarified

at the end of this section using examples of event traces.

In the Event-B model, the EQL (Equality of preserved variable) proof obligation,
(evt/v/EQL), ensures that an abstract variable v is preserved in the concrete event
evt. It means that the EQL proof obligation does not allow an abstract variable to be

changed in a new event which refines skip. The abstract variable v can be modified
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only by a concrete event that refines the abstract event which modifies variable v. Also
the SIM (Simulation) proof obligations ensure that each action in a concrete event
simulates the corresponding abstract action. It means when a concrete event executes,

the corresponding abstract event is not contradicted.

The leaf corresponding to the solid line is encoded to an event which refines the abstract
event, appearing as the root node. Considering the limitation which EQL and SIM
proof obligations make in the Event-B model, the refining event is the event which
simulates the main behaviour of the abstract event by modifying the corresponding

abstract variable(s). In our patterns we consider it as the last event, Event3.
Event-B Model:

Semantics are given to an atomicity decomposition diagram by generating an Event-B
model from it. We now explain how an atomicity decomposition diagram of the sequence
pattern is encoded as an Event-B model. The encoded Event-B model for the sequence

pattern is presented in Table 4.1.

The middle sub-event in the sequence pattern is replaced by a constructor in the rest of
patterns, which are described later. Each constructor can be placed as the first or the
last sub-event of the diagram too; the reason that we consider it as the middle sub-event
is to show the effect of the previous sub-event (the first sub-event) on the constructor,
and the effect of the constructor on the next sub-event (the last sub-event). The sequence
pattern is considered as a basic pattern for the rest of atomicity decomposition patterns.
Therefore most of the translation rules from the diagram to the Event-B model which

are explained in this pattern, are true for the rest of patterns.

For each leaf, a node without any child node, one control variable and one event are
generated. The generated event name and variable name are same as the leaf name.
Recalling event labeling in Section 2.4.3, all generated new events are labeled as ordinary
events. Ordering between leaves is achieved by generating some actions and guards in
generated events. The generated event corresponding to the leaf with the solid line
refines the abstract event. The leaf with the solid line can have the same name as the
abstract event, since it refines the abstract event. In the diagrams of Table 4.1 the

rightmost event can have the same name as the abstract event.

Considering the SI case, the boolean control variable’s value in the related event, is
assigned to TRUE. This assignment enables the next event’s guard in sequence. For
example, in event Fventl, variable Fventl is assigned to T'RU FE, indicating that event
Eventl executes. This assignment enables guard (Eventl = TRUE) in event Fvent2.
We do not need the sequencing guard in the first event, as there is no event before
it in sequence. Another guard is generated for each generated event too. This guard
indicates that the current event has not executed before, i.e., (Eventl = FALSE) in

event Fventl.
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In the MI case, each event corresponding to a leaf gives rise to a set control variable
whose type is based on the type of the parameter(s) of the leaf. In the table, p represents
a list of parameters, pi,...,pn, of type TY PE(p1) X ... x TY PE(p,). When an event
executes for a specific value of the instance parameter(s), the value is added to the
set control variable in the action of that event. This enables the next event’s guard
in sequence. For example, in event Fventl, the parameter value is added to the set
variable Eventl. This action enables the next event’s guard, (p € Ewventl) in event
FEvent2. Another guard in each event checks that the event has not executed before,
i.e., (p ¢ Eventl) in event Eventl.

For each leaf an invariant is generated. The invariants states the sequencing conditions.
For example in the SI case, (Event2 = TRUE = Eventl = TRUFE) is a condition to
show that Fventl should executes before Fvent2. In the MI case, the subset invariant
(Event2 C FEwventl) shows that for instances of variable Fvent2, event Fuventl has
executed before. For the first leaf, we do not need a sequencing invariant. Instead a

typing invariant is generated.

A gluing invariant is generated for a leaf with solid line. Leaf Fvent3 connects to the root

node with solid line, so the gluing invariant (Event3 = Abstract Event) is generated.

To make the use of gluing invariant clear, consider a case when machine M2 refines
machine MI1. Atomicity decomposition diagrams help illustrate the relation between
abstract events of M1 and concrete events of M2. Each event E of M2 corresponding
to a leaf with solid line in diagrams, either refines an abstract event A of M1, or it is a
new event corresponding to a leaf with dashed line refining skip. The proof obligations
defined for Event-B refinement are based on the following proof rule that makes use of

a gluing invariant Inv_Gluing.

e Each M2.FE refines M1.A under Inv_Gluing, if A is defined.
e Each MZ2.FE refines skip under Inv_Gluing, if E is a new event.
Therefore in order to discharge the refinement proof obligations, some gluing invari-

ants, which define the relationship between abstract variable and concrete variables, are

needed.
Event Execution Trace Examples:

Considering the SI case in the sequence pattern, the single event trace of the refinement

model is as follow:
< Fventl, Event2, Event3 >

Each event trace represents a record of a possible execution trace of the model. It is
instructive to relate the event trace of the refinement model with the event trace of the

abstract model. The single event trace of the abstract model is
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< AbstractEvent >

If we remove Fventl and FEvent?2 from the trace of the refinement model, we get the

trace of the abstract model (considering Event3 refines AbstractEvent):
< FEventl, Fvent2, Event3 >\ {Eventl, Event2} = < Event3 > = < AbstractEvent >

Removing events from a trace is the standard way of giving a semantic to hidden
events [24, 26] and is used, for example, in CSP. By treating Event! and Event2 as
hidden events, traces of the refinement model looks like traces of the abstract model.
This illustrates a semantics of refinement of Event-B models. Machine M1 is a refine-
ment of machine M0 since any trace of M1 in which the new events are hidden is also a
trace of M0. In this point the answer for the second question raised in the Restriction
part can be made clear. If more than one leaf refines the abstract event in the atomicity
decomposition of the abstract event, the refinement semantics in Event-B is violated.
Because removing hidden events from the refinement trace does not result in the same

abstract trace.

As mentioned in the explanation of the Event-B model, using the set type for control
variables, enables multiple instances of an event in an event trace. To make this point
clear, we provide some examples of event traces for the MI case here. Considering the
MI case in the sequence pattern, assume the case where we have two instances of the

parameter, (p! and p2), two examples of possible event traces are as follows :

< Eventl(pl), Event2(pl1), Event3(p1), Eventl(p2), Event2(p2), Event3(p2) >
< Ewventl(pl), Eventl(p2), Event2(p1), Event2(p2), Event3(pl), Event3(p2) >

To clarify the sequencing conditions modelled with subset invariants in the MI case, we
explain the sequencing invariant, (Event2 C Eventl). This invariant holds in the above
two event traces. For example in the second trace, after execution of Event2(pl), set

variable Event2 = {pl} is a subset of set variable Eventl = {pl, p2}.

4.2.3 Loop Pattern

The loop pattern is presented in Table 4.2. The table interpretation is the same as what

described in term of the sequence pattern table interpretation in Section 4.2.2.

Intention: In the sequence of sub-events, zero or more execution of an event is needed.
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Name: Loop

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent [ AbstractEvent (p) ]

[ Eventl] [ LoopEvent ] [ Event3] [ Eventll () ] [ LoopEvent (p) ] [ Event3 (p) ]

Event-B Model

Single Instance(SI) Invariants:

invariants
@inv_Eventl_type Eventl € BOOL
@inv_Event3_seq Event3 = TRUE = Eventl = TRUE
@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants

@inv_Eventl_type Eventl € TYPE(p)
@inv_Event3 seq Event3 C Eventl
@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: | Multiple Instance(MI) Events:
event Eventl
any p where
event Eventl @grd p & Eventl
where then
@grd Eventl = FALSE @act Eventl := Eventl U{p}
then end
@act Eventl := TRUE event LoopEvent
end any p
event LoopEvent where
where @grd_seq p € Eventl
@grd_seq Eventl = TRUE @grd_loop p € Event3
@grd_loop Event3 = FALSE end
end event Event3 refines AbstractEvent
event Event3 refines AbstractEvent any p
where where
@grd_seq Eventl = TRUE @grd_seq p € Eventl
@grd Event3 = FALSE @grd p & Event3
then then
@act Event3 := TRUE @act Event3 :=Event3 U {p}
end end

Table 4.2: Loop Pattern
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Diagrammatic Representation: The loop constructor appears as a circle containing
a star. The node connected to the loop, LoopFEvent, can execute zero or more time
after execution of previous sub-event, Eventl, and before execution of next sub-event,

FEvent3, in sequence.

Restrictions: The loop constructor is always connected to the root node with a dashed
line. Since the loop event can execute for more than one time, a loop with a solid line
does not follow the single solid line rule, which has been explained in the Sequence
Pattern (Section 4.2.2). This is clarified at the end of this section using examples of

event trace.
Event-B Model:

The encoded Event-B model for the loop pattern is presented in Table 4.2. No control
variable is generated for a loop leaf, since we do not need to record the loop event

execution. Therefore there is no action for the loop event, LoopFEvent here.

A guard is generated in the loop event to check that next event has not executed before,
i.e., guard (Fvent3 = FALSE) in the SI case and guard (p ¢ Event3) in the MI case.

The event after the loop event, is guarded by the execution condition of the event before
the loop event. Considering the SI case, guard (Fventl = TRUFE) and considering the
MI case guard (p € Eventl) in event Event3, both check the execution of the event
before the loop, Fwventl. This guard allows zero executions of the loop event. Right
after execution of event before the loop, with zero execution of the loop event, the event
after the loop can execute. That is why we do not need a variable and an action to

record the loop execution.

An invariant is generated to show the sequencing between the event before the loop,
FEventl, and the event after the loop, Fvent3. The way that sequencing invariant is

described is same as what described in the sequence pattern in Section 4.2.2.
Event Execution Trace Examples:

Considering the SI case diagram in Table 4.2, the event trace of the model in case of

zero execution of the loop is:

< PRventl, Events >

And the event trace of the model in case of two executions of the loop is:
< Fventl, LoopFEvent, LoopEvent, Event3 >

As mentioned in the restriction, a loop with a solid line is not allowed due to the Event-B
restrictions. Assume the loop in the SI case diagram in Table 4.2 is connected to the

abstract event with a solid line, and the other two sub-events are connected with dashed



40 Chapter 4 Atomicity Decomposition Part 2 - Patterns and Features

lines. If we remove the hidden sub-events (sub-events with dashed line) from the above

event trace, the result is as follow:
< LoopEvent, LoopEvent >

Considering what has been explained in the Sequence Pattern in Section 4.2.2 about
removing events from a trace, the just mentioned trace is supposed to be same as the
abstract event trace, < AbstractFEvent >, but it is not. Therefore the loop constructor
in an atomicity decomposition diagram is always connected to the abstract event with

a dashed line.

4.2.4 and-constructor Pattern

The and-constructor pattern is presented in Table 4.3. The table interpretation is same
as what was described in terms of the sequence pattern table interpretation in Sec-
tion 4.2.2.

Intention: The intention is to execute all two or more available sub-events in any order,

in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in atomicity
decomposition diagram with the and-constructor, a circle containing and. All nodes
connected to the and-constructor execute in any order in the sequence of other sub-

events. For simplicity, in this pattern we consider two leaves for the and-constructor.

Restrictions: There are at least two nodes connected to the and-constructor. Following
single solid line rule, the and-constructor is always connected to the root node with
a dashed line, and all of the corresponding and-constructor events, AndFEventl and

AndFEwvent2 here, inherit dashed line from the and-constructor.
Event-B Model:

The encoded Event-B model for the and-constructor pattern is presented in Table 4.3.
Each and-constructor event can execute only after execution of previous event, Fventl.
This is ensured with a guard, explained in the sequence pattern. The next event after the
and-constructor can execute only after execution of all and-constructor events. Therefore
a guard is generated in the event after the and-constructor, to ensures that all of the
and-constructor events execute before. This guard is a logical conjunction between
corresponding control variables generated for the and-constructor leaves. Considering
the SI case, guard (AndEventl = TRUE A AndEvent2 = TRUFE), and in the MI case
guard (p € AndEventl N AndFEvent2), are generated.

Comparing to sequence pattern invariants, the sequencing invariants for the event after
the and-constructor is slightly changed in order to show the logical conjunction between

control variables of the and-constructor events.
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Name: and-constructor

Diagrammatic Representation

Single Instance(SI)

AbstractEvent

Multiple Instance(MTI)

[ AbstractEvent (p) ]

- ~

[Ever:tl] [AndEventl] [And\EventZ] [Event3] [Eventl (p)] [AndEventl (p)][AndEventz (p)][Events (p)]

Event-B Model

Single Instance(SI) Invariants:

Invariants
@inv_Eventl_type Eventl € BOOL
@inv_AndEventl_seq AndEventl = TRUE = Eventl = TRUE
@inv_AndEvent2_seq AndEvent2 = TRUE = Eventl = TRUE
@inv_Event3_seq Event3 = TRUE = (AndEventl = TRUE A AndEvent2 = TRUE)
@inv_Event3 gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants
@inv_Eventl_type Eventl € TYPE(p)
@inv_AndEventl seq AndEventl € Eventl
@inv_AndEvent2_seq AndEvent2 C Eventl
@inv_Event3_seq Event3 € AndEventl n AndEvent2
@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Eventl
where
@grd Eventl = FALSE
then
@act Eventl := TRUE
end

event AndEventl event AndEvent2
where where

@grd_seq Eventl = TRUE
@grd AndEventl = FALSE
then
@act AndEventl := TRUE
end

@grd_seq Eventl = TRUE
@grd AndEvent2 = FALSE
then
@act AndEvent2 := TRUE
end

event Event3 refines AbstractEvent

where

@grd_seq AndEventl = TRUE A AndEvent2 = TRUE

@grd Event3 = FALSE
then
@act Event3 := TRUE
end
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Multiple Instance(MI) Events:

event Eventl

any p where
@grd p & Eventl
then
@act Eventl :=Eventl U {p}
end
event AndEventl event AndEvent2
any p any p
where where
@grd_seq p € Eventl @grd_seq p € Eventl
@grd p € AndEventl @grd p € AndEvent2
then then
@act AndEventl := AndEventl U {p } @act AndEvent2 := AndEvent2 U {p }
end end

event Event3 refines AbstractEvent
any p
where
@grd_seq p € (AndEventl n AndEvent2)
@grd p & Event3
then
@act Event3 :=Event3U{p}
end

Table 4.3: and-constructor Pattern

Event Execution Trace Examples:
Considering the SI case diagram in Table 4.3, the event traces of the model are as follows:

< Eventl, AndFEventl, AndEvent2, Event3 >
< Fventl, AndEvent2, AndFEventl, Event3 >

4.2.5 or-constructor Pattern, Multiple Choice

The or-constructor pattern is presented in Table 4.4. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 4.2.2.

Intention: The intention is to execute one or more sub-events from two or more avail-

able sub-events, in any order, in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in atomic-
ity decomposition diagram with the or-constructor, a circle containing or. One or more
nodes connected to the or-constructor execute in any order in the sequence of other

sub-events. For simplicity, in this pattern we consider two leaves for the or-constructor.
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Name: or-constructor

Diagrammatic Representation

Single Instance(SI)

Multiple Instance(MI)

AbstractEvent

[ AbstractEvent (p) ]

7

[Eve‘ntl] [OrEventl] [OrEventZ] [Event3] [Even';l (p)] [OrEven;I (p)] [OrEventZ (p)] [Event3 (p)]

Event-B Model

Single Instance(SI) Invariants:

Invariants
@inv_Eventl_type Eventl € BOOL
@inv_OrEventl_seq OrEventl = TRUE = Eventl = TRUE
@inv_OrEvent2_seq OrEvent2 = TRUE = Eventl = TRUE

@inv_Event3 gluing Event3 = AbstractEvent

@inv_Event3 seq Event3 = TRUE = (OrEventl = TRUE V OrEvent2 = TRUE)

Multiple Instance(MI) Invariants:

invariants
@inv_Eventl_type Eventl € TYPE(p)
@inv_OrEventl seq OrEventl € Eventl
@inv_OrEvent2 seq OrEvent2 C Eventl
@inv_Event3 seq Event3 € OrEventl U OrEvent2
@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Eventl
where
@grd Eventl = FALSE
then
@act Eventl := TRUE
end

event OrEventl event OrEvent2
where where

@grd_seq Eventl = TRUE
@grd OrEventl = FALSE
then
@act OrEventl := TRUE
end

@grd_seq Eventl = TRUE
@grd OrEvent2 = FALSE
then
@act OrEvent2 := TRUE
end

where

@grd Event3 = FALSE
then
@act Event3 := TRUE
end

event Event3 refines AbstractEvent

@grd_seq OrEventl = TRUE V OrEvent2 = TRUE
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Multiple Instance(MI) Events:

event Eventl

any p where
@grd p & Eventl
then
@act Eventl :==Eventl U {p}
end
event OrEventl event OrEvent2
any p any p
where where
@grd_seq p € Eventl @grd_seq p € Eventl
@grd p & OrEventl @grd p € OrEvent2
then then
@act OrEventl :== OrEventl U {p } @act OrEvent2 := OrEvent2 U {p }
end end

event Event3 refines AbstractEvent
any p
where
@grd_seq p € (OrEventl U OrEvent2)
@grd_ p & Event3
then
@act Event3:==Event3U{p}
end

Table 4.4: or-constructor Pattern

Restrictions: There are at least two nodes connected to the or-constructor. Following
single solid line rule, the or-constructor is always connected to the root node with dashed
line, and all of the corresponding or-constructor events, Or Eventl and Or Event2 here,

inherit dashed line from the or-constructor.
Event-B Model:

The encoded Event-B model for the or-constructor pattern is presented in Table 4.4.
Each or-constructor event can execute only after execution of previous event, Eventl.
This is ensured with a guard, explained in sequence pattern. Next event after the
or-constructor in sequence can execute only after execution of at least one of the or-
constructor events. Therefore a guard is generated in the event after the or-constructor,
to ensures that at least one of the or-constructor events executes before. This guard is a
disjunction between the corresponding control variables generated for the or-constructor
events. Considering the SI case, guard (OrEventl = TRUE V OrEvent2 = TRUE),
and in the MI case guard (p € OrEventl U Or Event2), are generated.

Comparing to sequence pattern invariants, the sequencing invariants for the event after
the or-constructor is changed in order to show the disjunction between control variables

of the or-constructor events.
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Event Execution Trace Examples:
Considering the SI case diagram in Table 4.4, the event traces of the model are as follows:

< Fventl, Or Eventl, Event3 >
< Ewventl, OrEvent2, Event3 >
< Fventl, Or Eventl, Or Fvent2, Event3 >
< Ewventl, OrEvent2, OrEventl, Event3 >

4.2.6 xor-constructor Pattern, Exclusive Choice

The xor-constructor pattern is presented in Table 4.5. The table interpretation is the

same as what was described in term of sequence pattern table interpretation in Sec-
tion 4.2.2.

Intention: The intention is to execute exactly one event from two or more available

sub-events, in the right place in the sequence of other sub-events.

Diagrammatic Representation: The intention stated above is presented in the atom-
icity decomposition diagram with the xor-constructor, a circle containing zor. Exactly
one of the nodes connected to the xor-constructor executes in the sequence of other
sub-events. The xor-constructor can connect to the root node either with solid line or
dashed line. Since only one of the xor-constructor events execute in this pattern, so
having solid line for the xor-constructor follows the single solid line rule. It is clarified
in examples of event trace at the end of this section. For simplicity, in this pattern we

consider two leaves for the xor-constructor.
Restrictions: There are at least two nodes connected to the xor-constructor.

Event-B Model:

The encoded Event-B model for the xor-constructor pattern is presented in Table 4.5.
The Event-B model is almost like the or-constructor pattern. In each xor-constructor
event, a guard is needed to ensure that other xor-constructor events have not executed.
For example, in the SI case, guard XorFEvent2 = FALSFE is generated in XorFventl,
and considering the MI case, guard p ¢ XorEvent2 is generated in XorEventl .

Also an extra invariant is provided to show that at any time only one of the xor-

constructor events has executed or none of them has executed. In the SI case, invariant

partition({ X or Eventl, Xor Event2} N {TRUE},
{XorEventl} N{TRUE},{XorEvent2} N {TRUE})

shows that at any time only one the control boolean variables’value can be TRU E. And

in the MI case invariant
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partition((Xor Eventl U Xor Event2), X or Eventl, X or Event2)

shows that the set control variables are disjoints. The partition operator in event-B is

defined as follows:
partition(Ey, F1,...,E,) = (Eg = EAU .. UE)AN (G # 7= E;N E; = )

If the xor-constructor is provided with a solid line, the each xor-constructor sub-event
refines the abstract event. Also a gluing invariant is needed. The just stated invariants

in the SI case and the MI case respectively are changed to:

partition({ AbstractEvent} N {T'RUEY},
{XorEventl} N{TRUE},{XorEvent2} N {TRUE})

partition( Abstract Event, X or Eventl, X or Event2)

These gluing invariant not only describe the exclusive choice property, but also they
describe the relation between abstract variable and the xor-constructor control variables.
Considering partition definition, the gluing invariants in the SI case and the MI case

respectively describe:

{AbstractEvent yN{TRUE} = ({XorEventl}N{TRUE})U({XorEvent2} N{TRUEY})
Abstract Event = XorEventl U Xor Event2

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.5, the event traces of the model are as follows:

< PRventl, XorEventl, Event3 >
< Fventl, XorFvent2, Fvent3 >

As mentioned above, the xor-constructor can be connected to the root node with a solid
line. Assume the xor-constructor in the SI case diagram in Table 4.2 is connected to the
abstract event with a solid line, and the other two sub-events are connected with dashed
lines. If we remove the hidden sub-events (sub-events with dashed line) from the above

event traces, the results are as follows:

< XorFEventl >
< XorFEvent2 >

Considering what has been explained in the Sequence Pattern in Section 4.2.2 about
removing events from a trace, the just mentioned traces are same as the abstract event

trace, < AbstractEvent >, since both xor-constructor events refine the AbstractEvent.
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Name: xor-constructor

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

[ AbstractEvent (p) ]

AbstractEvent

-, ~ s ~

Z ~
[Eventl] [XorEventl] [XorEventZ] [Event3]

[Event/]. (p)][XorEven11 (p)] [XorEventZ (p)][EventS (p)]

Event-B Model

Single Instance(SI) Invariants:

invariants
@inv_Eventl_type Eventl € BOOL
@inv_XorEventl_seq XorEventl = TRUE = Eventl = TRUE
@inv_XorEvent2_seq XorEvent2 = TRUE = Eventl = TRUE
@inv_Event3_seq Event3 = TRUE = (XorEventl = TRUE V XorEvent2 = TRUE)
@inv_xor partition( {XorEvent1, XorEvent2} n {TRUE},

{XorEventl} n {TRUE}, {XorEvent2} n {TRUE})

@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants
@inv_Eventl_type Eventl € TYPE(p)
@inv_XorEventl_seq XorEventl € Eventl
@inv_XorEvent2_seq XorEvent2 € Eventl
@inv_Event3_seq Event3 € XorEventl U XorEvent2
@inv_xor partition((XorEventl U XorEvent2), XorEvent1, XorEvent2)
@inv_Event3 gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Eventl

where
@grd Eventl = FALSE
then
@act Eventl := TRUE
end
event XorEventl event XorEvent2
where where
@grd_seq Eventl = TRUE @grd_seq Eventl = TRUE
@grd XorEventl = FALSE @grd XorEvent2 = FALSE
@grd_xor XorEvent2 = FALSE @grd_xor XorEventl = FALSE
then then
@act XorEventl := TRUE @act XorEvent2 := TRUE
end end

event Event3 refines AbstractEvent
where
@grd_seq XorEventl = TRUE V XorEvent2 = TRUE
@grd Event3 = FALSE
then
@act Event3 := TRUE
end
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Multiple Instance(MI) Events:

event Eventl

any p where
@grd p & Eventl
then
@act Eventl := Eventl U {p}
end
event XorEventl event XorEvent2
any p any p
where where
@grd_seq p € Eventl @grd_seq p € Eventl
@grd p & XorEventl @grd p & XorEvent2
@grd_xor p & XorEvent2 @grd_xor p & XorEventl
then then
@act XorEventl := XorEventl U {p } @act XorEvent2 := XorEvent2 U {p }
end end

event Event3 refines AbstractEvent
any p
where
@grd_seq p € (XorEventl U XorEvent2)
@grd p & Event3
then
@act Event3 :=Event3 U {p}
end

Table 4.5: xor-constructor Pattern

4.2.7 all-replicator Pattern

The all-replicator pattern is presented in Table 4.6. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 4.2.2.

Intention: The intention is to execute a sub-event for all instances of a new parameter,
in the right place in the sequence of other sub-events. The all-replicator is a generalisa-

tion of the and-constructor.

Diagrammatic Representation: The all-replicator is presented with a circle contain-

ing all flowed by name of a new parameter.

Restrictions: Based on the single solid line rule, the all-replicator is always connected
to the root event with dashed line, since the all-replicator event can execute for more

than one time depending on the number of new introduced all parameter instances.
Event-B Model:

The encoded Event-B model for the all-replicator pattern is presented in Table 4.6. The
all-replicator parameter, p2, is added to the sub-event connected to the all-replicator,

AllFEvent, as a new dimension.
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The type of generated control variable for the all-replicator event has got one more
dimension compared with other sub-events. Because the all-replicator introduces a new
parameter. An invariant is generated to define the type of the all-replicator control
variable. For instances considering the SI case, variable AllEvent is a subset of type of
new parameter p2, TY PE(p2), whereas other control variables are boolean variables. In
the MI case AllFEvent’s variable is defined as a cartesian product of the root parameter’s
type TY PE(pl) and the all-replicator parameter’s type, TY PE(p2).

The event after the all-replicator event in sequence, Fvent3, can execute only after
execution of the all-replicator event, All Event, for all instances of the new parameter, p2.
A guard is generated in next event, Fvent3, to ensure this property. Guard (All Event =
TY PE(p2)) in event Event3 in the SI case, ensures that event AllEvent has executed
for all instances of p2 before. Also considering the MI case, guard (AllEvent[{pl}] =
TY PE(p2)) plays same role. Relational image r[S] in Event-B is defined as below:

riS)={y|Jzxe SAx—yer}

Considering relational image definition, guard (AllEvent[{pl}] = TY PE(p2)) ensures
that for p1, AllEvent has executed for all instances of p2 from set TY PE(p2).

An invariant is generated to model the all-replicator condition: (pl € Fvent3 =
AllEvent[{pl}] = TYPE(p2)) in MI case and (Event3 = TRUE = AllEvent =
TY PE(p2) in the SI case.

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.6, assume p2 € {a, b}, the the event traces

of the model are as follows:

< Eventl, AllEvent(a), AllEvent(b), Fvent3 >
< FEventl, AllEvent(b), AllEvent(a), Event3 >

Number of executions of All Event is always equal to cardinality of the all-replicator pa-
rameter’s type set. In this example All Event executes for two times, since card({a,b}) =
2.
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Name: all-replicator

Diagrammatic Representation

Single Instance(SI) Multiple Instance(MI)

AbstractEvent [ AbstractEvent (p1) ]

[Eventl] [AIIEvent (pZ)] [Events] [Event;(pl)] [AIIEvent (o1, pz)] [Event3 (p1)]

Event-B Model

Single Instance(SI) Invariants:

invariants
@inv_Eventl_type Eventl € BOOL
@inv_AllEvent_type AllEvent € TYPE(p2)
@inv_AllEvent seq AllEvent # @ = Eventl = TRUE
@inv_Event3_seq Event3 = TRUE = AllEvent = TYPE(p2)
@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

Invariants
@inv_Eventl type Eventl € TYPE(p1)
@inv_AllEvent_type AllEvent € TYPE(p1) x TYPE(p2)
@inv_AllEvent_seq dom( AllEvent) € Eventl
@inv_Event3_seq pl € Event3 = AllEvent[{pl}]=TYPE(p2)
@inv_Event3_gluing Event3 = AbstractEvent

Single Instance(SI) Events: Multiple Instance(MI) Events:

event Eventl

event Eventl any p where
where @grd p & Eventl
@grd Eventl = FALSE then
then @act Eventl := Eventl U {p}
@act Eventl := TRUE end
end event AllEvent
event AllEvent any plp2
any p2 where
where @grd_seq pl € Eventl
@grd_seq Eventl = TRUE @grd pl » p2 & AllEvent
@grd p2 & AllEvent then
then @act AllEvent := AllEvent U { p1 - p2 }
@act AllEvent := AllEvent U { p2 } end
end event Event3 refines AbstractEvent
event Event3 refines AbstractEvent any p1
where where
@grd_seq AllEvent = TYPE(p2) @grd_seq AllEvent [ { pl}]=TYPE(p2)
@grd Event3 = FALSE @grd pl & Event3
then then
@act Event3 := TRUE @act Event3 := Event3 U { p1}
end end

Table 4.6: all-replicator Pattern
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4.2.8 some-replicator Pattern

The some-replicator pattern is presented in Table 4.7. The table interpretation is the
same as what was described in term of sequence pattern table interpretation in Sec-
tion 4.2.2.

Intention: The intention is to execute a sub-event for one or more instances of a new
parameter, in the right place in the sequence of other sub-events. The some-replicator

is a generalisation of the or-constructor.

Diagrammatic Representation: The some-replicator is presented with a circle con-

taining some followed by name of a new parameter.

Restrictions: Based on the single solid line rule, the some-replicator is always con-
nected to the root event with dashed line, since the some-replicator event can execute

for more than one time.
Event-B Model:

The encoded Event-B model for the some-replicator pattern is presented in Table 4.7.
The some-replicator parameter, p2, is added to the sub-event connected to the some-

replicator, SomeFEwvent, as a new dimension.

The type of generated control variable for the some-replicator event is defined with an

invariant as described in the all-replicator pattern.

The event after the some-replicator event in the sequence, Fvent3, can execute only after
execution of the some-replicator event, SomeFEvent, at least for one of the instances of
the new parameter, p2. The sequencing guard (SomeFEvent # @) in event Fvent3 in
the SI case, ensures that event SomeFEwvent has executed for one or more instances of
p2 before. Also considering the MI case, guard (pl € dom(SomeEvent)) ensures that
card(SomeEvent[{pl}]) > 1. It means for pl, event Event3 executes for at least one

instance of p2.

The sequencing invariant generated for Event3, (Event3 C dom(SomeEwvent)), also

shows one or more execution of SomeFEvent before execution of Event3.
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Name: some-replicator

Diagrammatic Representation

Single Instance(SI)

AbstractEvent

Multiple Instance(MI)

[ AbstractEvent (p1) ]

< 1

[ Event1 (p1) ] [ SomeEvent (p1, p2) ][ Event3 (p1) ]

[ Even,tl ] [ SomeEvlent (p2) ] [ Event3 ]

Event-B Model

Single Instance(SI) Invariants:

invariants
@inv_Eventl_type Eventl € BOOL
@inv_SomeEvent_type SomeEvent € TYPE(p2)
@inv_SomeEvent_seq SomeEvent # @ = Eventl = TRUE
@inv_Event3_seq Event3 = TRUE = SomeEvent = @
@inv_Event3 gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

Invariants
@inv_Eventl_type Eventl € TYPE(p1)
@inv_SomeEvent_type SomeEvent € TYPE(p1) x TYPE(p2)
@inv_SomeEvent_seq dom( SomeEvent) € Eventl
@inv_Event3_seq Event3 € dom( SomeEvent)
@inv_Event3 gluing Event3 = AbstractEvent

Single Instance(SI) Events:

event Eventl
where
@grd Eventl = FALSE
then
@act Eventl :== TRUE
end

event SomeEvent
any p2
where
@grd_seq Eventl = TRUE
@grd p2 € SomeEvent
then
@act SomeEvent := SomeEvent U { p2 }
end

event Event3 refines AbstractEvent
where
@grd_seq SomeEvent # @
@grd Event3 = FALSE
then
@act Event3 := TRUE
end

Multiple Instance(MI) Events:

event Eventl
any p where
@grd p & Eventl
then
@act_Eventl Eventl:=Eventl U {p}
end

event SomeEvent
any p1l p2
where
@grd_seq pl € Eventl
@grd pl - p2 € SomeEvent
then
@act SomeEvent := SomeEvent U { p1 — p2 }
end

event Event3 refines AbstractEvent
any pl
where
@grd_seq pl € dom( SomeEvent)
@grd pl & Event3
then
@act Event3 :=Event3 U {pl}
end

Table 4.7: some-replicator Pattern
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Event Execution Trace Examples:

Considering the SI case diagram in Table 4.7, assume p2 € {a,b}, the event traces of

the model are as follows:

< FEventl, AllEvent(a), AllEvent(b), Event3 >
< Eventl, AllEvent(b), AllEvent(a), Fvent3 >
< Ewventl, AllEvent(a), Event3 >
< Eventl, AllEvent(b), Event3 >

The number of the some-replicator event execution is always less than or equal to the car-
dinality of the some-replicator parameter’s type set. In above event traces, SomeFEvent

executes for one or two times, since card({a,b}) = 2.

4.2.9 one-replicator Pattern

The one-replicator pattern is presented in Table 4.8. The table interpretation is the same

as what was described in term of sequence pattern table interpretation in Section 4.2.2.

Intention: The intention is to execute a sub-event for exactly one instance of a new
parameter, in the right place in the sequence of other sub-events. The one-replicator is

a generalisation of the xor-constructor.

Diagrammatic Representation: The one-replicator is presented with a circle con-
taining one flowed by name of a new parameter. Following the single solid line rule, the
one-replicator can be connected to the root event with either dashed line of solid line,

since the one-replicator event can execute for only one instance.
Event-B Model:

The encoded Event-B model for the one-replicator pattern is presented in Table 4.8. The
one-replicator parameter, p2, is added to the sub-event connected to the one-replicator,

OneFEvent, as a new dimension.

Type of generated control variable for the one-replicator event is defined with an invari-

ant as described in the all-replicator pattern.

The event after the one-replicator event in the sequence, Event3, can execute only after
execution of the one-replicator event, OneFEvent, for exactly one of the instances of
the new parameter, p2. The sequencing guard in event Fvent3 is same as the one in
the some-replicator pattern. In order to restrict the number of the one-replicator event
executions, we provide a guard in the one-replicator event. Considering the SI case, the

guard (OneFvent = @) in event OneEvent ensures that event OneEvent can execute
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only for one time. And in the MI case, guard (pl ¢ dom(OneEvent)) ensures that for

pl, event OneFvent can execute only for one instance of p2.

An invariant is generated to show that the one-replicator event can execute only for one
time (for each instance of event parameter in the MI case). In the SI case,
(card(OneEvent) < 1), and the MI case, invariant (V p.card(OneEvent[{p}]) < 1).

A gluing invariant is generated for the one-replicator with the solid line. The gluing

invariant in the SI case and the MI case respectively are as follows:
OneFEvent # @ < AbstractEvent = TRUFE

dom(OneFEvent) = Abstract Event

Event Execution Trace Examples:

Considering the SI case diagram in Table 4.8, assume p2 € {a, b}, the event traces of

the model are as follows:

< FEventl, OneEvent(a), Event3 >
< FEventl, OneEvent(b), Event3 >

The one-replicator event can execute exactly for one instance of the new parameter.
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Name: one-replicator

Diagrammatic Representation

Multiple Instance(MI)
[ AbstractEvent (p1) ]

Single Instance(SI)

AbstractEvent

[ Eventl] [OneEvent (p2) ] [ Event3] [ Eventl (p1) ] [ OneEvent (p1, p2) ] [ Event3 (p1) ]

Event-B Model

Single Instance(SI) Invariants:

invariants
@inv_Eventl_type Eventl € BOOL
@inv_OneEvent_type OneEvent € TYPE(p2)
@inv_OneEvent_seq OneEvent # @ = Eventl = TRUE
@inv_Event3_seq Event3 = TRUE = OneEvent # @
@inv_OneEvent_one card(OneEvent) < 1
@inv_Event3_gluing Event3 = AbstractEvent

Multiple Instance(MI) Invariants:

invariants
@inv_Eventl_type Eventl € TYPE(p1)
@inv_OneEvent_type OneEvent € TYPE(p1) x TYPE(p2)
@inv_OneEvent_seq dom( OneEvent) € Eventl
@inv_Event3_seq Event3 S dom( OneEvent)
@inv_OneEvent_one Vp- card( OneEvent [{p}] ) <1
@inv_Event3 gluing Event3 = AbstractEvent

Multiple Instance(MI) Events:

event Eventl

Single Instance(SI) Events:

event Eventl any p where
where @grd p & Eventl
@grd Eventl = FALSE then
then @act_Eventl Eventl:=Eventl U{p}
@act Eventl :== TRUE end
end event OneEvent
event OneEvent any p1 p2
any p2 where
where @grd_seq pl € Eventl

@grd_seq Eventl = TRUE
@grd p2 & OneEvent

@grd pl = p2 & SomeEvent
@grd_one pl & dom( OneEvent )

@grd_one OneEvent=Q then
then @act OneEvent := OneEvent U { pl » p2}
@act OneEvent := OneEvent U { p2} end
end

event Event3 refines AbstractEvent

event Event3 refines AbstractEvent
where
@grd_seq OneEvent # @
@grd Event3 = FALSE
then
@act Event3 := TRUE
end

any pl
where
@grd_seq pl € dom( OneEvent)
@grd pl & Event3
then
@act Event3 :=Event3 U {pl}
end

Table 4.8: one-replicator Pattern
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4.3 Additional Features of the Atomicity Decomposition
Approach

4.3.1 The Most Abstract Level

The most abstract level of an Event-B model is illustrated in a diagram that aids un-
derstanding, shown in Figure 4.1. The name of a process in the system appears in an
oval as the root node, and the names of most abstract events appear in the leaves in
order from left to right. All lines have to be dashed lines, since all of leaves are the
most abstract events and do not refine the root node. The Event-B model is the same
as presented in patterns, Section 4.2. The only difference is that in the most abstract

level, there is no refining event (no solid line) and no gluing invariant in the Event-B

ProcessName (p, ..., p,,)

i< N
- ~
// N - ~
S P SS
’, A - ~

[ Ev;nt n ] [ Event , (p:, wer Py) ] [ Event n\(pl, wer Pp) ]

model.

Figure 4.1: The Most Abstract Level Diagrams

4.3.2 Combined Atomicity Decomposition Diagram

In an atomicity decomposition diagram, root node, Abstract Event in described patterns
in Section 4.2, is one of the events in (i) refinement level which decomposed into some
sub-events in (i+1)"" refinement level. Later each sub-events can be further decomposed
to some other sub-events in the next refinement level, (i-+2)!" refinement level, and so on.
The reason in the patterns we called the root node, AbstractEvent, is that comparing
with sub-events, AbstractEvent is placed in an earlier level of refinement which can be

considered as an abstract level for the sub-events refinement level.

Starting from the most abstract level diagram, the atomicity decomposition diagrams
for different events can be combined in a single diagram. An example is illustrated in
Figure 4.2. In this example, there are four abstract events, Fvent,, Events, Events and
FEventy, in the most abstract level. In the first refinement level, Fvents is decomposed
to Events followed by one instance of Fventg. Also Eventy is decomposed to three
sequential sub-events, Fventr, followed by a loop constructor applied to Fventg, followed

by Eventyg.
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Figure 4.2: Combined Atomicity Decomposition Diagram

The combined atomicity decomposition diagram provides the overall visualization of
the refinement structure. The benefits of combined atomicity decomposition diagram
will be explained more in the evaluation chapter, Section 8.4. In a combined atomicity
decomposition diagram, each leaf is encoded as one event in the Event-B model. A leaf
is a node without any child. For example, in the first refinement level of Figure 4.2, the

leaves are Fventy, Fvents, Fventg, Fvents, FEventy, FEventg, FEventg.

The general atomicity decomposition language which describes the structure of the com-
bined atomicity decomposition diagram and translation rules to the Event-B model are

presented in Chapter 4.

4.3.3 Several Atomicity Decompositions for a Single Event

A single event can be decomposed to some sub-events in different styles. In other words
several atomicity decomposition diagrams can be defined for a same root node. An
example is illustrated in Figure 4.3. Event_a is decomposed in two different diagrams
in the next refinement level. The Event-B model follows the rules that presented in

patterns, Section 4.2.

The benefits of having several atomicity decompositions for a single event will be high-
lighted later in Section 8.2.
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[ Ever:t_b ] [ Event_c ] [ Even/t_d ] [ Eventl_loop ] [ Event_c ]

Figure 4.3: Several Atomicity Decomposition for a Single Event, Fvent_a
4.3.4 Strong Sequencing versus Weak Sequencing

In a combined atomicity decomposition diagram, there are two approaches of sequencing
applied to a single root event: Strong Sequencing and Weak Sequencing. Strong/weak
sequencing property is applied to each single atomicity decomposition of a root event.
If strong sequencing is applied to a root event, then there is a sequencing between all
sub-events of that root and the previous and next sub-events of the earlier refinement
level. Whereas in the case of weak sequencing, the sequencing is applied only to the
sub-event with solid line of the root and the previous and next sub-events of the earlier

refinement level.

To make the point clear, an example of a combined atomicity decomposition diagram is
presented in Figure 4.4. Event_a is decomposed to four sub-events, Fvent_b, Fvent_c,
Event_d and Event_a, in (i) refinement level. Then Event_c is decomposed to three

sub-events, Event_f, Event_c and Event_g in (i + 1) refinement level.

Event_d Event_a

Event_f Event_c Event_g

T

Weak Sequencing

Figure 4.4: Strong Sequencing, Weak Sequencing

Assume atomicity decomposition of Event_c root event has strong sequencing, then the

only possible event trace is:
< Event_b, BEvent_f, Event_c, BEvent_g, Event_d, Event_a >

Whereas if atomicity decomposition of Fvent_c has weak sequencing, then on one hand

there is an ordering just between the leaf with solid line, Fvent_c and the previous and
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next leaves in sequence, Fvent_b and Fvent_d respectively. And on the other hand
there is no ordering constraints between Event_b and Fvent_f, and between Fvent_g
and Fvent_d. Therefore, because of weak sequencing, there are more than one possible

event trace:

< FEvent_b, BEvent_f, Event_c, Fvent_g, Event_d, Event_a >
< Fvent_b, Event_f, Fvent_c, Fvent_d, Event_g, Event_a >
< FEvent_f, Event_b, Event_c, Fvent_g, Event_d, Event_a >
< Fvent_f, Fvent_b, Event_c, Fvent_d, Event_g, Event_a >

In all of possible event traces, Fvent_c executes after execution of Fwvent_b, before
Fvent_d. 1t is important to mention that in a single atomicity decomposition, there
is always an ordering between sub-events of the root event, in both strong and weak
sequencing approaches. For example, Fvent_f, Event_c and Fvent_g always execute

in order.

The weak and strong sequencing is managed with some invariants and guards. The

general translation rules to the Event-B model are presented in Chapter 4.

The most abstract atomicity decomposition diagram always has a strong sequencing,
since the most abstract diagram is placed in the top level of combined an atomicity

decomposition diagram.

4.3.5 Loop Resetting Event

As described in the Loop Pattern in Section 4.2.3, if the loop event is a single event, then
we do not consider a variable for the loop event. Considering the example in Figure 4.5,
in decomposing the atomicity of Event_a, Fvent_c can execute zero or more time before
execution of Fvent_d. And the execution of Event_d here, does not depend on the loop

execution.

In the next refinement level, the loop event is decomposed to some sub-events. So we
have to consider some control variables to manage the ordering between the loop events,
Event_e, Event_f and Event_g. Also a resetting event is needed to reset the loop control
variables to enable more than one execution of the loop. Furthermore an extra guard
is needed in Fwvent_d to ensure that FEvent_d does not execute in the middle of the

execution of the loop events.

Loop resetting can be done in three ways. Each of them for the example in Figure 4.5,
is illustrated with a state diagram and its Event-B model in Figure 4.6, Figure 4.7 and
Figure 4.8.

First, as illustrated in Figure 4.6, the reset event is considered as a separate event, called

Reset here. The ordering between loop events are managed with some control variables,
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Event_b Event_d

Event_e Event_f Event_g

Figure 4.5: Loop Resetting Example

Event_e, Fvent_f and Event_g. The first event in the Loop, Fvent_e checks that the next
event after the loop has not execute before, (Event_d = FALSFE). A guard in Fvent_d
ensures that it can not execute in the middle of the loop, (Event_e = FALSE).

ﬁ/ent_b /'
Event_d

Event_e = FALSE
Event_f = FALSE
Event_g = FALSE

Reset/

Event_e = TRUE
Event_f = TRUE
Event_g = TRUE

ﬂent_e

Event_e = TRUE
Event_f = FALSE
Event_g = FALSE

o

Event_e = TRUE vent_f

Event_f = TRUE
Event_g = FALSE

Event_g

event Event_e where Event_b = TRUE A Event_d = FALSE A Event_e = FALSE then Event_e := TRUE end
event Event_f where Event_e = TRUE A Event_f = FALSE then Event_f:= TRUE end
event Event_g where Event_f=TRUE A Event_g = FALSE then Event_g:= TRUE end

event Reset where Event_g=TRUE then Event_e := FALSE,
Event_f := FALSE,
Event_g := FALSE end

event Event_d where Event_b = TRUE A Event_e = FALSE A Event_d = FALSE then Event_d := TRUE end

Figure 4.6: Loop Resetting as a Separate FEvent

Second, as illustrated in Figure 4.7, the resetting is merged in the last event of the loop,

Event_g. In this case we do not need a control variable for the last event, since the last
event resets the loop.

Last, as illustrated in Figure 4.8, the resetting is merged in the first event of the loop,
Event_e. In this case we have to consider a separate event for the first event of the loop,

Event_el. The resetting is done in Event_e2. In this case Fvent_d’s guard is complex,
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Event_b
Event_d

Event_e = FALSE
Event_f = FALSE

Eve,y W(_e
Event_e = TRUE Event_e = TRUE
Event_f = TRUE Event_f = FALSE

event Event_e where Event_b = TRUE A Event_d = FALSE A Event_e = FALSE then Event_e := TRUE end

Event_f
- =

event Event_f where Event_e = TRUE A Event_f = FALSE then Event_f := TRUE end

event Event_g where Event_f=TRUE then Event_e := FALSE,
Event_f:= FALSE end

event Event_d where Event_b = TRUE A Event_e = FALSE A Event_d = FALSE then Event_d := TRUE end

Figure 4.7: Loop Resetting in the Last Event

since we need to consider two cases. First zero execution of the loop, (Event_e =
FALSE) and second, one or more execution(s) of the loop, (Event_g = TRUE).

We adopted the separate resetting event for the loop in Figure 4.6. Considering the
example in Figure 4.9, assume the case when the first sub-event in decomposing the
loop event, Fvent_c, is either the and-constructor or the or-constructor or the xor-
constructor. Then the resetting approach presented in Figure 4.8, needs to be applied
to all of the constructor children, Fvent_e and Fvent_f here. Also in the resetting
approach presented in Figure 4.7, if the last sub-event is either the and-constructor or
the or-constructor or the xor-constructor, then the resetting needs to be applied to all
of the constructor children, and this can make the Event-B model large and complex

comparing to the approach when we provide the separate resetting event.

Using a separate event to reset loop, the Event-B model of the example presented in

Figure 4.5, is presented in Figure 4.10, in the MI case (having one parameter).

4.4 Different Approaches to Model Ordering in Event-B

In the described patterns in Section 4.2, we used subset relationships to manage ordering
between events. A simple example is presented in Figure 4.11. The subset invariant
(B C A), specifies one variable as a subset of the other. The first event, A, is only

enabled when parameter x is not is the A set. The action of the event adds the parameter
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Event_b
Event_d

Event_e = FALSE
Event_f = FALSE
Event_g = FALSE

yNivent_d

Event_e = TRUE
Event_f = TRUE
Event_g = TRUE

N

Event_g

ﬂent_el

Event_e = TRUE
Event_f = FALSE
Event_g = FALSE

/Event_f

Event_e2

Event_e = TRUE
Event_f = TRUE
Event_g = FALSE

event Event_el where Event_b =TRUE A Event_d=FALSE A Event_e =FALSE then Event_e:= TRUE end
event Event_e2 where Event_g = TRUE A Event_d= FALSE then Event_f:= FALSE,
Event_g:= FALSE end

event Event_f where Event_e = TRUE A Event_f = FALSE then Event_f:=TRUE end
event Event_g where Event_f = TRUE A Event_g = FALSE then Event_g:= TRUE end

event Event_d where Event_b = TRUE A ( Event_e = FALSE V Event_g=TRUE ) A Event_d = FALSE
then Event_d := TRUE end

Figure 4.8: Loop Resetting in the First Event

Event_b Event_d

Event_e Event_f Event_g Event_h

Figure 4.9: Loop Resetting Example

event Event_e where p, € Event_b A p, € Event_d A p, & Event_e then Event_e := Event_e U { p,}
event Event_f where p, € Event_e A p, &€ Event_f then Event_f:= Event_fU {p,} end
event Event_g where p, € Event_fA p, £ Event_g then Event_g:=Event_gU {p,} end

event Reset where p, € Event_g then Event_e := Event_e/{p,},
Event_f = Event_f/{p,},
Event_g = Event_g/{p,} end

event Event_d where p, € Event_b A p, & Event_e A p, & Event_d then Event_d := Event_d U { p,}

Figure 4.10: Loop Resetting with Parameter
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to the set variable A. The second event can only execute when the parameter is in A

set and not in B set. The action of the event then adds the parameter to the B set.

RootEvent

event A event B refines RootEvent

any x any x

where where
@grdlx £ A @grdlx € A

then @grd2x € B
@actl A==AU{x} then

end @actlB:==BU{x}
end

Figure 4.11: Subset Sets

An alternative is to use disjoint sets [60] and to remove the parameter from one set
before it can move to the next set. Figure 4.12 shows an example that used disjoint sets
to model ordering between two events. The variables A and B are modelled as disjoint,
(AN B =@). The event A takes a parameter that is neither of the sets and adds it to
A set. The event B takes a parameter that is in the A set, removes it and adds it to B

set.

RootEvent

event A event B refines RootEvent
any x any x
where where
@grdlx & (AU B) @grdlx € A
then then
@actl A:==AU{x} @actl A:==A\{x}
end @act2B:==BU{x}
end

Figure 4.12: Disjoint Sets

Another alternative is to use function, Figure 4.13. A set represents possible states of a

parameter, and a function shows a relation between a parameter and its state:

STATES ={A, B}
stateFun : PAR_SET — STATE

Each event change the value of stateFunc to a new value.

A state machine in UML-B can be encoded in Event-B using disjoint sets representation

or state function representation [61]. This two styles are introduced in [44].
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RootEvent

event A event B refines RootEvent
any x any x
where where
@grd1 x € dom(stateFunc) @grd1 stateFunc(x) = A
then then
@act1 stateFunc(x) = A @act1 stateFunc(x) :==B
end end

Figure 4.13: State Function

In [24], the subset approach is used. We adopted the subset approach as well. One of the
advantages of using the subset relationships in the Event-B models, is that the subset
relationships between the control variables that represent different states of the model
can be specified in the invariants of the model. Considering Figure 4.11, invariant (B C
A) specifies the ordering relationship between A and B control variables. This ensures
that the orderings are upheld in the Event-B model more strongly than if specified only

in the event guards.

Moreover, having disjoint set variables would not allow us to model the and-constructor,
the or-constructor, the all-replicator and one-replicator in a simple way as subset vari-
ables provide. Considering the and-constructor and the or-constructor, a logical and or

a logical or between two events, A and B, means four states as follows:

none has happened

A happened but not B

B happened but not A

A and B have happened

Using non-disjoint set variables (subset approach) allows us to model these combinations
using two set variables, but disjoint set variables would not allow this by using only two
set variables. Using disjoint set variables to model these combination would requires
four state variables expilicitly. As a result the Event-B models of the and-constructor
and the or-constructor corresponding to the disjoint set approach are larger and more

complex comparing to the subset approach models.

Since the all-replicator and the some-replicator are generalisations of the and-constructor
and the or-constructor respectively, having disjoint set variables make the same com-

plexity in the corresponding Event-B models.
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Considering the Event-B model of the and-constructor pattern presented in Table 4.3,
using disjoint sets results in subtracting the parameter p from the set control variable
Eventl, in AndFEventl. Consequently, the ordering between Fvent! and the other child
of and-constructor, AndFEvent2, is not possible, since we can not track the execution
of Fventl. This is true for the or-constructor pattern presented in Table 4.4. Also
considering the Event-B model of the all-replicator pattern in Table 4.6, using disjoint
sets results in subtracting the parameter pI from set control variable Event! in the
first execution of AllEvent. As a result, guard (pl € Eventl) does not hold for further

executions of AllEvent. It is true for the some-replicator pattern presented in Table 4.7.

Using the function approach presented in Figure 4.13, can result in complex guards. For
example in the and-constructor pattern presented in Table 4.3, guard (pl € Eventl) in

AndFEventl is changed as follows:
state F'unc(p) = Eventl V stateFunc(p) = AndEvent2

The more constructor children there are, the more complex the guards.

4.5 Related Works and Comparison

The desire to explicitly model control flow is not restricted to Event-B. To address this
issue usually a combination of two formal methods are suggested. A good example of
such an approach is Circus [62, 63] combining CSP [37] and Z [64]. The combination of
CSP and Classical B [9] has also been investigated in [65, 66].

To provide explicit control flow for an Event-B model a combination of two formal
methods is presented in [67] which is based on using CSP alongside Event-B. Event-B
is a state-based formalism, and as presented in Section 3.3, the control flow can only
be implicitly modelled in state variables and event guards. On the other hand CSP is
a process-based formalism (Section 2.3.4), which supports explicitly specifying control
flow via processes. [67] presents an integrated formal method, a combination of Event-B
as a state-based formalism and CSP as a control-based formalism, to explicitly model

control flow in Event-B.

UML-B [61, 68] provides a “UML-like” graphical front-end for Event-B. It adds support
for class-oriented and state machine modelling. State machines provide us with a graph-
ical notation to explicitly define event sequencing. Events are represented by transitions
on a state machine, and control flow is specified by defining the source and target state

of each transition.

Another method to explicitly define control flow properties of an Event-B model is

suggested in [69, 70]. This method extends Event-B models with expressions, called
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flows, defining event ordering. Flows are written in a language resembling those in

process algebra.

A comparison between the atomicity decomposition approach and other techniques out-

lined above, is provided as follows:

e All outlined techniques only deal with explicit event sequencing; they do not sup-
port the explicit refinement relationship, provided by atomicity decomposition
diagrams. The atomicity decomposition approach provides a graphical front-end
to Event-B along with other features such as supporting explicit event sequenc-
ing and expressing refinement relationships between abstract and concrete events.
Also it can be combined effectively with other techniques such as model decompo-
sition [2]. The graphical front-end of the atomicity decomposition approach can
provide an overall visualisation of the refinement structure, which is not supported

by any of techniques outlined above.

e In integrated formal methods, the control flow constructs rely on the constructs in
the process-based formalism of the integration. CSP constructs are used to model
control flow in integrations of CSP and Z/B/Event-B. CSP constructs, which are
outlined in Section 2.3.4, include prefix, deterministic choice, nondeterministic

choice, parallel, interleaving, hiding and recursion.

Atomicity decomposition control flow constructs are addressed in Chapter 4. Atom-
icity decomposition constructs contain the sequence construct, the loop construct,
logical constructs, e.g. and/or/zor, and all/some/one constructs as generalisation

of the and/or/xor constructs.

The CSP constructs and the atomicity decomposition constructs can be compared

as follows:

— The prefix operator in CSP is used to describe the sequence of events and is

equivalent to the sequence construct in the atomicity decomposition approach.

— The choice operators in CSP are equivalent to the zor construct in the atom-
icity decomposition approach. We do not distinguish between deterministic
and nondeterministic choice in the atomicity decomposition approach. The
one construct in the atomicity decomposition approach is generalisation of

the zor construct; the one construct is also supported in CSP.

— The parallel operator is CSP is equivalent to the all construct in the atomicity
decomposition approach. In the atomicity decomposition approach, the all
construct is generalisation of the and construct; the and construct is also

supported by parallel operator in CSP.
— The interleaving operator is supported in CSP. Also in atomicity decompo-

sition approach, different diagrams can be interleaved based on the Event-B

interleaving.
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— CSP includes an event hiding operator. In the Event-B refinement, a new
event introduced in a refining machine, may be considered as a hidden event
in the abstract machine. In the atomicity decomposition approach, we de-
composed the atomicity of an abstract event to new concrete events and a
refining concrete event. The new events connected with dashed lines to the

abstract event, are considered as hidden events in the abstract machine.

— CSP supports recursion (which makes it possible to model loops). Atomicity

decomposition supports loops but not recursion.

— There is no equivalences for the or construct and the some construct (as gen-
eralisation of or) of the atomicity decomposition approach, in CSP. Recalling
or construct in Section 4.2.5, in (A or B), one or both may occur which is

different to choice and different to interleaving.

The flow language presented in [69, 70] is based on process algebra. The flow
language constructs contain sequential composition, parallel composition, choice

and loop.

Control flow in Event-B can be modelled in state machine supported by UML-
B [61, 68]. Sequencing, choice and loop can be encoded in state machines, state
machines do not have explicit constructs for these. State machines have explicit
constructs for parallel regions. The or construct and the some construct (as gen-
eralisation of or) of the atomicity decomposition approach, are not supported in
UML-B state machine.

e As explained in Section 2.4.6, a Classical B operation can be called by other
operations. It is the responsibility of the caller to ensure that the called operation
pre-conditions are hold. While in Event-B, an event contain guards and the enabled

events are continually executed in a nondeterministic manner.

In the integration of CSP and classical B presented in [65], classical B operations
are called with CSP description. CSP description allows us to make sure that
pre-conditions of called operations hold. In the integration of CSP and Event-B
presented in [67], the authors do not need to deal with pre-conditions, as Event-B

events contain guards rather than preconditions.

e In the integration of CSP and Event-B technique presented in [67], the authors
need to tackle the verification of combined specifications. While in the atomicity
decomposition approach and UML-B state machines the graphical representation
is directly transformable to the Event-B formalism. This in turn means that
verification effort can be carried out in the existing Event-B tool-set, Rodin, which
is already familiar to the Event-B users. Also in the combined CSP with classical
B approach presented in [66], CSP specifications are converted into standard B

specifications.
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e As [67] suggests, in combining formal method descriptions we may not be able to
express all invariants as state predicates; because the control flow requirements are
separated in a process-based description. While in the atomicity decomposition
approach, control flow requirements are translated into Event-B; and Event-B

invariants have access to all state variables in one place, the Event-B model.

4.6 Conclusion

Several atomicity decomposition constructors, which were discovered during case study
developments, have been presented in this chapter. A pattern-based style was used to
present the atomicity decomposition constructors. Each pattern is defined to satisfy a
particular intention in decomposing the atomicity of an abstract event, and contains one
constructor in a single level of refinement. Each pattern is encoded in terms of Event-B
using some variables, invariants, events, guards and actions. The diagrammatic notation
of a constructor and corresponding encoded Event-B model are presented both for single

instance (SI) execution of an event and multiple instance (MI) execution.

In total eight constructors were presented as follows:

e The intention to model a sequential execution of two or more events is represented

by the Sequence pattern.
e The Loop pattern represents zero or more execution of an event.

e The logical constructor patterns (and-constructor, or-constructor and xor-construct-

or) model a logical execution between two or more events.

e The replicator patterns, all-replicator, some-replicator and one-replicator, are gen-
eralisations of the logical constructor patterns, and-constructor, or-constructor and

xor-constructor, respectively.

Each pattern contains three children in decomposition of an abstract event in one re-
finement level. In all patterns, except the sequence pattern, the middle sub-event is
a loop or a logical constructor or a replicator. From a more general and formal point
of view, the combination of constructors in one or more refinement levels is presented
in Chapter 5. The patterns presented in this chapter help to aid understanding of the
contents of Chapter 5.



Chapter 5

Atomicity Decomposition Part 3 -
Language Description and

Translation Rules

5.1 Introduction

In Chapter 4, several atomicity decomposition patterns have been outlined. The atom-
icity decomposition language needs to be described in a more general and formal way.
This chapter addresses this; instead of the patterns described in Chapter 4 in one level
of refinement, we consider all possible combination of patterns in one or more refinement

level(s). In other words, different patterns can be applied in one refinement level.

In this chapter we begin by presenting an example of an atomicity decomposition di-
agram in several refinement levels including different types of atomicity decomposition
constructors. Later this example is used to help explain the language description and
translation rules. Section 5.3 presents a formal description of the syntax of the atom-
icity decomposition language. Then Section 5.4 is dedicated to translation rules which
describe the transformation from the atomicity decomposition language to the Event-B
notation. In this chapter, we use the abbreviation “ADL” to stand for the Atomicity

Decomposition Language.

5.2 An Example

In Section 4.2, we presented each atomicity decomposition constructor in one pattern
and in one refinement level. In this section we present an instance of an atomicity
decomposition diagram combining different constructors and including an abstract level

and two refinement levels, in Figure 5.1.

69
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Figure 5.1: An Example of Atomicity Decomposition Diagram

In the most abstract level, there are four abstract events, a, b, ¢ and d. The diagram
indicates the sequencing between these events. First event a(pl) executes, then event
b(p1, p2) for all instances of parameter p2, finally event c¢(pl) and d(p1) executes in
any order. In first refinement level three events, a, b and ¢, are decomposed to some
sub-events. And in the second refinement level there are four further atomicity de-
composition. The green leaves present the events in the final refinement level (second

refinement level). These events are leaf nodes (nodes that does not have any children).

In the later sections this example will be followed to explain the language description
and translation rules to Event-B. The selection of constructors and their combination in

this example is chosen in a way that it covers all cases of transformation to the Event-B.

5.3 Atomicity Decomposition Language Specification

To describe the language syntax, we adopt Augmented Backus-Naur Form (ABNF) [71].
ABNF is a metalanguage based on Backus-Naur Form (BNF). BNF is a notation for
context-free grammars, often used to describe the syntax of languages. It is applied
wherever exact descriptions of languages are needed. The differences between standard
BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and
value ranges. In describing ADL, the repetition syntax in ABNF seems more suitable
than in standard BNF.

An ABNF specification is a set of derivation rules, written as

rule = definition
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The ABNF rules for ADL is shown in Figure 5.2. The following ABNF operators are
used in describing ADL:

e Terminal values:

Terminal values are placed between two apostrophes (“Terminal”).

e Alternative: (Rulel / Rule2)
A rule may be defined by a list of alternative rules separated by a solidus (“/”).

e Variable repetition: (n*m element)
To indicate repetition of an element the form (n*m element) is used. The optional
n gives the minimum number of elements to be included with the default of 0.
The optional m gives the maximum number of elements to be included with the

default of infinity.

We use *element for zero or more elements, 1*element for one or more elements

and 2*element for two or more elements.

flow = (name, *par, sw) ( 1*child (ref) )

child = (name) / constructor / 1* flow

cons-child = (name) / 1* flow

constructor = | / / ) (2* cons-child )
/| / / ) (par) ( cons-child )
/ ( cons-child )

Figure 5.2: Syntax of Atomicity Decomposition Language (ADL)

A flow refers to a single atomicity decomposition for a root node. To describe the refining
and non-refining sub-events, we consider a boolean property, called “ref”. The refining
and non-refining sub-events in an atomicity decomposition diagram are presented by
type of lines, solid lines and dashed lines respectively. When a sub-event refines the
abstract event (solid line) , “ref” is one; otherwise “ref” is zero. Also to distinguish
strong sequencing flow from a weak sequencing flow, another boolean property, called

“sw”, is used. When a flow has strong sequencing, “sw” is one, otherwise “sw” is zero.

Considering Figure 5.2, the ABNF for ADL may be described informally as follows:

e A flow consists of a name, zero or more parameters, an “sw” property, followed by

one or more children. Each child of a flow has a “ref” property.
e A child is either a “leaf” with a name, or a constructor or one or more flow(s).

e A constructor is either an “and” or an “or” or a “zor”, with two or more construc-

tor children (cons-child) or an “all” or a “some” or an “one” with a parameter,
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followed by one constructor child (cons-child) or a “loop” with one constructor
child (cons-child).

e A cons-child is either a “leaf” with a name or one or more flow(s).

There are some properties of the syntax of the ADL which reflect some features of
atomicity decomposition diagrams, which have been discussed in Chapter 4. These

properties are listed below:

e Since a most abstract flow has always strong sequencing, Section 4.3.1, the “sw”
property is always one for an abstract flow. Also since the children of a most
abstract flow are always non-refining, come with dashed lines, Section 4.3.4, so the

“ref” property for its children is always zero.

e A cons-child inherits the value of the “ref” property from its constructor parent.

7 “all”, “some” and “loop” always

e Since some constructors including “and”, “or
come with dashed lines, Section 4.2, the value of the “ref” property for these
constructors is always zero. Whereas other constructors including ‘zor” and “one”
can come with dashed or solid lines, therefore the “ref” property for them can be

Z€ero or one.

e One and only one of the children of each flow can refine the root event, as explained
in Section 4.2, therefore in ABNF one and only one of the “ref” property of children

of a flow is allowed to be one.

e Each flow inherits its parameters from its parent flow plus its constructor parent

if exists.

e There can be more than one atomicity decomposition for a single event, as ex-
plained in Section 4.3.3. This feature is specified by (1*flow). All flows in a
collection of (1*flow) should have same name, since they all show decomposition

of the same event.

Considering example in Figure 5.1, the ABNF for each refinement level is presented sep-
arately in Figure 5.3. Although the diagram in Figure 5.1 does not indicate if sequencing
of each flow is strong or weak, the ABNF's in Figure 5.3 presents this as a property of

each flow.

The syntax definition of ADL prevents us from combining constructors at a single re-
finement level, e.g., the diagram presented in Figure 5.4, is not allowed. There are some
reasons for this limitation. First, baseed on our experience during the case study devel-
opments, we have not seen the need to support a combination of constructors at single
refinement level. Moreover, the atomicity decomposition approach is considered as a
technique to partly solve the complexities of the Event-B modelling of large systems;

therefore we try to keep the syntax definition as simple as it solves our requirements.
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Abstract Level:

leaf (a) (0), all (p2) (leaf (b)) (0), and (leaf (c), leaf (d)) (0)

1%t Refinement Level:

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

leaf(w) (1) )) (1) ), leaf (d) ) (0)

all (p,) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (ps) (leaf (1) ) (1) ), leaf (d)) (0)
2" Refinement Level:
leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (ps) (leaf(u) ) (1) )) (1) ) ) (0),
and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),

Figure 5.3: ABNF of the Diagram in Figure 5.1

root event
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-
N
'H’ N

orevent

Figure 5.4: Invalid Combination of the Constructors

5.4 Atomicity Decomposition Translation Rules (TRs) to

Event-B

5.4.1 Introduction

This section describes the translation rules formally. We outline how the ABNF of ADL

is encoded in the Event-B language. In total 23 rules are presented. Most of these rules

have been introduced informally in Section 4.2.

In the figure of each rule, the first row shows the signature of the rule, the second

row presents the source element(s) of the rule, the ABNF element(s), and the last

row(s) present the destination element(s) of the rule, the Event-B element(s). Each rule
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signature is of the form (ABNF element(s) — Event-B element(s)). There are some
auxiliary functions which are presented in Section 5.4.2. The aim of defining these

functions is to help describing some of the translation rules.

Considering atomicity decomposition patterns in Section 4.2, patterns are encoded in the
Event-B modelling using control variables, invariants, events, guards and actions. These
Event-B elements are transformed from four sources in the atomicity decomposition
diagram: a leaf, the xor-constructor, the one-constructor and the loop constructor. A
leaf is transformed to a variable, an invariant, an event, guard(s) and an action in order
to manage the sequencing between events and to show the relationship between the
abstract event and the refining sub-event. The xor-constructor is transformed to an
invariant and guards to specify the mutual exclusive property of its children. The one-
replicator is transformed to an invariant and a guard to limit the number of executions
of its child to one. The loop constructor is transformed to a guard and a resetting
event. Moreover as presented in Section 4.3.4, a weak sequencing flow is managed with

sequencing invariant(s) and sequencing guard(s) in the Event-B model.

The translation rules are categorised according to their source element. The rules whose
source is a leaf are presented in Section 5.4.3. The rules whose source is the xor-
constructor are presented in Section 5.4.4. The rules whose source is the one-replicator
are presented in Section 5.4.5. The rules whose source is the loop constructor are pre-
sented in Section 5.4.6. Finally the rules whose source is a weak flow is presented in
Section 5.4.7. It is helpful to mention that the and-constructor, the or-constructor,
the all-replicator and some-replicator properties are specified in sequencing invariants
and sequencing guards which are generated in TR_leaf4 (Section 5.4.3.4) and TR_leaf8
(Section 5.4.3.8) respectively.

In the atomicity decomposition patterns (Section 4.2), the invariants and guards trans-
formed from the xor-constructor, the one-constructor and the loop constructor are la-
belled with “_xor” suffix, “_one” suffix and “_loop” suffix respectively. Sequencing in-
variants and the sequencing guards are labelled with “_seq” suffix. And typing invariants
and gluing invariants are labelled with “_type” suffix and “_gluing” suffix respectively.
This labelling protocol helps to determine the aim of each encoded invariant or guard.

The labelling protocol is followed in the translation rules as well.

Translation rules are presented per ABNF element. For each ABNF element, we present
the resulting variables, events, guards, actions and invariants. We assume that we access

to each ABNF element in an ABNF description of an atomicity decomposition diagram.

The translation rules are presented in a modular way to be encoded in the Event-B
model. For example the events are generated in TR_leaf6 (Section 5.4.3.6) and TR_leaf7
(Section 5.4.3.7), and later other translation rules, e.g. TR_leaf8 (Section 5.4.3.8),
TR_leaf9 (Section 5.4.3.9), TR_leafl0 (Section 5.4.3.10), TR_leafll (Section 5.4.3.11)
and TR_leaf12 (Section 5.4.3.12), add the guards and actions to the generated events.
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In some similar rules, the translations for a replicator (all-replicator, some-replicator,
one-replicator) leaf and a non-replicator leaf are distinguished. This difference is applied
because of the extra parameter that the replicator adds to the parameter list of its leaf.
This replicator parameter changes the type of the replicator leaf variable. For instance,
a typing invariant is generated for a non-replicator leaf in TR_leaf2 (Section 5.4.3.2),
and for a replicator leaf in TR_leaf3 (Section 5.4.3.3).

The example that has been presented in Figure 5.1 and Figure 5.3, will be used to show

the application of each translation rule.

5.4.2 Auxiliary Functions Definitions
5.4.2.1 Traversing Functions

Some of the translation rules are applied to an ABNF element placed in the the final
level of refinement in a combined atomicity decomposition diagram. Some other of the
translation rules cover translations from an ABNF element in the earlier refinement
level(s) in a combined atomicity decomposition diagram. In the later translation rules
we need to traverse down the subtree of a child in order to find leaves in the final
refinement level. Some functions are defined in order to traverse the sub-trees in a
combined atomicity decomposition diagram. We use the outputs of these functions to

create invariants and guards as the destination element of the translation rules.

In total six functions are defined. The functions are summarised as follows:

e [ist_of _leaves function is presented in Figure 5.5. The function name, list_of_leaves,
in the traversing steps is abbreviated to f. It is a recursive function that outputs

a list of the leaf events, including their names and parameters.

e disjunction_of_leaves function is presented in Figure 5.6. The function name,
disjunction_of_leaves, in the traversing steps is abbreviated to f. It is a recursive
function that computes a predicate representing the disjunction of the invariants

of the leaf events.

e conjunction_of_leaves function is presented in Figure 5.7. The function name,
conjunction_of_leaves, in the traversing steps is abbreviated to f. It is a recursive
function that computes a predicate representing the conjunction of the guards of

the leaf events.

e union_of_leaves function is presented in Figure 5.8. The function name,
union_of_leaves, in the traversing steps is abbreviated to f. It is a recursive func-
tion that computes a predicate representing the union of the leaf events. domain
function may be applied to each output leaf event, for n times; where n is the

number of existing replicators in the traversing steps.
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e build_seq_inv function is presented in Figure 5.9. The function name, build_seq_inv,
in the traversing steps is abbreviated to f. It is a recursive function that computes
an invariant predicate specifying the sequencing between two leaf events. This
function calls another function for the leaf events, to compute the invariant. The

inner function is presented in the next section.

o build_seq_grd function is presented in Figure 5.10. The function name, build_seq_grd,
in the traversing steps is abbreviated to f. It is a recursive function that computes
a guard predicate specifying the sequencing between two leaf events. This func-
tion calls another function for the leaf events, to compute the guard. The inner

function is presented in the next section.

In the traversing functions, the first or the last child of an input flow is selected; and
the selected child name is acted as a variable name. Since we do not consider a variable
for a loop (Loop Pattern 4.2.3), we assume that a loop is never placed as the first or the
last child of a flow.

list_of_leaves ( ch: child/cons-child, *par: parameter list of ch )

Output operation:

list_of leaves( leaf(name), *par) = leaf(name, *par)

Traversing steps:

f( constructor(c,, ..., c,), *par) = f(c,, *par), ..., f( c,, *par)
where constructor : and/or/xor

f( replicator(p, c) , *par ) = f(c, (*par, p))
where replicator : all/some/one

f( 1*flow, *par ) = f( flow,, *par), ..., f( flow,, *par)

f( flow (name, *par, 1), *par) = f(child,, *par)
where child, is the first child of the strong flow

f( flow (name, *par, 0), *par ) = f( child;, *par)
where child; is the solid child of the weak flow

Figure 5.5: list_of _leaves Function
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disjunction_of_leaves (ch: child/cons-child, parnum: int)

Output operations:

disjunction_of_leaves( leaf(name), parnum ) = name where parnum =0
disjunction_of_leaves( leaf(name), parnum )= name#@® where parnum >0

Traversing Steps:

f( constructor(c,, ..., ¢,), parnum ) = f(c,, parnum) V..V f(c,, parnum)
where constructor : and/or/xor

f( replicator(par, c), parnum ) = f( c, parnum+1) where replicator : all/some/one
f( 1*flow, parnum )= f( flow, , parnum ) v ... v f( flow,, , parnum )
f( flow(name, *par, 1), parnum ) = f( child, parnum)

where child, is the first child of the strong flow

f( flow(name, *par, 0), parnum ) = f( child, parnum)
where child; is the solid child of the weak flow

Figure 5.6: disjunction_of_leaves Function

conjunction_of_leaves ( ch: child/cons-child, parnum: int )

Output operations:

conjunction_of_leaves( leaf(name), parnum ) = name = FALSE where parnum=0
conjunction_of_leaves( leaf(name) , parnum ) = name = @ where parnum>0

Traversing steps:

f( constructor(c,, ..., ¢,) , parnum ) = f(c,, parnum) A ... A f( c,, parnum)
where constructor : and/or/xor

f( replicator(par, c) , parnum ) = f(c, parnum+1)  where replicator : all/some/one
f( 1*flow, parnum ) = f( flow, , parnum ) A ... A f( flow,, , parnum )
f( flow(name, *par, 1), parnum )= f( child; parnum)

where child, is the first child of the strong flow

f( flow(name, *par, 0), parnum ) = f( child, parnum )
where child; is the solid child of the weak flow

Figure 5.7: conjunction_of_leaves Function

union_of_leaves (ch: child/cons-child, n: int)

Output operation:

union_of_leaves( leaf(name), n) = dom( ... dom (name)...)

Traversing steps:

f( constructor(cy, ..., c,),n)= f(c;,n)U..Uf(c,, n) where constructor : and/or/xor

f( replicator(par, c), n) = f(c, n+1) where replicator : all/some/one

f( 1*flow, n) = f( flow, , n) U ... U f( flow, , n)

f( flow(name, *par, 1),n) = f( child; n) where child, is the first child of the strong flow
f( flow(name, *par, 0),n) = f( child; n) where child, is the solid child of the weak flow

Figure 5.8: union_of_leaves Function
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build_seq_inv ( predecessor: child/cons-child, *parl: parameter list of predecessor,
I: leaf, *par2: parameter list of | )

Output operation:

build_seq_inv( leaf, *parl, |, *par2 ) = seq_inv( leaf, *parl, |, *par2)

Traversing steps:

f(and(cy, ..., c,), *parl, |, *par2 ) =
f( or/xor(cy, ..., c,), *parl, |, *par2 ) =

f( replicator(p, c), *parl, |, *par2 ) =

f( 1*flow, *parl, |, *par2 ) =

f( flow (..., 1), *parl, |, *par2 ) =

f( flow (..., 0), *parl, |, *par2 ) =

f( ¢, *parl, |, *par2 ) A ... Af( c,, *parl, |, *par2))
f( ¢y, *pard, |, *par2 ) v ... v f( c,, *parl, |, *par2)

f(c, (*parl, p), |, *par2)
where replicator : all/some/one

f( flow,, *par1, |, *par2 ) v ... v f( flow,, *par1, |, *par2 )

f( child, *par1, |, *par2)
where child; is the last child of the flow

f( child,, *par1, |, *par2)

where child; is the solid child of the flow

Figure 5.9:

build_seq_inv Function

build_seq_grd ( predecessor: child/cons-child, *parl: parameter list of predecessor,
I: leaf, *par2: parameter list of | )

Output operation:

build_seq_grd( leaf, *parl, |, *par2 ) = seq_grd( leaf, *par1, |, *par2)

Traversing steps:

f(and(c,, ..., c,), *parl, |, *par2 ) =
f( or/xor(cy, ..., c,), *parl, |, *par2 ) =

f( replicator(p, c), *parl, |, *par2 ) =

f( 1*flow, *paril, |, *par2 ) =

f( flow (..., 1), *parl, |, *par2 ) =

f( flow (..., 0), *parl, |, *par2 ) =

f( c, *parl, |, *par2 ) A ... Af( c,, *parl, |, *par2)
f( ¢y, *pard, |, *par2 ) v ... v f( c,, *parl, |, *par2)

f(c, (*parl, p), |, *par2)
where replicator : all/some/one

f( flow,, *parl, |, *par2 ) v ... v f( flow,, *parl, |, *par2)

f( child,, *par1, |, *par2)
where child, is the last child of the flow

f( child;, *parl, |, *par2)
where child; is the solid child of the flow

Figure 5.10: build_seq_grd Function
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5.4.2.2 Functions to Build Sequencing Invariants/Guards

Recall from Section 4.2 that the sequencing between events is managed with guards
and the sequencing properties are specified with invariants. In Section 4.2, sequencing is
defined between events with the same parent. Therefore the parameters of two sequential
events were always the same (inherits from their parent). In the case of replicators, the
replicator event had one more replicator parameter. Having the same parameters has

made building of the sequencing invariants and guards easy.

Whereas in a combined atomicity decomposition diagram, two sequential events can be
from a different parent, illustrated in Figure 5.11. A leaf from the (i + 1) child, e2,
may execute only after execution of a leaf from the i** child, el. The leaves parameters
can be different due to different possible replicators in each child. Assume leaf el pa-
rameter list contains (p},...,plL), and leaf €2 parameter list contains (p?, ..., p2,). Some of
their parameters which come from their common parent flow may be same, (p1, ..., p;)-
The same parameters are always the first parameters in the parameter list, since each
replicator parameter is added to the end of the parameter list. Two functions are de-
fined to build the sequencing guard and invariants. Definitions of X, Y, Z, W and K in

Figure 5.11, are used in defining the functions.

parent(p; ... p})

PRARS
-7 N~

X Y W K
<> <> <> <>
el: py..p; .. p1j - P, €2: Py .. P P2y el: pY ... pY . P, e2: p% ... p4 . P2y
&>
z
X=dom,( ... dom,,(el) ...) W =dom( ... dom,, (el) ...) (k=1)
Y =dom,( ... dom,;(e2) ...) W =ran(dom,( ... dom_,(e1)..)) (k>1)

Z=dom(...dom,;(el)..)
K=dom,(...dom, ,(e2)..)) (I=1)
K=ran(dom(...dom_,(e2)..)) (I>1)

Figure 5.11: Sequencing Between Two Leaf Events

The seq_inv and seq_grd functions are presented in Figure 5.12 and Figure 5.13 respec-
tively. To generate the sequencing invariants and guards, we need to determine the
possible same parameters from the common parent flow. The possible all-replicator pa-
rameters of el have to be determined, since the all-replicator affects the guard of the

next event, e2, and the sequencing invariants (all-replicator Pattern 4.2.7).
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seq_inv (el: leaf, p, ... p, : parameter list of el,
e2: leaf, p; ... p,, : parameter list of €2 ) =

e e2 =TRUE = el =TRUE
e e2#@=>el=TRUE

e e2 =TRUE=>elz0

+ e2 =TRUE = W = TYPE(p,)

e e2z0>elz

e e2#@=W-=TYPE(p,)

where (n =0) and (m =0)
where (n =0) and (m #0)

where (n #0) and (m =0) and

(there is no all-replicator parameter in (p; ... p,))

where (n #0) and (m =0) and
(py is an all-replicator parameter (1 < k < n))

where (n #0) and (m # 0) and
(there is no common parent parameter) and
(there is no all-replicator parameter in (p; ... p,))

where (n #0) and (m #0) and
(there is no common parent parameter) and
(py is an all-replicator parameter (1 < k < n)) and

(there is no parameter in (p; ... p,,) with same type as p,)

where (n #0) and (m # 0) and
(there is no common parent parameter) and
(py is an all-replicator parameter (1 < k < n)) and

(type(p) = type(p) (1 <1< m))

where (n #0) and (m #0) and
(p; --- p; is list of common parent parameter) and
(there is no all-replicator parameter in(p;,; ... P,))

* pyPrp€e2= Z[{p;~..»p; ] = TYPE(p)

where (n #0) and (m # 0) and
(p; ... p; is list of common parent parameter) and
(p;is an all-replicator parameter (i+1 <j < n))

Figure 5.12: seq_inv Function

5.4.2.3 Predecessor/Successor Functions

In some of the translation rules we need to find the predecessor or successor of a subtree.

Considering Figure 5.14, the predecessor of a subtree which is the ¥ child of a flow, is
its left subtree which is the (i — 1)** child of that flow. If the i** child is the first child

of a flow then the predecessor of the it child is the predecessor of its parent flow.

The predecessor and successor functions are presented in Figure 5.15 and Figure 5.16

respectively. predecessor function is used to find the previous node of a leaf to create
the sequencing invariants and guards, in TR_leaf4 (Section 5.4.3.4), TR_leaf8 (Sec-
tion 5.4.3.8), TR_weakl (Section 5.4.7.1) and TR_weak2 (Section 5.4.7.2). successor
function is used to find the next node of a loop to create the loop guard, in TR_loopl
(Section 5.4.6.1) and TR_loop2 (Section 5.4.6.2).

Since we do not consider a variable for a loop (Loop Pattern 4.2.3), we move over the

loop in both functions.
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seq_grd ( el: leaf, p, ... p, : parameter list of el,
e2: leaf, p; ... p,, : parameter list of e2 ) =

e el=TRUE where (n =0)

e elzQ where (n #0) and (m = 0) and
(there is no all-replicator parameter in (p; ... p,)))

* W=TYPE(p,) where (n #0) and (m =0) and
(py is an all-replicator parameter (1 < k < n))

e elz0Q where (n #0) and (m # 0) and
(there is no common parent parameter)
(there is no all-replicator parameter in (p; ... p,)))

* W =TYPE(p,) where (n #0) and (m # 0) and
(there is no common parent parameter) and
(py is an all-replicator parameter (1 < k < n)) and
(there is no parameter in (p; ... p,,) With same type as p,)

* pEK where (n #0) and (m # 0) and
(there is no common parent parameter) and
(py is an all-replicator parameter (1 < k < n)) and

(type(p,) = type(p) (1 <1< m))

* pPup EX where (n #0) and (m #0) and
(p; ... p; is list of common parent parameter) and
(there is no all-replicator parameter in(p,,; ... P,))

* Z[{p;~ .. p.;}]1= TYPE(p)
where (n #0) and (m #0) and
(py ... p; is list of common parent parameter) and
(p; is an all-replicator parameter (i+1 < j<n))

Figure 5.13: seq_grd Function
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Figure 5.14: Predecessor of a Subtree
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predecessor ( child; : child/cons-child, *par: list of parameter(s), sw: boolean ) =

* (child,,, *par) where (i > 1) and (child,_; # loop)
» predecessor(child_,, *par, sw) where (i > 1) and (child, ; = loop)
* “no predecessor” where (i = 1) and (sw = 0)

* “no predecessor” where (i = 1) and (sw = 1) and

(parentFlow(child,) is an abstract flow)

» predecessor(parent(child,), *par, sw) where (i=1) and (sw = 1) and
(parentFlow(child,) is not a (all/some/one) child)

* predecessor(parent(child,), *par / p, sw)  where (i =1) and (sw = 1) and
(parentFlow(child,) is a (all/some/one)(p) child)

Figure 5.15: predecessor Function

Considering Figure 5.15, if the i*" child is the first child of an abstract flow (the most
abstract level), then there is no predecessor of that child. An abstract flow in ABNF is
indicated with (sw = 1) and for all of its children (ref = 0); whereas in a non abstract
flow, there is always one child with (ref = 1). If a child is the first child of a weak flow
(sw = 0), then we consider no predecessor for that child. Because there is no sequence

constraint between the first child of a weak flow and the predecessor of it (Section 4.3.4).

successor ( child, : child/cons-child, parnum: int ) =

* (child,,, parnum) where (i < n) and (child,,, # loop)

* successor(child,,;, parnum) where (i < n) and (child,,, = loop)

Figure 5.16: successor Function

successor, presented in Figure 5.16, is used to find the next node of a loop to create
the loop guard, in TR_loopl (Section 5.53). n is the number of parent flow children
(number of siblings of the input child). A loop is never placed as the first or the last
child of a flow. Therefore in Figure 5.16, we do not consider the i** child as the last

child in successor function, (always i < n).
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5.4.3 Translating a Leaf
5.4.3.1 TR_leafl: mapping a leaf to a variable

A leaf is transformed to a variable with the same name, leaf-name, (Sequence Pattern

4.2.2). No variable is generated for a loop leaf, (Loop Pattern 4.2.3).

This translation rule is called TR_leafl, presented in Figure 5.17. The first row in the
figure is the signature of the rule; the second row presents the source element of the
rule (ABNF element); and the last row shows the target element of the rule (Event-B
element). In TR_leafl, the source element is a leaf (not a loop leaf), and the destination
element is a variable with the same name as the leaf name. The rules are applied to
each matching sub term on the source element and each application of a rule adds a new

element (e.g., variable) to the target model.

The flow that is presented as a part of the source element is the parent flow of the leaf.
In this rule we do not need the properties of the parent flow, but in some of the other
rules, which are described later, we use the parent flow properties for transformation.
We aim to define the translation rules in a consistent way; therefore the parent flow is

shown in all of the translation rules.

The invariant which defines the type of the generated variable is generated later in
TR_leaf2 (Section 5.4.3.2), TR_leaf3 (Section 5.4.3.3) and TR_leaf4 (Section 5.4.3.4).
All generated control variables are initialised to either false or to the empty set depending
on the type of the control variable. The initialisation translation rule is omitted here

since it is a trivial rule.

TR_leaf1: leaf — variable

flow(parent-name, (py, ..., p,), sW)(..., leaf (leaf-name)(ref), ...)

flow(parent-name, (p,, ..., p,), sW)(..., and (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., or (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., p,), sW)(..., xor (..., leaf(leaf-name), ...) (ref), ...)

flow(parent-name, (py, ..., P,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (py, ..., p,), SW)(..., some (p;, leaf(leaf-name))(0), ...)
flow(parent-name, (py, ..., P,), SW)(..., one (p;, leaf(leaf-name)) (ref), ...)

variables leaf-name

Figure 5.17: TR_leafl: mapping a leaf to a variable

Figure 5.18 presents multiple applications of the rule in Figure 5.17 in the first refinement
level of the example in Figure 5.1. There are eight leaves in the first refinement level,

that each of them is transformed to a variable.
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Application of TR_leaf1

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p;) (leaf (1)) (1) ), leaf (d)) (0)
variables e, g, h,i,j, k, I, d

Figure 5.18: Application of TR_leafl in the Example of Figure 5.1, First Re-
finement Level

5.4.3.2 TR_leaf2: mapping a non-replicator leaf to a typing invariant

A leaf is transformed to an invariant which defines the type of the corresponding variable
generated for the leaf in TR_leafl.

TR_leaf2, TR_leaf3 and TR_leaf4 are about this transformation. TR_leaf2 generates
a typing invariant for a non-replicator leaf, (Sequence Pattern 4.2.2, and-constructor
Pattern 4.2.4, or-constructor Pattern 4.2.5, xor-constructor Pattern 4.2.6), which has
not got a predecessor node. In this case predecessor function (Section 5.4.2.3) outputs

no predecessor for the leaf.

Type of a replicator leaf, (all-replicator Pattern 4.2.7, some-replicator Pattern 4.2.8), is
defined in a typing invariant generated in TR_leaf3 (Section 5.4.3.3).

Finally, if a leaf has got a predecessor as the output of predecessor function, then its type

is defined in a sequencing invariant which is generated in TR_leaf4 (Section 5.4.3.4).

TR_leaf2 is presented in Figure 5.19. If a leaf has not got any parameter (n = 0), then
its type is boolean. Otherwise (n > 0), its type is the cartesian product of the type of

its parameters.

Figure 5.20 presents the application of this rule in the first refinement level of the example
in Figure 5.1. Leaf e is first node and there is no predecessor for it,

predecessor(leaf(e), p1) = nopredecessor).
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TR_leaf2: non-replicator leaf — typing invariant

flow(parent-name, (p,, ..., p,), sw)(leaf (leaf-name)(ref), ...)
flow(parent-name, (p,, ..., p,), sw)(and (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (p,, ..., P,), sw)(or (..., leaf(leaf-name), ...) (0), ...)

flow(parent-name, (py, ..., p,), sw)(xor (..., leaf(leaf-name), ...) (ref), ...)

* where (predecessor (leaf, (p,, ..., p,), SW) = “no predecessor”)

Sl case (n =0):

invariants
@inv_leaf-name_type leaf-name € BOOL

Ml case (n > 0):

invariants
@inv_leaf-name_type leaf-name < TYPE(p,) x ... x TYPE(p,)

Figure 5.19: TR_leaf2: mapping a non-replicator leaf to a typing invariant

Application of TR_leaf2

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (ps) (leaf(I) ) (1) ), leaf (d)) (0)
invariants

@inv_e_type e S TYPE(p,)

Figure 5.20: Application of TR_leaf2 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.3 TR_leaf3: mapping a replicator leaf to a typing invariant

TR_leaf3, Figure 5.21, outlines the typing invariant translation in the case of a replicator

leaf, (all-replicator Pattern 4.2.7, some-replicator Pattern 4.2.8).

Figure 5.22 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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TR_leaf3: replicator leaf — typing invariant

flow(parent-name, (py, ..., p,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., some (p;, leaf(leaf-name))(0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., one (p;, leaf(leaf-name)) (ref), ...)

invariants
@inv_leaf-name_type leaf-name < TYPE(p,) x ... x TYPE(p,) x TYPE(p;)

Figure 5.21: TR_leaf3: mapping a replicator leaf to a typing invariant

Application of TR_leaf3

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (ps) (leaf (1) ) (1) ), leaf (d)) (0)
invariants

@inv_|_type | € TYPE(p,) x TYPE(p,)

Figure 5.22: Application of TR_leafd in the Example of Figure 5.1, First Re-
finement Level

5.4.3.4 TR_leaf4: mapping a leaf to a sequencing invariant

As described in Section 4.2, ordering between events is managed with some guards and

is specified with some invariants.

TR_leaf4 presented in Figure 5.23, transforms a leaf to a sequencing invariant. Sequenc-
ing guard is generated in TR_leaf8 (Section 5.4.3.8). Considering Figure 5.23, first
predecessor function is applied to the leaf to find the previous child. Then build_seq_inv
function is applied to the previous child. In build_seq_inv function first the leaf/leaves
of the final refinement level are found via traversing steps, then seq_inv is called inside
build_seq_inv function for each final refinement level leaf, to generated the appropriate

invariant.

Figure 5.24 presents the application of this rule for leaf k£ in the second refinement level
of the example in Figure 5.1. Considering leaf k, the previous child is

all(p2)(flow(b, (p1,p2),1)(...))(0). build_seq_inv function is applied to this child. The
output leaves of build_seq_inv function are q(p1, p2), r(p1, p2) and u(p1, p2, ps). For each

of them seq_inv is called as follows:
seq_inv(q, (p1,p2), k, (p1))

seq_inv(r, (p1,p2), k, (p1))
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TR_leaf4: leaf — sequencing invariant

flow(parent-name, (py, ..., p,), sW)(..., leaf (leaf-name)(ref), ...)
flow(parent-name, (p,, ..., p,), sW)(..., and (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., p,), SW)(..., or (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., p,), sW)(..., xor (..., leaf(leaf-name), ...) (ref), ...)
flow(parent-name, (py, .., p,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (py, .., p,), SW)(..., some (p;, leaf(leaf-name))(0), ...)
flow(parent-name, (py, ..., p,), SW)(..., one (p,, leaf(leaf-name)) (ref), ...)

flow(parent-name, (py, .., p,), sW)(..., loop (leaf(leaf-name)) (0), ...)

* where (predecessor (leaf, (p;, ..., p,), SW) # “no predecessor”)

predecessor (leaf, (py, ..., p,), sw) = (child, *par)

invariants
@inv_leaf-name_seq build_seq_inv (child, *par, leaf, (p,, ..., p,))

Figure 5.23: TR_leaf4d: mapping a leaf to a sequencing invariant

seq_inv(u, (p1, p2,ps), k, (p1))

Considering the seq_inv function presented in Section 5.4.2.2, p; is a common parameter
between k and the other three leaves, ¢, 7 and u; and ps is an all-replicator parameter in

g, r and u leaves; therefore the invariant is build in the last case of the seq_inv function.

Application of TR_leaf4

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),
all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (pg) (leaf(u) ) (1) ) ) (1) )) (0),
and ( leaf (k) (0), one (p5) ( some (pg) ( leaf (v) ) (0),

leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

invariants
@inv_leaf-name_seqp, € k=>q[{p,;}]1= TYPE(p,) V
r[{ps}1= TYPE(p,) v
dom(u) [{p,} 1= TYPE(p,)

Figure 5.24: Application of TR_leaf4 in the Example of Figure 5.1, Second
Refinement Level
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5.4.3.5 TR_leaf5: mapping a solid leaf to a gluing invariant

Each leaf with a solid line, (refining = 1), is transformed to a gluing invariant.

This leaf can be a simple leaf, TR_leaf5, or a leaf of a refining xor-constructor, TR_xorl1,
or a refining one-replicator, TR_onel. It is good to recall that other constructors are

always non-refining, come with dashed lines (refining = 0).

TR_leaf5 outlines this rule for a simple leaf in Figure 5.25, (Sequence Pattern 4.2.2).
Since the corresponding event of the leaf refines the parent event, an invariant describes
the relation between the concrete variable, leaf-name and the abstract variable, parent-
name. It is important to mention that we need this invariant only when the leaf-name

and the parent-name are different.

TR_leaf5: solid leaf —> gluing invariant

flow(parent-name, (py, ..., P,), SW)(..., leaf(leaf-name)(1), ...)

* where (parent-name # leaf-name)

invariants
@inv_leaf-name_gluing leaf-name = parent-name

Figure 5.25: TR_leaf5: mapping a solid leaf to a gluing invariant

Figure 5.26 presents the application of this rule in the first refinement level of the example

in Figure 5.1.

Application of TR_leaf5

leaf (e) (1), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (ps) (leaf (1) ) (1) ), leaf (d)) (0)
invariants

@inv_e_gluingg=a

Figure 5.26: Application of TR_leaf5 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.6 TR_leaf6: mapping a solid leaf to a refining event

A leaf which is connected to its parent with a solid line is transformed to an event which

refines the parent event, (Sequence Pattern 4.2.2).
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In TR_leaf6, Figure 5.27, each leaf with a solid line, (refining = 1), is transformed to an
event which refines the parent event, parent-name. As described in Section 4.2, between
the logical constructors and replicators, just the xor-constructor and the one-replicator
can refine the parent event, (refining = 1). The generated event’s name is the same as

leaf’s name, leaf-name.
)

The list of parameters of a leaf appears in the parameters of the generated event. These
parameters include the parent flow parameters followed by any possible replicator’s

parameter, the one-replicator in this case.

TR_leaf6: solid leaf, solid xor leaf, solid one leaf — refining event

flow(parent-name, (py, ..., P,), SW)(..., leaf (leaf-name)(1), ...)
flow(parent-name, (py, ..., P,), SW)(..., xor (..., leaf(leaf-name), ...) (1), ...)
flow(parent-name, (p,, ..., p,), SW)(..., one (p;, leaf(leaf-name)) (1), ...)

event leaf-name refines parent-name
anyp;...p,[p;]

Figure 5.27: TR_leaf6: mapping a solid leaf to a refining event

Figure 5.28 presents multiple applications of this rule in the first refinement level of the

example in Figure 5.1.

e The parameter for leaf I, includes its parent, c, parameter: p1, followed by the

one-replicator parameter: p3.

e leaf ¢ and leaf j inherit their refining value from their parent constructor, xor-

constructor.

Application of TR_leaf6

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),
all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)

event grefinesa | eventirefinesb |eventjrefinesh event | refines ¢
any p1 any p1 p2 any p1 p2 any p1 p3

Figure 5.28: Application of TR_leaf6 in the Example of Figure 5.1, First Re-
finement Level
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5.4.3.7 TR_leaf7: mapping a dashed leaf to a non-refining event

A leaf which is connected to its parent with a dashed line is transformed to a non-refining

event, (Sequence Pattern 4.2.2).

TR_leaf7 is almost same as TR_leaf6. It transforms a leaf with (refining = 0) to an
event. The difference is that the generated event does not refine the parent event. As
described in Section 4.2, all of the constructors are allowed to use dashed line, therefore

all of them appear in TR_leaf7. The rule is presented in Figure 5.29.

TR_leaf7: dashed leaf —> non-refining event

flow(parent-name, (py, ..., P,), SW)(..., leaf (leaf-name)(0), ...)

flow(parent-name, (py, ..., P,), SW)(..., and (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., P,), SW)(..., or (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., P,), SW)(..., xor (..., leaf(leaf-name), ...) (0), ...)

flow(parent-name, (py, .., p,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., some (p;, leaf(leaf-name)) (0), ...)

flow(parent-name, (py, ..., p,), SW)(..., one (p;, leaf(leaf-name)) (0), ...)

flow(parent-name, (py, .., p,), sW)(..., loop (leaf(leaf-name)) (0), ...)

event leaf-name
anyp;...p,[p;]

Figure 5.29: TR_leaf7: mapping a dashed leaf to a new event

Figure 5.30 presents multiple applications of this rule in the first refinement level of the

example in Figure 5.1.

Application of TR_leaf7

leaf (e) (0), loop ( leaf (f) ) (0), loop ( leaf (g) ) (0) ) (0),

all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j)) (1) )) (0),

and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)

event e event f event h event k eventd
any p, any p, anyp, p, any p, any p,

Figure 5.30: Application of TR_leaf7 in the Example of Figure 5.1, First Re-
finement Level
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5.4.3.8 TR_leaf8: mapping a leaf to a sequencing guard

TR_leaf8 presented in Figure 5.31, transforms a leaf to a sequencing guard in the cor-
responding event. In a same way as TR_leaf4, build_seq_grd function first outputs the
leaf/leaves of the final refinement level of the predecessor child,. Then seq_grd is called
inside build_seq_grd function for each final refinement leaf to generated the appropriate

guard.

TR _leaf8: leaf — sequencing guard

flow(parent-name, (py, ..., P,), SW)(..., leaf (leaf-name](ref), ...)
flow(parent-name, (py, ..., P,), SW)(..., and (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., P,), SW)(..., or (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (py, ..., P,), SW)(..., Xor (..., leaf(leaf-name), ...) (ref), ...)

flow(parent-name, (py, ..., p,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., some (p;, leaf(leaf-name))(0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., one (p;, leaf(leaf-name)) (ref), ...)

flow(parent-name, (py, ..., p,), sW)(..., loop (leaf(leaf-name)) (0), ...)

* where (predecessor (leaf, (p;, ..., p,), SW) # “no predecessor”)

predecessor (leaf, (py, ..., p,), sw) = (child, *par)

event leaf-name
@grd_seq build_grd_inv (child, *par, leaf, (p,, ..., p,))

Figure 5.31: TR_leaf8: mapping a leaf to a sequencing guard

Figure 5.32 presents the application of this rule for leaf k£ in the second refinement level

of the example in Figure 5.1.

5.4.3.9 TR_leaf9: mapping a non-replicator leaf to a guard

Each leaf is transformed to a guard in the corresponding event of the leaf, generated in
TR_leaf2 or TR_leaf3. This guard ensures that the event has not executed before (for

the same instance of the event parameter(s)).

TR_leaf9 and TR_leaf10 are about this translation. TR_leaf9 outlines this translation in
the case of a non-replicator leaf (Sequence Pattern 4.2.2, and-constructor Pattern 4.2.4,
or-constructor Pattern 4.2.5, xor-constructor Pattern 4.2.6). Considering TR_leaf9, Fig-
ure 5.33, if leaf has not got any parameter, (n = 0), then the guard is like “leaf-name =
FALSE”; Otherwise (n > 0) the guard ensures that the event has not executed before

for the same instance of the parameter(s).
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Application of TR_leaf8

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),
all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (p) (leaf(u) ) (1) )) (1) ) ) (0),
and ( leaf (k) (0), one (p,) ( some (pg) ( leaf (v) ) (0),

leaf(w) (1) )) (1) ), leaf (d) ) (0)

event k

any p1 where

@grd_k_seqq[{p;}]= TYPE(p,) V
r[{p;}]1= TYPE(p,) v
dom(u) [{p,}1= TYPE(p,)

Figure 5.32: Application of TR_leaf8 in the Example of Figure 5.1, Second
Refinement Level

TR_leaf9: non-replicator leaf —> guard

flow(parent-name, (p,, ..., P,), sW)(..., leaf(leaf-name)(ref), ...)

flow(parent-name, (p,, ..., p,), sW)(..., and (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (p,, ..., P,), SW)(..., or (..., leaf(leaf-name), ...) (0), ...)
flow(parent-name, (p,, ..., P,), SW)(..., xor (..., leaf(leaf-name), ...) (ref), ...)

Sl case (n =0):

event leaf-name
@grd leaf-name = FALSE

Ml case (n > 0):

event leaf-name
@grd p; #~ ... »p, £ leaf-name

Figure 5.33: TR_leaf9: mapping a non-replicator leaf to a guard

Figure 5.34 presents multiple applications of this rule in the first refinement level of the

example in Figure 5.1.
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Application of TR_leaf9
leaf (e) (0), loop ( leaf () ) (0), leaf (g) (1) ) (0),
all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)
event e event g refines a
any p; where any p; where
@grd_ep, e @grd_gp, €9
event h event i refines b event j refines b
any p, p, where any p, p,where any p, p,where
@grd_hp,~»p, & h @grd_ip,;mp, € i @grd_jp,~p, €j
event k eventd
any p; where any p; where
@grd_kp; & k @grd_dp, £d

Figure 5.34: Application of TR_leaf9 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.10 TR_leafl0: mapping a replicator leaf to a guard

TR_leaf10 outlines the guard translation in the case of a replicator leaf (all-replicator
Pattern 4.2.7, some-replicator Pattern 4.2.8, one-replicator Pattern 4.2.9). Therefore
as least one parameter, the replicator parameter, exists. TR_leafl0 is presented in
Figure 5.35.

TR_leaf10: replicator leaf — guard

flow(parent-name, (py, .., p,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (py, ..., p,), SW)(..., some (p, leaf(leaf-name)) (0), ...)
flow(parent-name, (py, ..., p,), SW)(..., one (p, leaf(leaf-name)) (ref), ...)

event leaf-name
@grd p; & ... »p, »p; € leaf-name

Figure 5.35: TR_leafl10: mapping a replicator leaf to a guard

Figure 5.36 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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Application of TR_leaf10

leaf (e) (1), loop ( leaf (f) ) (0), loop ( leaf (g) ) (0) ) (0),

all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)
event |

any p, p;where
@grd_l p;>p; €1

Figure 5.36: Application of TR_leafl0 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.11 TR_leafll: mapping a non-replicator leaf to an action

Each leaf is transformed to an action in the corresponding event of the leaf, generated in
TR_leaf2 and TR_leaf3. This action indicates that the event executes (for an instance

of the event parameter(s)).

TR_leafl1 and TR_leaf12 are about this translation. TR_leafl1 outlines this translation
in the case of in the case of a non-replicator leaf (Sequence Pattern 4.2.2, and-constructor
Pattern 4.2.4, or-constructor Pattern 4.2.5, xor-constructor Pattern 4.2.6). In TR_leaf6,
Figure 5.37, if leaf has not got any parameter (n = 0) then the action is like “leaf-name
:= TRUE”; Otherwise (n > 0), the action indicates that the event executes for an

instances of the parameter(s).

TR _leaf11: non-replicator leaf — action

flow(parent-name, (p,,

flow(parent-name, (p,,
flow(parent-name, (p,,
flow(parent-name, (p,,

wer Py)y SW(..., leaf (leaf-name)(0), ...)

wr Py)y SW)(..., and (..., leaf(leaf-name), ...) (0), ...)
s Py)y SW)(..., OF (..., leaf(leaf-name), ...) (0), ...)
wer Py)y SW)(..., xOF (..., leaf(leaf-name) (ref), ...), ...)

Sl case (n =0):

event leaf-name

@act leaf-name := TRUE

Ml case (n > 0):

event leaf-name

@act leaf-name := leaf-name U {p, = ... »p,}

Figure 5.37: TR_leafl1: mapping a non-replicator leaf to an action

Figure 5.38 presents multiple applications of this rule for in the first refinement level of

the example in Figure 5.1.
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Application of TR_leaf11
leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),
all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)
event e event g refines a
any p, where any p; where
@grd_ep, € e @grd_gp; € g
then then
@act_e e=e U{p,} @act_g g:==gVU{py}
event h event i refines b event j refines b
any p; p,where any p; p,where any p; p,where
@grd_hp;=p, & h @grd_ip;=p, €1 @grd_jp;=p; €
then then then
@act_h h:=hU{p,~p,} @act_i i=1U{p;~p,} @act_j j=jU{p,~p,}
event k event d
any p, where any p, where
@grd_kp, & k @grd dp, £ d
then then
@act_k k=kU{p,} @act_d d=d U {p,}

Figure 5.38: Application of TR_leafl1 in the Example of Figure 5.1, First Re-
finement Level

5.4.3.12 TR_leafl2: mapping a replicator leaf to an action

TR_leaf12 outlines the action translation in the case of a replicator leaf (all-replicator
Pattern 4.2.7, some-replicator Pattern 4.2.8, one-replicator Pattern 4.2.9). Therefore

as least one parameter, the replicator parameter, exists. TR_leafl2 is presented in

Figure 5.39.

TR _leaf12: replicator leaf — action

flow(parent-name, (p,, ..., p,), sW)(..., all (p;, leaf(leaf-name)) (0), ...)
flow(parent-name, (py, ..., p,), sW)(..., some (p, leaf(leaf-name)) (0), ...)
flow(parent-name, (p,, ..., p,), sW)(..., one (p, leaf(leaf-name)) (ref), ...)

event leaf-name
@act leaf-name := leaf-name U {p, ~... = p, = p;}

Figure 5.39: TR_leaf12: mapping a replicator leaf to an action

Figure 5.40 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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Application of TR_leaf12

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)
event |

any p, p;where
@grd_Ip;~p; € 1

then
@act_| 1:==1U{p,~»p,}

Figure 5.40: Application of TR_leafl12 in the Example of Figure 5.1, First Re-
finement Level

5.4.4 Translating the xor-constructor
5.4.4.1 TR_xorl: mapping a solid xor-constructor to a gluing invariant

TR_xor1 describes the gluing invariant translation in the case of a solid xor-constructor,
(xor-constructor Pattern 4.2.6). In this case all leaves of the solid xor-constructor refine
the parent event, as generated in TR_leaf6. The gluing invariant describes the relation
between concrete variables of xor-constructor leaves and the abstract variable. Also it
ensures that just one of the xor-constructor leaves is allowed to execute. Figure 5.41

presents TR_xorl.

TR_xor1: solid xor-constructor —> gluing invariant

flow(parent-name, (py, ..., P,), SW)(..., xor (leaf(name,), ..., leaf(name,)) (1), ...)

Sl case (n =0):

invariants
@inv_xor_gluing
partition( {parent-name} N {TRUE},
{name,} n {TRUE}, ..., {name,} N {TRUE} )

Ml case (n > 0):

invariants
@inv_xor_gluing partition(parent-name, name;, ..., name,)

Figure 5.41: TR_xorl: mapping a solid xor-constructor to a gluing invariant

Figure 5.42 presents the application of this rule in the first refinement level of the example

in Figure 5.1.
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Application of TR_xor1

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (ps) ( leaf (I) ) (1) ), leaf (d)) (0)
invariants

@inv_xor_gluing partition(b, i, j)

Figure 5.42: Application of TR_xorl in the Example of Figure 5.1, First Re-
finement Level

5.4.4.2 TR_xor2: mapping a xor-constructor to an invariant

For each xor-constructor we need to ensure that just one of its children is allowed to
execute. This constraint is modelled in Event-B with an invariant and a guard in each
generated event of each xor-constructor children, in TR_xor2 and TR_xor3 respectively,

(xor-constructor Pattern 4.2.6).

TR_xor2 transforms the xor-constructor to an invariant, Figure 5.43. In the generated
invariant, we need to specify that the variables corresponding to leaf/leaves of each xor-
constructor child, are mutually exclusive. If the parent flow of the xor-constructor has
no parameter (n = 0), we use disjunction_of_leaves function to get the proper expression
for each xor-constructor child. Then the invariant specifies a mutual exclusive relation
between the outputs of disjunction_of_leaves function. In the Event-B language, the xor
operator is not implemented. In the case that there are some parent flow parameter(s)

(n > 0), we can use partition operator to describe the mutual exclusive relationship.

TR_xor2: xor-constructor —> invariant

flow(parent-name, (py, ..., p,), sW)(..., xor (child,, ..., child,,) (ref), ...)

Sl case (n =0):

invariants
@inv_xor disjunction_of_leaves (child,;, 0) xor ... xor disjunction_of_leaves (child,,, 0)

Ml case (n > 0):

invariants
@inv_xor partition( ( union_of_leaves (child;, 0) U ...U union_of_leaves (child,,, 0) ),
union_of_leaves (child,, 0), ..., union_of_leaves (child,, 0) )

Figure 5.43: TR_xor2: mapping a xor-constructor to an invariant

Figure 5.44 presents the application of this rule in the second refinement level of the

example in Figure 5.1.
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Application of TR_xor2

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p,)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p2) ( leaf (h) (0), xor ( flow(i, p;, p,, 1) ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), flow(j, p,, p,, 0) ( leaf (t), one (ps) (leaf(u) ) (1) )) (1) ) ) (0),

and ( leaf (k) (0), one (ps) ( some (py) ( leaf (v) ) (0),
leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

Ml case (n > 0):

invariants
@inv_xor partition((q U r Udom(u)), q Ur, dom(u))

Slcase(n=0):

invariants
@inv_xor (q Vr) xor (u @)

Figure 5.44: Application of TR_xor2 in the Example of Figure 5.1, Second
Refinement Level

In the last row of the figure we assume that the xor-constructor is included in a parent

flow without parameter.

TR_xorl (Section 5.4.4.1) was about a solid xor-constructor when all of its children are
leaves. Whereas TR_xor2 is transformed a dashed xor-constructor, or a (solid or dashed)

xor-constructor witch as least one of its children is a flow, not a leaf.

5.4.4.3 TR _xor3: mapping a xor-constructor to guards

TR_xor3 in Figure 5.45, presents generation of guards for the xor-constructor. At least
two guards are generated for each xor-constructor since there are at least two children
for each xor-constructor (xor-constructor Pattern 4.2.6). First list_of_leaves function is
applied to each xor-constructor child. The result would be a list of leaves. Then for
the corresponding event of each leaf in the list (same name as leaf name), one guard
is added. In the guard we aim to check that other xor-constructor children have not

executed before.

Since for each xor-constructor child, we need to check that none of other xor-constructor
children has executed before, conjunction_of_leaves function, in case of (n = 0), and
union_of_leaves function, in case of (n > 0), are called for the other child of the xor-

constructor.
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TR_xor3: xor-constructor —> 2*guard

flow(parent-name, (p,, ..., p,), sW)(..., xor (child,, ..., child,) (ref), ...)

list_of_leaves (child;, (p;, ..., p,)) =
leaf i, (leaf-name';, *par',), ..., leaf | (leaf-namei,, *par,) (1 <=i<=m)

Slcase (n=0):

event leaf-name; (1 <=j<=k)

@grd_xor conjunction_of_leaves (child,, 0) A
AN
conjunction_of_leaves (child_,, 0) A
conjunction_of_leaves (child,,, 0) A
AN
conjunction_of_leaves (child,,, 0)

Ml case (n > 0):
event leaf-name; (1 <=j<=k)
any p; ... p, ... where
@grd_xor p;~..~p, & union_of_leaves (child,, 0) U
..U
union_of_leaves (child, ;, 0) U
union_of_leaves (child,,;, 0) U
..U
union_of_leaves (child,,, 0)

Figure 5.45: TR_xor3: mapping a xor-constructor to guards

Figure 5.46 presents multiple applications of this rule in the second refinement level of
the example in Figure 5.1. In the last row of the figure we assume that xor-constructor

is included in a parent flow without parameter.

Application of TR_xor3

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p,)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p2) ( leaf (h) (0), xor ( flow(i, p;, p,, 1) ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), flow(j, py, p,, 0) ( leaf (t), one (p) ( leaf(u) ) (1)) ) (1) )) (0),

and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),
leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

Ml case (n > 0):

event q event r event u refines j
any p, p,where any p, p, where any p, p, ps where
@grd_q_xor @grd_r_xor @grd_u _xor
p;+~p, £dom(u) py~-p, €dom(u) pi=p, €qUr

Slcase(n=0):

event q event r event u refines j
where where any p;where
@grd_g_xor u=0@ @grd_r_xor u=9Q @grd_u _xor

q = FALSE A r = FALSE

Figure 5.46: Application of TR_xor3 in the Example of Figure 5.1, Second
Refinement Level
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5.4.5 Translating the one-replicator
5.4.5.1 TR_onel: mapping a solid one-replicator to a gluing invariant

TR_onel describes the gluing invariant translation in the case of a solid one-replicator,
(one-replicator Pattern 4.2.9). In this case the solid one-replicator leaf event refines
the parent event, as generated in TR_leaf6. The gluing invariant describes the relation
between concrete variable of the one-replicator leaf and the abstract variable. Figure 5.47

presents TR_onel.

TR_onel: solid one-replicator — gluing invariant

flow(parent-name, (p,, ..., p,), sW)(..., one (p, leaf(leaf-name)) (1), ...)

* where (parent-name # leaf-name)

Sl case (n =0):

invariants
@inv_one_gluing leaf-name # @ & parent-name = TRUE

Ml case (n > 0):

invariants
@inv_one_gluing dom(leaf-name) = parent-name

Figure 5.47: TR_onel: mapping a solid one-replicator to a gluing invariant

Figure 5.48 presents the application of this rule in the first refinement level of the example

in Figure 5.1.

Application of TR_onel

leaf (e) (0), loop ( leaf (f) ) (0), leaf (g) (1) ) (0),

all (p2) ( leaf (h) (0), xor ( leaf (i), leaf (j) ) (1) ) ) (0),
and ( leaf (k) (0), one (p,) (leaf (1)) (1) ), leaf (d)) (0)
invariants

@inv_one_gluing dom(l)=c

Figure 5.48: Application of TR_onel in the Example of Figure 5.1, First Re-
finement Level

5.4.5.2 TR _one2: mapping an one-replicator to (an) invariant(s)

The one-replicator child can execute only for one instance of the one-replicator param-

eter. This constraint is modelled in Event-B with (an) invariant(s) and (a) guard(s), in
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TR_one2 and TR_one3 respectively, (one-replicator Pattern 4.2.9).

In TR_one2, presented in Figure 5.49, one or more invariant(s) is generated for an one-
replicator. First list_of_leaves function is applied to the one-replicator child to find the
list of leaves in the last refinement level of an one-replicator child. Then for each leaf in

the list, one invariant is generated depending on the leaf’s parameter list.

TR_one2: one-replicator —> 1*invariant

flow(parent-name, (py, ..., p,), sW)(..., one (par-one, child)(ref), ...)

list_of_leaves (child, 0) = leaf,(leaf-name,, *par,), ..,, leaf,(leaf-name,, *par,)

X

D S EE—
leaf-name;: py, ..., p,, par-one, p', .., p',

Where X = dom,( ... dom,, (leaf-name)) ...)

invariants
@inv_one n#0,m;#0:Vp,, .., p,card( X [{p, »..~p,}])<1
n=0, m;=0:card( leaf-name;) < 1
n=0,m#0:card(X)<1
I

n#0,m;=0:Vp,, .., p, card( leaf-name; [ {p, »..~p,}]) <1

Figure 5.49: TR_one2: mapping an one-replicator to (an) invariant(s)

Each leaf inherits its parameter from its parent flow and the possible parent replicator.
As presented in Figure 5.49, in TR_one2 each leaf’s parameter list is divided to three
parts. First is the parameters which are the same as the one-replicator parameters,
P1...pn. Second is the one-replicator parameter, par-one. Finally the possible parameters

which can be added from other replicators below the one-replicator, pzlpfn

The invariant restricts the value of the one-replicator parameter in the different execu-
tions of event leaf-name. In all executions of event leaf-name, par-one can take only one

value per each instance of (p; — ... — py).

So in the most general case (n # 0, m # 0), the cardinality of image of X on (p; —
... > pp) shows the number of par-one’s value per (p1 — ... — py,), which should be at

most one. It is helpful to represent the definition of relational image operator here:
relation]S] = {y|Jz.x € S ANz — y € relation}

Figure 5.50 presents the application of this rule in the second refinement level of the

example in Figure 5.1.

list_of_leaves function returns only one leaf, v. Leaf v has three parameters, one before
the one-replicator, p1, the one-replicator parameter, p3, and one after the one-replicator,

pb, added with the some-replicator. The one-parameter p& can take only one value for
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Application of TR_one2

(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (ps) (leaf(u) ) (1) )) (1) )) (0),
and ( leaf (k) (0), one (p;) ( flow(l, (py, p3), 1) (some (pg) ( leaf (v) ) (0),

X

<>

Vi p; P; P X =dom(v)

invariants
@inv_one Vp,- card( dom(v) [ {p,}]1)s1

Figure 5.50: Application of TR_one2 in the Example of Figure 5.1, Second

Refinement Level

all executions of event v per each instance of pI. Whereas for each instance of p6, event

v can execute with more than one value for one-parameter p3. To make this point clear

assume :

TY PE(p1) = {a}
TY PE(ps) = {c,d}
TYPE(ps) = {e, f}

Then these two executions of event v(p1, ps, ps) is allowed:

< v(a, ¢, e), v(a, ¢, f) >

Whereas after those two execution, v(a,d,e) or v(a,d, f) violates the invariant

(card(dom(v)[{a}]) < 1). Because one-parameter p3, can not take more than one value

per any instance of pI1, value a here.

5.4.5.3 TR_one3: mapping an one-replicator to (a) guard(s)

In TR_one3, presented in Figure 5.51, one or more guard(s) is generated for the one-

replicator. What we do in TR_one3 is like TR_one2. In the guard of the one-replicator

leaf/leaves, we need to ensure that the one-replicator parameter’s value per (p; + ... —

pp) s unique.

Figure 5.52 presents the application of this rule in the second refinement level of the

example in Figure 5.1. Considering the assumption in the example of previous transla-

tion rule, when v = {(a, c,e), (a,c, f)} then the generated guard is false for v(a,d,e) or

v(a,d, f), since d ¢ dom(v)[{a}]|, where dom(v)[{a}] = {c}.
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Figure 5.52: Application of TR_one3 in the Example of Figure 5.1, Second

TR_one3: one-replicator —> 1*guard

flow(parent-name, (py, ..., P,), SW)(..., one (par-one, child)(ref), ...)

list_of_leaves (child, (p,, ..., p,, par-one) = leaf,(leaf-name,, *par,), ..., leaf,(leaf-name,, *par,)

X

B S —
leaf-name;: p,, ..., p,,, par-one, p'y, ..., p'y,

Where X = dom,( ... dom,, (leaf-name,) ...)

(1<i<k)
event leaf-name,
any p, ... p, par-one p'; ... p’. where

@grd_one n#0,m#0:X[{p; »..~p,}]1#0® = par-one EX[{p, »..~p,}]
n=0,m=0:leaf-name; = @
n=0, m,#0:leaf-name, # @ = par-one € dom( leaf-name, )
nz0,m=0:p, ~»..~p, & dom(leaf-name,)

Figure 5.51: TR_one3: mapping an one-replicator to (a) guard(s)

Application of TR_one3

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),
all (p,) ( leaf (h) (0), xor ( or (leaf (qg), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (ps) (leaf(u) ) (1) ) ) (1) )) (0),
and ( leaf (k) (0), one (ps) ( flow(l, (p, P3), 1) ( some (pg) ( leaf (v) ) (0),

leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

event v

any p; p; pgwhere
@grd_q_one dom(v) [{p,}]1# @ = p; Edom(v) [{p,}]

Refinement Level
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5.4.6 Translating the Loop Constructor
5.4.6.1 TR _loopl: mapping a loop to (a) guard(s)

The loop child can execute zero or more time(s) before execution of next child, (Loop
Pattern 4.2.3). This constraint is modelled in Event-B with a guard added to the loop
child. The guard ensures that next child has not executed yet.

TR_loopl presented in Figure 5.53, transforms a loop to one or more guard(s) in the

loop child event(s).

TR_loop1: loop —> 1*guard

flow( parent-name, (p,, ..., P,), SW)(..., loop (loop-child)(0), ...)

list_of_leaves (loop-child, (p,, ..., p,)) =
leaf,(leaf-name,, *par,), ..., leaf (leaf-name,,, *par,) (1<i<m)

successor (loop, n) : (child, parnum)

Slcase(n=0):

event leaf-name;
@grd_loop conjunction_of_leaves (child, 0)

Ml case (n > 0):

event leaf-name;
anyp, ... p, ... where
@grd_loop py~ ..~ p, € union_of_leaves (child, 0)

Figure 5.53: TR_loopl: mapping a loop to (a) guard(s)

First list_of _leaves function is applied to the loop child to find the loop leaf/leaves in the
final refinement level. For each final refinement leaf, we need to generate a guard. We
use successor function to find next child of the loop. Finally if the parent flow of the loop
has no parameter (n = 0), then conjunction_of_leaves function is applied to the next
child, and a guard is generated in the leaf event. Otherwise (n > 0), union_of_leaves

function is used to generated the guard.

Figure 5.54 presents the application of this rule in the second refinement level of the
example in Figure 5.1. The leaves of the first Loop child, m and n, can execute until
event g executes. In the last row of the figure we assume that loop is included in a

parent flow without parameter.
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Application of TR _loop1

leaf () (0), loop ( flow(f, p,, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (ps) (leaf(u) ) (1) ) ) (1) ) ) (0),
and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),

leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

Ml case (n > 0):

event m event n
any p; where any p; where
@grd_m _loop p; €8 @grd_n_loop p; €8

Slcase(n=0):

event m event n
where where
@grd_m _loop g=90 @grd_n_loop g=0

Figure 5.54: Application of TR_loopl in the Example of Figure 5.1, Second
Refinement Level

5.4.6.2 TR_loop2: mapping a loop to (a) guard(s)

The event(s) after a loop can not execute in the middle of execution of the loop events.

This ensures with a guard which is added to the next event(s), (Section 4.3.5).

TR_loop2 presented in Figure 5.55, transforms a loop to one or more guard(s) in the
next event(s). This translation is applied to the loop only when the loop contains a flow,
not a single leaf (loop-child # leaf). Because as described in Section 4.3.5, when a loop
contain a single leaf we do not need to add an extra guard in the next event(s) after

loop.

First successor function is used to find next child of the loop. Then list_of leaves
function is applied to the next child, to find the leaf/leaves of the final refinement level.
Finally in the event of each final refinement leaf of the next child, a guard is generated,
in the same way as TR_loopl (Section 5.4.6.1).

Figure 5.56 presents the application of this rule in the second refinement level of the
example in Figure 5.1. Here leaf ¢g is the next child after loop. The generated guard
ensures that event g does not execute in the middle of execution of loop events, as
described in Section 4.3.5. In the last row of the figure we assume that loop is included

in a parent flow without parameter.
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TR_loop2: loop —> 1*guard

flow( parent-name, (p,, ..., p,), SW)(..., loop (loop-child)(0), ...)

* where (loop-child # leaf)

successor (loop, n) = (child, parnum)

list_of_leaves (child, (p,, ..., p,)) =
leaf,(leaf-name,, *par,), ..., leaf(leaf-name_,, *par,) (1<i<m)

Slcase(n=0):

event leaf-name,
@grd_loop conjunction_of_leaves (loop-child, 0)

Ml case (n > 0):

event leaf-name,
anyp; ... p, ... where
@grd_loop py~ ..~ p, € union_of_levaes (loop-child, 0)

Figure 5.55: TR_loop2: mapping a loop to a resetting event

Application of TR_loop2

leaf (e) (0), loop ( flow(f, p,, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (ps) (leaf(u) ) (1) ) ) (1) )) (0),
and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),

leaf(w) (1) ) ) (1) ), leaf (d) ) (O)

Ml case (n > 0):

event g
any p; where
@grd_g_loop p, € muUn

Slcase (n=0):

event g
where
@grd_g_loop m=FALSE A n=FALSE

Figure 5.56: Application of TR_loop2 in the Example of Figure 5.1, Second
Refinement Level
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5.4.6.3 TR_loop3: mapping a loop to a resetting event

As described in 4.3.5, when a loop contains a flow rather than a single leaf (loop—child #
leaf), we need a resetting event in order to reset the loop control variables to enable

more than one execution of the loop events.

TR_loop3 presented in Figure 5.57, transforms a loop to a resetting event. First
list_of _leaves function finds the loop leaves. Then for each output of the list_of_leaves,
a resetting action is generated in an event. If the parent flow of the loop does not have
any parameter, (n = 0), then the loop control variables are either boolean (n; = 0) or
a set (n; # 0), since some parameter can be introduced with some possible replicators.
Otherwise (n > 0), the loop control variables can have same parameter list as the parent
flow of the loop (n; = n), or a longer list of parameters (n; > n) as a result of introducing
some new parameters with possible replicators. In the case of (n; > n), we use domain
subtraction operators to reset the control variable. The domain subtraction operator is

defined as below:
S<ar={z,ylr—yernz ¢S}

The generated guard ensures that the last child of the loop has been executed. We
use build_seq_grd function as a same way in TR_leaf8 (Section 5.4.3.8) to find the final

refinement leaf/leaves of the loop and generate the proper guard.

TR_loop3: loop ___ resetting event

flow( parent-name, (p,, ..., p,), SW)(..., loop (loop-child)(0), ...)

loop-child # leaf

list_of_leaves (loop-child, (py, ..., p,) =
leaf,(name,, (P11, -\ Pp1)), - l€af (name, (P1ys - Pom)) (1<i<m)

Sl case (n =0):
event reset_loop
where
@grd_reset build_seq_grd (loop-child, null, null, null)
then
@act,_reset | ni =0: name, := FALSE
ni # 0: name,; == @

Ml case (n > 0):
event reset_loop
any p, ... p, where
@grd_reset build_seq_grd (loop-child, (p,, ..., p,), null, (py, ..., P,))
then
@act,_reset | ni =n:name;:=name,\ {p; ~... »p,}
ni >n:name;:={p; ~.. »p, } < name,

Figure 5.57: TR_loop3: mapping a loop to a resetting event

Figure 5.58 presents the application of this rule in the second refinement level of the

example in Figure 5.1. The last child of the loop is an all-replicator. So the guard
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ensures that the all-replicator event, event p, has been executed for all of instances of
the all-replicator parameter, py. Then all of the loop control variables are reset in the

actions of the resetting event.

Application of TR_loop3

leaf (e) (0), loop ( flow(f, p,, 1) ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), leaf (t), one (ps) (leaf(u) ) (1) ) ) (1) )) (0),
and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),

leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

Ml case (n > 0):

Slcase(n=0):

event reset_loop
any p, where
@grd _reset p[{p,}]1= TYPE(p,)
then
@actl_resetm:=m/{p,}
@act2_resetn=n/{p,}

event reset_loop
where
@grd _reset p=TYPE(p,)
then
@actl_reset m := FALSE
@act2_reset n := FALSE

@act3_reseto=o0/{p,} @act3_reset o := FALSE
@act4_resetp:={p,}dp @act4_resetp =0
end end

Figure 5.58: Application of TR_loop3 in the Example of Figure 5.1, Second
Refinement Level

5.4.7 Translating a Weak Sequencing Flow
5.4.7.1 TR_weakl: mapping a weak sequencing flow to (a) invariant(s)

Recall from 4.3.4, considering a weak sequencing flow, the ordering between a weak flow
children and the earlier refinement level children, is applied only to the solid child of the
weak flow. Obviously there is a separate ordering between the children of a weak flow,
managed with TR_leaf4 (Section 5.4.3.4) and TR_leaf8 (Section 5.4.3.8).

TR_weak] illustrated in Figure 5.59, transforms a weak flow, (sw = 0), to one or more
invariant(s) which specifies the ordering between the solid child of the weak flow and
the previous child. list_of_leaves function outputs the final refinement leaf/leaves of the
solid child, (refining = 1), of the weak flow. Then predecessor function is applied to the
weak flow to find the previous child of the weak flow. Then in a same way as TR_leaf4,

build_seq_inv function generate the sequencing invariant.

Figure 5.60 presents the application of this rule in the second refinement level of the ex-
ample in Figure 5.1. Flow j is a weak flow (sw = 0). The only leaf found in list_of leaves

function is u. The previous child is leaf h.
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TR_weakl: weak flow — 1*sequencing invariant

flow(parent-name, (p,, ..., p,), SW)(
..., weakFlow(parent-name, (p;, ..., p,,), 0)(..., child(1), ...)(ref), ...)

list_of_leaves (child) = leaf, (name,, *par,), ..., leaf, (hame,, *par,)

(1<i<k)
invariants
@inv_leaf-name ; _weakSeq
build_seq_inv (leaf, , *par;, predecessor (weakFlow, (p,, ..., p,), 0))

Figure 5.59: TR_weakl: mapping a weak sequencing flow to (a) guard(s)

Application of TR_weak1

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), flow(j, (py, P,), 0) ( leaf (t), one (ps) (leaf(u) ) (1) )) (1)) ) (0),

and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),
leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

invariants
@inv_u_weakSeq dom(u) € h

Figure 5.60: Application of TR_weakl in the Example of Figure 5.1, Second
Refinement Level

5.4.7.2 TR_weak2: mapping a weak sequencing flow to (a) guard(s)

TR_weak2 illustrated in Figure 5.61, transforms a weak flow, (sw = 0), to one or
more guard(s) in the solid child of the weak flow. list_of leaves function outputs the
final refinement leaf/leaves of the solid child, (refining = 1), of the weak flow. Then
predecessor function is applied to the weak flow to find the previous child of the weak
flow. Then in a same way as TR_leaf8, build_seq_grd function generate the sequencing
guard. Obviously another guard(s) may be generated in TR_leaf8 (Section 5.4.3.8) to
manage the ordering between the children of the weak flow. Also the next event after
the weak flow is guarded with solid child of weak flow variable(s) in TR_leaf8.

Figure 5.62 presents the application of this rule in the second refinement level of the

example in Figure 5.1.
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TR_weak2: weak flow —> 1*sequencing guard

flow(parent-name, (py, ..., P,), SW)(
..., weakFlow(parent-name, (p,, ..., p,), O)(..., child(1), ...)(ref), ...)

list_of_leaves (child) = leaf, (name,, *par,), ..., leaf, (name,, *par,)

(1<i<k)
event leaf-name;
@grd_weakSeq build_seq_grd (leaf; , *par,, predecessor (weakFlow, (p,, ..., p,), 0))

Figure 5.61: TR_weak2: mapping a weak sequencing flow to (a) guard(s)

Application of TR_weak2

leaf (e) (0), loop ( and (leaf (m), leaf (n)) (0), leaf (o) (1), all (p4)
(leaf (p)) (0) ) ) (0), leaf (g) (1) ) (0),

all (p,) ( leaf (h) (0), xor ( or (leaf (q), leaf (r)) (0),
leaf (s) (1) ), flow(j, (py, p,), 0) ( leaf (t), one (p;) (leaf(u) ) (1) )) (1) )) (0),

and ( leaf (k) (0), one (ps) ( some (pg) ( leaf (v) ) (0),
leaf(w) (1) ) ) (1) ), leaf (d) ) (0)

event u
any p1 p2 p5 where
@grd_weakSeq p;~p,€ h

Figure 5.62: Application of TR_weak2 in the Example of Figure 5.1, Second
Refinement Level

5.5 Conclusion

In this chapter, first the language of the atomicity decomposition diagrams was described
in a formal way using ABNF (Augmented Backus-Naur Form). Then using translation
rules, we defined how an ABNF of an atomicity decomposition diagram can be encoded
in terms of Event-B. The translation rules were categorised according to their source

element.

Each leaf node in an atomicity decomposition diagram is encoded with a variable
(TR_leafl), and an event (TR_leaf6 and TR_leaf7). The variable corresponding to
a leaf is disabled in the body of the corresponding event (TR_leafll and TR_leafl2).
From a leaf node two guards are encoded in the corresponding event; one guard is to
prevent occurrence of same instance of the event for the second time (TR_leaf9 and
TR_leafl10); and the aim of the other guard is to control ordering between the corre-

sponding event and the before event (TR_leaf8). To create the actions and guards of



Chapter 5 Atomicity Decomposition Part 3 - Language Description and Translation
Rules 111

an event, we distinguish between a leaf which is a child of a replicator (all-replicator,
some-replicator, one-replicator), and a leaf which is not is a child of a replicator. This
difference is applied because of the extra replicator parameter which is added to the list

of child replicator parameter.

Three types of invariants are encoded. First the typing invariant (TR_leaf2 and TR_leaf3),
second the sequencing invariant (TR_leaf4) which specifies the ordering between events
and finally the gluing invariant (TR_leaf5, TR_xorl and TR_onel). A solid line in a

diagram is encoded as a gluing invariant.

An xor-constructor causes encoding an invariant (TR_xor2) and a guard (TR_xor3) in

each of its children events, to specify the mutual exclusive property between its children.

The one-replicator results in encoding an invariant (TR_one2) and a guard (TR_one3)

in its child event, to specify the one execution property.

A loop is encoded as one or more guards (TR_loopl) to prevent the execution of
loop event(s) after the execution of next event. Moreover another guard is encoded
(TR_loop2) in the next event after loop to prevent its execution in the middle of exe-
cutions of the loop events. Also a resetting event is encoded (TR_loop3) to reset the

control variables of loop in order to enable the loop to execute for another time.

The child with solid line of a weak sequencing decomposition, is encoded as a sequencing

invariant (TR_weakl) and a sequencing guard in the solid child event(s) (TR_weak2).

The ordering between the and-constructor, the or-constructor, the all-replicator and the
some-replicator children and next child, is managed with sequencing invariant(s) and

sequencing guard(s) which are encoded in TR_leaf4 and TR_leaf8 respectively.

The definitions of atomicity decomposition language (ADL) and translation rules helped
us to develop tool support for the atomicity decomposition approach. The tool develop-
ment is presented in Chapter 6. The atomicity decomposition tool makes the process of
modelling in Event-B automatic in terms of controlling ordering and relations between

events of different refinement levels.






Chapter 6

Tool Development: Atomicity
Decomposition Plug-in in Rodin

platform

6.1 Introduction

A tool for the atomicity decomposition approach was developed to support the refine-
ment structuring in Event-B. By taking advantage of the extensibility feature of the
Event-B toolkit (Rodin platform), we have developed a plug-in as tool support for the
atomicity decomposition approach. The Rodin platform serves as a host for the atomic-
ity decomposition plug-in. Developing the atomicity decomposition plug-in in the Rodin
platform, helps developers to make Event-B models easier, since using the atomicity de-
composition plug-in results in automatic generation of a part of the Event-B model

related to the ordering and relationships between events of different refinement levels.

The atomicity decomposition plug-in allows users to structure refinement by using de-
composition of an atomic event of an abstract model into some sub-events of a concrete
model which execute in a sequential style. First the user can define the atomicity decom-
position diagram, then the diagram is automatically transformed to an Event-B model.
Currently the atomicity decomposition diagram is build as an instance of the atomic-
ity decomposition meta-model, included in an Event-B machine. However we consider
developing a graphical environment for the plug-in as future work. The atomicity de-
composition meta-model defines all possible atomicity decomposition models; a model is

a particular instance of the meta-model.

From Section 5.4, the translation rules which correspond to the elements in the last
refinement level in a combined atomicity decomposition diagram have been developed in

the plug-in. The translation which corresponds to the elements in the earlier refinement
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levels in a combined atomicity decomposition diagram, are partly developed and need
to be examined more and improved as a future work. The atomicity decomposition
plug-in has been examined via development of two case studies which are explained in
Chapter 7. A perspective of the plug-in in the development of case studies are presented
in Chapter 7.

6.2 Architecture and Technologies

Eclipse [72], is a multi-language software development environment comprising an inte-
grated development environment (IDE) and an extensible plug-in system. The Rodin
Platform is an Eclipse-based IDE for Event-B and is further extendable with plug-ins.

The atomicity decomposition plug-in is developed in the Eclipse environment.

ADL EMF
Meta-model

Event-B EMF
Meta-model

) 4

Rodin DB

Figure 6.1: Atomicity Decomposition Plug-in Architecture

The development architecture is illustrated in Figure 6.1. The architecture is based
on model-driven architecture. In this approach we define the Atomicity Decomposition
Language (ADL) specification in an EMF (Eclipse Modelling Framework) [73] meta-
model, called source meta-model, and then the source meta-model is transformed to the
Event-B EMF meta-model as a target meta-model. The ADL meta-model defines all

possible atomicity decomposition models.

The transformation is done using the Epsilon Transformation Language (ETL) [74].
Finally the destination Event-B model is transformed to the Rodin Data Base (DB). The
Emfatic text editor is used for creating EMF meta-model. All mentioned technologies

are briefly explained below. The explanations are from [72, 75]
Eclipse Modelling Framework (EMF) and Emfatic:

The meta-model describes the structure of the language. EMF [73] can be used to
describe the meta-model of the atomicity decomposition language. We decided to use
EMF technology since it has advantages in our plug-in development, some of them are
listed here:
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e Once the EMF meta-model is specified, we can generate the corresponding Java
implementation classes from this model. EMF provides the possibility to safely

extended the generated code by hand.

e With EMF we can make our model explicit which helps to provide clear visibility
of the model.

e EMF also provides change notification functionality to the model in case of model

changes.

e EMF will generate interfaces to create our own objects. Therefore it helps us to

keep our application clean from the individual implementation classes.

e Another advantage is that we can regenerate the Java code from the model at any

point in time.
Emfatic [73] is a text editor supporting navigation, editing, and conversion of EMF
models, using a compact and human-readable syntax similar to Java.
Epsilon Transformation Language (ETL):

ETL [74], is a rule-based model-to-model transformation language. We benefit from

features of ETL. The prominent features are as follows:

Transform many input to many output models

Ability to query/navigate/modify both source and target models

Automated rule execution

Rule inheritance

Guarded rules

Figure 6.2 presents a view of the ADL EMF meta-model on the left side. Using ETL
rules, some components of this meta-model are transformed to some components of
the Event-B EMF meta-model on the right. As an example, Figure 6.2 illustrates how
the translation rule TR_leafl (Section 5.4.3.1) is encoded as an ETL rule. This rule
transforms a leaf from the ADL meta-model (as the source meta-model) to a variable
in the Event-B meta-model (as the target meta-model). In the body of rule the name of

the target component (variable) is assigned to the name of the source component (leaf).

Another example of an ETL rule in presented in Figure 6.3. This rule is corresponded to
the translation rule TR_xorl (Section 5.4.4.1) in the MI case, which transforms a solid
xor-constructor to a gluing invariant. The rule is guarded for a solid xor and the MI case.

In the body of the rule, first the name of the invariant is assigned, then the predicate
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[$ ad2betl &3 =q
-

-- Transform a leaf into a variable
rule Leaf2Variable -
transform 1 : Source!Leaf o

4 # atomicitydecomposition

» B Child

H ComblLeaf -> Child, Parent

» B ChildN -> Child

» | B Leaf -> ChildN, SkipNode, Parent
H Combinator -> ChildN

E And -> Combinator

E Xor-> Combinator, SkipNode

E One-> Combinator, SkipNode

H Parent

LI P—— »

» [ FlowDiagram -> AbstractExtension

-

to v : Target!Variable {
v.name := l.name;
}
< n J »
&) atomicitydecomposition.ecor £2 .~ O ETL &) eventbcoreecore 53 =08

ADL Meta Model

4 # machine

<|

» B Machine -> EventBl d d El

» | B Variable -> EventBNamedCommentedElement

» H Invariant -> E N 4 dDerivedPredi

» [ Variant -> EventBCommentedExpressionElement
E Event -> EventBNamedCommentedElement

» 2 Convergence

E Parameter -> EventBNamedCommentedElement

» B Constant -> EventBNamedCommentedElement
» [ CarrierSet -> EventBNamedCommentedElement

> B Loop -> Combinator > H Guard -> EventBNamed dDerivedPredicatel:
» B All-> Combinator > B Witness -> E d dPredicateEl

» B Some-> Combinator > B Action -> EventBNamed dActionEl

> B Or-> Combinator 4 # context

» B SkipNode » B Context->E d d El

> B Axiom -> EventBNamedCi ADervadDrad:
[ n ]

Event-B Meta Model

Figure 6.2: Atomicity Decomposition Language, EMF Meta-model

of the invariant is assigned to a partition operator. x.econtainer().econtainer().name

returns the parent name of the xor-constructor and get X or Leaves_M I (z.xor Link) out-

puts the list of xor-constructor leaves’ names.

[ ad2b.etl B2

—— Transfotm a solid zxor to a gluing invariant
rule So0lid xor2Gluing invariant

transform x Source !'Xor

to i Target!Invariant {
goard not x.=2kip and // =olid xor (ref = 1)

not x.eContainer().parameters.isEmpty () // HI case
i.name := "inv xor gluing":

i.predicate :=
+ getXorLeaves MI (x.xorLink) + ")}":

]

"partition (" + x.eContainer () .eContainer().names + ",

Figure 6.3: An ETL rule, Corresponded to TR_xorl (Section 5.4.4.1)



Chapter 6 Tool Development: Atomicity Decomposition Plug-in in Rodin platform 117

6.3 User Interface

This section briefly describes how the atomicity decomposition plug-in is used. As
mentioned in Section 6.1, currently the atomicity decomposition diagram is built as an
instance of the ADL meta-model included in a Event-B machine. The user can add each
element of the atomicity decomposition diagram in the appropriate place when right
clicking on an element. For example, in Figure 6.4(a), a new flow can be added to a leaf
when right clicking on the leaf, in order to define a new decomposition flow of the leaf.
After finishing the atomicity decomposition model, like the example in Figure 6.4(b),
the atomicity decomposition model can be transformed to the Event-B model. The user
accesses the transformation feature when right clicking on the machine, presented in
Figure 6.4(c). Behind the “Transform to Event-B” submenu, the ETL transformation
rules are applied and the Event-B model is generated. Figure 6.5 presents the generated

Event-B model for the atomicity decomposition model of Figure 6.4(b).

6.4 Conclusion

The Rodin platform, as an Event-B tool, serves as a host for the atomicity decompo-
sition plug-in developed to give tool support to the atomicity decomposition approach.
The theory behind the atomicity decomposition plug-in has been gradually presented
in Chapter 3, Chapter 4 and Chapter 5; and the applications to case studies will be
presented in Chapter 7. We benefit from some features of EMF (Eclipse Modelling
Framework) and ETL (Epsilon Transformation Language) to create the ADL meta-
model and transform it to the Event-B meta-model. We consider developing a graphical

user interface to create the ADL meta-model in a diagrammatic view, as future work.

The atomicity decomposition plug-in supports automatic generation of Event-B models
in terms of ordering between events and relationships between refinement levels. Ex-
tra requirements can be added manually to the automatic Event-B model. Automatic
generation aims to decrease the effort of modelling complex systems in Event-B, and

contributes to improve the development process of a complex system.
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Figure 6.4: User Interface



Chapter 6 Tool Development: Atomicity Decomposition Plug-in in Rodin platform 119

@ Mo i3

MACHINE
Me
REFINES
abs
VARIABLES
Eventl
Event2
Event3
INVARTIANTS
inv_Event2 seguencing : Event?2 = TRUE = Ewventl
inv Event3 sequencing : Event3 = TRUE = Event2
inv_Event3 gluing : Event3 = AbstractEvent
EVENTS
Eventl =
STATUS
ordinary
WHEN
grd Eventl : Ewventl = FALSE
THEN
act Eventl : Eventl
END

| »

TRUE
TRUE

m

TRUE

Event2 =
STATUS

ordinary
WHEN

grd_Event2 : Event2 = FALSE

grd_Event2_sequencing : Eventl = TRUE
THEN

act_Event2 : Event2
END

TRUE

Event3 =
STATUS

ordinary
REFINES

AbstractEvent
WHEN

grd_Event3 : Ewvent3 = FALSE

grd_Event3 sequencing : Event2 = TRUE
THEN

act_Event3 ~ Event3 = TRUE
END

Figure 6.5: Event-B Model of the Instance of the Atomicity Decomposition
Model in Figure 6.4






Chapter 7

Case Studies

7.1 Introduction

We have developed two case studies, using the atomicity decomposition approach, ini-
tially manually before the plug-in was developed; and later with the plug-in which has
been outlined in the previous chapter. The existing atomicity decomposition approach,
presented in [24], has been evaluated during manual development of the case studies.
Manual development of these case studies helped us to improve the atomicity decom-
position approach. As a result, some new patterns have been discovered which helped
us to define the atomicity decomposition language and translation rules in a formal de-
scription, followed by developing tool support for the approach. The discovered patterns
have been outlined in Chapter 4, the formal description of atomicity decomposition lan-
guage and translation rules have been defined in Chapter 5 and the tool development
has been described in Chapter 6. The evaluation and methodological results of these
case studies are explained later in Chapter 8. Also Chapter 8 will outline how the man-
ual development helped to improve the atomicity decomposition patterns and language.
Through our experiment in these developments we found out that how the atomicity
decomposition approach can help us to structure refinement and how much it is benefi-
cial in modelling the requirements of different phases using the diagrammatic notation

of the atomicity decomposition approach.

After defining the language and translation rules in a formal description and developing
tool support for the atomicity decomposition approach, we modelled the case studies
for second time using our plug-in in a semi-automatic approach. The reason we call
it semi-automatic is that, part of the Event-B model which is related to the ordering
requirements between events is generated automatically with the plug-in. The other
requirements have been added manually to the generated model, commented with man-

ually in the Event-B model.
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This chapter presents the automatic developments of the case studies. The major dif-
ferences between the manual Event-B model and the automatic Event-B model are

presented for each case study.

First, Section 7.2 presents the development of the Media Channel system. The work
presented in this section is published in “Formal Methods for Components and Objects”
(FMCO) 2009 conference [1]. The complete version of the automatic Event-B model of
the media channel system, which is developed using the atomicity decomposition plug-
in, is presented in Appendix A. And the complete version of the manual Event-B model

is available online !.

The second case study, the BepiColombo system, is presented in Section 7.3, and pub-
lished in the “Nasa Formal Methods” (NFM) 2011 symposium [2]. Applying both atom-
icity decomposition and model decomposition to a large system is one of the motiva-
tions for developing the second case study. Moreover the methodological results reached
during the first case study development, have been evaluated in the development of
second larger system. The complete version of the automatic Event-B model of the
BepiColombo system, which is developed using the atomicity decomposition plug-in, is
presented in Appendix B. And the complete version of the manual Event-B model is

available online 2.

Recall from previous motivations, refinement in Event-B helps developers to do incre-
mental modelling of complex systems. However refinement does not solve the problems
of building the models of complicated and difficult systems completely. Event-B re-
finement is not able to illustrate explicit connections between abstract and concrete
events through different levels of refinement. It motivates us to apply refinement and

the atomicity decomposition approach to large case studies.

Our approach in developing the case studies is incremental. Developing a system in
incremental steps means it starts with a very abstract model and more details are added
to model gradually in the refinement levels. In other words, the gap between refinement
levels is not too great. We add some intermediate model to reduce the abstraction gap

between refinement levels.

The content of each case study section, begins with the review of the requirements of
the system. Then the abstract specification of the system is introduced followed by five
refinement levels for the media channel system, and three refinement levels followed by
a model decomposition followed by two refinement levels for the BepiColombo system.
Finally the major differences between manual Event-B model and the automatic Event-B

model are presented, and it is followed by a review of the proof obligations.

"http://eprints.ecs.soton.ac.uk/21261/
*http://eprints.ecs.soton.ac.uk/22048/


http://eprints.ecs.soton.ac.uk/21261/
http://eprints.ecs.soton.ac.uk/22048/
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7.2 Media Channel System (Published in FMCO 2009 Con-

ference)

7.2.1 Overview of the Media Channel System

The Media Channel Properties: All properties described in this section are from [76].
Each media channel has one source, one sink, a codec type and a specific direction. A
media channel is point-to-point and dynamic, established for transferring data, called
medium. A media channel is established between two endpoints. An endpoint is any
source or sink of a media stream. A point-to-point media channel is simply illustrated

in Figure 7.1.

Media Path
5 B

Figure 7.1: A Simple Image of the Media Channel between Two Endpoints

A Codec is a specific data format by which data is encoded. The codec choice in the
media channel is dynamic. This means that each endpoint of the channel is allowed to
change the codec at any time in the middle of data transfer. Although each endpoint
can interpret more than one codec, the source and sink of a media channel have to know
with which codec they are supposed to send or receive. So any two endpoints of a media

channel should have at least one common codec.

The Important Protocol Rules: Either end of a channel, sender or receiver, can
attempt to open a media channel by sending an open signal. The other end can respond
affirmatively with openAck (open acknowledge) or negatively with close. A media flow
can be established between two media endpoints if and only if both media endpoints

agree.

Each open signal carries the medium being requested, and a descriptor. A descriptor is a
record in which an endpoint describes itself as a receiver of media. A descriptor contains
an IP address, port number, and a set of codecs that the endpoint can handle. If the
endpoint does not wish to receive media, then the only offered codec is noMedia. Each
openAck signal also carries a descriptor, describing the channel acceptor as a receiver of

media.

A selector is a response to a descriptor. A selector is a record in which an endpoint
describes itself as a sender of media. It contains the identification of the descriptor it
is responding to, the IP address of the sender, and the port number of the sender. If
the selecting endpoint does not wish to send media, then the selector contains noMedia.
Otherwise, it contains a single codec selected from the set of codecs in the descriptor.

The only legal response to a descriptor noMedia is a selector noMedia.
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7.2.1.1 Requirements for Establishing a Media Channel

After sending an open signal with the initiator side of the channel, and sending an
openAck signal with the other side, called the acceptor, both endpoints have to respond
to descriptors carried by open and openAck signal, by sending a select signal carrying
a selector. As said before, it is a rule of the system that a selector should be sent in
response to receiving a descriptor. A media channel is established with the endpoint

which receives a real codec in a select signal. Figure 7.2 shows the steps involved in

3 2

establishing a media channel.

endpoint endpoint
~ | Open(medium,descl)
Oack(desc2)
Establish select(sel2) select(sell).
[ select(sel’2)
Modify describe(desc3
r /close
Close b

Figure 7.2: Protocol of the Media Channel System

7.2.1.2 Requirements for Modifying an Established Media Channel

Modifying an established media channel may involve changing of the codec used in
transferring data or changing the port of each endpoint. At any time after sending the
first selector in response to a descriptor, an endpoint can choose a new codec from the
set of codecs in the descriptor, send it as a selector in a select signal, and begin to send

media in the new codec. In Figure 7.2, select (sel’2) shows this possibility.

At any time after sending or receiving oAck, an endpoint can send a new descriptor
in a describe signal. The endpoint that receives the new descriptor must begin to act
according to the new descriptor. This might mean sending to a new address or choosing a
new codec. In any case, the receiver of the descriptor must respond with a new selector

in a select signal, if only to show that it has received the descriptor. In Figure 7.2,
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descriptord and selector3 illustrate this interaction. Finally at any time after sending or

receiving oAck, an endpoint can send a new port and describe itself by a new port.

7.2.1.3 Requirements for Closing an Established Media Channel

As can be seen in Figure 7.2, either endpoint can close the media channel at any time
by sending a close signal, which must be acknowledged by the other end with a closeAck
(close Acknowledge).

7.2.2 Abstract Specification
7.2.2.1 Static Part of the Specification

The abstract context, C1, consists of five sets and six constants. As mentioned in

Section 2.4.2, the context contains the static part of the system.

ENDPOINT (set of endpoints of system which play the role of source and sink of a
media channel), MEDIUM (set of media which can sent or received in the process of
transferring data), CODEC (set of all existing codecs), MEDIACHANNEL (set of all
potential media channels), DIRECTION (an enumerated set showing the direction of
a media channel which can be form Initiator to Acceptor (ItoA), or from Acceptor to
Initiator (Atol)).

As mentioned in the previous section, each media channel has a specific endpoint as its
initiator, a specific endpoint as its acceptor, a specific direction, and a specific medium.
These properties are modelled as total functions, illustrated in Figure 7.3. A total
function guarantees that each media channel has exactly one medium, one initiator, one
acceptor and one direction. These functions are considered as constants because they do
not change after establishing a media channel. Whereas the codec property of a media
channel is considered as a variable in the model, since it is a dynamic part and can

change after establishing a media channel.

axioms
@axml partition(DIRECTION, {ItoA}, {Atol})
@axm2 medium € MEDIACHANNEL — MEDIUM
@axm3 initiator € MEDIACHANNEL — ENDPOINT
@axm4 acceptor € MEDIACHANNEL — ENDPOINT
@axmb5 direction € MEDIACHANNEL — DIRECTION

Figure 7.3: Context C1, Media Channel System
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7.2.2.2 Events and Dynamic Part of the Specification

In the abstract model, M0, the main goals of the system are modelled. The most abstract
events are illustrated in Figure 7.4, using the diagram explained in Section 4.3.1. First
a media channel is established by execution of establishMediaChannel event, then it can

be modified for zero or more times by execution of modify event and then can be closed

Media Channel (ch)

- ~

by execution of close event.

[establishMediaChanneI (ch)] [ modify (ch) ] [ close (ch) ]

Figure 7.4: The Atomicity Decomposition Diagram, M0, Media Channel System

As explained in Section 4.2, the ordering between events is modelled using some control
variables, invariants and guards. As described in Section 4.2.3 we do not consider a
variable for a loop event. In machine M0, there are two control variables and one manual
variable. Figure 7.5 presents the variables and invariants of M(0. Control variables,
invariants, etc, are added automatically by the tool; manual variables, invariants, etc,

are added manually by the user and are commented with manually.

For each event there is a control variable with same name as the event, and if one event
is executed after another one, the later variable is a subset of the former one. For exam-
ple, the close event can be executed only after execution of establishMediaChannel event,
so invariant inv_close_seq describes the close variable as a subset of the establishMedi-
aChannel variable. Variable codec is modelled manually. It is a total function, specifying
the codec property of an established media channel. Variable codec and the correspond-
ing invariant are added manually, the other invariants and variables are generated with
the tool.

variables establishMediaChannel
close
codec

invariants
@inv_establishMediaChannel establishMediaChannel € MEDIACHANNEL
@inv_close_seq close c establishMediaChannel
@inv1 codec € establishMediaChannel — CODEC

Figure 7.5: Variables and Invariants, M0, Media Channel System

The abstract events are illustrated in Figure 7.6. There are some guards for controlling

the sequencing of events. In the first event, establishMediaChannel, one channel, ch,
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is added to the establishMediaChannel variable, and then modify and close events can
executed only for a ch which belongs to establishMedia Channel variable, which is checked
in grd_modify_seq and grd_close_seq guards in modify and close events. Guards and
actions related to the codec property of the media channel are modelled manually. As
can be seen in Figure 7.6, in the establishMediaChannel event, the codec property of the
channel is initialized. Later in the modify event, the codec can be changed to a new value.

The Event-B model of loop constructor follows the scheme explained in Section 4.2.3.

Media Channel (ch)

-

- - 1 s ~

- - ~ ~

- - - ~ <

- - ~ ~
- - ~ N
el ~

@nt establishMediaChannel \ event close
any ch any ch
c where

where @grd_close_seq ch € establishMediaChannel

@grd_establishMediaChannel ch ¢ establishMediaChannel
@grd1 c e CODEC
then
@act_establishMediaChannel
establishMediaChannel := establishMediaChannel U { ch }
@actl codec(ch) :==c

\o J

event modify

any ch c

where
@grd_modify_seq ch € establishMediaChannel
@grd_modify_loop ch & close
@grd1l c € CODEC

then
@actl codec(ch) =c

end

@agrd_close ch gclose
then
@act_close close = close U {ch }
end

Figure 7.6: Event-B Model, M0, Media Channel System

7.2.3 1st Refinement: Breaking the Atomicity of Establish Media Chan-
nel

In the abstract model, we saw that a media channel is established in a single atomic
step. It provides simplicity in the abstract level. However, in the real protocol, explained
in Section 7.2.1, establishing a media channel is not atomic. Instead, an open request
should be sent by the initiator endpoint and should be responded to by an openAck
signal from the acceptor endpoint. After receiving a select signal carrying a real codec,
selected from the set of codecs, the media channel can be established. This scenario is
illustrated in Figure 7.7. Two scenarios are possible. First, as illustrated on the left of
the figure, the requester sends an open signal carrying a descriptor with a real set of
codec. It means the requester is the receiver. The acceptor sends an openAck signal
carrying a descriptor without real codecs, since the acceptor is the sender. In this point,
the acceptor, which has received a real set of codecs, selects a codec from the set and

establishes the channel. The second scenario on the right of the figure illustrates when
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the requester is the sender. In this case the requester sends an open signal carrying a
descriptor without real codec, and the acceptor responds by sending an openAck signal
carrying a descriptor with a real set of codecs. In this point, the requester, which has

received a real set of codecs, selects a codec from the set and establishes the channel.

Initiator Acceptor Initiator Acceptor
Receiver Sender Sender Receiver

recion o

openWithRealCodecs (IP, port, CodecList)

iopenWithoutCodecs (IP, port, noMedia)

openAckWithoutCodecs (IP, port, noMedia)i i openAckWithRealCodecs (IP, port, CodecList)!

selectAndEstablishByAcceptor (IP, port, Codec) fselectAndEstablishByInitiator (IP, port, Codec)

Figure 7.7: Establish Media Channel Scenario

Breaking the atomicity of establishing a media channel is outlined in the atomicity

decomposition diagrams in Figure 7.8.

[establishMediaChanneI (ch) ]

\

-

[openWithReaICodecs (Ch)] [openAckWithoutCodecs (ch)] [selectAnd EstablishbyAcceptor (ch)]
(a)

[establishMediaChanneI (ch) ]

=
- 1
-
-
-
- 1
- 1
-
-
== 1

[openWithoutCodecs (Ch)] [openAckWith RealCodecs (ch)] [seIectAndEstablishbylnitiator (ch)]
(b)

Figure 7.8: Breaking the Atomicity of Establish a Media Channel, M1

Possible event traces of establishing a media channel are:

< openWithRealCodecs, openAckWithoutCodecs, selectAndFEstablishbyAcceptor >
< openWithoutCodecs, openAckWithRealCodecs, selectAndEstablishbylnitiator >

The control variables and invariants which control the sequencing between events are
generated automatically. There are three manual variables defined in machine M1 in
order to model the initiator port, acceptor port and codec set of a media channel. The
manual variables and invariants are presented in Figure 7.9. invi, inv2 and inv8 define
the new properties of a media channel. inv) specifies that the channels which contain an
open signal carrying a real set of codecs are always from acceptor to initiator, (direction

= Atol). Similarly, inv6 specifies that the channels which contain an open signal without
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real codec are always from initiator to acceptor, (direction = ItoA). Finally inv7 specifies

that these two kinds of channels are disjoint.

variables
initiatorPort
acceptorPort
codecList

invariants
@inv1 initiatorPort € (openWithRealCodecs U openWithoutCodecs) — PORT
@inv2 acceptorPort € (openAckWithoutCodecs U openAckWithRealCodecs) — PORT
@inv3 codeclList € (openWithRealCodecs U openAckWithRealCodecs) — P(CODEC)
@inv5 openWithRealCodecs < dom(direction > {Atol})
@inv6 openWithoutCodecs € dom(direction > {ItoA})
@inv7 openWithRealCodecs N openWithoutCodecs = @

Figure 7.9: Manual Variables and Invariants, M1, Media Channel System

There is a gluing invariant in machine M1 which define the relations between abstract

variable and concrete variables. The gluing invariant which generated automatically is :

Qinv_gluing  selectAndFEstablishbyAcceptor U select AndEstablishbylnitiator =
establishM ediaChannel

Since two events refine the abstract event, establishMediaChannel, the union of the

corresponding control variables is equal to the abstract variable.

The sequencing guards and actions are generated automatically. The Event-B model of
the first diagram in Figure 7.8 is shown in Figure 7.10, Figure 7.11 and Figure 7.12. Obvi-
ously the sub-events with dashed lines, open WithRealCodecs and openAck WithoutCodecs,
are new events which refine skip and the event with solid line, selectAndFEstablishbyAc-
ceptor event refines the abstract event, establishMediaChannel. The other properties of
the media channel is assigned manually in each event. Codec set and initiator port of
a media channel is initialized in open WithRealCodecs event; Acceptor port is initialized
in openAckWithoutCodecs event and the selected codec is initialized in selectAndEstab-

lishbyAcceptor event.

7.2.4 2nd Refinement: Breaking the Atomicity of Modify Media Chan-

nel

Up to this level, modify was considered as an atomic event which was done by one single
event and simply changes the codec of an established media channel. In this refinement

we break the atomicity of the modify event.

As presented in Figures 7.13, 7.14 and 7.15, there are three ways of modifying the

properties of an established channel.

First, as it is presented in Figure 7.13, after establishing a media channel, the sender

endpoint can select a new codec from the set of acceptable codecs of the other endpoint,
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event openWithRealCodecs
any ch
cl
P
|
where
@grd_openWithRealCodecs ch ¢ openWithRealCodecs
@grd1 ch ¢ openWithoutCodecs
@grd2 cl £ CODEC
@grd3 cl# &
@grd4 p €PORT
@grd5i €1P
@grd6 i €dom(endpointip~)
@agrd7 initiator(ch) = endpointlp ~i)
@agrd8 direction(ch) = Atol
then
@act_openWithRealCodecs
openWithRealCodecs := openWithRealCodecs U { ch }
@actl codeclList(ch) =cl
@act? initiatorPort(ch) :==p
end

Figure 7.10: Event-B Model, M1, Media Channel System

event openAckWithoutCodecs
any ch
cl
P
i
where
@agrd_openAckWithoutCodecs_seq ch € openWithRealCodecs
@grd_openAckWithoutCodecs ch ¢ openAckWithoutCodecs
@grd1 cl € CODEC
@grd2cl=¢g
@grd3 p e PORT
@grd4 i €1P
@qgrd5 i €dom(endpointlp~)
@qgrd6 acceptor(ch) = endpointlp ~(i)
then
@act_openAckWithoutCodecs
openAckWithoutCodecs := openAckWithoutCodecs U {ch}
@actl acceptorPort(ch) :=p
end

Figure 7.11: Event-B Model, M1, Media Channel System

event selectAndEstablishbyAcceptor refines establishMediaChannel \
any ch
c
where
@grd_selectAndEstablishbyAcceptor_seq ch € openAckWithoutCodecs
@grd_selectAndEstablishbyAcceptor ch ¢ selectAndEstablishbyAcceptor
@qgrd1 c € codeclList(ch)
then
@act_selectAndEstablishbyAcceptor
selectAndEstablishbyAcceptor := selectAndEstablishbyAcceptor U { ch }

@actl codec(ch) :==c
NG J

Figure 7.12: Event-B Model, M1, Media Channel System
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Initiator Acceptor Initiator Acceptor
Receiver Sender Sender Receiver
direction = Atol direction = ItoA
1 openWithRealCodecs (IP1, portl, (c1, c2)) : openWithoutCodecs (IP1, port1, noMedia)

openAckWithoutCodecs (IP2, port2, noMedia): openAckWithRealCodecs (IP2, port2, (c1, c2))

&
<€

selectAndEstablishByAcceptor (IP2, port2, c1); : selectAndEstablishByilnitiator (IP, port, cl)f
S

select (IP2, port2, c2) Iselect (IP1, portl, c2)

Figure 7.13: Modify Set of Codecs of a Media Channel by Selector Scenario

Initiator Acceptor Initiator Acceptor
Receiver Sender Sender Receiver

et~ o

openWithRealCodecs (IP1, portl, (c1, c2)) openWithoutCodecs (IP1, portl, noMedia)

>

openAckWithoutCodecs (IP2, port2, noMedia) openAckWithRealCodecs (IP2, port2, (c1, c2))

selectAndEstablishBylnitiator (IP, port, c1)

describe (IP1, portl, (c3, c4)) describe (IP2, port2, (c3, c4))

>

select (IP1, portl, c3)

>

selectAndEstablishByAcceptor (IP2, port2, c1):

select (IP2, port2, c3)
Figure 7.14: Modify Codec of a Media Channel by Descriptor Scenario

Initiator Acceptor Initiator Acceptor
Receiver Sender Sender Receiver

Srecion 1o

openWithRealCodecs (IP1, portl, (c1, c2)) openWithoutCodecs (IP1, port1, noMedia)

openAckWithoutCodecs (IP2, port2, noMedia) openAckWithRealCodecs (IP2, port2, (c1, c2))

describe (IP1, port3, (c3, c4)) describe (IP2, port3, (c3, c4))

>

select (IP2, port2, c3) select (IP1, portl, c3)

< d +

i selectAndEstablishByAcceptor (IP2, port2, c1); selectAndEstablishByilnitiator (IP, port, c1)

Figure 7.15: Modify Port of a Media Channel by Descriptor Scenario
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which has been received in the time of establishing the media channel, and start sending

data by the new codec.

Second, considering Figure 7.14, the receiver endpoint, can send a new set of codecs in
a describe signal. As described in Section 7.2.1, the other endpoint, has to respond to

the descriptor by choosing a codec from the new set and sending it via a selector.

Finally, in Figure 7.15, it is shown that each endpoint can describe itself with a new

port by sending a descriptor signal carrying the new port value.

Considering the three described modify scenarios, the modify event is decomposed in four
atomicity diagrams, presented in Figure 7.16. In the first two scenarios in Figure 7.13
and Figure 7.14, one of the properties of the established channel is modified (set of codecs
or selected codec). Whereas Figure 7.15 presents modifying the initiator port property
in the left and modify the acceptor port property in the right. Therefore Figure 7.15

corresponds to two diagrams in Figure 7.16.

First diagram (a), is related to “modify codec of the media channel by selector” scenario
in Figure 7.13. As described before, modifying codec can be done by initiator or acceptor
of the media channel, both of them is done by modifyBySelector event in this level of

refinement. More details are added in the 4th refinement level.

Diagram (b), is related to both types of “modify codec of the media channel by descrip-

tor” scenario in Figure 7.14.

Diagram (c), contains decomposition related to “modify the initiator port” shown on
the left hand side of Figure 7.15.

¢

Finally diagram (d), shows the decomposition related to “modify the acceptor port” on

the right hand side of Figure 7.15.

For instance, the Event-B model of part (b) and part (c) are presented in Figure 7.17
and Figure 7.18 respectively. Considering changing codec scenario in Figure 7.17, the
refining event is a response, whereas in changing port scenario in Figure 7.18, the refining
event is the modify event. As explained in Section 4.2.2, the refining event is the event
which simulates the main behaviour of the abstract event. Here the event which changes
one of the properties of the channel, is considered as the refining event. In Figure 7.17,
the action of changing the codec is done in the respond event, whereas in Figure 7.18,

the modify event changes one of the properties (initiator port) of the channel.

As described in Section 4.3.5, since the modify event in the first refinement is a loop
event, in this level of refinement a loop resetting event is needed for each atomicity
decomposition of the modify event. For instance, the resetting event for part (b) of

Figure 7.16, is presented in Figure 7.19.
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| modify (ch) l

modify (ch

[modifyCodecBySeIector (ch)]

[modifyCodecListByDescriptor (ch)] [respondBySeIectorToCodec (ch)]

(a)

| modify (ch) I

(b)

[modifyAcceptorPortByDescriptor (ch)] [respondBySeIectorToAcceptorPort (ch)]

(d)

Figure 7.16: Breaking the Atomicity of Modify a Media Channel, M2

| modify (ch) |

=
-

~

@t modifyCodecListByDescriptor
any ch

cl
where
@grd_modifyCodecListByDescriptor_seq
ch e selectAndEstablishbyAcceptor v
selectAndEstablishbylnitiator
@grd_modifyCodecListByDescriptor
ch ¢ modifyCodecListByDescriptor
@grd_modifyCodecListByDescriptor_loop ch & close
@grd1 cl € CODEC
@grd2cl# @
then
@act_modifyCodecListByDescriptor
modifyCodecListByDescriptor =
modifyCodecListByDescriptor U { ch }

ﬁent respondBySelectorToCodec refines\
modify

any ch
c
where
@grd_respondBySelectorToCodec_seq
ch e modifyCodecListByDescriptor
@grd_respondBySelectorToCodec
ch #respondBySelectorToCodec
@grd1 ¢ €codecList2(ch)
then
@act_respondBySelectorToCodec
respondBySelectorToCodec =
respondBySelectorToCodec U { ch }

@actl codecList2(ch) =cl
end

@act2 codec(ch) :==c
end

Figure 7.17: Event-B Model, M2, Media Channel System
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l modify (ch) I

~<o
~
~o
~
~o

~

@t modifylnitiatorPortByDescriptor refines modif} éent respondBySelectorTolnitiatorPort \

any ch any ch
p where
where @grd_respondBySelectorTolnitiatorPort_seq
@grd_maodifylnitiatorPortByDescriptor_seq ch &€ modifylnitiatorPortByDescriptor
ch € selectAndEstablishbyAcceptor v @grd_respondBySelectorTolnitiatorPort
selectAndEstablishbylnitiator ch grespondBySelectorTolnitiatorPort
@grd_maodifylnitiatorPortByDescriptor then
ch ¢ modifylInitiatorPortByDescriptor @act_respondBySelectorTolnitiatorPort
@grd_maodifylnitiatorPortByDescriptor_loop ch £ close respondBySelectorTolnitiatorPort ==
@grd1 p #initiatorPort2(ch) respondBySelectorTolnitiatorPort U { ch }
then end
@act_modifylnitiatorPortByDescriptor
modifylnitiatorPortByDescriptor :=
modifylnitiatorPortByDescriptor U { ch }

@actl initiatorPort2(ch) := p
end

Figure 7.18: Event-B Model, M2, Media Channel System

@ent modify_Loop_Resetl \

any ch
where
@agrd_reset ch erespondBySelectorToCodec
then
@act_reset_modifyCodecListByDescriptor
modifyCodecListByDescriptor := modifyCodecListByDescriptor \ {ch}
@act_reset_respondBySelectorToCodec
respondBySelectorToCodec := respondBySelectorToCodec \ {ch}

end

Figure 7.19: Loop Resetting, M2, Media Channel System

Interactive proving: Failing proof obligations can lead to the identification of prob-
lems in the model that needed to be fixed. Discharging proof obligations in an inter-
active way, can lead us to make some changes in the model. In this level there are
three EQL (Equality of a preserved variable) proof obligations which do not discharge
without changing the model. One of them is explained in next paragraph, the other two

are similar.

All variables in one Event-B machine can be changed only with the events of that machine
in order to preserve consistency. evt /v / EQL is a proof obligation which ensures that
abstract variable v is preserved in the concrete event evt. These kind of undischarged
proof obligations occur because some abstract variables change in concrete events whose
corresponding abstract events do not change the same variables. For example in this

refinement level of the media channel development, the undischarged proof obligation
modifyInitiatorPortByDescriptor/initiatorPort/EQL

occurs because the concrete event modifylnitiatorPortByDescriptor changes the abstract

variable initiatorPort whereas the corresponding abstract event, modify, did not change
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the same variable. One solution which Butler used in [44], is defining new variables in
the refinement level which replace the abstract ones. Obviously some gluing invariants

for linking them are necessary.

There are three new variables, initiatorPort2, acceptorPort2 and codecList?2, which re-

placed the abstract one, initiatorPort, acceptorPort and codecList respectively.

7.2.5 3rd Refinement: Breaking the Atomicity of Close Media Channel

This is a simple refinement in which the atomicity of the close event is broken into two

sub-events, see Figure 7.20.

closeAck (ch

Figure 7.20: Breaking the Atomicity of Close a Media Channel, M3

[closeRequest (ch)]

7.2.6 4th Refinement: Second Level Breaking the Atomicity of Modify
Media Channel

Up to the second refinement level, modifying a media channel was an atomic event which
was done in a single step. In the second refinement level, the atomicity of the modify
event has been decomposed, without considering which side of a channel, initiator or
acceptor, is willing to send the modify signal and change the media channel’s codec
set. Considering initiator and acceptor endpoints, the fourth refinement level breaks the
atomicity of modify events in a further level of decomposition. xor-constructor is used in
breaking the atomicity of the modifyBySelector event, modifyCodecByDescriptor event
and respondBySelectortoCodec event, illustrated in Figure 7.21.

Figure 7.22 illustrates the Event-B model of part (a) in Figure 7.21. The decision to use
exclusive choice between sub-events is made based on the direction of the media channel.
As presented in Figure 7.13, if the channel is from initiator to acceptor (ItoA), modelled
in guard grd2, then the codec can be changed only by the initiator. Because the initiator
has received the set of codecs from the acceptor, so the initiator can choose a new codec
from the set. And if the channel is from acceptor to initiator (Atol), modelled in guard
grd2, then the codec can be changed only by the acceptor. Simply it can be said that
only the sender of a media channel can choose a new codec from the received set of
codecs, and the sender is the initiator when the direction is [toA and is the acceptor

when the direction is Atol.
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[ modifyCodecBySelector (ch) ]

[modifyCodecBySeIector_withInitiator (ch)]

[modifyCodecBySeIector_withAcceptor (ch)]

(a)

[ modifyCodecListByDescriptor (ch) ]

[modifyCodecListByDescriptor_withInitiator (ch)] [modifyCodecListByDescriptor_withAcceptor (ch)]

(b)

[ respondBySelectorToCodec (ch) ]

[respondBySeIectorToInitiatorCodec (ch)]

(c)

[respondBySeIectorToAcceptorCodec (ch)]

Figure 7.21: Further Breaking the Atomicity of Modify a Media Channel, M4

[ modifyCodecBySelector (ch) ]

event modifyCodecBySelector_withlInitiator
refines modifyCodecBySelector
any ch
c
where
@grd_modifyCodecBySelector_withlnitiator_seq
ch e selectAndEstablishbyAcceptor v
selectAndEstablishbylnitiator
@grd_modifyCodecBySelector_withlnitiator
ch ¢ modifyCodecBySelector_withInitiator
@grd_modifyCodecBySelector_withlInitiator_xor
ch ¢ modifyCodecBySelector_withAcceptor
@grd_modifyCodecBySelector_withlInitiator_loop
ch ¢ closeRequest
@grd1 c € codecList2(ch)
@grd2 direction(ch) = ItoA
then
@act_modifyCodecBySelector_withlnitiator
modifyCodecBySelector_withlInitiator :=
modifyCodecBySelector_withlInitiator U { ch }
@actl codec(ch) :==c
end

event modifyCodecBySelector_withAcceptor
refines modifyCodecBySelector
any ch
c
where
@grd_modifyCodecBySelector_withAcceptor_seq
ch € selectAndEstablishbyAcceptor v
selectAndEstablishbyInitiator
@grd_modifyCodecBySelector_withAcceptor
ch ¢ modifyCodecBySelector_withAcceptor
@grd_modifyCodecBySelector_withAcceptor_xor
ch ¢ modifyCodecBySelector_withInitiator
@grd_modifyCodecBySelector_withAcceptor_loop
ch & closeRequest
@qgrd1 ¢ € codecList2(ch)
@grd2 direction(ch) = Atol
then
@act_modifyCodecBySelector_withAcceptor
modifyCodecBySelector_withAcceptor :=
modifyCodecBySelector_withAcceptor U { ch }
@actl codec(ch) :==c
end

Figure 7.22: Event-B Model, M4, Media Channel System
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7.2.7 5th Refinement: Second Level Breaking the Atomicity of Close
Media Channel

Up to this refinement level closing a media channel is done with execution of the
closeRequest event and closeAck event, without considering the direction of the channel.

As presented in Figure 7.23, a closeRequest can be sent by either side of a channel, when
the direction is either Atol or ItoA.

Initiator Acceptor Initiator Acceptor
Receiver Sender Sender Receiver

i closeRequestAtol : closeRequestltoA ;

2

closeAckAtol

closeAckltoA !

closeRequestAtol ! closeRequestItoA!

93

! closeAckAtol ! closeAckltoA

Figure 7.23: Close a Media Channel Scenarios

The final refinement level of the media channel system development contains further
breaking of the atomicity of the close events. The atomicity decomposition diagrams
of the 5th refinement level is illustrated in Figure 7.24. In the sub-events’ guards the
direction of the media channel is distinguished. As instance, the Event-B model of part

(a) is presented in Figure 7.25.

[ closeRequest (ch) ]

[closeRequestAtoI (ch)] [closeRequestItoA (ch)]
(a)

[closeAckAtoI (ch)] [closeAckItoA (ch)]
(b)

Figure 7.24: Further Breaking the Atomicity of Close a Media Channel, M5
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[closeRequest (ch) ]

@nt closeRequestAtol refines closeRequest \ @ém closeRequestltoA refines closeRequest \

any ch any ch

where where
@grd_closeRequestAtol_sequencing @grd_closeRequestltoA_sequencing

ch € selectAndEstablishbyAcceptor v ch € selectAndEstablishbyAcceptor v
selectAndEstablishbylnitiator selectAndEstablishbyInitiator

@grd_closeRequestAtol ch ¢ closeRequestAtol @grd_closeRequestltoA ch & closeRequestltoA
@grd_closeRequestAtol_xor ch ¢ closeRequestitoA @grd_closeRequestitoA_xor ch & closeRequestAtol
@grd1 direction(ch) = Atol @grd1 direction(ch) = ItoA

then then
@act_closeRequestAtol @act_closeRequestltoA

\ closeRequestAtol := closeRequestAtol U { ch } closeRequestltoA = closeRequestltoA U { ch }
end j Qd /

Figure 7.25: Event-B Model, M5, Media Channel System

7.2.8 Evaluation of Manual Event-B Model and Automatic Event-B
Model

Use of the atomicity decomposition plug-in in creating the Event-B model of a system,
ensures a consistent encoding of the atomicity decomposition diagrams in a systematic
way. The manual version is less systematic and less consistent. Although the manual
model and the automatic model, which is created with the plug-in, capture the same
behaviours, there are some differences. Some of the differences of the automatic Event-B
model, and the manual one in developing the media channel system, are described here.
These differences can justify the higher level consistency of the Event-B model which is

created with the plug-in.

7.2.8.1 Variable Naming Protocol

In the automatic Event-B model, following the patterns in Section 4.2 and translation
rules in Section 5.4, each control variable has same name as the events’ name. Whereas
in the manual Event-B model, there is no specific naming protocol for variables’ name.
Providing a unique naming protocol helps to understand the model easier, and can help

to track the ordering between events.

7.2.8.2 Different Approaches to Model Ordering In Event-B Model

As described in Section 4.4, there are different approaches to modelling ordering in
Event-B. As justified in Section 4.4, we adopted the subset sets to model ordering.
Therefore the automatic Event-B model of the media channel system, uses the subset

sets. Whereas the manual Event-B model is a combination of subset sets and disjoint
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sets. In the manual Event-B model, in close event, the parameter ch is removed from
set of established media channels. The Event-B model of establishMediaChannel event
and close event in the abstract level of manual model are presented in Figure 7.26,
which can be compared with the automatic Event-B model in Figure 7.6. The figure
shows that the control variable name, aMediaChannel, is not same as the event name,

establishMediaChannel, as explained in Section 7.2.8.1.

G/ent establishMediaChannel \

any ch c
where
@grd1 ch ¢ aMediaChannel
@grd2 ¢ € CODEC
then
@actl aMediaChannel := aMediaChannel U { ch }
@act2 codec(ch) :==c

N J
event close \

any ch

where
@grd1 ch € aMediaChannel

then
@actl aMediaChannel := aMediaChannel \ {ch}
@act2 codec := {ch} <codec

end /

Figure 7.26: Manual Event-B Model, M0, Media Channel System

As a result, in the manual Event-B model, the relation between different states of a
media channel, establishMediaChannel state and close state, can not be specified in the
invariant. Whereas in the automatic Event-B model, invariant inuv_close_seq presented
in Figure 7.5, specifies the ordering between the establishMediaChannel event and the
close event. This ensures that the abstract orderings are upheld in the refinement of the

Event-B models more strongly than if specified only in the close event guard.

Having one more invariant in the automatic Event-B model, invariant inv_close_seq pre-
sented in Figure 7.5, slightly increases the number of proof obligations in the automatic

Event-B model. The summary of proof obligations is reviewed in Section 7.2.9.

7.2.8.3 One More Refinement Level in the Manual Model

In the manual Event-B model, there was not a one-to-one relation between control vari-
ables and the events. For example considering the manual events in the first refinement
level, presented in Figure 7.27, both open WithRealCodecs event and open WithoutCodecs
event change the state of a channel, ch, to open. And both openAckWithoutCodecs event
and openAckWithrealCodecs event change the state of a channel, ch, to openAck. And
both selectAndFEstablishbyAcceptor event and selectAndFEstablishbylnitiator event change
the state of a channel, ch, to establishMediaChannel.
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[ establishMediaChannel (ch) ]
-1
1

-
-
-

-
-
-

event openWithRealCodes event openAckWithoutCodecs @ent selectAndEstablishbyAcceptc\
any ch ... any ch ... refines establishMediaChannel
where where any ch ...
@grd1 ch ¢open @grd1 ch €open where
@grd2 ch ¢ openAck @grd1 ch € openAck
then @grd2 ch ¢ establishMediaChannel
@actl open :=openu{ch} then
@actl openAck := openAck U {ch} then
end . @actl establishMediaChannel =
end establishMediaChannel U {ch}

o Y

[ establishMediaChannel (ch) ]

p——
-
- 1

-
—— 1

event openWithoutCodes event openAckWithRealCodecs Aent SEIECtAndEstablishbylnitiatom
any ch ... any ch ... refines establishMediaChannel
where where any ch ...
@grd1 ch g open @grd1 ch €open where
@grd2 ch ¢ openAck @qgrd1 ch €openAck
then @grd2 ch ¢ establishMediaChannel
@actl open =openu{ch} then
@actl openAck = openAck U {ch} then
end . @actl establishMediaChannel :=
end establishMediaChannel u {ch}

o J

Figure 7.27: Manual Event-B Model, M1, Media Channel System

Whereas in the automatic Event-B model, as presented in Figure 7.28, there is a one-to-
one relation between control variables and the events, and each event change the state

of a media channel to a unique state with same name as the event.

In the manual model there is a further refinement level in order to introduced an unique
state for each event, for instance, concrete variables: openAckWithoutCodecs and ope-
nAckWithrealCodecs which replace the single abstract variable open. The further re-
finement level makes the manual model larger and more complex, comparing to the
automatic model. Also more effort is need to define the gluing invariants between ab-
stract variables and concrete variables. The gluing invariants makes the proving more

complex, it will explained later in Section 7.2.9.

7.2.8.4 Weak Guard versus Strong Guard

The combined atomicity decomposition of the modify event, including machine M2 and
machine M/ refinements, is presented in Figure 7.29. In the automatic Event-B model,
as the result of the xor-constructor, event respondBySelector Tolnitiator Codec is guarded
with modifyCodecListByDescriptor_withInitiator variable and

modifyCodecListByDescriptor_withAcceptor variable. The sequencing guard in respond-

BySelectorTolnitiatorCodec event is as follows:
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[ establishMediaChannel (ch) ]
T

event openWithRealCodes event openAckWithoutCodecs event selectAndEstablishbyAcceptor
any ch ... any ch ... refines establishMediaChannel
where where any ch ...
@grd1 ch ¢ openWithRealCodes @qgrd1 ch € openWithRealCodes where
@grd2 ch ¢ openAckWithoutCodecs @grd1 ch € openAckWithoutCodecs
then @qgrd2 ch ¢ selectAndEstablishbyAcceptor
@actl then
openWithRealCodes = @actl then
openWithRealCodes U { ch } openAckWithoutCodecs = @actl selectAndEstablishbyAcceptor :=
. openAckWithoutCodecsu {ch} selectAndEstablishbyAcceptor U {ch}
end - .
end end

[ establishMediaChannel (ch) ]

—=
-
- 1
-
_-=" |

event selectAndEstablishbylnitiator
refines establishMediaChannel

event openWithoutCodes

event openAckWithRealCodecs
any ch ...

any ch ...
where where anhy ch ...
@grd1 ch ¢ openWithoutCodes @grd1 ch €openWithoutCodes where
. = " @grd1 ch € openAckWithRealCodecs
)
then @grd2 ch #openAckWithRealCodecs @grd2 ch & selectAndEstablishbyInitiator

@actl then
openWithoutCodes = @actl then ) -
openWithoutCodes U {ch } épenAckWithRea\Codecs: @actl sellectAr:jdEstal_)llljsé)hby_lmnator :?
d.. openAckWithRealCodecsu {ch} selectAndEstablishbylnitiator U {ch}
en .
end

En‘d

Figure 7.28: Automatic Event-B Model, M1, Media Channel System

Qgrd_respondBySelectorTolnitiatorCodec_seq
ch € modi fyCodecList ByDescriptor_withInitiator U
modi fyCodecList ByDescriptor_with Acceptor

However based on the requirements, the respondBySelectorTolnitiator Codec event exe-
cutes to respond only to modifyCodecList ByDescriptor_withInitiator event. So the stated
guard is too weak to model the requirement. The requirement is satisfied with another
guard in both modifyCodecListByDescriptor_withInitiator event and respondBySelector-

ToInitiatorCodec event:
Qgrd2 direction(ch) = Atol

Therefore if direction(ch) = ItoA, then the guards of respondBySelectorTolnitiator-

Codec event does not hold and the event can not execute.

In the manual Event-B model, the sequencing guard in respondBySelectorTolnitiator-

Codec event is enough strong to satisfy the requirement:
@Qgrdl ch € modifyCodecList ByDescriptor_withInitiator

Although respondBySelectorTolnitiatorCodec event in the manual model is still guarded

with the direction guard:

Q@Qgrd2 direction(ch) = Atol
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I modify (ch) I

[modifyCodecListByDescriptor (ch)] [respondBySeIectorToCodec (ch)]

modifyCodecListByDescriptor_withlnitiator (ch) | | modifyCodecListByDescriptor_withAcceptor (ch) || r torT odec (ch) torToAcceptorCodec (ch)

Figure 7.29: Combined Atomicity Decomposition Diagram of modify Event,
Media Channel System

7.2.8.5 Tool Application: Atomicity Decomposition Model of the Media
Channel System

The atomicity Decomposition model of the final refinement of the media channel system,

generated with the atomicity decomposition plug-in is presented in Figure 7.30.

7.2.9 Overview of Proof Obligations

The result of the proof effort in the Rodin for the automatic Event-B model, is outlined
in Figure 7.31. The Total column shows the total number of proof obligations gener-
ated for each level. The Auto column represents the number of those proof obligations
that proved automatically by the prover and the Manual column shows the number of
proof obligations which proved interactively. In the automatic model, almost all proof

obligations are proved automatically.

Figure 7.32 presents the proof effort for the manual Event-B model. The total number
of proofs are predominantly more then the total number of proofs in the automatic
model, since the extra refinement level in the manual model, Machine6, as explained in
Section 7.2.8.3, significantly increase the number of proof obligations. A large number of
proof obligations are caused because of gluing invariants, that are needed to define the
relations between the abstract non-unique states and concrete unique states. Also there
are six proof obligations in Machine6 which proved interactively. The interactive proofs
are the gluing invariant preservation proofs. Therefore, as explained in Section 7.2.8.3,
introducing the unique states in an extra refinement level, not only makes the model

large and complex, but also it makes the proof more complex.
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Figure 7.30: Atomicity Decomposition Model of the Media Channel System

Rodin Project: Media Channel
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Figure 7.31: Proof Obligation Statistics for the Automatic Media Channel

Event-B Model
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T Statistics &3 =8
Elernent Mame Total Auto Manual Reviewed Undischarged
Meida Channel_Manual 474 468 b 0 0
Contextl 0 0 0 0
Context2 0 0 0 0
Machinel 4 0 0 0
Machine2 77 T 0 0 0
Machine3 98 98 0 ] 0
Machined 6 G ] ] 0
Machine5 10 10 0 0 0
Machined 211 205 4 ] 0
Machine7 68 68 0 0 0

Figure 7.32: Proof Obligation Statistics for the Manual Media Channel Event-B
Model

7.3 BepiColombo Space Craft System (Published in NFM
2011 Symposium)

7.3.1 Overview of the BepiColombo System

BepiColombo mission [77] is one of the case studies of the DEPLOY project [78]. The
overview of the BepiColombo space craft system in this section is based on the informa-
tion of the Space System Finland Ltd [79, 80].

Exploration of the planet Mercury is the main goal of the BepiColombo mission. Two or-
biters are sent by BepiColombo. One of these is the Mercury Planetry Orbiters (MPO).
It carries remote sensing and radioscience instrumenation. The MIXS/SIXS data Pro-
cessing Unit (DPU) is the important part of this orbiter. One of the responsibilities of
MIXS/SIXS DPU is handling Telecommand (TC) and Telemetry (TM) communication.

There are two instruments which are controlled by MIXS/SIXS DPU: Solar Intensity
X-ray and Spectrometer (SIXS) and Mercury Imaging X-ray Spectrometer (MIXS).
Each instrument contains two sensors: SIXS-X (X-ray spectrometer), SIXS-P (Particle
spectrometer), and MIXS-T (Telescope), MIXS-C (Collimator).

The MIXS/SIXS On-Board Software (OBSW) running on the DPUs’ CPU consists
of five different software components: the Core Software (CSW), SIXS-P ASW (Ap-
plication Software), SIXS-X ASW, MIXS-T ASW and MIXS-C ASW. The high-level
architecture of BepiColombo SIXS/MIXS OBSW is presented in Figure 7.33.

In our development as an abstract view all application softwares are seen as a single
component called devices, presented in a single box in Figure 7.33. Developing the
mode management particulary for each application software is a subject that requires

further work.
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csw
TC/TM Management

o) o] )

Figure 7.33: High-level Architecture of BepiColombo SIXS/MIXS OBSW

Here is the summary of the system requirements in a simple scenario:

A TC (Telecommand) is received in the core from the earth.
e The Core Software (CSW) checks the syntax of the received T'C.

e Further semantics checking have to be done for the validated T'C. If the TC contains
a message for one of the devices, it will send it to the device for semantics checking,

otherwise the semantics checking in done in the core.
e For each valid T'C, a control TM (Telemetry) is generated and sent to the earth.

e For some particular types of T'C, some data T'Ms are generated and sent back to
the earth.

As illustrated in Figure 7.33, the Core Software (CSW) plays a management role over
the devices. CSW is responsible for communication with the earth on one hand and
with the devices on the other hand. It plays a role of an interface between the earth and

the devices.

7.3.2 Modelling Architecture

Figure 7.34 presents the development architecture of Event-B model of the BepiColombo
system. MO is the abstract model of the system. After the abstraction there are three
levels of refinement. In these models, M1, M2 and M3, those events are refined which are
not purely allocated to core side or device side of the system. In other words, in these
models, refining an event results in a collection of sub-events which are a combination of
core actions, device actions and shared actions between core and device. This concept
will be more explained in Section 7.3.7. After three levels of refinement the model is
decomposed to two sub-models, called core sub-model and device sub-model. Finally, the
core sub-model is refined in two more refinement levels, called M4, M5. The atomicity
decomposition approach is applied to the refinement levels both before and after model

decomposition.
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Figure 7.34: Development Architecture of the BepiColombo Event-B Model

In the abstraction the main goals of the system are modelled and the details of the
protocol are added through refinement levels. The atomicity decomposition diagrams
present explicit relationships between events of refinement levels. Table 7.1 summarizes

new details which are added to each level of refinement.

e Machine M0 models goals of the BepiColombo system. Three main phases are
modelled. Receiving a T'C, Validating the received T'C, and if it is needed gener-

ating one or more TM(s).

e In machine M1 the validation phase is refined and further details of the validation

protocol are added.
e Machine M2 distinguishes between validation of core T'Cs and device TCs.

e In machine M3 the protocol of sending a device T'C to the device for validation

and sending back the validation result is modelled.
e Machine M4 models processing T'Ms in the core.

e Machine M5 models producing and sending T'Ms in the core.

7.3.3 Abstract Specification
7.3.3.1 Static Part of the Specification
The abstract context, C0, which models the static part of the abstract model contains

two sets. T'C is the set of existing telecommands which would be received in the core,

and T'C_Types_Set shows types of a T'C. There are four TC’s types :
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Machine | Summary of the Model

MO Receiving, validating a T'C' and generating TMs.

M1 Refining validation phase.

M2 Distinguishing difference between validating core T'Cs and device
TCs.

M3 Refining validation phase of a device T'C.

M4 Refining processing T'Ms in the core.

M5 Producing and sending 7T'Ms in the core.

Table 7.1: Summary of Event-B Refinements, BepiColombo System

e HK on_TC (Housekeeping On TC)
e HK off TC (Housekeeping Off TC)
e SCIL_on_TC (Science On TC)

o SCL off-TC (Science Off TC)

A part of the abstract context, C0, is displayed in Figure 7.35. TC_Type is a total
function from T'C set to TC_Types_Set set. A total function guarantees that each TC

has exactly one type.

axioms
@axm1 partition( TC_Types_Set,
{HK_on_TC}, {HK_off_TC}, {SCl_on_TC}, {SCI_off _TC})
@axm2 TC_Type €e TC — TC_Types_Set

Figure 7.35: Context C0, BepiColombo System

For an off TC (SCLoff_ TC, HK_off TC), only a control Telemetry (7'M) is produced,
whereas for an on TC (SCILon_TC, HK_on_TC) one or more data T'Ms are produced
as well. This requirement is specified by a guard in the event of generating data TMs.

It is shown later.

7.3.3.2 Events and Dynamic Part of the Specification

In the abstract model, the main goals of the system are modelled. The most abstract
events are illustrated in Figure 7.36, using the diagram explained in Section 4.3.1. Three

different scenarios are possible:

e (a) As it is presented in part (a) of Figure 7.36, first a T'C'is received by execution
of ReceiveTC event, then it is validated by execution of T'C_Validation_Ok event.
In this case the TC’s type is HK_off _TC or Sci_off _TC, so there is no need to
generate data TMs in response. Producing a control T'M is later done by refining
the TC_Validation_Ok event.
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Figure 7.36: The Atomicity Decomposition Diagrams, M0, BepiColombo Sys-
tem

e (b) Another case is illustrated in part (b) of Figure 7.36. After receiving and
validating a TC with type HK_on_TC or Sci_on_TC, some bunches of data are
generated by execution of T'C_GenerateData event in one of the devices, and finally
by execution of T'C'Valid_ReplyDataTM event in the core, one or more data T'M(s)

are produced and sent back to the earth.

e (c) Part (c) of Figure 7.36 shows the case when the received T'C’s validation is
failed. This is modelled by the T'C_Validation_Fuail event.

As explained in Section 4.2, the ordering between events is modelled using some control
variables, invariants and guards. In machine M0 there are five control variables. Fig-
ure 7.37 presents the control variables and invariants of M(. For each event there is a
variable with the same name as the event, and if one event is executed after another
one, the later variable is a subset of the former one. For example, T'C_Validation_Ok
event can be executed only after execution of the ReceiveTC event, so invariant
mu_TC_Validation_Ok_seq describes T'C_Validation_Ok variable as a subset of the Re-
ceiveTC variable. Only invariant inv! is modelled manually. The other invariants and
variables are generated by the tool. Invariant invi describes that TC_Validation_Ok
and TC_Validation_Fail are disjoint.

There are some guards for controlling the sequencing of events. As you can see in
Figure 7.38 in the first event, ReceiveTC, one TC is added to the ReceiveTC set vari-
able, and then TC_Validation_OFk event can executed only for a TC which belongs to
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variables ReceiveTC
TC_Validation_Ok
TCValid_GenerateData
TCValid_ReplyDataTM
TC_Validation_Fall

invariants
@inv_ReceiveTC ReceiveTC € TC
@inv_TC_Validation_Ok_seq TC_Validation_Ok < ReceiveTC
@inv_TCValid_GenerateData_seq TCValid_GenerateData € TC_Validation_Ok
@inv_TCValid_ReplyDataTM_seq TCValid_ReplyDataTM < TCValid_GenerateData
@inv_TC_Validation_Fail_seq TC_Validation_Fail < ReceiveTC
@inv1 TC_Validation_Ok N TC_Validation_Fail = @

Figure 7.37: Variables and Invariants, M0, BepiColombo System

the ReceiveTC' variable, which is checked in grd_TC_Validation_Ok_seq guard in the
TC_Validation_Ok event. Figure 7.38 is the Event-B model of the part (a) in Fig-

ure 7.36.
BepiColombo (tc)
_ . - - ~o -~ -
P =~ ~
event ReceiveTC Gent TC_Validation_Ok \
any tc any tc
where where
@grd_ReceiveTC tc £ ReceiveTC @grd_TC_Validation_Ok_seq tc € ReceiveTC
then @grd_TC_Validation_Ok tc ¢ TC_Validation_Ok
@act_ReceiveTC @grd1 tc ¢ TC_Validation_Fail
ReceiveTC = ReceiveTC U {tc} then o
end @act_TC_\Validation_Ok
TC_Validation_Ok := TC_Validation_Ok U {tc}

Qn d

Figure 7.38: Event-B Model, M0, BepiColombo System

This sequence is repeated in Figure 7.39 for the TC_Validation_Fail event. It is the
Event-B model of part (c) in Figure 7.36. The difference between the TC_ Validation_Ok
event and the T'C_Validation_Fuil event is that the T'C'is added to different variables in
each event. In each of the T'C_Validation_OFk event and the TC_Validation_Fail event,

there is one guard, grdi, added manually. These guards ensure the invariant invl.

If a received T'C is added to the T'C_Validation_Ok variable and it’s an on TC, the
sequence can continue by execution of the TCValid_GenerateData event and then the
TCValid_ReplyDataTM event. The Event-B model is illustrated in Figure 7.40. Guard
grdl of the TCValid_GenerateData event checks the type of T'C. If its type is either
SCLon_TC or HK_on_TC then the event can be executed.
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BepiColombo (tc)

- ~

e -7 o s ~
event ReceiveTC @/ent TC_Validation_Fail \
any tc any tc
where where
@grd_ReceiveTC tc £ ReceiveTC @grd_TC_Validation_Fail_seq tc € ReceiveTC
then @grd_TC_Validation_Fail tc ¢ TC_Validation_Fail
@act_ReceiveTC @grd1 tc ¢ TC_Validation_Ok
ReceiveTC = ReceiveTC U {tc} then
end @act_TC_Validation_Fail
TC_Validation_Fail := TC_Validation_Fail u {tc}
end

Figure 7.39: Event-B Model, M0, BepiColombo System

@/ent TCValid_GenerateData \

any tc
where
@grd_TCValid_GenerateData_seq tc € TC_Validation_Ok
@grd_TCValid_GenerateData tc ¢ TCValid_GenerateData
@grd1 TC_Type(tc) €e{HK_on_TC, SCI_on_TC}
then
@act_TCValid_GenerateData
TCValid_GenerateData := TCValid_GenerateData U {tc}
end

@/ent TCValid_ReplyDataTM \
any tc
where
@grd_TCValid_ReplyDataTM_seq tc € TCValid_GenerateData
@grd_TCValid_ReplyDataTM tc ¢ TCValid_ReplyDataTM
then
@act_TCValid_ReplyDataTM
TCValid_ReplyDataTM := TCValid_ReplyDataTM U {tc}
Qnd

Figure 7.40: Event-B Model, M0, BepiColombo System

7.3.4 1st Refinement: Refining the Validation Phase

In the abstract model, the validation phase is done by execution of one of two single
atomic events, TC_Validation_Ok and TC_Validation_Fail. However validating a re-
ceived T'C'is not atomic. It is done in two steps, checking the syntax and the semantics
of a received T'C. After syntax and semantics checks, in the third step a control TM is

produced and sent back to the earth.

These details are modelled in the first refinement level, machine M1. TC_Validation_Ok
and TC_Validation_Fail are decomposed to some sub-events which show further de-
tails of the validation phase. The atomicity decomposition diagrams are shown in Fig-
ure 7.41. Checking the syntax of a received T'C'is done by execution of TCCheck_Ok
and TCCheck_Fuail events and semantics checking is done by TCEzecute_OFk and
TCFEzxecute_Fail events. TCExecOk_ReplyCtrlTM, TCExecFuail_ReplyCtrlTM and
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TCCheckFail_ReplyCtrlTM are events for generating control TMs. Considering Fig-
ure 7.41, part(a) illustrates the case when both syntax and semantic checks are ok;
part(b) presented the case when syntax check is ok but semantic check is failed, and

part(c) shows the case when syntax is failed.

As explained in Section 4.2.2, the refining event is the event which simulates the main
behaviour of the abstract event. The behaviour of TC_Validation_OFk event is exhibited
in the refinement level by a valid syntax check followed by a valid semantics check,
therefore TCFEzxecute_OFk event is the refining event in part(a). And The behaviour of
TC_Validation_Fail event is exhibited in the refinement level either when syntax check
is valid and semantics check is failed, part(b), or syntax check is failed, part(c), therefore
TCFEzxecute_Fail event and TCCheck_Fail are the refining events.

[TC_VaIidation_Ok (tc) ]

-
P S~o
- ~o
- S~
- -~
-
- =~

=

[TCCheck_Ok (tc)] [TCExecute_Ok (tc)] [TCExecOk_RepIthrITM (tc)]
(a)

[TC_VaIidation_FaiI (tc)]

= =
- S~<
- ~<
- ~<
- ~
- ~
- ~~

[TCCheck_Ok (tc) ] [ TCExecute_Fail (tc) ][ TCExecFail_ReplyCtriTM (tc) ]
(b)

~

[TC_VaIidation_FaiI (tc)]

~
~

~
~
~
~
~
~
~

[ TCCheck_Fail (tc) ] [ TCCheckFail_ReplyCtrITM (tc) ]
(c)

Figure 7.41: The Atomicity Decomposition Diagrams, M1, BepiColombo Sys-
tem

Considering a successful validation, the Event-B model is presented in Figure 7.42.
TCCheck_OK, TCExecute_Ok and TCEzecOk_ReplyCtrlTM are control variables. Clearly
the sub-events with dashed lines, TCCheck_Ok and TCFEzecOk_ReplyCtrlTM, are new
events which refine skip and the event with solid line, TCEzecute_ Ok, refines the abstract
event, TC_Validation_Ok.

There are two gluing invariants in machine M1 which define the relations between ab-
stract variables and concrete variables. These invariants are shown in Figure 7.43.
inv_TCFEzxecute_Ok_gluing shows that concrete variable of TCFEzecute_Ok is equal to
the abstract variable TC_Validation_Ok, since the TCEzecute_Ok event refines

TC_Validation_OFk event. Since two events refine the abstract event T'C_ Validation_Fuail,
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[TC_VaIidation_Ok (tc) ]

ﬂvent TCCheck_Ok

any tc

where
@grd_TCCheck_Ok_seq tc € ReceiveTC
@grd_TCCheck_Ok tc ¢ TCCheck_Ok

event TCExecOk_ReplyCtrITM
any tc
where
@grd_TCExecOk_ReplyCtrITM_seq tc € TCExecute_Ok

@grd_TCExecOk_ReplyCtrITM tc ¢ TCExecOk_ReplyCtrlTM
then
@act_TCExecOk_ReplyCtrITM
TCExecOk_ReplyCtrITM := TCExecOk_ReplyCtrITM U {tc}
end

@qgrd1 tc € TCCheck_Fail
then
@act_TCCheck_Ok
TCCheck_Ok := TCCheck_Ok U {tc}
end

~

@ent TCExecute_Ok refines TC_Validation_Ok
any tc
where
@grd_TCExecute_Ok_seq tc € TCCheck_Ok
@grd_TCExecute_Ok tc £ TCExecute_Ok
@agrd1 tc ¢ TCExecute_Fail
then
@act_TCExecute_Ok

TCExecute_Ok := TCExecute_Ok U {tc}
NG J

Figure 7.42: Event-B Model, M1, BepiColombo System

the union of the corresponding variables is equal to the abstract variable, shown in

1nu_gluing invariant.

@inv_TCExecute_Ok_gluing TCExecute_Ok = TC_Validation_Ok
@inv_gluing TCExecute_Fail U TCCheck_Fail = TC_Validation_Fail

Figure 7.43: Gluing Invariants, M1, BepiColombo System

7.3.5 2nd Refinement: Refining the Semantic Check

As it is presented in Figure 7.34, the next level of refinement, machine M2, sees context
C1. There is a new field defined for T'C called PID and it is a total function which shows
the type of TC. A TC belongs to the core (csw) , or one of four devices, (mizsc, mizst,

sizsp, sizsz). The properties are presented in Figure 7.44.

axioms
@axm1 partition( PIDS, {csw}, {mixsc}, {mixst}, {sixsp}, {sixsx})
@axm2 PID € TC — PIDS

Figure 7.44: Context C1, BepiColombo System

Up to this level of modelling, semantics checking of a received T'C is done regardless of
considering the type of T'C. If a received T'C belongs to the core, its semantics should
be checked in the core. Otherwise it should be sent to a proper device and validating
its semantics is done in the device. These details of the semantics checking are applied

in the second refinement level, machine M2. The atomicity decomposition diagrams are
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illustrated in Figure 7.45. TCEzecute_Ok event and TCFEzecute_Fail event are split into
two sub-events identifying the type of a received T'C. It’s helpful to recall that syntax
checking is always done in the core before semantics checking, and a received T'C needs

to be semantics checked only when its syntax check is ok.

[ TCExecute_Ok (tc) ]

[ TCCore_Execute_Ok (tc) ] [ TCDevice_Execute_Ok (tc) ]
(a)

[ TCExecute_Fail (tc) ]

[TCCore_Execute_FaiI (tc)] [TCDevice_Execute_FaiI (tc)]
(b)

Figure 7.45: The Atomicity Decomposition Diagram, M2, BepiColombo System

[ TCExecute_Ok (tc) ]

@ent TCCore_Execute_Ok refines TCExecute_Ok \ @am TCDevice_Execute_Ok refines TCExecute_Ok \

any tc any tc

where where
@grd_TCCore_Execute_Ok_seq tc € TCCheck_Ok @grd_TCDevice_Execute_Ok_seq tc € TCCheck_Ok
@grd_TCCore_Execute_Ok tc & TCCore_Execute_Ok @grd_TCDevice_Execute_Ok tc & TCDevice_Execute_Ok
@grd_TCCore_Execute_Ok_xor tc ¢ TCDevice_Execute_Ok @grd_TCDevice_Execute_Ok_xor tc ¢ TCCore_Execute_Ok
@grd1 tc ¢ TCCore_Execute_Fail @grd1 tc ¢ TCDevice_Execute_Fail
@grd2 tc ¢ TCDevice_Execute_Fail @grd2 tc ¢ TCCore_Execute_Fail
@grd3 PID(tc) = csw @grd3 PID(tc) €{mixsc, mixst, sixsp, sixsx}

then then
@act_TCCore_Execute_Ok @act_TCDevice_Execute_Ok

\ TCCore_Execute_Ok := TCCore_Execute_Ok U {tc} TCDevice_Execute_Ok := TCDevice_Execute_Ok U {tc}
A\ J

Figure 7.46: Event-B Model, M2, BepiColombo System

In the Event-B model, as shown in Figure 7.46, both sub-events refine the abstract event

the only difference is the guard, grd3, which checks the type of TC.

7.3.6 3rd Level of Refinement

In the third refinement level, machine M3, the atomicity of three events are decom-

posed, see Figure 7.47. For checking the semantics of a received T'C which belongs
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[TCDevice_Execute_Ok (tc)]
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=
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[SendTC_Core_to_Device (tc) ][CheckTC_in_Device_Ok (tc) ] [SendOkTC_Device_to_Core (tc)]
(a)

[TCDevice_Execute_FaiI (tc)]

-
-
-
-
-
-

-
-
-
-
=

[SendTC_Core_to_Device (tc) ][CheckTC_in_Device_FaiI (tc)][Send FailTC_Device_to_Core (tc)]
(b)

[TCVaIid_GenerateData(tc)]

-

-
-

[TC_Generate Data_in_Device(tc, d)] [TC_TransferData_Device_to_Core(tc)]
(c)

Figure 7.47: The Atomicity Decomposition Diagrams, M3, BepiColombo Sys-
tem

to one of the devices, the T'C is sent to the proper device, SendTC_Core_to_Device
event, the device checks the semantics of the T'C', CheckTC_in_Device_Ok event and
CheckTC_in_Device_Fuil event, and finally the device sends back the result of semantics
checking to the core, SendOkTC_Device_to_Core event and SendFailTC_Device_to_Core
event. Part (a) shows a successful semantics checking, and part (b) shows when the T'C

is failed in semantics checking.

The TCValid_GenerateData event is decomposed to two sub-events, part (c) of Fig-
ure 7.47. As described before for an on TC, some data TMs are generated. Up to
this level the generation is done in one atomic event. In machine M3 the abstract
event is broken to two sub-events. The data is generated in the device by execution of
TC_GenerateData_in_Device event and then it is transferred to the core by execution
of TC_TransferData_Device_to_Core event. Later details of producing data TMs from
the transferred data in the core are added to the model, in the M4 and M5 machines.

The control stream and gluing invariants in Event-B model are same as the ones in the
Event-B models described before. As described in Section 4.2.2, the refining event is
the event which simulates the main behaviour of the abstract event. Considering part
(a) and (b) of Figure 7.47, CheckTC_in_Device_Ok event and CheckT C_in_Device_Fail
event exhibit the behaviours of TCDevice_FEzecute_ Ok abstract event and

TCDevice_Ezecute_Fail abstract event respectively, and the other sub-events model the

data transformation from core to device or device to core. Considering part (c), as
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explained in Section 4.2.8, some-replicator has to be only with a dashed line. Therefore

in part (c) the refining event (event with a solid line) is the other event.

7.3.7 Decomposing BepiColombo Model to Core and Device Sub-models

7.3.7.1 Combining Atomicity Decomposition and Model Decomposition in
Event-B

So far we have decomposed the atomicity of those events which are not purely belonging
to the core or the device part of the system. Refining purely core events, such as
events which are related to generating data T'Ms and control TMs, are postponed after
model decomposition for simplicity, since after decomposition of the model to some sub-
models, the sub-models are smaller than the main model. Refinement has continued
until reaching the state that all events are purely core events or device events or shared
events between core and device. For instance, in the first refinement level, M1, the
TC_Validation_Ok event has been decomposed to some sub-events, because validating
a T(C'is an action which is composed of checking syntax of a received T'C which should
be done in core, checking the semantics of that T'C which is a device action if the TC
belongs to device. After three levels of refinement in the BepiColombo development

process, all events can be allocated to core or device.

In this level the model is decomposed to two separate sub-models (Core and Device), as

shown in Figure 7.34.

7.3.7.2 Shared Event Model Decomposition

We use the shared-event style decomposition, as described in Section 2.5.2.2, for decom-
posing the system to the core and device sub-models. The variables of M3 are partitioned
among the core and device sub-models, see Figure 7.48. Events using variables allocated
to one sub-models are allocated to that sub-model. There are seven events using some
variables allocated to the core and some variables allocated to the devices. These events,

called shared events, are split.

Figure 7.49 shows shared events. Each of the shared events uses some core variables,
which is at left hand side of Figure 7.49 and one device variables, at right of the figure.
For simplicity just one of the core variables is shown in the figure. For instance, as
shown in Figure 7.50, the SendT'C_Core_to_Device event uses some core variables, i.e.,
TCCheck_OFk, TCCore_Ezecute_Ok and TCCore_FExecute_Fuail, and a device variable
SendTC_Core_to_Device.

Thus far the model contains sixteen events and sixteen variables. After decomposition

the events and variables are divided to sub-models, so each sub-model becomes simpler
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Core

Device

Core Events, Shared Events Core Variables Device Events, Shared Events

Device Variables

SendTC_Core_to_Device,
CheckTC_in_Device_Ok,
CheckTC_in_Device_Fail

ReceiveTC

CheckTC_in_Device_Ok
TCCheck_Ok
TCCheck_Fail CheckTC_in_Device_Fail

SendTC_Core_to_Device,
CheckTC_in_Device_Ok,
CheckTC_in_Device_Fail

TCCheckFail_ReplyCtrlTM SendTC_Core_to_Device

SendTC_Core_to_Device

SendOkTC_Device_to_Core

CheckTC_in_Device_Ok

TCExecOk_ReplyCtrITM SendFailTC_Device_to_Core

CheckTC_in_Device_Fail

TC_TransferData_Device_to_Core

TC_GenerateData_in_Device

TCCore_Execute_Ok

SendTC_Core_to_Device

TCCore_Execute_Fail

SendTC_Core_to_Device

TCExecFail_ReplyCtrlITM

TC_GenerateData_in_Device

TC_GenerateData_in_Device

TCValid_ReplyDataTM

SendTC_Core_to_Device

SendOkTC_Device_to_Core
SendFailTC_Device_to_Core
TC_TransferData_Device_to_Core

TCCore_Execute_Ok

TCCore_Execute_Fail

TC_GenerateData_in_Device

Figure 7.48: Model Decomposition, Shared Events Style, BepiColombo System

[ SendTC_Core_:to_Device (tc) ]
1

: < SendTC_Core_to_Device >

[ SendOkTC_Devlice_to_Core (tc) ]
T

1
[ SendFaiITC_Dev{ice_to_Core (tc) ]
1

1 CheckTC_in_Device_Ok

: CheckTC_in_Device_Fail

[ TC_TransferDataJIDevice_to_Core (tc) ]

1

I K TC_GenerateData_in_Device >
1

[ TCCore_Exf_cute_Ok (tc) ]
1

1 SendTC_Core_to_Device
1

[ TCCore_Exeﬁ':ute_FaiI (tc) ]
1

1
| C SendTC_Core_to_Device >

1
[ TC_GenerateUlata_in_Device (tc) ]

@nerate Data_in_@
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Figure 7.49: Shared Events, BepiColombo System
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event SendTC_Core_to_Device
any tc
where
@grd_SendTC_Core_to_Device_seq tc €
@grd_SendTC_Core_to_Device tc € SendTC_Core_to_Device
@grd_SendTC_Core_to_Device_xorl tc €
@grd_SendTC_Core_to_Device_xor2 tc ¢
@grd1 PID(tc) e{mixsc, mixst, sixsp, sixsx}
then
@act_SendTC_Core_to_Device
SendTC_Core_to_Device := SendTC_Core_to_Device U {tc}
end

Figure 7.50: An Instance of a Shared Event Before Model Decomposition, Bepi-
Colombo System

and easier to manage. The division is illustrated in Figure 7.48. Shared events appear

in both sub-models. The last six events in each sub-model are shared events.

The shared event’s guards and actions are divided to two separate events, each in dif-
ferent sub-models. The division is done based on using sub-models variables. Each
shared event in each sub-model only contains the guards and actions which use its own

sub-model variables.

For example Figure 7.51 presents the SendT'C_Core_to_Device shared events after model
decomposition. Considering Figure 7.51 comparing to Figure 7.50,
SendTC_Core_to_Dewvice event in the core sub-model contains
grd_SendTC_Core_to_Device_seq, grd_SendTC_Core_to_Device_xorl and
grd_SendTC_Core_to_Device_xor?2 which use core variables, and in the device sub-
model, it contains grd_SendTC_Core_to_Device and act_SendTC_Core_to_Device that

use the device variable.

Since no core variable is modified in the action of the SendTC_Core_to_Device event,
the core on its own does not know that it has send a T'C. Therefore the

SendTC_Core_to_Device event in the core sub-model would be enabled more often; the
action which disables the SendTC_Core_to_Device event is in the device sub-model.
One solution to disable the core shared event, is providing a preparation in the atom-
icity decomposition approach before applying model decomposition. As a preparation,
one action can be added to the SendTC_Core_to_Device event which disables one core
variable. As a result the action would be placed in the core sub-model when model
decomposed. This case can be considered as future work in combining atomicity decom-

position approach and model decomposition approach.

The decomposition was performed using the decomposition plug-in [21, 56]. The typing
guard in each event (Figure 7.51) are added by the decomposition plug-in.
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Core Sub-model

event SendTC_Core_to_Device
any tc
where
@typing_tctc € TC
@grd_SendTC_Core_to_Device_seq tc €
@grd_SendTC_Core_to_Device_xorl tc &
@grd_SendTC_Core_to_Device_xor2 tc &
@grd1 PID(tc) e{mixsc, mixst, sixsp, sixsx}
end

Device Sub-model

event SendTC_Core_to_Device
any tc
where
@typing_tctc €TC
@grd_SendTC_Core_to_Device tc £ SendTC_Core_to_Device
@grd1 PID(tc) e{mixsc, mixst, sixsp, Sixsx}
then
@act_SendTC_Core_to Device
SendTC_Core_to_Device := SendTC_Core_to_Device U {tc}
end

Figure 7.51: Instances of a Shared Event After Model Decomposition, Bepi-
Colombo System

7.3.8 4th and 5th Refinements: Core Sub-model Refinements

After model decomposition, each sub-model can be refined independently. It is one
of the benefits of decomposing big models to some smaller sub-models, as described in
Section 2.5. There are two more refinement levels for the core sub-model. In these refine-
ments, the atomicity of four core events which are related to generating data TMs and

control T'Ms, is decomposed in two levels, machine M/ and machine M5 in Figure 7.34.

The atomicity decomposition sequencing in the second refinement level, machine M5
follows an approach called weak sequencing, which is described in Section 4.3.4. Consid-
ering atomicity decomposition of the T'CValid_ReplyCtrlTM event in Figure 7.52, in first
level, machine M/, it decomposed to two sub-events, and in the second level, machine M5,
the TCValid_ProcessCtrlTM event decomposed to Produce_DataTM and Send_DataTM
sub-events. The weak sequencing is applied to the atomicity decomposition of the
TCValid_ProcessCtrlTM event. Considering weak sequencing, there is a sequence be-
tween the Produce_DataTM event, with solid line, and the TCValid_Complete CtrlTM
event. It means that before completing the process of generating data T'Ms for a valid
TC, the corresponding data T'Ms should be produced. In contrast when sending pro-
duced TMs, the Send_DataTM event with a dashed line, can executed before or after
the TCValid_CompleteCtriTM event.

In the Event-B model, weak sequencing is applied using some control variables in guards
like described before. Figure 7.53 presents the Event-B model of weak sequencing be-
tween Send_DataTM event and TCValid_CompleteCtriTM event. In
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[ TCValid_ReplyDataTM (tc) ]

”

-
-

[ TCValid_ProcessDataTM (tc, tm) ] [TCVaIid_CompIeteDataTM (tc) ]

~ —
-~
~
~
~o
~

[ Produce_DataTM (tc, tm)] [Send_Dz;taTM (tc, tm)]

Figure 7.52: The Atomicity Decomposition Diagram in the Core Sub-Model,
M4 and M5, BepiColombo System

grd_TCValid_Complete CtriTM of TCValid_CompleteCtrlTM event, tc is checked for be-
longing to TCProduce_DataTM variable which has been assigned in Produce_DataTM
event, so there is no sequencing between Send_DataTM event and
TCValid_Complete CtriTM event.

( Tcvalid_Replybatat (1) |

-

-
-

-
,.m event TCValid_CompleteDataTM refines TCValid_CompleteDataTM

e any tc
z where
. @grd_TCValid_CompleteCtrITM_seq tc edom(Produce_DataTM)
[ challd_PrOCESSDataTM (tcl tm) ] @grd_TCValid_CompleteCtrITM tc ¢ TCValid_CompleteCtrlTM
~ - then
S~o @act_TCValid_CompleteCtrITM
S~o TCValid_CompleteCtrITM := TCValid_CompleteCtrlTM U { tc }
S~< - end
~ 3= —
<
~~. -
S~ -
~ ~
event Produce_DataTM refines TCValid_ProcessCtrITM event Send_DataTM
any tc tm any tc tm
where where
@grd_Produce_DataTM_seq tc € TC_TransferData_Device_to_Core @grd_Send_DataTM_sequencing
@grd_Produce_DataTM tc » tm & Produce_DataTM tc ~»tm € Produce_DataTM | Send_DataTM
@grd TM_Type(tm) €{HK_TM, SCI_TM} then
then @act_Send_DataTM
@act_Produce_DataTM Send_DataTM := Send_DataTM U {tc »tm}
Produce_DataTM := Produce_DataTM U { tc ~»tm} end

end

Figure 7.53: Event-B Model of Weak Sequencing in the Core Sub-Model, M4
and M5, BepiColombo System

The some-replicator, described in Section 4.2.8, is used in the first refinement level. It
adds a new parameter to the related sub-event, in this case tm is added to
TCValid_ProcessCtrlTM in the first refinement and Produce_DataTM and Send_DataTM

events in the second refinement.

This pattern is repeated for the other three events in production of control TMs. It is

presented in Figure 7.54.

The difference between processing of control TMs and data T'Ms is that for each TC

only one control TM is produced and sent from the core to the earth but for each on
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[ Produce_ExecOkTM (tc, tm) ] [ Send_ExecOkTM (tc, tm) ]
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[ Produce_ExecFailTM (tc, tm) ] [ Send_ExecFailTM (tc, tm) ]

[ TCCheckFail_ReplyCtrITM (tc) J
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-

[ TCCheckFail_ProcessCtrlTM (tc, tm) ] [ TCCheckFail_CompleteCtrlTM (tc) ]
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[ Produce_CheckFailTM (tc, tm) ] [ Send_CheckFailTM (tc, tm) ]

Figure 7.54: The Atomicity Decomposition Diagrams in the Core Sub-Model,
M4 and M5, BepiColombo System

TC one or more data TM(s) are produced and sent from the core to the earth. So the
one-replicator, described in Section 4.2.9, is used in processing of control TMs. The
invariants which specify the one-replicator properties are presented in Figure 7.55 for
the first refinement, machine M/, and in Figure 7.56 for the second refinement, machine
Mb5.

@inv_TCExecOk_ProcessCtrITM_one Vtc- card(TCExecOk_ProcessCtrITM[{tc}]) < 1
@inv_TCExecFail_ProcessCtrITM_one Vvic- card(TCExecFail_ProcessCtrITM[{tc}]) <1
@inv_TCCheckFall_ProcessCtrITM_one Vtc- card(TCCheckFail_ProcessCtrITM[{tc}]) < 1

Figure 7.55: one-replicator Invariants, M4, BepiColombo System

@inv_TCExecOk_ProcessCtrITM_one Vtc- card(Produce_ExecOkTMI{tc}]) <1
@inv_TCExecFail_ProcessCtrITM_one vic- card(Produce_ExecFailTM[{tc}]) < 1
@inv_TCCheckFall_ProcessCtrITM_one Vtc- card(Produce_CheckFailTMtc}]) <1

Figure 7.56: one-replicator Invariants, M5, BepiColombo System

Figure 7.57 presents the Event-B model of the first decomposition in Figure 7.54. Guard
grd_Produce_FExecOkTM_one in the Produce_FExecOkTM event models the one-replicator

property.
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[TCExecOk_RepIthrITM (tc) ]

-

, event TCExecOk_CompleteCtrITM refines TCExecOk_CompleteCtrITM
-

. any tc
P where
z @grd_TCExecOk_CompleteCtrITM_seq tc €dom(Produce_ExecOkTM)
d_TCExecOk_C leteCtrITM
[ TCEXECOk_PI‘OCESSCtﬂTM (tC, tm) ] th@zr?r | xecOk_CompleteCtr tc £ TCExecOk_CompleteCtrlTM
S o @act_TCExecOk_CompleteCtrITM
S~ao TCExecOk_CompleteCtrITM := TCExecOk_CompleteCtrITM U { tc }
S~o end

event Produce_ExecOkTM refines TCExecOk_ProcessCtrITM \ event Send_ExecOkTM

N

any tc tm any tc tm
where where
@grd_Produce_ExecOkTM_seq @grd_Send_ExecOKTM_seq
tc € TCCore_Execute_Ok v SendOKTC_Device_to_Core tc ~tm € Produce_ExecOKTM | Send_ExecOkTM
@grd_Produce ExecOkTM tc ~ tm & Produce_ExecOkTM @grd_Send_ExecOkTM tc ~ tm ¢ Send_ExecOkTM
@grd_Produce_ExecOKTM_one tc gdom(Produce_ExecOkTM) then
@grd1 TM_Type(tm) = Exec_ok_TM @act_Send_ExecOkTM
then Send_ExecOkTM := Send_ExecOkTM U {tc ~tm }
@act_Produce_ExecOkTM end
Produce_ExecOKTM := Produce_ExecOKkTM U { tc ~tm }

\o J

Figure 7.57: Event-B Model of one-replicator and Weak Sequencing in the Core
Sub-Model, M4 and M5, BepiColombo System

7.3.9 Evaluation of Manual Event-B Model and Automatic Event-B
Model

As described in the media channel system evaluation in Section 7.2.8, use of atomicity
decomposition plug-in in creating the Event-B model of a system, ensures a higher
level of consistency in encoding of the atomicity decomposition diagrams comparing to
the manual version. Some differences between the automatic Event-B model, which is
created with the plug-in, and the manual one in developing the BepiColombo system

are presented here.

7.3.9.1 A Merged Guard versus Separate Guards

In the automatic Event-B model, there is a separate guard for each predicate generated
in a separate translation rule, whereas in the manual Event-B model, we modelled all
of the predicates in one unique guard. For instance here we compare three events from
machine M7 in the automatic Event-B model presented in Figure 7.42, and in the man-
ual Event-B model presented in Figure 7.58. For example, considering TCEzecute_Ok
event in Figure 7.42, a sequencing guard called grd_TCFEzecute_Ok_seq is generated in
TR_leaf8 (Section 5.4.3.8), a guard called grd_TCFEzecute_OFk is generated via TR_leaf9
(Section 5.4.3.9) and finally grd1 is added manually to the event. Whereas in Figure 7.58,

the predicates are merged in one guard called grdi.
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event TCCheck_Ok
any tc

[TC_VaIidation_Ok (tc) ]

event TCExecOk_ReplyCtrITM

where any tc
where
@grd1 tc € ReceiveTC | @
. grd1 tc € TCExecute_Ok | TCExecOk_ReplyCtrITM
then (TCCheck_Ok uTCCheck_Fail ) then
@%actl @actl
_ TCExecOk_ReplyCtrITM := TCExecOk_ReplyCtrITM U {tc}
ond TCCheck_Ok := TCCheck_Ok u {tc} end

event TCExecute_Ok refines TC_Validation_Ok
any tc
where
@grd1 tc € TCCheck_Ok | (TCExecute_Ok U TCExecute_Fail)
then
@actl TCExecute_Ok := TCExecute_Ok U {tc}
end

Figure 7.58: Manual Event-B Model, M1, BepiColombo System

Having separate guards slightly increases the number of GRD proof obligations, Sec-
tion 2.4.4, which are generated for a refining event in the next refinement level; Since
for each separate guard, a separate GRD proof is generated. Whereas in the manual
Event-B model, just one GRD proof is generated for the merged guard. However the
generated proof obligations in the automatic Event-B model are slightly simpler, because
the corresponding separated guards are slightly simpler. In both manual and automatic

Event-B models, the generated GRD proof obligations are discharged automatically.

7.3.9.2 Gluing Invariants

In the automatic Event-B model, a gluing invariant specifies an equality relationship
between an abstract variable and the corresponding concrete variable. Whereas in the
manual Event-B model, we specified a gluing invariant as a subset relationship between
an abstract variable and the corresponding concrete variable. Because when the manual

model was developed, the patterns for gluing invariants were insufficient.

As an instance, in the automatic Event-B model of machine M1 as presented in Sec-

tion 7.3.4, a gluing invariant is defined as follow:
Qinv_TC Execute_Ok_gluing TC Execute_Ok = TC_Validation_Ok

Whereas in the manual Event-B model the gluing invariant was defined as a subset

relationship:

Qinv9 TCExecute_Ok C TC_Validation_Ok
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The later invariant causes some non-discharged proof obligations. For instance the
TCEzecute_Ok/grd_TC_Validation_Ok/GRD proof can not be proved in the manual
model. To prove the stated proof obligation, we needed to add some more invariants.
The extra invariants made the model complex and large and results in more number of

proof obligations.

7.3.9.3 Model Decomposition

Decomposing the automatic Event-B model of machine M3 to the core and device sub-
models, results in seven shared events, presented in Figure 7.49. Whereas in model
decomposition of the manual Event-B model to core and device sub-models, there were
four shared events. T'CCore_Ezecute_Ok, TCCore_FExecute_Fail and

TC_GenerateData_in_Device are shared events in the automatic model; Whereas in
the manual model, TCCore_Ezecute_Ok and TCCore_FExecute_Fuail are core events, and
TC_GenerateData_in_Device is a device event. The reason is explained in next para-

graph.

[ TCExecute_Ok (tc) ]

[ TCCore_Execute_Ok (tc) ] [ TCDevice_Execute_Ok (tc) ]

-

= -
~
~
_ ~o
- ~~
- ~
- ~<
- ~~
~ -
~

[SendTC_Core_to_Device (tc) ][CheckTC_in_Device_Ok (tc) ][SendOkTC_Device_to_Core (tc)]

Figure 7.59: Combined Atomicity Decomposition Diagram of TCFEzxecute_Ok
Event, BepiColombo System

Considering machine M2, Figure 7.45, and machine M3, Figure 7.47, the combined
atomicity decomposition diagram of T'CEzecute_Ok event is presented in Figure 7.59.
As the result of TR_xor3 (Section 5.4.4.3), in machine M3, a guard is generated for

TCCore_FEzxecute_Ok event to ensure that the other xor child is not executed before:
Qgrd_TCCore_Ezxecute_Ok_zor tc ¢ SendT'C_Core_to_Device

On one hand SendTC_Core_to_Device is a device variable, while TCCore_FEzecute_Ok

event uses other core variables, i.e., TCCheck_OFk in below guard:
Qgrd_TCCore_FExecute_Ok_seq tc € TCCheck_Ok

Therefore the xor guard which uses a device variable make the TCCore_FEzxecute_Ok
event as a shared event in the automatic event-B model. Whereas in the manual Event-B

model we did not add the xor guard, since, as presented in Figure 7.46, guard grd3 ensures
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the mutual exclusiveness of TCCore_FExecute_ Ok event and SendTC_Core_to_Device
event. In the automatic Event-B model, guard @grd_TCCore_FEzxecute_Ok_xor is gener-
ated automatically from TR_xor3 (Section 5.4.4.3), and guard g¢rd3 is added manually

to the automatic Event-B model.

7.3.9.4 some-replicator, one-replicator

In the manual Event-B model, we did not explicitly specify the tms associated with a
valid tc. For instance part of the Produce_DataTM event in the manual Event-B model is
presented in Figure 7.60. As the result of the some-replicator there is one new parameter
called tm added to the Produce_DataTM event. The Produce_DataTM variable is a one
dimension set and, tms are added to a separate set called Produced_TMs. As a result in

the manual model we were not able to track the tms produced for a specific valid tc.

event Produce DataTM refines TCValid_ProcessDataTM
any tc tm
where ...
then
@actl Produce_DataTM := Produce_DataTM U {tc}
@act2 Produced_TMs := Produced_TMs U {tm}
End

Figure 7.60: some-replicator Event, Manual Event-B Model, BepiColombo Sys-
tem

Whereas in the automatic Event-B model, as presented in Figure 7.53, the

Produce_DataTM variable is a cartesian product of TC and TM as a result of being a
child of a some-replicator. Therefore in the automatic model tracking ¢ms associated
with a valid tc is possible, and the model is more accurate. The same modelling style is

used for the one-replicator in the atomicity decompositions presented in Figure 7.54.

7.3.9.5 Naming Protocol

In the automatic Event-B model, invariants and guards have clear labels following a
unique labelling protocol which is used in the patterns in Section 4.2 and the translation
rules in Section 5.4. Whereas in the manual Event-B model the invariants and guards
do not follow a specific labelling protocol, for example see Figure 7.58. Having a clear
labelling protocol helps to understand the model easily as it can help to recognise the
aim of each invariant or guard. For example, in the automatic Event-B model, invariants

and guards which describe the sequencing between events are labelled with _seq suffix.
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7.3.9.6 Tool Application: Atomicity Decomposition Model of the Bepi-

Colombo System

Tha atomicity Decomposition model of the third refinement level of the BepiColombo

system, generated with the atomicity decomposition plug-in is presented in Figure 7.61.
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<4+ Typed Parameter tc

4 Leaf ReceiveTC
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» <4 Flow Diagram
<+ Flow Diagram
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Figure 7.61: Atomicity Decomposition Model of the BepiColombo System

7.3.10 Overview of Proof Obligation

o, ]

m

The entire development of the BepiColombo system involves one abstract model followed

by three refinement levels before model decomposition and two refinement levels of the

core sub-model after model decomposition. In the last refinement level before model

decomposition, M3, there are 16 variables and 16 events as seen in Table 7.2. After

model decomposition Core_MS3 contains 12 variables and 14 events; and Device_ M3
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contains 4 variables and 9 events. It shows one of the benefits of model decomposition
in breaking a big model into some smaller sub-models. The sum of the variables for each
sub-model is equal to the number of variables of non-decomposed model M5. That is not
a coincidence since in a shared event model decomposition, the variables are partitioned
among sub-models. However the sum of the events of Core_ M3 and Device_M3 is not
equal to the number of events of M3, since there are seven shared events which appear

in both sub-models, as seen Figure 7.48.

Component | variables | Events

MO 5 5
M1 10 10
M2 12 12
M3 16 16

Core_M3 12 14

Device_M3 4 9
Core_M4 16 18
Core_M5 20 22

Table 7.2: Summary of the Automatic BepiColombo Development, Number of
Variables and Events

Table 7.3 shows the number of variables and events for the manual Event-B model.
As can be seen in the table, the number of variables in machine MS& of the manual
Event-B model is more than the one in the automatic Event-M model. As explained in
Section 7.3.9.4, considering a separate variable for the new some-replicator parameter

causes in greater number of variables in the manual Event-B model.

Component | variables | Events

MO 5 5
M1 10 10
M2 12 12
M3 18 16

Core_M3 13 13

Device_M3 5 7
Core_M4 21 17
Core_M5 29 21

Table 7.3: Summary of the Manual BepiColombo Development, Number of
Variables and Events

A summary of the proof obligations for the automatic Event-B model can be seen in
Figure 7.62. The overall 205 generated proof obligations discharged automatically. Most
of the proof obligations are related to gluing invariants and guard strengthening. Gluing
invariants which show connections between abstract variables and concrete variables,
should be proved to be preserved by each action of each event. In guard strengthening
proof obligations it should be proved that for refining events the concrete guards are

stronger than the abstract guards.
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O Statistics &3 =8
Elernent Name Total Autc Manual Reviewed Undischarged
{ BepiColombo 205 205 0 0 0:
o 0 0 0 0 0
1 ] ] 0 ] ]
c2 0 0 0 0 0
MO 16 16 0 0 0
("l 45 45 0 ] ]
M2 54 54 ] ] ]
M3 89 89 0 0 0

Figure 7.62: Proof Obligation Statistics for the Automatic BepiColombo Event-
B Model

Figure 7.63 presents the summary of the proof obligations for the manual Event-B
model. The number of proof obligations in the manual model is slightly less than the
automatic ones. As described in Section 7.3.9.1, having separate guards in the automatic
model increases the number of proof obligations. However all of the automatic model’s
proofs are discharged automatically, whereas in the manual model, nine proofs had to

be discharged interactively.

T Statistics &3 = O
Elernent Mame Total Aute Manual Reviewed Undischarged
: BepiColombo_Manual 174 165 9 0 0
] 0 0 0 0
1 0 0 0 0
g 0 0 0 0
Ma 16 16 0 0 0
M1 56 55 1 0 0
M2 46 40 6 0 0
M3 56 54 2 ] ]

Figure 7.63: Proof Obligation Statistics for the Manual BepiColombo Event-B
Model

7.4 Conclusion

We modelled the media channel system and the BepiColombo system, a space craft,
using the atomicity decomposition approach. The developments of both case studies
have been done first manually and later using our atomicity decomposition tool support.
The automatic models, created by our atomicity decomposition tool support, have been
outlined and then an evaluation to compare the manual models with the automatic
ones have been presented. Although the manual and automatic models capture the

same behaviours, as a result of using our atomicity decomposition plug-in in creating
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the automatic model of the systems, the automatic models are more consistent and

systematic in encoding of the diagrams.

Since the atomicity decomposition approach and the model decomposition approach aim
to tackle the difficulties of modelling complex systems in Event-B, combining them is
of interest. The BepiColombo development addresses the combination of the atomic-
ity decomposition approach and model decomposition approach. Further refinements
structured with the atomicity decomposition diagrams, have been applied to the Bepi-
Colombo system after decomposing it to the core and device sub-models using model

decomposition.

The major benefit of using atomicity decomposition diagrams in structuring refinement
were highlighted in the development of the case studies. During manual development of
the case studies, the atomicity decomposition approach has been improved. Some new
constructors and features have been discovered. The assessment results gained from the

development of the case studies are presented in Chapter 8.



Chapter 8

Evaluation of Atomicity
Decomposition in Case Study

Developments

8.1 Introduction

The major benefit of using atomicity decomposition diagrams in showing the explicit
relationships between events of different levels of refinement and presenting the dia-
grammatic notation of event sequencing were highlighted in the development of both

case studies.

Moreover, in the media channel development the diagrams facilitated the linking of
requirements of the different protocol phases (establish, modify and close) with the
formal development. As presented in the initial model of the system in Figure 7.4,
each phase corresponds to one node in a diagram which is modelled in one event in the
Event-B model. Then, in each level of refinement we focused on breaking the atomicity
of a specific phase, the establish phase in the first refinement, the modify phase in the

second refinement, the close phase in the third refinement and so on.

This chapter discusses how the atomicity decomposition approach helped us in the de-
velopment of the media channel system and the BepiColombo system. We will explain
what we have discovered in terms of methodological results, new constructors and new
features in the atomicity decomposition approach. Finally we will outline how the out-
puts of the case studies influenced the definition of the atomicity decomposition diagram

patterns.

169
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8.2 Exploring Alternatives

The possibility of a diagrammatic view of the developments has given us the chance
to decide about alternatives in atomicity decomposition of an event. This decision
can be done before taking the effort of changing the Event-B model. For instance in
the media channel development, for refining the modify event we had two possible
ways. The first one is shown in Figure 8.1, and the second is shown in Figure 8.2.
The atomicity decomposing of the modify event is done in two levels of refinement in
Figure 8.1 whereas by using the second decomposition in Figure 8.2, we can reduce
it to one level of refinement. In the second way we separate the case splitting in two
separate decomposition diagrams, shown in Figure 8.2, We use the technique presented
in Section 4.3.3. In the media channel system development, as presented in Section 7.2.4,
we chose the atomicity decomposition in Figure 8.2 with fewer number of refinements
to reduce the effort of modelling. This case shows how we can explore event refinement

alternatives using atomicity decomposition diagrams before creating the Event-B model.

~~.

'~ .

[ modifyCodecBySelector ] [ modifyByDescriptor]

-
-
-
_________ 1
-
. <

[ modifyCodecListByDescriptor ] [ respondBySelectortoCodec ]

Figure 8.1: Decomposing Atomicity of modify Event in Two Levels of Refine-
ment

S R G BT

-, Cdmmmmm—————— !
ke

[ modifyCodecBySelector ] [ modifyCodeclListByDescriptor ][ respondBySelectortoCodec ]

Figure 8.2: Decomposing Atomicity of modify Event in One Level of Refinement

Therefore the atomicity decomposition approach can help us find good ways of refining
events before getting involved with the complex Event-B model, and this output can be

highlighted as one of the outcomes of using the atomicity decomposition approach.

8.3 Preventing of Wrong Event Decomposition

Using atomicity decomposition diagrams can prevent wrong event refinement before
starting Event-B modelling . It can result in earlier detection of wrong refinements in
the modelling process. Figure 8.3 presents one possible way of decomposing the atom-

icity of validation phase in the development of BepiColombo system. Figure 8.3 states
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that a validation can succeed, T'C_Validation_Ok event, or fail, TC_Validation_Fuail
event. Then a successful validation means successful syntax validation, TCCheck_Ok
event, followed by a successful semantic validation, TCFEzecute_ Ok event. And a failed
validation fails either in the syntax check, TCCheck_Fuil event, or the semantics check,
TCFEzecute_Fuil.

[TC_VaIidation (tc) ]
G

[ TC_Validation_Ok (tc) ] [ TC_Validation_Fail (tc) ]

7/
7/
7/

[ TCCheck_Ok (tc) ] [ TCExecute_Ok (tc) ][ TCCheck_Fail (tc) ] [ TCExecute_Fail (tc) ]

Figure 8.3: Wrong Atomicity Decomposition

Considering xor-constructor and sequencing definitions, in the diagram, the possible

event executions are:

< TCCheck_OK (tc), TCEzxecute_OK (tc) >
< TCCheck_Fail(tc) >
< TCExecute_Fail(tc) >

Therefore this decomposition does not cover all necessary event execution according to

the requirements, explained in Section 7.3.4. It does not cover the following trace:
< TCCheck_OK (tc), TCExecute_Fail(tc) >

Therefore using atomicity decomposition diagram helped us to prevent a wrong refine-
ment before doing the effort of Event-B modelling. As a result, we have changed the

decomposition of the validation phase to a valid one which was presented in Section 7.3.4.

8.4 Events Tracking

A combined atomicity decomposition diagram provides the overall visualization of re-
finement structure. Figure 8.4 presents a part of the overall refinement structure of the

BepiColombo system.

Using the overall view of refinement structure gives us the chance of tracking possible
event execution traces by following leaf events from left to right. It provides the visu-
alization of the entire Event-B model which is not possible by just using the refinement
process. Event tracking helps us to describe the system requirements which can help us

to identify requirement coverage.
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TCValid_ReplyDataTM(tc)

\\\ [TC_GenerateData_in_Device(tc, d)] [TC_TransferData_Device_to_Core(tc)] //

[TCCheckak(tc)] [TCExecutefOk(tc)] [TCExecOk,RevaCtrlTM(tc) ]
ll (’4’
[ TCValid_ProcessDataTM(tc, tm) ] [TCVaIidfCompIeleDalaTM(tc)]
r S~o

[ TCExecOk_ProcessCtrITM(tc, tm) ] [TCExecOk_CompIeteClrITM(tc)]

[Produce_DataTM(lc, lm)] [Send_DataTM(lc, tm)]

[Produ:eiExecokTM(tc, tm)] [SendiExeCOkTM (tc, tm)]

xor

[ TCCore_Execute_Ok (tc) ][ TCDevice_Execute_Ok (tc) ]

[SendTC_Core_to_Device (tc)] [CheckTCiiniDeviceiok (tc)] [SendOkTCiDeviceitoimre (tc)]

Figure 8.4: Overall Refinement Structure After Model Decomposition, Bepi-
Colombo System

For instance, in Figure 8.4 one of the possible execution traces is shown below. It shows
the model covers the requirements in the case that the validation is ok and the T'C

belongs to a device.

< ReceiveTC,

TCCheck_Ok,

SendT'C_Core_to_Device, CheckTC _in_Device_Ok, SendOkT C_Device_to_Core,
Produce_FExecOKTM, Send_ExecOkT M, TC ExecOk_CompleteCtriT M,
TC_GenerateData_in_Device, TC_Transfer Data_Device_to_Core,
Produce_DataT M, Send_DataT M, TCV alid_CompleteDataT M >

Having xor-constructor and weak sequencing result in possibilities of other event traces.
For instance considering xor-constructor in decomposing the T'C Exzecute_Ok event into
TCCore_Execute_Ok and T'C Device_Execute_Ok sub-events, another possible event

trace, when the T'C belongs to the core, is to the replace execution of
< SendT'C_Core_to_Device, CheckTC _in_Device_Ok, SendOkTC_Device_to_Core >

with TCCore_FExecute_Ok. Also considering weak interpretation between
Send_FExecOkKTM and TCExecOk_CompleteCtrlT M, we can swap the place of
Send_ExecOkTM and TCExecOk_CompleteCtriT M in the previous execution trace.
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8.5 Requirements Clarification

We experienced clarifying and re-structuring requirements during the BepiColombo de-
velopment using atomicity decomposition diagrams. As presented in the previous section
the diagrams help us to identify the possible events execution, and it can result in clar-

ifying the requirements.

In the BepiColombo development, in the second refinement level, we recognised that
the difference between T'C's belong to the core and T'C's belong to one of the devices
should be distinguished. This recognition which is a result of diagrams, helped us to
structure the requirements related to the core and device T'C's in the next refinement
level. As shown in Section 7.3.5, using the xor-constructor to split the core case and the
device case, the requirements related to the core and devices are explicitly structure in

the diagram.

As another example, we came up with the diagram shown in Figure 8.5 in the third
refinement level. Reviewing the event traces, showed us that it does not cover the data
generation which should be done in a device. Therefore we ended up with the diagram
shown in Figure 8.6. In this diagram the data generation, T'CValid_GenerateData event,

is added and refined in one level.

BepiColombo(tc)

[ ReceiveTC(tc) ] [ TC_Validation_Ok(tc) ] [TCVaIid_RepIyDataTM(tc) ]

_ - ==
- ~
- -
-
-

_ ~
=

[TCCheck_Ok(tc) ] [TCExecute_Ok(tc) ] [TCExecOk_RepIthrITM(tc) ]

[TCCore_Execute_Ok (tc)] [TCDevice_Execute_Ok (tc) ]

~ o

[ SendTC_Core_to_Device (tc) ][ CheckTC_in_Device_Ok (tc) ][ SendOkTC_Device_to_Core (tc) ]

Figure 8.5: Atomicity Decomposition Diagram Without Considering Data Gen-
eration Requirement, BepiColombo System

Atomicity decomposition diagrams make the process of clarifying and re-structuring
requirements easier comparing with just using the Event-B textual model, since dealing
with the visual view of the event sequencing of the model is easier than dealing with the

textual model only.
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| BepiColombo(tc) l

[ReceiveTC(tc) ][ TC_Validation_OKk(tc) ] [ TCValid_GenerateData(tc) ] [TCVaIid_RepIyDataTM(tc) ]

7 ~ Z
~
e ~
~
’ ~

e ~ s

, [TC_Genera}ceQata_in_Device(tc, d) ] [TC_TransferData_Device_to_Core(tc) ]
~

e ~
’ ~

[TCCheck_Ok(tc) ][ TCExecute_OKk(tc) ][TCExecOk_RepIthrITM(tc) ]

[ TCCore_Execute_Ok (tc) ] [ TCDevice_Execute_Ok (tc) ]

S

- =~
- -~

[ SendTC_Core_to_Device (tc) ][ CheckTC_in_Device_Ok (tc) ][ SendOkKTC_Device_to_Core (tc) ]

Figure 8.6: Atomicity Decomposition Diagram After Clarifying Data Genera-
tion Requirement, BepiColombo System

8.6 Combining Atomicity Decomposition and Model De-

composition

Development of the BepiColombo system addresses the use of atomicity decomposition
and model decomposition together in Event-B modelling. Atomicity decomposition di-
agrams help us find the appropriate point to apply model decomposition. Atomicity
decomposition provides an overall visualization of the refinement process which helps us
to decide about decomposing atomicity of those events which lead us to an appropriate
point to apply model decomposition. This decision can be made in a visual diagram-
matic environment of atomicity decomposition which is easier to deal with compared to
getting involved in difficulties of a complex Event-B model. The strategy to decide about
an appropriate point of applying model decomposition in this case study, is explained

in the next paragraph.

Figure 8.7 illustrates the overall refinement view of the abstract model followed by
two refinement levels. At this point without getting involved in the complications of
the Event-B model, we can decide about having more atomicity decomposition before
model decomposition. Our strategy in this case study is to end up with leaf events which
belong to one of these categories before starting model decomposition: core sub-model
events, device sub-model events or shared events. A leaf event is a node without any
child, which appears as an event of the last refinement level in the Event-B model. The
ReceiveT'C, TCCheck_Ok, TCExecOk_ReplyCtriTM and TCV alid_ReplyDataT M
events are the core events, and the TCCore_Execute_Ok event is a shared event. On
the other hand the T'CDevice_FEzxecute_Ok event and the T'CValid_GenerateData
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event partly belong to the device and are partly related to a shared activity between
the core and devices. So we come up with one more atomicity decomposition level
which is shown in Figure 8.6. In this figure, including the abstract model followed
by three refinement levels, all leaf events belong to one of the mentioned categories.
Among the newest events CheckTC_in_Device_Ok belongs to the device sub-model
and TC_GenerateData_in_Device, SendT C_Core_to_Device,

SendOkTC_Device_to_Core and TC_TransferData_Device_to_Core belong to the
shared events category. Considering our strategy for this case study, this step is a ap-
propriate point to apply model decomposition, since each leaf event belongs to one of

these categories: core sub-model events device sub-model events or shared events.
l BepiColombo(tc)

[ReceiveTC(tc)] [TC_VaIidation_Ok(tc) ] [ TCValid_GenerateData(tc) ] [TCVaIid_RepIyDataTM(tc)]

-

- ~So
- ~o
e ~
- ~
- SS
- ~

[TCCheck_Ok(tc)] [TCExecute_Ok(tc)] [TCExecOk_RepIthrITM(tc)]

[TCCore_Execute_Ok (tc) ] [TCDevice_Execute_Ok (tc) ]

~

Figure 8.7: Overall Refinement Structure, Abstract Model and Two Refinement
Levels, BepiColombo System

Model decomposition preserves refinement including event sequencing of the overall sys-
tem in atomicity decomposition. Event sequencing in the atomicity decomposition ap-
proach is preserved after applying model decomposition to the Event-B model. Consider
atomicity decomposition of T'C' Device_FEzecute_Ok in the last refinement level before
model decomposition in Figure 8.8. As described before, the sequencing is managed
with some control variables added in some guards and actions of the events. Figure 8.9
presents the device sub-model events after applying shared-event model decomposition.
The event sequencing is preserved in the device sub-model, although variables are di-
vided between two sub-models. CheckTC_in_Device_Ok is a device event and is left
without any change. SendT'C_Core_to_Device and SendOkTC_Device_to_Core are
shared events. As a result of model decomposition the guards which use core variables,
TCCkeck_Ok, TCCore_Ezxecute_Ok and SendOkTC_Device_to_Core, are removed.
This does not affect the sequencing since the control variable, SendTC_Core_to_Device

and CheckTC_in_Device_Ok, are device variables.

Finally, as shown in Figure 7.34, atomicity decomposition can be continued after model
decomposition. So based on our experience we believe that applying atomicity decom-
position and model decomposition together can be beneficial in Event-B modelling since

both of them are intend to manage complexity in developing the model of large systems.
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[TCDevice_Execute_Ok (tc) ]

ﬁnt SendTC_Core_to_Device \ g\/ent SendOKTC_Device_to_Core \

any tc any tc
where where
@grd_SendTC_Core_to_Device_seq @grd_SendOKTC_Device_to_Core_seq
tc € TCCheck_Ok ) tc €CheckTC_in_Device_Ok
@grd_SendTC_Core_to_Device @grd_SendOKkTC_Device_to_Core
tc £ SendTC_Core_to_Device tc ¢ SendOKTC_Device_to_Core
@grd_SendTC_Core_to_Device_xorl then
tc ¢ TCCore_Execute_Ok @act_SendOkTC_Device_to_Core
@grd_SendTC_Core_to_Device_xor2 SendOKTC Device to Core =
tc ¢ TCCore_Execute_Fail ) SendOKTC_Device_to_Core U {tc}
@grd1 PID(tc) € {mixsc, mixst, sixsp, sixsx} Qd /
then
@act_SendTC_Core_to_Device
SendTC_Core_to_Device =

SendTC_Core_to_Device u {tc}
end

event CheckTC_in_Device_Ok refines TCDevice_Execute_Ok

any tc

where
@grd_CheckTC_in_Device_Ok_seq tc €SendTC_Core_to_Device
@grd_CheckTC_in_Device_Ok tc ¢ CheckTC_in_Device_Ok
@grd1 tc & CheckTC_in_Device_Fail

then
@act_CheckTC_in_Device_Ok CheckTC_in_Device_Ok =

CheckTC_in_Device_Ok U {tc}

end

Figure 8.8: Event Sequencing Before Model Decomposition, BepiColombo Sys-
tem

[ TCDevice_Execute_Ok (tc) ]

- ~

- =
- -~ o= =< ~
- ~ ~
event SendTC Core to Device event SendOkTC_Device_to_Core
any tc - - any tc
where where

@grd_SendOKTC_Device_to_Core_seq

@grd_SendTC_Core_to_Device - .
tc €CheckTC_in_Device_Ok

tc ¢ SendTC_Core_to_Device
@grd1 PID(tc) € {mixsc, mixst, sixsp, sixsx}
then
@act_SendTC_Core_to_Device
SendTC_Core_to_Device =
SendTC_Core_to_Device U {tc}

end

end

event CheckTC_in_Device_Ok
any tc
where
@grd_CheckTC_in_Device_Ok_seq tc €SendTC_Core_to_Device
@grd_CheckTC_in_Device_Ok tc ¢ CheckTC_in_Device_Ok
@grd1 tc £ CheckTC_in_Device_Fail
then
@act_CheckTC_in_Device_Ok CheckTC_in_Device_Ok :=
CheckTC_in_Device_Ok v {tc}
end

Figure 8.9: Event Sequencing Preserved After Model Decomposition, Bepi-
Colombo System
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8.7 New Constructors and Features

8.7.1 Introduction

This section outlines how the manual development of case studies led us to improve-
ments in the atomicity decomposition approach. During manual development of case
studies, the need for some new constructors and features was discovered. The discovered
constructors and features helped us to define the atomicity decomposition patterns and
features, presented in Chapter 4. And then they helped us to describe the language and
translation rules in a formal description, presented in Chapter 5. Finally based on the
patterns, the language description and translation rules, tool support was developed,

presented in Chapter 6.

This section first addresses identified constructors and then identified features.

8.7.2 New Constructors

In the media channel development, two constructors have been identified. First, the
loop constructor in the most abstract level, presented in Section 7.2.2. Second, the
xor-constructor in the fourth and fifth refinement levels, presented in Section 7.2.6 and
Section 7.2.7 respectively. Later the loop constructor was presented as a pattern in
Section 4.2.3, and the xor-constructor was presented as a pattern in Section 4.2.6. The
xor-constructor motivated us to define other logic operators: the and-constructor pre-

sented in Section 4.2.4 and the or-constructor is presented in Section 4.2.5.

The xor-constructor later has been applied to the second refinement level of the Bepi-
Colombo development as presented in Section 7.3.5. In the BepiColombo development,
the need for some-replicator has been discovered, and some-replicator is used in the
third refinement level, presented in Section 7.3.6. Also it is applied to the fourth re-
finement level of the core sub-model for several times, presented in Section 7.3.8. The
some-replicator pattern is presented in Section 4.2.8. The some-replicator motivated
us to define all-replicator (Section 4.2.7) and the one-replicator (Section 4.2.9). The
all-replicator is first introduced in [24], and the some-replicator is first introduced in the

presentation slides of [24].

We believe that these new constructors would be practical in the future.

8.7.3 Additional Features

The features that were explained in Section 4.3, are derived from case study develop-

ments. These features are addressed here.
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In both case studies, we found that describing the most abstract level in an informal
diagram, can help understanding. Therefore the most abstract level diagram defined

and presented in Section 4.3.1.

As have been seen in previous sections of this chapter, combining atomicity diagrams
of different refinement levels is beneficial in our developments. A combined atomicity
decomposition diagram provides an overall visualization of the refinement structure in

Event-B modelling. This feature was presented in Section 4.3.2.

Multiple atomicity decompositions in the process of refining a single event have been
used during both case study developments. In the media channel development, it is used
in the first and the second refinement levels. And in the BepiColombo development, it is
used in the first refinement level. As described in Section 8.2, having multiple atomicity
decompositions for a single event can reduce the number of refinement levels and as a
result can reduce the complexity of a Event-B model. This feature was presented in
Section 4.3.3.

In the refinements after model decomposition in the BepiColombo system, presented
in Section 7.3.8, we found out that, a weaker interpretation of sequencing is needed. It

motivated us to define the strong and weak sequencing, which presented in Section 4.3.4.

Different atomicity decomposition diagrams can share a single sub-event. The shared
sub-event is transformed into a single event in the Event-B model. Considering the
BepiColombo development in Figure 7.41, TCCheck_Ok sub-event node is shared in the
first two atomicity decomposition diagrams. In the Event-B model, it is modelled with
a single TCCheck_OFk event.

We have tried all alternatives presented in Section 4.3.5, for loop resetting in the manual
development of the media channel system. As a result, as justified in Section 4.3.5, we
decided to use a separate event as a loop resetting event, as presented for the media

channel system in Section 7.2.4.

Finally, we have applied different approaches to model ordering in Event-B, presented
in Section 4.4, for the media channel development. And as justified in Section 4.4,
we adopted to use the subset approach. Considering the subset approach which was
used in both case studies, each node in diagram corresponds to a set in each Event-B
event. These sets play the role of control variables for controlling event sequences. This

experience helps us to define the translation rules from diagram to the Event-B model.

8.8 Conclusion

The benefits of the atomicity decomposition approach were gradually presented via an

overview of the approach in Chapter 3, and the presentation of patterns in Chapter 4.
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The methodological results of using this approach in the development of two complex

case studies have been reviewed in the current chapter.

The benefits of the atomicity decomposition approach are summarised as follows:

e The atomicity decomposition diagrams explicitly illustrate the relationships be-

tween refinement levels, which is not explicit just using the Event-B notation.

e The explicit ordering between events are presented in a diagrammatic notation
of the atomicity decomposition approach. Whereas the Event-B text can model

ordering in an implicit way.

e Using atomicity decomposition diagrams enables us to explore alternatives of re-
fining an abstract event before getting involved with the complexity of Event-B

modelling.

e Earlier detection of wrong refinement in the modelling process is one of the benefits

of using atomicity decomposition diagrams.

e The atomicity decomposition approach provides the overall visualization of re-
finement structure, which gives us the ability to track events and requirement

clarification via a combined atomicity decomposition diagram.

e The atomicity decomposition approach can be combined effectively with model de-
composition. Since these two techniques aim to tackle the difficulties of modelling

complex systems, combining them is of interest.

e The atomicity decomposition approach provided with tool support, can address

automatic model generation in Event-B, which can decrease the modelling effort.






Chapter 9

Conclusions and Future Works

9.1 Conclusion

It was mentioned that modelling should be considered as an early stage in the software
development process. However we are aware of difficulties in building models of complex
systems. If these difficulties make software engineers reluctant to do modelling, it will
be left out from the developing cycle. Thus some techniques are required to solve these
difficulties.

The key factor in this thesis was presenting the atomicity decomposition approach and
improving its methodology, as a technique helping us to model complex systems in
Event-B notation using the Rodin tool. We have outlined how atomicity decomposition
can be beneficial in the incremental development of two large case studies, and how
the formal description of atomicity decomposition language and translation rules can be
helpful in improving the methodology of the atomicity decomposition approach. The
atomicity decomposition tool was developed as a plug-in supported by Event-B toolkit,
Rodin.

The contributions we have completed consist of five parts:

e (i) Modelling and proof of the media channel system which contains a level of
abstraction followed by five refinement layers (published in “Formal Methods
for Components and Objects” (FMCO) 2009 conference [1]). In developing the
Event-B model of the system we focus on evaluating the atomicity decomposi-
tion approach using structural diagrams in modelling the requirements of different

phases.

From the evaluation we outlined how using atomicity decomposition augmented
with refinement in Event-B can be useful in the modelling process of a complex

system. Exploring alternatives of decomposing atomicity of an event using the
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atomicity decomposition diagrams before getting involved with complexity of an
Event-B model is evaluated. Also we have shown how using atomicity decomposi-

tion diagrams can prevent a wrong event refinement.

Some new construct patterns such as the loop constructor and xor-constructor
have been discovered. The media channel development presented how different
atomicity decomposition constructs, such as sequential events, loop constructor
and case splitting (xor-constructor) are modelled in Event-B model by providing

some refining /non-refining events, guards and invariants.

(ii) Modelling and proof of the BepiColombo system which contains a level of ab-
straction followed by three levels of refinement followed by a model decomposition
and two more refinement levels of one of the sub-models (published in “Formal
Methods for Components and Objects” (FMCO) 2009 conference [1]). This de-
velopment experience showed the benefits of using the atomicity decomposition
approach with the model decomposition approach together. During development,
the some-replicator construct and weak sequencing feature have been discovered
and modelled in the Event-B model.

Case study developments (Chapter 7), helped us to define some features which
improved the atomicity decomposition approach. These features include the defi-
nitions of the most abstract level diagram, the combined atomicity decomposition
diagram and multiple diagrams for a single root event. Different alternatives to
model ordering in Event-B have been evaluated and the subset approach is chosen.

The justification of choosing the subset approach has been presented (Section 4.4).

(iii) As stated above, during the development of case studies, some new construct
patterns and features were discovered. The discovered patterns and features were
presented (Chapter 4). Each pattern was allocated to illustrate one constructor
in a single refinement level. For each pattern the diagrammatic notation and the

corresponding Event-B model have been described.

(iv) We presented a formal and general description of the atomicity decomposi-
tion language (ADL) and translation rules to the Event-B model (Chapter 5).
The ADL is described using Augmented Backus-Naur Form (ABNF) and includes
the semantics to present the general combination of constructors in one or more
refinement levels. Translation rules were presented per construct in a modular

way.

(v) We developed a plug-in that supports the atomicity decomposition approach in
the Event-B toolkit, Rodin, (Chapter 6). The developed tool helps the automatic
generation of the Event-B model from a graphical environment, which can results

in making the modelling process of complex systems more manageable in Event-B.
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Based on our experience - specifying, modelling and proving the media channel system
and the BepiColombo system using the Event-B notation in the Rodin toolkit - the most
difficult part in mathematical modelling using Rodin is dealing with complex and large
models. Building the large model of media channel and BepiColombo showed how the
atomicity decomposition approach can facilitate the use of the Event-B notation. The
atomicity decomposition approach provides a graphical notation to explicitly illustrate
the refinement structure in Event-B. The ordering between events are explicitly shown in
the atomicity decomposition diagram. Different constructors of atomicity decomposition
graphical notation have been discovered and presented. However, still some difficulties
in building large and complex models are a notable barrier when encouraging developers
to build mathematical models of their systems before implementing them. In summary
it is hoped that the atomicity decomposition approach makes it convenient to model

complicated systems using the Rodin toolkit.

The multiple instance (MI) style (Section 4.2.2) is applied to the case studies presented in
Chapter 7. The single instance (SI) style is applied to a Controller Area Network (CAN)
bus case study [81, 82]. Also a SI case example from [24] is addressed in Chapter 3.

9.2 Future Works

The work described in the thesis leaves open some opportunities for improvement. We

list the future works as follows:

e Developing a graphical environment for the atomicity decomposition plug-in.

To develop this graphical environment, the Eclipse Graphical modelling Framework
(GMF) [83] and EuGENia [84] tool can be considered as two useful technologies.
The Eclipse Graphical Modelling Framework (GMF) provides a generative com-
ponent (GMF Tooling) and runtime infrastructure (GMF Runtime) for developing
graphical editors based on EMF. EuGENia is a tool that automatically generates
the models needed to implement a GMF' editor from an EMF meta-model.

e Improving tool support by developing all translation rules.

As described in Chapter 6, some of the defined translation rules, presented in
Chapter 5, are not included in the current plug-in. The plug-in can be improved

by providing all translation rules.

e Identifying other potential atomicity decomposition constructors.

We believe that there can be other potential constructs for the atomicity decompo-
sition approach. These constructs can be identified by developing more industrial
and complex case studies. After identifying the potential constructors, they need

to be defined as patterns and included as a part of the ADL and translation rules.






Appendix A

The Event-B Model of the
Channel System

A.1 Abstract Specification

A.1.1 Context: C1

CONTEXT C1

SETS
ENDPOINT, MEDIUM, CODEC, MEDIACHANNEL, DIRECTION

CONSTANTS

ItoA, Atol, medium, initiator, acceptor, direction
AXIOMS

axml : partition( DIRECTION , {ItoA}, {Atol})

axm2 : medium € MEDIACHANNEL — MEDIUM

axm3 : initiator € MEDIACHANNEL — ENDPOINT

axmé4 : acceptor € MEDIACHANNEL — ENDPOINT

axmb : direction € MEDIACHANNEL — DIRECTION
END

A.1.2 Machine: M0

MACHINE MO0
SEES C1

VARIABLES
establishMediaChannel, close, code \\ manually

INVARIANTS
inv_establishMediaChannel : establishMediaChannel C MEDIACHANNEL
inv_close_seq: close C establishMediaChannel
invl : codec € establishMediaChannel - CODEC \\ manually
EVENTS
Initialisation
begin
act_establishMediaChannel : establishMediaChannel := @&

Media



act_close : close := @
actl: codec : =@ \\ manually
end
Event establishMediaChannel =

any

ch, ¢ \\ manually
where

grd_establishMediaChannel : ch ¢ establishMediaChannel
grdl: ¢ € CODEC \\ manually
then
act_establishMediaChannel : establishMediaChannel := establishMediaChannel U {ch}
actl: codec(ch) := ¢ \\ manually
end

Event modify =

any
ch, ¢
where
grd_modify_seq: ch € establishMediaChannel
grd_modify_loop: ch ¢ close
grdl: ¢ € CODEC \\ manually
then
actl: codec(ch) := ¢ \\ manually
end
Event close =
any

ch
where

grd_close_seq: ch € establishMediaChannel
grd_close: ch ¢ close

then
act_close : close := close U {ch}

end

END

A.2 1st Refinement

A.2.1 Context: C2

CONTEXT C2
EXTENDS C1

SETS
PORT, IP

CONSTANTS
endpointIp

AXIOMS
axml : endpointlp € ENDPOINT — IP
END

A.2.2 Machine: M1

MACHINE M1
REFINES MO
SEES C2
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VARIABLES
openWithRealCodecs, openAckWithoutCodecs, select AndEstablishby Acceptor, openWithoutCodecs,
openAckWithRealCodecs, select AndEstablishbylnitiator, close, codec \\ manually, initiatorPort \\ man-
ually, acceptorPort \\ manually, codecList \\ manually
INVARIANTS
inv_openWithRealCodecs : openWithRealCodecs C MEDIACHANNEL
inv_openAckWithoutCodecs_seq : openAckWithoutCodecs C openWithRealCodecs
inv_selectAndEstablishbyAcceptor_seq: selectAndEstablishbyAcceptor C openAckWithoutCodecs
inv_openWithoutCodecs : openWithoutCodecs C MEDIACHANNEL
inv_openAckWithRealCodecs_seq : openAckWithRealCodecs C openWithoutCodecs
inv_selectAndEstablishbyInitiator_seq: selectAndEstablishbylnitiator C openAckWithRealCodecs
inv_close_seq: close C selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
inv_gluing : selectAndEstablishbyAcceptor U selectAndEstablishbylInitiator = establishMediaChannel
invl : dnitiatorPort € (openWithRealCodecs U open WithoutCodecs) — PORT \\ manually
inv2 : acceptorPort € (openAckWithoutCodecs U openAckWithRealCodecs) — PORT \\ manually
inv3: codecList € (openWithRealCodecs U openAckWithRealCodecs) — P(CODEC) \\ manually
inv5 : openWithRealCodecs C dom(direction > {AtoI}) \\ manually
invé : openWithoutCodecs C dom(direction > {ItoA}) \\ manually
inv7 : openWithRealCodecs N open WithoutCodecs = &
\\ manually, derived from inv5, inv6, added to prove (SelectAndEstablishby.../GRD)
EVENTS
Initialisation
begin
act_openWithRealCodecs : openWithRealCodecs := &
act_openAckWithoutCodecs : openAckWithoutCodecs := &
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := &
act_openWithoutCodecs : openWithoutCodecs := &
act_openAckWithRealCodecs : openAckWithRealCodecs := &
act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator := &
act_close : close := &
actl: codec :=@ \\ manually
act2: initiatorPort := @ \\ manually
act3: acceptorPort := @ \\ manually
act4 : codecList :== @ \\ manually
end

Event openWithRealCodecs =

any

ch, ¢l \\ manually, p \\ manually, i \\ manually
where

grd_openWithRealCodecs : ch ¢ openWithRealCodecs
grdl: ch ¢ openWithoutCodecs
\\ manually, derived from direction(ch) = Atol, add to prove (inv7/INV)
grd2: ¢l C CODEC \\ manually
grd3: cl# @ \\ manually
grd4: p € PORT \\ manually
grds: ¢ € IP \\ manually
grdé : i € dom(endpointlp~!) \\ manually, WD
grd7 : initiator(ch) = endpointIp~1 (i) \\ manually
grds : direction(ch) = Atol \\ manually
then
act_openWithRealCodecs : openWithRealCodecs := open WithRealCodecs U {ch}
actl: codecList(ch) := ¢l \\ manually
act2: initiatorPort(ch) := p \\ manually
end

Event openAckWithoutCodecs =
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any
ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV) in M2
where

grd_openAckWithoutCodecs_seq : ch € open WithRealCodecs
grd_openAckWithoutCodecs : ch ¢ openAckWithoutCodecs
grdl: ¢l C CODEC \\ manually
grd2: ¢l =@ \\ manually
grd3: p € PORT \\ manually
grd4: ¢ € IP \\ manually
grd5 : i € dom(endpointlp~!) \\ manually, WD
grd6 : acceptor(ch) = endpointIp~1 (i) \\ manually
grd7 : t = codecList(ch)
\\ manually, to prove (openAckWithoutCodecs/inv5/INV) in M2

then
act_openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs U {ch}
actl: acceptorPort(ch):=p \\ manually
act2: codecList(ch) :=t
\\ manually, to prove (openAckWithoutCodecs/inv5/INV) in M2
end

Event selectAndFEstablishbyAcceptor =
refines establishMediaChannel

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyAcceptor_seq: ch € openAckWithoutCodecs
grd_selectAndEstablishbyAcceptor : ch ¢ selectAndEstablishbyAcceptor
grdl: c € codecList(ch) \\ manually

then
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=
selectAndEstablishbyAcceptor U {ch}
actl: codec(ch) := ¢ \\ manually
end

Event openWithoutCodecs =
any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd_openWithoutCodecs : ch ¢ open WithoutCodecs
grd9 : ch ¢ openWithRealCodecs
\\ manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)
grd2: ¢l C CODEC \\ manually
grd3: cl =@ \\ manually
grd4 : p € PORT \\ manually
grd5: ¢ € IP \\ manually
grdé : i € dom(endpointlp~!) \\ manually, WD
grd7 : initiator(ch) = endpointlp~! (i) \\ manually
grd8 : direction(ch) = ItoA \\ manually
then
act_openWithoutCodecs : openWithoutCodecs := open WithoutCodecs U {ch}
actl: initiatorPort(ch) :=p \\ manually
end

Event openAckWithRealCodecs =

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd_openAckWithRealCodecs_seq: ch € openWithoutCodecs
grd_openAckWithRealCodecs : ch ¢ openAckWithRealCodecs
grdl: ¢l C CODEC \\ manually

grd2: cl# @ \\ manually



grd3: p € PORT \\ manually

grd4: i€ IP \\ manually

grd5 : i € dom(endpointlp~!) \\ manually, WD
grd6é : acceptor(ch) = endpointIp~1 (i) \\ manually

then
act_openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs U
{ch}
actl: codecList(ch) := ¢l \\ manually
act2: acceptorPort(ch) := p \\ manually
end

Event selectAndFEstablishbylnitiator =
refines establishMediaChannel

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyInitiator_seq: ch € openAckWithRealCodecs
grd_selectAndEstablishbyInitiator : ch & selectAndFEstablishbylInitiator
grdl: c € codecList(ch) \\ manually

then
act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator :=
selectAndEstablishbylInitiator U {ch}
actl: codec(ch) := ¢ \\ manually
end

Event modify =

refines modify

any
ch, ¢
where
grd_modify_sequencing : ch € selectAndEstablishbyAcceptor U
selectAndFEstablishbylInitiator
grd_modify_loop: ch ¢ close
grdl: ¢ € CODEC \\ manually
then
actl: codec(ch) := ¢ \\ manually
end

Event close =

refines close

any
ch
where
grd_close_seq : ch € selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_close: ch ¢ close
then
act_close : close := close U {ch}
end

END

A.3 2nd Refinement

A.3.1 Machine: M2

MACHINE M2
REFINES M1
SEES C2
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VARIABLES
openWithRealCodecs, openAckWithoutCodecs, select AndEstablishby Acceptor, openWithoutCodecs, ope-
nAckWithRealCodecs, select AndEstablishbylInitiator, modifyCodecListByDescriptor, respondBySelector-
ToCodec, modifylnitiatorPortByDescriptor, respondBySelectorTolnitiatorPort, modifyAcceptorPortBy-
Descriptor, respondBySelectorToAcceptorPort, close, codec \\ manually, initiatorPort2 \\ manually, ac-

ceptorPort2 \\ manually, codecList2 \\ manually
INVARIANTS

inv_modifyCodecByDescriptor_seq : modifyCodecListByDescriptor C selectAndEstablishbyAcceptor U
selectAndEstablishbyInitiator

inv_respondBySelectortoCodec_seq : respondBySelectorToCodec C modifyCodecListByDescriptor

inv_modifyInitiatorPortByDescriptor_seq: modifylnitiatorPortByDescriptor C
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator

inv_respondBySelectorToInitiatorPort_seq: respondBySelectorTolnitiatorPort C

modifylnitiator PortByDescriptor

inv_modifyAcceptorPortByDescriptor_seq : modifyAcceptorPortByDescriptor C
selectAndFEstablishbyAcceptor U selectAndFEstablishbylnitiator

inv_respondBySelectorToAcceptorPort_seq : respondBySelectorToAcceptorPort C
modifyAcceptorPortByDescriptor

invl : snitiatorPort2 € (openWithRealCodecs U open WithoutCodecs) — PORT
\\ manually, to prove (EQL)
inv2 : acceptorPort2 € (openAckWithoutCodecs U openAckWithRealCodecs) — PORT \\ manually
inv3: codecList2 € (openWithRealCodecs U openAckWithRealCodecs) — P(CODEC) \\ manually
invéd : Vch-
(ch € openAckWithRealCodecs N
ch ¢ selectAndEstablishbylnitiator
=
codecList2(ch) = codecList(ch))
\\ manually, to prove (selectAndEstablishbyInitiator/grd1/GRD)
inv6: Vch-
(ch € openAckWithoutCodecs N\
ch ¢ selectAndEstablishbyAcceptor
=
codecList2(ch) = codecList(ch))
\\ manually, to prove (selectAndEstablishbyAcceptor/grd1/GRD)
invé : Vch-
(ch € openWithRealCodecs N
ch ¢ openAckWithoutCodecs
=
codecList2(ch) = codecList(ch))
\\ manually, to prove (openAckWithoutCodecs/grd7/GRD)
EVENTS
Initialisation
begin
act_openWithRealCodecs : openWithRealCodecs := &
act_openAckWithoutCodecs : openAckWithoutCodecs := &
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := &
act_openWithoutCodecs : openWithoutCodecs := &
act_openAckWithRealCodecs : openAckWithRealCodecs := &
act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator := &
act_modifyCodecListByDescriptor : modifyCodecListByDescriptor := &
act_respondBySelectorToCodec : respondBySelectorToCodec := &
act_modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor := &
act_respondBySelectorToInitiatorPort : respondBySelectorTolnitiatorPort := &
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :== &
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := &

act_close : close := @
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actl: codec :=@ \\ manually

act2: initiatorPort2 := @ \\ manually

act3: acceptorPort2 := @ \\ manually

act4 : codecList?2 := @ \\ manually
end

Event openWithRealCodecs =
refines openWithRealCodecs

any
ch
cl manually
D manually
7 manually
where
grd_openWithRealCodecs : ch ¢ openWithRealCodecs
grdl : ch ¢ openWithoutCodecs
\\ manually, derived from direction(ch) = Atol, add to prove (inv7/INV)
grd2: ¢/ C CODEC \\ manually
grd3: cl# @ \\ manually
grd4: p € PORT \\ manually
grds: ¢ € IP \\ manually
grdé : i € dom(endpointlp~!) \\ manually, WD
grd7 : initiator(ch) = endpointIp~1 (i) \\ manually
grd8 : direction(ch) = Atol \\ manually
then
act_openWithRealCodecs : openWithRealCodecs := open WithRealCodecs U {ch}
actl: codecList2(ch) := cl \\ manually
act2: initiatorPort2(ch) := p \\ manually
end

Event openAckWithoutCodecs =
refines openAckWithoutCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV)
where

grd_openAckWithoutCodecs_seq : ch € openWithRealCodecs
grd_openAckWithoutCodecs : ch ¢ openAckWithoutCodecs
grdl: ¢l C CODEC \\ manually
grd2: cl =@ \\ manually
grd3: p € PORT \\ manually
grd4: i € IP \\ manually
grd5 : i € dom(endpointlp~!) \\ manually, WD
grd6 : acceptor(ch) = endpointIp~! (i) \\ manually
grd7 : t = codecList2(ch)
\\ manually, to prove (openAckWithoutCodecs/inv5/INV)

then
act_openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs U {ch}
actl: acceptorPort2(ch) :=p \\ manually
act2: codecList2(ch) :=t \\ manually, to prove (openAckWithoutCodecs/inv5/INV)
end

Event selectAndFEstablishbyAcceptor =
refines selectAndFEstablishbyAcceptor

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyAcceptor_seq: ch € openAckWithoutCodecs
grd_selectAndEstablishbyAcceptor : ch ¢ selectAndEstablishbyAcceptor
grdl: c € codecList2(ch) \\ manually

then
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act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=
selectAndEstablishbyAcceptor U {ch}
actl: codec(ch) := ¢ \\ manually
end

Event openWithoutCodecs =
refines openWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd_openWithoutCodecs : ch ¢ openWithoutCodecs
grd9 : ch ¢ openWithRealCodecs
\\ manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)
grd2: ¢l C CODEC \\ manually
grd3: cl =@ \\ manually
grd4 : p € PORT \\ manually
grd5: 4 € IP \\ manually
grd6 : i € dom(endpointlp~!) \\ manually, WD
grd7 : initiator(ch) = endpointlp~! (i) \\ manually
grd8 : direction(ch) = ItoA \\ manually
then
act_openWithoutCodecs : openWithoutCodecs := open WithoutCodecs U {ch}
actl: initiatorPort2(ch) := p \\ manually
end

Event openAckWithRealCodecs =
refines openAckWithRealCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually
where

grd_openAckWithRealCodecs_seq: ch € openWithoutCodecs
grd_openAckWithRealCodecs : ch ¢ openAckWithRealCodecs
grdl: ¢l C CODEC \\ manually
grd2: cl# @ \\ manually
grd3: p € PORT \\ manually
grd4: ¢ € IP \\ manually
grd5 : i € dom(endpointlp~!) \\ manually, WD
grd6 : acceptor(ch) = endpointIp~1 (i) \\ manually
then
act_openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs U {ch}
actl: codecList2(ch) := cl \\ manually
act2: acceptorPort2(ch) := p \\ manually
end

Event selectAndEstablishbylInitiator =
refines selectAndEstablishbylInitiator

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyInitiator_seq: ch € openAckWithRealCodecs
grd_selectAndEstablishbyInitiator : ch & selectAndFEstablishbylInitiator
grdl: c € codecList2(ch) \\ manually

then
act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator :=

selectAndEstablishbylInitiator U {ch}

actl: codec(ch) := ¢ \\ manually

end

Event modifyCodecBySelector =
refines modify

any

ch, ¢ \\ manually
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where
grd_modifyCodecBySelector_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecBySelector_loop: ch & close
grdl: ¢ € codecList2(ch) \\ manually
then
actl: codec(ch) := ¢ \\ manually
end

Event modifyCodecListByDescriptor =

any

ch, cl \\ manually
where

grd_modifyCodecListByDescriptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecListByDescriptor : ch ¢ modifyCodecListByDescriptor
grd_modifyCodecListByDescriptor_loop: ch & close
grdl: ¢l C CODEC \\ manually
grd2: cl# @ \\ manually
then
act_modifyCodecListByDescriptor : modifyCodecListByDescriptor :=
modifyCodecListByDescriptor U {ch}
actl: codecList2(ch) := cl \\ manually
end
Event respondBySelectorToCodec =

refines modify

any

ch, ¢ \\ manually
where

grd_respondBySelectorToCodec_seq : ch € modifyCodecListByDescriptor
grd_respondBySelectorToCodec : ch & respondBySelectorToCodec
grdl: c € codecList2(ch) \\ manually
grd2: ch ¢ close \\ manually, to prove (respondBySelectorToCodec/GRD)
then
act_respondBySelectorToCodec : respondBySelectorToCodec := respondBySelectorToCodecU{ch}
act2: codec(ch) := ¢ \\ manually
end
Event modify_Loop_Resetl =
any
ch
where
grd_reset : ch € respondBySelectorToCodec
then
act_reset_modifyCodecListByDescriptor : modifyCodecListByDescriptor :=
modifyCodecListByDescriptor \ {ch}
act_reset_respondBySelectorToCodec : respondBySelectorToCodec :=
respondBySelectorToCodec \ {ch}
end

Event modifylnitiatorPortByDescriptor =
refines modify

any

ch, p \\ manually
where

grd_modifyInitiatorPortByDescriptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyInitiatorPortByDescriptor : ch & modifyInitiatorPortByDescriptor
grd_modifyInitiatorPortByDescriptor_loop: ch ¢ close
grdl : p # initiatorPort2(ch) \\ manually
with
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c: ¢ =codec(ch) \\ manually

then
act_modifyInitiatorPortByDescriptor : modifylnitiatorPortByDescriptor :=
modifyInitiatorPortByDescriptor U {ch}
actl: initiatorPort2(ch) := p \\ manually
end

Event respondBySelectorTolnitiatorPort =
any
ch
where
grd_respondBySelectorToInitiatorPort_seq: ch € modifylnitiatorPortByDescriptor
grd_respondBySelectorToInitiatorPort : ch ¢ respondBySelectorTolnitiatorPort
then
act_respondBySelectorToInitiatorPort : respondBySelectorTolnitiatorPort :=
respondBySelectorTolnitiatorPort U {ch}
end
Event modify_Loop_Reset2 =
any
ch
where
grd_reset : ch € respondBySelectorTolnitiatorPort
then
act_reset_modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=
modifylnitiatorPortByDescriptor \ {ch}
act_reset_respondBySelectorToInitiatorPort : respondBySelectorTolnitiatorPort :=
respondBySelector ToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =

refines modify

any
ch, p \\ manually
where
grd_modifyAcceptorPortByDescriptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyAcceptorPortByDescriptor : ch ¢ modifyAcceptorPortByDescriptor
grd_modifyAcceptorPortByDescriptor_loop: ch & close
grdl: p # acceptorPort2(ch) \\ manually
with
c: ¢ =codec(ch) \\ manually
then
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor U {ch}
actl: acceptorPort2(ch) :=p \\ manually
end

Event respondBySelectorToAcceptorPort =
any
ch
where
grd_respondBySelectorToAcceptorPort_seq : ch € modifyAcceptorPortByDescriptor
grd_respondBySelectorToAcceptorPort : ch ¢ respondBySelectorToAcceptorPort
then
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort U {ch}
end

Event modify_Loop_Reset3 =

any
ch



where

grd_reset : ch € respondBySelectorToAcceptorPort

then
act_reset_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor \ {ch}
act_reset_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort \ {ch}
end

Event close =
extends close

any
ch
where
grd_close_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbyInitiator
grd_close: ch ¢ close
then
act_close : close := close U {ch}

end

END

A.4 3rd Refinement

A.4.1 Machine: M3

MACHINE M3
REFINES M2
SEES C2

VARIABLES
openWithRealCodecs, openAckWithoutCodecs, select AndEstablishbyAcceptor,
openWithoutCodecs, openAckWithRealCodecs, select AndEstablishbylInitiator,
modifyCodecListByDescriptor, respondBySelectorToCodec, modifyInitiatorPortByDescriptor,
respondBySelectorTolnitiatorPort, modify AcceptorPortByDescriptor,
respondBySelectorToAcceptorPort, closeRequest, closeAck, codec \\ manually,
initiatorPort2 \\ manually, acceptorPort2 \\ manually, codecList2 \\ manually

INVARIANTS

inv_closeRequest_seq: closeRequest C
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
inv_closeAck_seq: closeAck C closeRequest
inv_closeAck _gluing : closeAck = close
EVENTS
Initialisation
begin
act_openWithRealCodecs : openWithRealCodecs := @
act_openAckWithoutCodecs : openAckWithoutCodecs := &
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := &
act_openWithoutCodecs : openWithoutCodecs := @
act_openAckWithRealCodecs : openAckWithRealCodecs := @
act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator == @
act_modifyCodecListByDescriptor : modifyCodecListByDescriptor := &
act_respondBySelectorToCodec : respondBySelectorToCodec := &
act_modifyInitiatorPortByDescriptor : modifylnitiatorPortByDescriptor := &
act_respondBySelectorToInitiatorPort : respondBySelectorTolnitiatorPort := &
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := &
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act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := &
act_closeRequest : closeRequest := &
act_closeAck : closeAck :== @
actl: codec := @ \\ manually
act2: initiatorPort2 := @ \\ manually
act3: acceptorPort2 := @& \\ manually
act4 : codecList?2 := @ \\ manually
end

Event openWithRealCodecs =
extends openWithRealCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually
where
grd_openWithRealCodecs : ch ¢ openWithRealCodecs
grdl: ch ¢ openWithoutCodecs
\\ manually, derived from direction(ch) = Atol, add to prove (inv7/INV)
grd2: cl1 C CODEC \\ manually
grd3: cl # @ \\ manually
grd4 : p € PORT \\ manually
grd5: i € IP \\ manually
grd6 : i € dom(endpointIp~!) \\ manually, WD
grd7 : initiator(ch) = endpointIp~!(i) \\ manually
grd8 : direction(ch) = AtoI \\ manually
then
act_openWithRealCodecs : openWithRealCodecs := openWithRealCodecs U {ch}
actl: codecList2(ch) :=cl \\ manually
act2: initiatorPort2(ch):=p \\ manually
end

Event openAckWithoutCodecs =
extends openAckWithoutCodecs

any

ch, cl \\ manually, p \\ manually, i \\ manually, t

\\ manually, to prove (openAckWithoutCodecs/inv5/INV)
where

grd_openAckWithoutCodecs_seq: ch € openWithRealCodecs

grd_openAckWithoutCodecs : ch ¢ openAckWithoutCodecs

grdl: ¢l C CODEC \\ manually

grd2: cl =@ \\ manually

grd3: p € PORT \\ manually

grd4: i€ IP \\ manually

grd5: i € dom(endpointIp~!) \\ manually, WD

grd6 : acceptor(ch) = endpointIp~!(i) \\ manually

grd7 : t = codecList2(ch) \\ manually, to prove (openAckWithoutCodecs/inv5/INV)
then

act_openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs U {ch}

actl: acceptorPort2(ch):=p \\ manually

act2: codecList2(ch):=t \\ manually, to prove (openAckWithoutCodecs/inv5/INV)
end

Event selectAndEstablishbyAcceptor =
extends selectAndEstablishbyAcceptor

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyAcceptor_seq: ch € openAckWithoutCodecs
grd_selectAndEstablishbyAcceptor : ch ¢ selectAndEstablishbyAcceptor
grdl: c € codecList2(ch) \\ manually

then
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act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=
selectAndEstablishbyAcceptor U {ch}
actl: codec(ch) :=c \\ manually
end

Event openWithoutCodecs =
extends openWithoutCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually
where
grd_openWithoutCodecs : ch ¢ openWithoutCodecs
grd9 : ch ¢ openWithRealCodecs
\\ manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)
grd2: cl1 C CODEC \\ manually
grd3: cl =@ \\ manually
grd4 : p € PORT \\ manually
grd5: i € IP \\ manually
grd6 : i € dom(endpointIp~!) \\ manually, WD
grd7 : initiator(ch) = endpointIp~!(i) \\ manually
grd8 : direction(ch) = ItoA \\ manually
then
act_openWithoutCodecs : openWithoutCodecs := openWithoutCodecs U {ch}
actl: initiatorPort2(ch):=p \\ manually
end

Event openAckWithRealCodecs =
extends openAckWithRealCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually
where
grd_openAckWithRealCodecs_seq: ch € openWithoutCodecs
grd_openAckWithRealCodecs : ch ¢ openAckWithRealCodecs
grdl: ¢l C CODEC \\ manually
grd2: cl # @ \\ manually
grd3: p € PORT \\ manually
grd4: i€ IP \\ manually
grd5: i € dom(endpointIp~!) \\ manually, WD
grd6 : acceptor(ch) = endpointIp~!(i) \\ manually
then
act_openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs U {ch}
actl: codecList2(ch):=cl \\ manually
act2: acceptorPort2(ch) :=p \\ manually
end

Event selectAndEstablishbylInitiator =
extends selectAndFEstablishbylnitiator

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyInitiator_seq: ch € openAckWithRealCodecs
grd_selectAndEstablishbyInitiator : ch ¢ selectAndEstablishbyInitiator
grdl: c € codecList2(ch) \\ manually

then
act_selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=
selectAndEstablishbyInitiator U {ch}
actl: codec(ch) :=c \\ manually
end

Event modifyCodecBySelector =
refines modifyCodecBySelector

any
ch, ¢ \\ manually
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where

grd_modifyCodecBySelector_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator

grd_modifyCodecBySelector_loop : ch & closeRequest
grdl: c € codecList2(ch) \\ manually

then
actl: codec(ch) := ¢ \\ manually

end

Event modifyCodecListByDescriptor =

refines modifyCodecListByDescriptor

any
ch, cl \\ manually
where
grd_modifyCodecListByDescriptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecListByDescriptor : ch ¢ modifyCodecListByDescriptor
grd_modifyCodecListByDescriptor_loop : ch ¢ closeRequest
grdl: ¢l C CODEC \\ manually
grd2: cl# @ \\ manually
then
act_modifyCodecListByDescriptor : modifyCodecListByDescriptor :=
modifyCodecListByDescriptor U {ch}
actl: codecList2(ch) := cl \\ manually
end

Event respondBySelectorToCodec =
refines respondBySelectorToCodec

any
ch, ¢ \\ manually
where
grd_respondBySelectorToCodec_seq : ch € modifyCodecListByDescriptor
grd_respondBySelectorToCodec : ch & respondBySelectorToCodec
grdl: c € codecList2(ch) \\ manually
grd2: ch ¢ closeRequest \\ manually, to prove (respondBySelectorToCodec/GRD)
then
act_respondBySelectorToCodec : respondBySelectorToCodec := respondBySelectorToCodecU{ch}
act2: codec(ch) := ¢ \\ manually
end

Event modify_Loop_Resetl =
extends modify_Loop_Resetl
any
ch
where
grd_reset : ch € respondBySelectorToCodec
then
act_reset_modifyCodecListByDescriptor : modifyCodecListByDescriptor :=
modifyCodecListByDescriptor \ {ch}
act_reset_respondBySelectorToCodec : respondBySelectorToCodec :=
respondBySelectorToCodec \ {ch}
end
Event modifylnitiatorPortByDescriptor =
refines modifylnitiatorPortByDescriptor

any

ch, p \\ manually
where

grd_modifyInitiatorPortByDescriptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyInitiatorPortByDescriptor : ch & modifyInitiatorPortByDescriptor
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grd_modifyInitiatorPortByDescriptor_loop: ch ¢ closeRequest
grdl : p # initiatorPort2(ch) \\ manually

then
act_modifyInitiatorPortByDescriptor : modifylnitiatorPortByDescriptor :=
modifyInitiatorPortByDescriptor U {ch}
actl: dnitiatorPort2(ch) := p \\ manually
end

Event respondBySelectorTolnitiatorPort =
extends respondBySelectorTolnitiatorPort
any
ch
where
grd_respondBySelectorToInitiatorPort_seq: ch € modifyInitiatorPortByDescriptor
grd_respondBySelectorToInitiatorPort : ch ¢ respondBySelectorToInitiatorPort
then
act_respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=
respondBySelectorToInitiatorPort U {ch}
end
Event modify_Loop_Reset2 =
extends modify_Loop_Reset2
any
ch
where
grd_reset : ch € respondBySelectorToInitiatorPort
then
act_reset_modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=
modifyInitiatorPortByDescriptor \ {ch}
act_reset_respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=
respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =
refines modifyAcceptorPortByDescriptor

any
ch, p \\ manually
where
grd_modifyAcceptorPortByDescriptor_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyAcceptorPortByDescriptor : ch ¢ modifyAcceptorPortByDescriptor
grd_modifyAcceptorPortByDescriptor_loop : ch ¢ closeRequest
grdl: p # acceptorPort2(ch) \\ manually
then
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor U {ch}
actl: acceptorPort2(ch) :=p \\ manually
end

Event respondBySelectorToAcceptorPort =
extends respondBySelectorToAcceptorPort
any
ch
where
grd_respondBySelectorToAcceptorPort_seq: ch € modifyAcceptorPortByDescriptor
grd_respondBySelectorToAcceptorPort : ch ¢ respondBySelectorToAcceptorPort
then
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort U {ch}
end

Event modify_Loop_Reset3 =



extends modify_Loop_Reset3

Event

Event

any
ch
where
grd_reset : ch € respondBySelectorToAcceptorPort
then
act_reset_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor \ {ch}
act_reset_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort \ {ch}
end
closeRequest =
any
ch
where
grd_closeRequest_seq : ch € selectAndEstablishbyAcceptor U selectAndEstablishbylInitiator
grd_closeRequest : ch & closeRequest
then
act_closeRequest : closeRequest := closeRequest U {ch}

end

closeAck =

refines close

END

A.5

any
ch
where
grd_closeAck _seq: ch € closeRequest
grd_closeAck : ch ¢ closeAck
then
act_closeAck : closeAck := closeAck U {ch}
end

4th Refinement

A.5.1 Machine: M/

MACHINE M4
REFINES M3

SEES

C2

VARIABLES

openWithRealCodecs, openAckWithoutCodecs, select AndEstablishby Acceptor, openWithoutCodecs, ope-
nAckWithRealCodecs, selectAndEstablishbyInitiator, modifyCodecBySelector_withlInitiator,
modifyCodecBySelector_withAcceptor, modifyCodecListByDescriptor_withInitiator,
modifyCodecListByDescriptor_with Acceptor, respondBySelectorTolnitiatorCodec, respond BySelectorToAc-
ceptorCodec, modifyInitiatorPortByDescriptor, respondBySelectorTolnitiatorPort, modifyAcceptorPort-
ByDescriptor, respondBySelectorToAcceptorPort, closeRequest, closeAck, codec \\ manually, initiator-
Port2 \\ manually, acceptorPort2 \\ manually, codecList2 \\ manually

INVARIANTS

inv_modifyCodecBySelector_withInitiator_seq: modifyCodecBySelector_withInitiator C
selectAndFEstablishbyAcceptor U selectAndEstablishbyInitiator

inv_modifyCodecBySelector_withAcceptor_seq: modifyCodecBySelector_withAcceptor C
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator

inv_modifyCodecListByDescriptor_withInitiator_seq: modifyCodecListByDescriptor_withInitiator C
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
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inv_modifyCodecListByDescriptor_withAcceptor_seq: modifyCodecListByDescriptor_withAcceptor C
selectAndFEstablishbyAcceptor U selectAndEstablishbyInitiator

inv_respondBySelectorToInitiatorCodec_seq: respondBySelectorTolnitiatorCodec C
modifyCodecList ByDescriptor_withInitiator U modifyCodecList ByDescriptor_withAcceptor

inv_respondBySelectorToAcceptorCodec_seq : respondBySelectorToAcceptorCodec C
modifyCodecList ByDescriptor_withInitiator U modifyCodecList ByDescriptor_withAcceptor

inv_modifyCodecBySelector_xor_gluing : partition(modifyCodecBySelector_withInitiator U
modifyCodecBySelector_withAcceptor, modifyCodec BySelector _withInitiator,
modifyCodecBySelector_withAcceptor)

inv_modifyCodecListByDescriptor_xor_gluing : partition(modifyCodecListByDescriptor,
modifyCodecList ByDescriptor_withInitiator, modify CodecList ByDescriptor_withAcceptor)

inv_respondBySelectorToCodec_xor_gluing : partition(respondBySelectorToCodec,
respondBySelectorTolnitiatorCodec, respondBySelectorToAcceptorCodec)

EVENTS

Initialisation

Event

begin
act_openWithRealCodecs : openWithRealCodecs := &
act_openAckWithoutCodecs : openAckWithoutCodecs := @&
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := &
act_openWithoutCodecs : openWithoutCodecs := &
act_openAckWithRealCodecs : openAckWithRealCodecs := @&
act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator := &
act_modifyCodecBySelector_withInitiator : modifyCodecBySelector_withInitiator := @
act_modifyCodecBySelector_withAcceptor : modifyCodecBySelector_withAcceptor := &
act_modifyCodecListByDescriptor_withInitiator : modifyCodecListByDescriptor_withinitiator

=g
act_modifyCodecListByDescriptor_withAcceptor : modifyCodecListByDescriptor_withAcceptor
=g

act_respondBySelectorToInitiatorCodec : respondBySelectorTolnitiatorCodec := &
act_respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec := @
act_modifyInitiatorPortByDescriptor : modifylnitiatorPortByDescriptor := @
act_respondBySelectorToInitiatorPort : respondBySelectorTolnitiatorPort == &
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := &
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :== &
act_closeRequest : closeRequest := &
act_closeAck : closeAck := &
actl: codec:=@ \\ manually
act2: initiatorPort2 := @ \\ manually
act3: acceptorPort2 := @ \\ manually
act4d : codecList2 := @ \\ manually

end

open WithRealCodecs =

extends openWithRealCodecs

any
ch
cl manually
P manually
i manually
where

grd_openWithRealCodecs : ch ¢ openWithRealCodecs
grdl : ch ¢ openWithoutCodecs
manually, derived from direction(ch) = Atol, add to prove (inv7/INV)
grd2: cl1 C CODEC \\ manually
grd3: cl # @ \\ manually
grd4 : p € PORT \\ manually
grds: i€ IP \\ manually
grd6 : i € dom(endpointIp~!)
manually - WD
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grd7 : initiator(ch) = endpointIp~1(i) \\ manually
grd8 : direction(ch) = AtoI \\ manually

then
act_openWithRealCodecs : openWithRealCodecs := openWithRealCodecs U {ch}
actl: codecList2(ch):=cl \\ manually
act2: initiatorPort2(ch):=p \\ manually

end

Event openAckWithoutCodecs =
extends openAckWithoutCodecs

any
ch
cl manually
P manually
i manually
t manually, to prove (openAckWithoutCodecs/inv5/INV)
where
grd _openAckWithoutCodecs_seq: ch € openWithRealCodecs
grd_openAckWithoutCodecs : ch ¢ openAckWithoutCodecs
grdl: ¢l C CODEC \\ manually
grd2: cl =@ \\ manually
grd3: p € PORT \\ manually
grd4: i€ IP \\ manually
grd5: i € dom(endpointIp—?)
manually - WD
grd6 : acceptor(ch) = endpointIp~*(i) \\ manually
grd7 : t = codecList2(ch)
manually, to prove (openAckWithoutCodecs/inv5/INV)
then
act_openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs U {ch}
actl: acceptorPort2(ch):=p \\ manually
act2: codecList2(ch) : =t
manually, to prove (openAckWithoutCodecs/inv5/INV)
end

Event selectAndEstablishbyAcceptor =
extends selectAndEstablishbyAcceptor

any
ch
c manually
where
grd _selectAndEstablishbyAcceptor_seq: ch € openAckWithoutCodecs
grd_selectAndEstablishbyAcceptor : ch ¢ selectAndEstablishbyAcceptor
grdl: c € codecList2(ch) \\ manually
then
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=
selectAndEstablishbyAcceptor U {ch}
actl: codec(ch) :=c \\ manually
end

Event openWithoutCodecs =
extends openWithoutCodecs

any
ch
cl manually
P manually
i manually
where

grd_openWithoutCodecs : ch ¢ openWithoutCodecs
grd9 : ch ¢ openWithRealCodecs
manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)
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grd2: cl1 C CODEC \\ manually
grd3: cl =@ \\ manually
grd4 : p € PORT \\ manually
grd5: i€ IP \\ manually
grd6 : i € dom(endpointIp~1!)
manually - WD
grd7 : initiator(ch) = endpointIp~1(i) \\ manually
grd8 : direction(ch) = ItoA \\ manually
then
act_openWithoutCodecs : openWithoutCodecs := openWithoutCodecs U {ch}
actl: initiatorPort2(ch):=p \\ manually
end

Event openAckWithRealCodecs =
extends openAckWithRealCodecs

any
ch
cl manually
P manually
i manually
where

grd_openAckWithRealCodecs_seq: ch € openWithoutCodecs
grd_openAckWithRealCodecs : ch ¢ openAckWithRealCodecs
grdl: c1 C CODEC \\ manually
grd2: cl # @ \\ manually
grd3: p € PORT \\ manually
grd4: i€ IP \\ manually
grd5: i € dom(endpointIp~?!)
manually - WD
grd6 : acceptor(ch) = endpointIp~*(i) \\ manually

then
act_openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs U {ch}
actl: codecList2(ch) :=cl \\ manually
act2: acceptorPort2(ch):=p \\ manually

end

Event selectAndFEstablishbylnitiator =
extends selectAndFEstablishbylnitiator

any
ch
c manually
where
grd_selectAndEstablishbyInitiator_seq: ch € openAckWithRealCodecs
grd_selectAndEstablishbyInitiator : ch ¢ selectAndEstablishbyInitiator
grdl: c € codecList2(ch) \\ manually
then
act_selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=
selectAndEstablishbyInitiator U {ch}
actl: codec(ch) :=c \\ manually
end

Event modifyCodecBySelector_withInitiator =
refines modifyCodecBySelector

any
ch
c manually
where

grd_modifyCodecBySelector_withInitiator_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecBySelector_withInitiator : ch ¢ modifyCodecBySelector_withInitiator
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grd_modifyCodecBySelector_withInitiator_xor : ch ¢ modifyCodecBySelector_withAcceptor
grd_modifyCodecBySelector_withInitiator_loop: ch ¢ closeRequest

grdl: c € codecList2(ch) \\ manually

grd2 : direction(ch) = ItoA \\ manually

then
act_modifyCodecBySelector_withInitiator : modifyCodecBySelector_withInitiator :=
modifyCodecBySelector _withInitiator U {ch}
actl: codec(ch) := ¢ \\ manually
end

Event modifyCodecBySelector_withAcceptor =
refines modifyCodecBySelector

any
ch
c manually
where
grd_modifyCodecBySelector_withAcceptor_seq: ch € selectAndEstablishbyAcceptor U
selectAndFEstablishbylInitiator
grd_modifyCodecBySelector_withAcceptor : ch ¢ modifyCodecBySelector_withAcceptor
grd_modifyCodecBySelector_withAcceptor_xor : ch & modifyCodecBySelector_withInitiator
grd_modifyCodecBySelector_withAcceptor_loop: ch & closeRequest
grdl: c € codecList2(ch) \\ manually
grd2 : direction(ch) = Atol \\ manually
then
act_modifyCodecBySelector_withAcceptor : modifyCodecBySelector_withAcceptor :=
modifyCodecBySelector_withAcceptor U {ch}
actl: codec(ch):=c¢ \\ manually
end

Event modify_Loop_Reset0 =
any
ch
where
grd_reset : ch € modifyCodecBySelector_withInitiator U modifyCodecBySelector_withAcceptor
then
act_reset_modifyCodecListByDescriptor : modifyCodecBySelector_withInitiator :=
modifyCodecBySelector_withInitiator \ {ch}
act_reset_modifyCodecBySelector_withAcceptor : modifyCodecBySelector_withAcceptor :=
modifyCodecBySelector_withAcceptor \ {ch}
end

Event modifyCodecListByDescriptor_withInitiator =
refines modifyCodecListByDescriptor

any
ch
cl
where
grd_modifyCodecListByDescriptor_withInitiator_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylInitiator
grd_modifyCodecListByDescriptor_withInitiator: ch ¢
modifyCodecListByDescriptor_withInitiator
grd_modifyCodecListByDescriptor_withInitiator_xor: ch ¢
modifyCodecListByDescriptor_withAcceptor
grd_modifyCodecListByDescriptor_withInitiator_loop: ch ¢ closeRequest
grdl: ¢l C CODEC
grd2: cl# o
grd3 : direction(ch) = Atol
then

act_modifyCodecListByDescriptor_withInitiator : modifyCodecListByDescriptor_withInitiator
:= modifyCodecListByDescriptor_withInitiator U {ch}
actl: codecList2(ch) := cl
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end

Event modifyCodecListByDescriptor_withAcceptor =

refines modifyCodecListByDescriptor

any
ch
cl
where
grd_modifyCodecListByDescriptor_withAcceptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecListByDescriptor_withAcceptor : ch ¢
modifyCodecListByDescriptor_withAcceptor
grd_modifyCodecListByDescriptor_withAcceptor_xor : ch ¢
modifyCodecList ByDescriptor_withInitiator
grd_modifyCodecListByDescriptor_withAcceptor_loop: ch & closeRequest
grdl: ¢l C CODEC
grd2: cl# @
grd3 : direction(ch) = ItoA
then
act_modifyCodecListByDescriptor_withAcceptor : modifyCodecListByDescriptor_withAcceptor
:= modifyCodecListByDescriptor_withAcceptor U {ch}
actl: codecList2(ch) := cl
end

Event respondBySelectorTolnitiatorCodec =

refines respondBySelectorToCodec

any
ch
c
where
grd_respondBySelectorToInitiatorCodec_seq : ch € modifyCodecListByDescriptor_withInitiator
U modifyCodecListByDescriptor _withAcceptor
grd_respondBySelectorToInitiatorCodec : ch ¢ respondBySelectorTolnitiatorCodec
grd_respondBySelectorToInitiatorCodec_xor : ch & respondBySelectorToAcceptorCodec
grdl: c € codecList2(ch)
grd2 : direction(ch) = Atol
grd3: ch ¢ closeRequest
manually, from M3 to prove GRD
then
act_respondBySelectortoInitiatorCodec : respondBySelectorTolnitiator Codec :=
respondBySelectorTolnitiatorCodec U {ch}
actl: codec(ch) :=c¢
end

Event respondBySelectorToAcceptorCodec =

refines respondBySelectorToCodec

any
ch
c
where
grd_respondBySelectorToAcceptorCodec_seq : ch € modifyCodecListByDescriptor_withInitiator
U modifyCodecListByDescriptor_withAcceptor
grd_respondBySelectorToAcceptorCodec : ch ¢ respondBySelectorToAcceptorCodec
grd_respondBySelectorToAcceptorCodec_xor : ch ¢ respondBySelectorTolnitiatorCodec
grdl: c € codecList2(ch)
grd2 : direction(ch) = ItoA
grd3: ch ¢ closeRequest
manually, from M3 to prove GRD
then

act_respondBySelectortoAcceptorCodec : respondBySelectorToAcceptorCodec :=
respondBySelectorToAcceptorCodec U {ch}
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actl: codec(ch) :=c¢
end
Event modify_Loop_Resetl =
refines modify_Loop_Resetl

any
ch

where
grd_reset : ch € respondBySelectorTolnitiatorCodec U respondBySelectorToAcceptorCodec

then
act_reset_modifyCodecListByDescriptor_withInitiator :
modifyCodecListByDescriptor_withInitiator := modifyCodecListByDescriptor_withInitiator\
{ch}
act_reset_modifyCodecListByDescriptor_withAcceptor :
modifyCodecListByDescriptor_withAcceptor := modifyCodecListByDescriptor_withAcceptor\
{ch}
act_reset_respondBySelectorToInitiatorCodec : respondBySelectorTolnitiatorCodec :=
respondBySelectorTolnitiatorCodec \ {ch}
act_reset_respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec :=
respondBySelectorToAcceptorCodec \ {ch}
end

Event modifylnitiatorPortByDescriptor =
extends modifylnitiatorPortByDescriptor

any
ch
) manually
where

grd _modifyInitiatorPortByDescriptor_seq: ch &€
selectAndEstablishbyAcceptor U selectAndEstablishbyInitiator

grd modifyInitiatorPortByDescriptor : ch ¢ modifyInitiatorPortByDescriptor

grd_modifyInitiatorPortByDescriptor_loop: ch ¢ closeRequest

grdl : p # initiatorPort2(ch) \\ manually

then
act_modifyInitiatorPortByDescriptor : modifyInitiatorPortByDescriptor :=
modifyInitiatorPortByDescriptor U {ch}
actl: initiatorPort2(ch):=p \\ manually
end

Event respondBySelectorTolnitiatorPort =
extends respondBySelectorTolnitiatorPort
any
ch
where
grd_respondBySelectorTolnitiatorPort_seq: ch € modifyInitiatorPortByDescriptor
grd_respondBySelectorTolnitiatorPort : ch ¢ respondBySelectorToInitiatorPort
then
act_respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=
respondBySelectorToInitiatorPort U {ch}
end
Event modify_Loop_Reset2 =
extends modify_Loop_Reset2
any
ch
where
grd_reset : ch € respondBySelectorToInitiatorPort
then
act_reset_modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=

modifyInitiatorPortByDescriptor \ {ch}
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act_reset_respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=
respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =
extends modifyAcceptorPortByDescriptor

any
ch
P manually
where
grd_modifyAcceptorPortByDescriptor_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbyInitiator
grd_modifyAcceptorPortByDescriptor : ch ¢ modifyAcceptorPortByDescriptor
grd_modifyAcceptorPortByDescriptor_loop: ch ¢ closeRequest
grdl : p # acceptorPort2(ch) \\ manually
then
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor U {ch}
actl: acceptorPort2(ch):=p \\ manually
end

Event respondBySelectorToAcceptorPort =
extends respondBySelectorToAcceptorPort

any
ch
where
grd_respondBySelectorToAcceptorPort_seq: ch € modifyAcceptorPortByDescriptor
grd_respondBySelectorToAcceptorPort : ch ¢ respondBySelectorToAcceptorPort
then
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort U {ch}
end
Event modify_Loop_Reset3 =
extends modify_Loop_Reset3
any
ch
where
grd_reset : ch € respondBySelectorToAcceptorPort
then
act_reset_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor \ {ch}
act_reset_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort \ {ch}
end
Event closeRequest =
extends closeRequest
any
ch
where
grd _closeRequest_seq: ch € selectAndEstablishbyAcceptor U
selectAndEstablishbyInitiator
grd_closeRequest : ch ¢ closeRequest
then
act_closeRequest : closeRequest := closeRequest U {ch}
end
Event closeAck =

extends closeAck

any



ch

where

then

end

END

grd _closeAck _seq: ch € closeRequest
grd_closeAck : ch ¢ closeAck

act_closeAck : closeAck := closeAck U {ch}

A.6 5th Refinement

A.6.1 Machine: M5

MACHINE
REFINES
SEES C2

M5
M4

VARIABLES
openWithRealCodecs, openAckWithoutCodecs, select AndEstablishbyAcceptor,
openWithoutCodecs, openAckWithRealCodecs, select AndEstablishbylInitiator,
modifyCodecBySelector_withInitiator, modifyCodecBySelector_withAcceptor,

modifyCodecListByDescriptor_withInitiator, modifyCodecListByDescriptor_withAcceptor,

respondBySelectorTolnitiatorCodec, respondBySelectorToAcceptorCodec,

modifylnitiatorPortByDescriptor, respondBySelectorTolnitiatorPort,

modifyAcceptorPortByDescriptor, respondBySelectorToAcceptorPort, closeRequestAtol,

closeRequestItoA, closeAckAtol, closeAckItoA, codec \\ manually, initiatorPort2 \\ manually,

acceptorPort2 \\ manually, codecList2 \\ manually
INVARIANTS

inv_closeRequestAtoIl_seq: closeRequestAtol C

selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator

inv_closeRequestItoA_seq: closeRequestitoA C

selectAndFEstablishbyAcceptor U selectAndEstablishbyInitiator

inv_closeAckAtoI_seq: closeAckAtol C closeRequestAtol U closeRequestitoA

inv_closeAckItoA _seq: closeAckltoA C closeRequestAtol U closeRequestltoA

inv_closeRequest_xor_gluing : partition(closeRequest, closeRequestAtol, closeRequestItoA)

inv_closeAck _xor_gluing : partition(closeAck, closeAckAtol, closeAcklItoA)

EVENTS

Initialisation

begin

act_openWithRealCodecs : openWithRealCodecs := &

act_openAckWithoutCodecs : openAckWithoutCodecs := &

act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor := &

act_openWithoutCodecs : openWithoutCodecs := @

act_openAckWithRealCodecs : openAckWithRealCodecs := &

act_selectAndEstablishbyInitiator : selectAndEstablishbylnitiator := &

act_modifyCodecBySelector_withInitiator : modifyCodecBySelector_withInitiator := &

act_modifyCodecBySelector_withAcceptor : modifyCodecBySelector_withAcceptor := &

act_modifyCodecListByDescriptor_withInitiator : modifyCodecListByDescriptor_withInitiator
=g

act_modifyCodecListByDescriptor_withAcceptor : modifyCodecListByDescriptor_withAcceptor
=g

act_respondBySelectorToInitiatorCodec : respondBySelectorTolnitiatorCodec := @&

act_respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec := &

act_modifyInitiatorPortByDescriptor : modifylnitiatorPortByDescriptor := &

act_respondBySelectorToInitiatorPort : respondBySelectorTolnitiatorPort := &
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act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor := &
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort := &
act_closeAckAtol : closeAckAtol := @
act_closeAckItoA : closeAckltoA := &
act_closeRequestAtol : closeRequestAtol := &
act_closeRequestItoA : closeRequestltoA := &
actl: codec :=@ \\ manually
act2: initiatorPort2 := @ \\ manually
act3: acceptorPort2 := @ \\ manually
act4 : codecList?2 := @ \\ manually
end

Event openWithRealCodecs =
extends openWithRealCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually
where
grd_openWithRealCodecs : ch ¢ openWithRealCodecs
grdl : ch ¢ openWithoutCodecs
\\ manually, derived from direction(ch) = Atol, add to prove (inv7/INV)
grd2: c1 C CODEC \\ manually
grd3: cl # @ \\ manually
grd4: p € PORT \\ manually
grds: i€ IP \\ manually
grd6 : i € dom(endpointIp~!) \\ manually, WD
grd7 : initiator(ch) = endpointIp~!(i) \\ manually
grd8 : direction(ch) = AtoI \\ manually
then
act_openWithRealCodecs : openWithRealCodecs := openWithRealCodecs U {ch}
actl: codecList2(ch) :=cl \\ manually
act2: initiatorPort2(ch):=p \\ manually
end

Event openAckWithoutCodecs =
extends openAckWithoutCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually, t
\\ manually, to prove (openAckWithoutCodecs/inv5/INV)
where
grd_openAckWithoutCodecs_seq : ch € openWithRealCodecs
grd_openAckWithoutCodecs : ch ¢ openAckWithoutCodecs
grdl : c1 C CODEC \\ manually
grd2: cl = \\ manually
grd3: p € PORT \\ manually
grd4: i € IP \\ manually
grd5: i € dom(endpointIp~!) \\ manually, WD
grd6 : acceptor(ch) = endpointIp—!(i) \\ manually
grd7 : t = codecList2(ch) \\ manually, to prove (openAckWithoutCodecs/inv5/INV)
then
act_openAckWithoutCodecs : openAckWithoutCodecs := openAckWithoutCodecs U {ch}
actl: acceptorPort2(ch):=p \\ manually, to prove (openAckWithoutCodecs/inv5/INV)
act2: codecList2(ch):=t \\ manually, to prove (openAckWithoutCodecs/inv5/INV)
end

Event selectAndFEstablishbyAcceptor =
extends selectAndEstablishbyAcceptor

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyAcceptor_seq: ch € openAckWithoutCodecs
grd_selectAndEstablishbyAcceptor : ch ¢ selectAndEstablishbyAcceptor
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grdl: c € codecList2(ch) \\ manually

then
act_selectAndEstablishbyAcceptor : selectAndEstablishbyAcceptor :=
selectAndEstablishbyAcceptor U {ch}
actl: codec(ch) :=c \\ manually
end

Event openWithoutCodecs =
extends openWithoutCodecs

any
ch, ¢l \\ manually, p \\ manually, i \\ manually
where
grd_openWithoutCodecs : ch ¢ openWithoutCodecs
grd9 : ch ¢ openWithRealCodecs
manually, derived from direction(ch) = ItoA, add to prove (inv7/INV)
grd2: cl1 C CODEC \\ manually
grd3: cl =@ \\ manually
grd4 : p € PORT \\ manually
grds: i€ IP \\ manually
grd6 : i € dom(endpointIp—!) \\ manually, WD
grd7 : initiator(ch) = endpointIp~!(i) \\ manually
grd8 : direction(ch) = ItoA \\ manually
then
act_openWithoutCodecs : openWithoutCodecs := openWithoutCodecs U {ch}
actl: initiatorPort2(ch):=p \\ manually
end

Event openAckWithRealCodecs =
extends openAckWithRealCodecs

any
ch, cl \\ manually, p \\ manually, i \\ manually
where
grd_openAckWithRealCodecs_seq: ch € openWithoutCodecs
grd_openAckWithRealCodecs : ch ¢ openAckWithRealCodecs
grdl: cl1 C CODEC \\ manually
grd2: cl # @ \\ manually
grd3: p € PORT \\ manually
grd4: i€ IP \\ manually
grd5: i € dom(endpointIp—!) \\ manually, WD
grd6 : acceptor(ch) = endpointIp~*(i) \\ manually
then
act_openAckWithRealCodecs : openAckWithRealCodecs := openAckWithRealCodecs U {ch}
actl: codecList2(ch) :=cl \\ manually
act2: acceptorPort2(ch):=p \\ manually
end

Event selectAndEstablishbylInitiator =
extends selectAndEstablishbylnitiator

any

ch, ¢ \\ manually
where

grd_selectAndEstablishbyInitiator_seq: ch € openAckWithRealCodecs
grd_selectAndEstablishbyInitiator : ch ¢ selectAndEstablishbyInitiator
grdl: c € codecList2(ch) \\ manually

then
act_selectAndEstablishbyInitiator : selectAndEstablishbyInitiator :=
selectAndEstablishbyInitiator U {ch}
actl: codec(ch):=c \\ manually
end

Event modifyCodecBySelector_withInitiator =
refines modifyCodecBySelector_withInitiator
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any
ch, ¢ \\ manually
where
grd_modifyCodecBySelector_withInitiator_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecBySelector_withInitiator : ch ¢ modifyCodecBySelector_withInitiator
grd_modifyCodecBySelector_withInitiator_xor : ch ¢ modifyCodecBySelector_withAcceptor
grd_modifyCodecBySelector_withInitiator_loop: ch & closeRequestAtol U closeRequestltoA
grdl: c € codecList2(ch)
grd2 : direction(ch) = ItoA
then
act_modifyCodecBySelector_withInitiator : modifyCodecBySelector_withInitiator :=
modifyCodecBySelector_withInitiator U {ch}
actl: codec(ch) := ¢
end

Event modifyCodecBySelector_withAcceptor =
refines modifyCodecBySelector_withAcceptor

any
ch, ¢ \\ manually
where
grd_modifyCodecBySelector_withAcceptor_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecBySelector_withAcceptor : ch ¢ modifyCodecBySelector_withAcceptor
grd_modifyCodecBySelector_withAcceptor_xor : ch ¢ modifyCodecBySelector_withInitiator
grd_modifyCodecBySelector_withAcceptor_loop: ch ¢ closeRequestAtol U closeRequestltoA
grdl: c € codecList2(ch)
grd2 : direction(ch) = Atol
then
act_modifyCodecBySelector_withAcceptor : modifyCodecBySelector_withAcceptor :=
modifyCodecBySelector_withAcceptor U {ch}
actl: codec(ch) := ¢
end

Event modify_Loop_Reset0 =
extends modify_Loop_Reset0
any
ch
where
grd_reset : ch € modifyCodecBySelector_withInitiatorUmodifyCodecBySelector_withAcceptor
then
act_reset_modifyCodecListByDescriptor : modifyCodecBySelector_withInitiator :=
modifyCodecBySelector_withInitiator \ {ch}
act_reset_modifyCodecBySelector_withAcceptor : modifyCodecBySelector_withAcceptor :=
modifyCodecBySelector_withAcceptor \ {ch}
end

Event modifyCodecListByDescriptor_withInitiator =
refines modifyCodecListByDescriptor_withInitiator

any

ch, cl \\ manually
where

grd_modifyCodecListByDescriptor_withInitiator_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator

grd_modifyCodecListByDescriptor_withInitiator : ch ¢
modifyCodecList ByDescriptor_withInitiator

grd_modifyCodecListByDescriptor_withInitiator_xor: ch ¢
modifyCodecListByDescriptor_withAcceptor

grd_modifyCodecListByDescriptor_withInitiator_loop: ch ¢
closeRequestAtol U closeRequestltoA

grdl: ¢l C CODEC



212 Appendix A The Event-B Model of the Media Channel System

grd2: cl # @
grd3 : direction(ch) = Atol
then
act_modifyCodecListByDescriptor_withInitiator : modifyCodecListByDescriptor_withInitiator
:= modifyCodecListByDescriptor_withInitiator U {ch}
actl: codecList2(ch) := cl
end

Event modifyCodecListByDescriptor_withAcceptor =
refines modifyCodecListByDescriptor_withAcceptor

any
ch, cl \\ manually
where
grd_modifyCodecListByDescriptor_withAcceptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyCodecListByDescriptor_withAcceptor : ch ¢
modifyCodecListByDescriptor_withAcceptor
grd_modifyCodecListByDescriptor_withAcceptor_xor: ch ¢
modifyCodecList ByDescriptor_withInitiator
grd_modifyCodecListByDescriptor_withAcceptor_loop: ch ¢
closeRequestAtol U closeRequestitoA
grdl: ¢l C CODEC
grd2: cl# @
grd3 : direction(ch) = ItoA
then
act_modifyCodecListByDescriptor_withAcceptor : modifyCodecListByDescriptor_withAcceptor
:= modifyCodecListByDescriptor_withAcceptor U {ch}
actl: codecList2(ch) := cl
end

Event respondBySelectorTolnitiatorCodec =

refines respondBySelectorTolnitiatorCodec

any
ch, ¢ \\ manually
where
grd_respondBySelectorToInitiatorCodec_seq: ch €
modifyCodecList ByDescriptor_withInitiator U modifyCodecListByDescriptor_withAcceptor
grd_respondBySelectorToInitiatorCodec : ch ¢ respondBySelectorTolnitiatorCodec
grd_respondBySelectorTolnitiatorCodec_xor : ch ¢ respondBySelectorToAcceptorCodec
grdl: c € codecList2(ch)
grd2 : direction(ch) = Atol
grd3: ch ¢ closeRequestAtol U closeRequestltoA \\ manually, from M3 to prove GRD
then
act_respondBySelectortoInitiatorCodec : respondBySelectorTolnitiatorCodec :=
respondBySelectorTolnitiatorCodec U {ch}
actl: codec(ch) := ¢
end

Event respondBySelectorToAcceptorCodec =
refines respondBySelectorToAcceptorCodec

any

ch, ¢ \\ manually
where

grd_respondBySelectorToAcceptorCodec_seq : ch € modifyCodecListByDescriptor_withInitiator
U modifyCodecListByDescriptor_withAcceptor
grd_respondBySelectorToAcceptorCodec : ch ¢ respondBySelectorToAcceptorCodec
grd_respondBySelectorToAcceptorCodec_xor : ch ¢ respondBySelectorTolnitiatorCodec
grdl: c € codecList2(ch)
grd2 : direction(ch) = ItoA
grd3 : ch ¢ closeRequestAtol U closeRequestltoA \\ manually, from M3 to prove GRD
then
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act_respondBySelectortoAcceptorCodec : respondBySelectorToAcceptorCodec :=
respondBySelectorToAcceptorCodec U {ch}
actl: codec(ch) :=c
end

Event modify_Loop_Resetl =
extends modify_Loop_Resetl

any
ch
where
grd _reset : ch €
respondBySelectorToInitiatorCodec U respondBySelectorToAcceptorCodec
then
act_reset_modifyCodecListByDescriptor_withInitiator :
modifyCodecListByDescriptor_withInitiator :=
modifyCodecListByDescriptor_withInitiator \ {ch}
act_reset_modifyCodecListByDescriptor_withAcceptor :
modifyCodecListByDescriptor_withAcceptor :=
modifyCodecListByDescriptor_withAcceptor \ {ch}
act_reset_respondBySelectorToInitiatorCodec : respondBySelectorToInitiatorCodec
:= respondBySelectorToInitiatorCodec \ {ch}
act_reset_respondBySelectorToAcceptorCodec : respondBySelectorToAcceptorCodec
:= respondBySelectorToAcceptorCodec \ {ch}
end

Event modifylnitiatorPortByDescriptor =
refines modifyInitiatorPortByDescriptor

any
ch, p \\ manually
where
grd_modifyInitiatorPortByDescriptor_seq: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyInitiatorPortByDescriptor : ch & modifyInitiatorPortByDescriptor
grd_modifyInitiatorPortByDescriptor_loop: ch ¢ closeRequestAtol U closeRequestitoA
grdl: p # initiatorPort2(ch) \\ manually
then
act_modifyInitiatorPortByDescriptor : modifylnitiator PortByDescriptor :=
modifyInitiatorPortByDescriptor U {ch}
actl: dnitiatorPort2(ch) := p \\ manually
end

Event respondBySelectorTolnitiatorPort =
extends respondBySelectorTolnitiatorPort
any
ch
where
grd_respondBySelectorTolnitiatorPort_seq: ch € modifyInitiatorPortByDescriptor
grd_respondBySelectorToInitiatorPort : ch ¢ respondBySelectorToInitiatorPort
then
act_respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=
respondBySelectorToInitiatorPort U {ch}
end
Event modify_Loop_Reset2 =
extends modify_Loop_Reset2
any
ch
where
grd_reset : ch € respondBySelectorToInitiatorPort
then
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act_reset_modifyCodecListByDescriptor : modifyInitiatorPortByDescriptor :=
modifyInitiatorPortByDescriptor \ {ch}
act_reset_respondBySelectorToInitiatorPort : respondBySelectorToInitiatorPort :=
respondBySelectorToInitiatorPort \ {ch}
end

Event modifyAcceptorPortByDescriptor =
refines modifyAcceptorPortByDescriptor

any
ch, p \\ manually
where
grd_modifyAcceptorPortByDescriptor_seq: ch €
selectAndFEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_modifyAcceptorPortByDescriptor : ch ¢ modifyAcceptorPortByDescriptor
grd_modifyAcceptorPortByDescriptor_loop: ch ¢ closeRequestAtol U closeRequestltoA
grdl: p # acceptorPort2(ch) \\ manually
then
act_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor U {ch}
actl: acceptorPort2(ch) := p \\ manually
end

Event respondBySelectorToAcceptorPort =
extends respondBySelectorToAcceptorPort
any
ch
where
grd_respondBySelectorToAcceptorPort_seq: ch € modifyAcceptorPortByDescriptor
grd_respondBySelectorToAcceptorPort : ch ¢ respondBySelectorToAcceptorPort
then
act_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort U {ch}
end
Event modify_Loop_Reset3 =
extends modify_Loop_Reset3
any
ch
where
grd_reset : ch € respondBySelectorToAcceptorPort
then
act_reset_modifyAcceptorPortByDescriptor : modifyAcceptorPortByDescriptor :=
modifyAcceptorPortByDescriptor \ {ch}
act_reset_respondBySelectorToAcceptorPort : respondBySelectorToAcceptorPort :=
respondBySelectorToAcceptorPort \ {ch}
end

Event closeRequestAtol =

refines closeRequest

any
ch
where
grd_closeRequestAtol_seq: ch € selectAndEstablishbyAcceptor U selectAndFEstablishbylnitiator
grd_closeRequestAtol : ch ¢ closeRequestAtol
grd_closeRequestAtoIl_xor : ch ¢ closeRequestltoA
grdl : direction(ch) = Atol \\ manually
then
act_closeRequestAtol : closeRequestAtol := closeRequestAtol U {ch}
end

Event closeRequestltoA =

refines closeRequest
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any
ch
where
grd_closeRequestItoA_sequencing: ch €
selectAndEstablishbyAcceptor U selectAndEstablishbylnitiator
grd_closeRequestItoA: ch ¢ closeRequestltoA
grd_closeRequestItoA_xor : ch ¢ closeRequestAtol
grdl : direction(ch) = ItoA \\ manually
then
act_closeRequestItol : closeRequestltoA := closeRequestltoA U {ch}
end

Event closeAckAtol =
refines closeAck

any
ch
where
grd_closeAckAtoI_sequencing : ch € closeRequestAtol U closeRequestitoA
grd_closeAckAtoI : ch ¢ closeAckAtol
grd_closeAckAtoI_xor : ch ¢ closeAckltoA
grdl : direction(ch) = Atol \\ manually
then
act_closeAckAtol : closeAckAtol := closeAckAtol U {ch}
end
Event closeAckltoA =
refines closeAck
any
ch
where
grd_closeAckItoA _sequencing : ch € closeRequestAtol U closeRequestitoA
grd_closeAckItoA: ch & closeAckltoA
grd_closeAckItoA xor : ch ¢ closeAckAtol
grdl : direction(ch) = ItoA \\ manually
then
act_closeAckItoA : closeAckltoA := closeAckltoA U {ch}
end

END






Appendix B

The Event-B Model of the
BepiColombo System

B.1 Abstract Specification

B.1.1 Context: C0

CONTEXT CO

SETS
TC \\ Telecommand, TC_Types_Set

CONSTANTS
SCI_on_TC, HK_off_TC, HK_on_TC, TC_Type, SCI_off_TC

AXIOMS
axml : partition( TC_Types_Set, { HK _on_TC},{HK _off _TC},{SCI_on_TC},{SCI_off _TC})
axm2 : TC_Type € TC — TC_Types_Set

END

B.1.2 Machine: M0

MACHINE MO
SEES CO0

VARIABLES
ReceiveTC, TC_Validation_Ok, TCValid_GenerateData, TCValid_ReplyDataTM, TC_Validation_Fail

INVARIANTS
inv_ReceiveTC: ReceiveTC C TC
inv_TC_Validation Ok _seq: TC_Validation_Ok C ReceiveTC
inv_TCValid_GenerateData seq: TCValid_GenerateData C TC_Validation_Ok
inv_TCValid_ReplyDataTM _seq: TCValid_ReplyDataTM C TCValid_GenerateData
inv_TC_Validation Fail seq: TC_Validation_Fail C ReceiveTC
invl: TC_Validation_Ok N TC_Validation_Fail = & \\ manually
EVENTS
Initialisation
begin
act_ReceiveTC: ReceiweTC := &



act_TC_Validation 0k : TC_Validation_Ok := &
act_TCValid GenerateData : TCValid_GenerateData := &
act_TCValid ReplyDataTM: TCValid_ReplyDataTM := @
act_TC_Validation Fail : TC_Validation_Fail := &

end

Event ReceiweTC =

any
tc
where
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiweTC := ReceieTC U {tc}
end

Event TC_Validation_Ok =

any
tc
where
grd_TC_Validation Ok_seq: tc € ReceiveTC
grd_TC_Validation Ok : ¢c ¢ TC_Validation_Ok
grdl: tc ¢ TC_Validation_Fail \\ manually
then
act_TC_Validation 0k : T'C_Validation_Ok := TC_Validation_Ok U {tc}
end

Event TCValid_GenerateData =

any
tc
where
grd_TCValid GenerateData_seq: tc € TC_Validation_Ok
grd_TCValid GenerateData: tc ¢ TCValid_GenerateData
grdl: TC_Type(tc) € {HK_on_TC,SCI_on_TC} \\ manually
then
act_TCValid GenerateData: TCValid_GenerateData := TCValid_GenerateData U {tc}
end

Event TCValid_ReplyDataTM =

any
tc
where
grd_TCValid ReplyDataTM_seq: tc € T'C'Valid_GenerateData
grd _TCValid ReplyDataTM: tc ¢ TCValid_ReplyDataTM
then
act_TCValid ReplyDataTM: TCValid_ReplyDataTM := TCValid_ReplyDataTM U {tc}
end

Event TC_Validation_Fail =

any
tc
where
grd _TC_Validation Fail seq: tc € ReceiveTC
grd_TC_Validation Fail: tc ¢ TC_Validation_Fail
grdl : tc ¢ TC_Validation_OFk \\ manually
then
act_TC_Validation Fail : TC_Validation_Fail := TC_Validation_Fail U {tc}
end

END
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B.2 1st Refinement

B.2.1 Machine: M1

MACHINE M1
REFINES MO0
SEES Co0
VARIABLES
ReceiveTC, TCCheck_Ok, TCExecute_Ok, TCExecOk_ReplyCtrlTM, TCValid_GenerateData,
TCValid_ReplyDataTM, TCCheck_Fail, TCExecute_Fail, TCExecFail ReplyCtrlTM,
TCCheckFail_ReplyCtrlTM
INVARIANTS
inv_TCCheck Ok_seq: TCCheck_Ok C ReceiveTC
inv_TCExecute_Ok_seq: TCFEzecute_Ok C TCCheck_Ok
inv_TCExecOk_ReplyCtrlTM_seq: TCEzecOk_ReplyCtriTM C TCExzecute_Ok
inv_TCCheck Fail_seq: TCCheck_Fail C ReceiveTC
inv_TCExecute_Fail_seq: TCEzecute_Fail C TCCheck_Ok
inv_TCExecFail ReplyCtrlTM_seq: TCEzecFail_ReplyCtriTM C TCExecute_Fail
inv_TCCheckFail ReplyCtrlTM_seq: TCCheckFail_ReplyCtrlTM C TCCheck_Fuil
inv_TCValid GenerateData seq: TCValid_GenerateData C TCFEzecute_Ok \\ weak seq
inv_TCExecute_Ok_gluing : TCEzecute_Ok = TC_Validation_Ok
inv_gluing : TCEzecute_Fail U TCCheck_Fail = TC_Validation_Fail
invl: TCCheck_Ok N TCCheck_Fail = @ \\ manually
inv2 : TCEzecute_Ok N TCEzecute_Fail = @ \\ manually
EVENTS
Initialisation
begin
act_ReceiveTC: ReceiweTC := &
act_TCCheck 0Ok : TCCheck_Ok := &
act_TCExecute_0k : TCFEzecute_Ok := &
act_TCExecOk_ReplyCtrlTM : TCEzecOk_ReplyCtriTM := &
act_TCValid_GenerateData : TCValid_GenerateData := &
act_TCValid ReplyDataTM: TCValid_ReplyDataTM := @
act_TCCheck_Fail : TCCheck_Fail := @&
act_TCExecute_Fail : TCEzecute_Fail := &
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM := &
act_TCCheckFail ReplyCtrlTM: T'CCheckFail_ReplyCtriTM = @&
end
Event ReceiveTC =
refines ReceiveTC
any
tc
where
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiweTC := ReceiveTC U {ic}
end

Event TCCheck_Ok =

any
tc
where
grd _TCCheck Ok_seq: tc € ReceiveTC \\ although in both weak and strong seq
grd _TCCheck 0k : tc
¢ TCCheck_Ok
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grdl : tc ¢ TCCheck_Fail \\ manually
then

act_TCCheck Ok : TCCheck_Ok := TCCheck_Ok U {tc}
end

Event TCEzecute_Ok =
refines TC_Validation_Ok

any
tc
where
grd_TCExecute_0Ok_seq: tc € TCCheck_Ok
grd_TCExecute_Ok : tc ¢ TCEzecute_Ok
grdl: tc ¢ TCEzecute_Fail \\ manually
then
act_TCExecute_0k : TCFEzecute_Ok := TCFEzecute_Ok U {tc}
end

Event TCFEzecOk_ReplyCtriTM =

any
tc
where
grd_TCExecOk_ReplyCtrlTM_seq: tc € TCEzecute_Ok
grd_TCExecOk_ReplyCtrlTM: tc ¢ TCEzecOk_ReplyCtriTM
then
act_TCExecOk_ReplyCtrlTM: TCFEzecOk_ReplyCtrlTM := TCFEzecOk_ReplyCtriTM U {tc}
end

Event TCValid_GenerateData =
refines TCValid_GenerateData

any
tc
where
grd _TCValid GenerateData seq: tc € TCEzxecute_Ok
grd_TCValid GenerateData: tc ¢ TCValid_GenerateData
grdl: TC_Type(tc) € {HK_on_TC,SCI_on_TC} \\ manually
then
act_TCValid GenerateData: TCValid_GenerateData := TCValid_GenerateData U {tc}
end

Event TCValid_ReplyDataTM =
extends TCValid_ReplyDataTM

any
tc
where
grd _TCValid ReplyDataTM seq: tc € TCValid GenerateData
grd _TCValid ReplyDataTM: tc ¢ TCValid_ReplyDataTM
then
act_TCValid ReplyDataTM: TCValid ReplyDataTM := TCValid ReplyDataTM U {tc}
end

Event TCEzecute_Fail =
refines T'C_Validation_Fail
any
tc
where
grd_TCExecute_Fail_seq: tc € TCCheck_Ok
grd_TCExecute_Fail : tc ¢ TCFEzecute_Ok
grdl : tc ¢ TCEzecute_Fail
then
act_TCExecute_Fail : TCEzecute_Fail := TCExecute_Fail U {tc}
end



Event TCEzecFail_ReplyCtriTM =

any
tc
where
grd_TCExecFail ReplyCtrlTM _seq: tc € TCFEzxecute_Fail
grd_TCExecFail ReplyCtrlTM: tc ¢ TCEzecFail_ReplyCtriTM
then
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM :=
TCEzecFail_ReplyCtrITM U {tc}
end

Event TCCheck_Fail =
refines TC_Validation_Fail

any
tc
where
grd_TCCheck Fail_seq: tc € ReceiveTC
grd _TCCheck Fail : tc ¢ TCCheck_Ok
grdl : tc ¢ TCCheck_Fail
then
act_TCCheck Fail : TCCheck_Fail := TCCheck_Fail U {tc}
end

Event TCCheckFail_ReplyCtrlTM =

any
tc
where
grd _TCCheckFail ReplyCtrlTM seq: tc € T'CCheck_Fail
grd_TCCheckFail ReplyCtrlTM: tc ¢ T'CCheckFail_ReplyCtrlTM
then
act_TCCheckFail ReplyCtrlTM: TCCheckFail_ReplyCtriTM :=
TCCheckFail_ReplyCtriTM U {tc}
end

END

B.3 2nd Refinement

B.3.1 Context: C1

CONTEXT C1
EXTENDS C0
SETS

PIDS
CONSTANTS

PID, csw, sixsp, sixsx, mixst, mixsc

AXIOMS
axml : partition(PIDS, {csw}, {mizsc}, {mizst}, {sizsp}, {sizsz})
axm2 : PID € TC — PIDS

END
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B.3.2 Machine: M2

MACHINE M2
REFINES Ml
SEES C1

VARIABLES
ReceiveTC, TCCheck_Ok, TCCore_Execute_Ok, TCDevice_Execute_Ok, TCCheck_Fail,
TCCore_Execute_Fail, TCDevice_Execute_Fail, TCExecOk_ReplyCtrlITM, TCValid_ReplyDataTM,
TCExecFail_ReplyCtrlTM, TCCheckFail_ReplyCtrlTM, TCValid_GenerateData

INVARIANTS
inv_TCCore_Execute_Ok_seq: TCCore_Ezecute_Ok C TCCheck_Ok
inv_TCDevice_Execute_0Ok_seq: TCDevice_Ezecute_Ok C TCCheck_Ok

inv_TCExecOk_ReplyCtrlTM_seq: TCEzecOk_ReplyCtriTM C
TCCore_Ezxecute_Ok U TCDevice_FExecute_Ok

inv_TCCore_Execute_Fail_seq: TCCore_Ezecute_Fail C TCCheck_Ok

inv_TCDevice_Execute_Fail seq: TCDevice_Ezecute_Fail C TCCheck_Ok

inv_TCExecFail ReplyCtrlTM seq: TCEzxecFail_ReplyCtrlTM C
TCCore_Ezecute_Fail U TCDevice_FEzecute_Fail

inv_TCValid GenerateData seq: T'CValid_GenerateData C
TCCore_Execute_Ok U TCDevice_Ezecute_Ok \\ weak seq

inv_xor_gluingl : partition(TCEzecute_Ok, TCCore_Ezecute_Ok, TCDevice_Ezecute_Ok)
inv_xor_gluing?2 : partition( TCEzecute_Fail, TCCore_Execute_Fail, TCDevice_FEzecute_Fail)

invl : partition( TCCore_Ezecute_Ok U TCCore_Execute_Fail U TCDevice_Ezecute_Ok
U T'CDevice—_Ezecute_Fail, TCCore_Ezecute_Ok, TCCore_Execute_Fail,
TCDevice_Ezecute_Ok, TCDevice_Execute_Fail) \\ manually
EVENTS
Initialisation
begin
act_ReceiveTC: ReceiweTC := &
act_TCCheck 0Ok : TCCheck_Ok = @
act_TCCore_Execute_0k : TCCore_Ezecute_Ok := &
act_TCDevice_Execute_0k : T'CDevice_Ezxecute_Ok := &
act_TCCheck_Fail : TCCheck_Fail := &
act_TCCore_Execute_Fail : T'CCore_Ezecute_Fail := @
act_TCDevice_Execute_Fail : TCDevice_Ezecute_Fail := &
act_TCExecOk_ReplyCtrlTM : TCExecOk_ReplyCtrlTM := @
act_TCValid GenerateData: TCValid_GenerateData := &
act_TCValid ReplyDataTM: T'CValid_ReplyDataTM = &
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM := &
act_TCCheckFail ReplyCtrlTM: TCCheckFail_ReplyCtriTM := &
end

Event ReceiweTC =
refines ReceiveTC
any
tc
where
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiweTC := ReceiveTC U {tc}
end
Event TCCheck_Ok =
refines TCCheck_Ok
any
tc
where
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grd_TCCheck 0k_seq : tc € ReceiveTC

grd _TCCheck 0k : tc ¢ TCCheck_Ok

grdl : tc ¢ TCCheck_Fail
then

act_TCCheck 0k : TCCheck_Ok := TCCheck_Ok U {tc}
end

Event TCCheck_Fail =
refines TCCheck_Fail

any
tc
where
grd_TCCheck Fail_seq: tc € ReceiveTC
grd _TCCheck Fail : tc ¢ TCCheck_Ok
grdl : tc ¢ TCCheck_Fail
then
act_TCCheck_Fail : TCCheck_Fail := TCCheck_Fail U {tc}
end

Event TCCore_FEzecute_Ok =
refines TCExecute_Ok

any
tc

where
grd_TCCore_Execute_0Ok_seq: tc € TCCheck_Ok
grd_TCCore_Execute_0k : tc ¢ TCCore_Ezecute_Ok
grd_TCCore_Execute_0k_xor : tc ¢ TCDevice_Ezecute_Ok
grdl : tc ¢ TCCore_Ezecute_Fail \\ manually
grd2: tc ¢ TCDevice_Ezecute_Fail \\ manually
grd3: PID(tc) = csw \\ manually

then

act_TCCore_Execute Ok : TCCore_Ezecute_Ok := TCCore_Ezecute_Ok U {tc}

end
Event TCDevice_Ezecute_Ok =
refines TCFExecute_Ok

any
tc
where
grd_TCDevice_Execute_ Ok _seq: tc € TCCheck_Ok
grd_TCDevice_Execute_Ok : tc ¢ TCDevice_Ezecute_Ok
grd_TCDevice_Execute_0k_xor : tc ¢ TCCore_Ezecute_Ok
grdl : tc ¢ TCDevice_Ezecute_Fail \\ manually
grd2: tc ¢ TCCore_Ezecute_Fail \\ manually
grd3: PID(tc) € {mizsc, miwst, sizsp, sizsz} \\ manually
then

act_TCDevice_Execute_0k : TCDevice_Execute_Ok := TCDevice_Ezecute_Ok U {tc}

end
Event TCCore_FEzxecute_Fail =
refines TCFEzxecute_Fail

any
tc

where
grd_TCCore_Execute_Fail_seq: tc € TCCheck_Ok
grd_TCCore_Execute_Fail : tc ¢ TCCore_Ezecute_Fail
grd_TCCore_Execute_Fail_xor : tc ¢ TCDevice_Execute_Fail
grdl: tc ¢ TCCore_Ezecute_Ok \\ manually
grd2: tc ¢ TCDevice_Ezecute_Ok \\ manually
grd3: PID(tc) = csw \\ manually

then
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act_TCCore_Execute_Fail : TCCore_Ezecute_Fail := TCCore_Ezecute_Fail U {tc}
end

Event TCDevice_Ezecute_Fail =

refines TCEzxecute_Fail

any
tc
where
grd_TCDevice_Execute_Fail_seq: tc € TCCheck_Ok
grd _TCDevice_Execute_Fail : tc ¢ TCDevice_Execute_Fail
grd_TCDevice_Execute_Fail_xor : tc ¢ TCCore_Ezxecute_Fail
grdl : tc ¢ TCDevice_Ezecute_Ok \\ manually
grd2: tc ¢ TCCore_Ezecute_Ok \\ manually
grd3 : PID(tc) € {mizsc, mixst, sizsp, sizsz} \\ manually
then
act_TCDevice_Execute_Fail : TCDevice_Ezecute_Fail := TCDevice_Ezecute_Fail U {tc}
end

Event TCValid_GenerateData =
refines TCValid_GenerateData

any
tc
where
grd_TCValid_GenerateData seq: tc € TCCore_Ezecute_Ok U TCDevice_Execute_Ok
grd_TCValid GenerateData: tc ¢ TCValid_GenerateData
grdl: TC_Type(tc) € {HK_on_TC,SCI_on_TC} \\ manually
grd2: PID(tc) € {mizsc, mizst, sizsp, sizsz} \\ manually, it limits to tc : TCDevice_Execute_Ok
then
act_TCValid GenerateData: TCValid_GenerateData := TCValid_GenerateData U {tc}
end

Event TCValid_ReplyDataTM =
extends T'CValid_ReplyDataTM

any
tc
where
grd _TCValid ReplyDataTM _seq: tc € TCValid _GenerateData
grd_TCValid ReplyDataTM: tc ¢ TCValid_ReplyDataTM
then
act_TCValid ReplyDataTM: TCValid ReplyDataTM := TCValid ReplyDataTM U {tc}
end

Event TCEzecFail_ReplyCtriTM =
refines TCFExecFail_ReplyCtriTM

any
tc
where
grd_TCExecFail ReplyCtrlTM _seq: tc € TCCore_Ezxecute_Fail U TCDevice_Execute_Fail
grd_TCExecFail ReplyCtrlTM: tc ¢ TCExecFail_ReplyCtriTM
then
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM := TCEzecFail_ReplyCtriTM U {tc}
end

Event TCCheckFail_ReplyCtrlTM =
refines TCCheckFail_ReplyCtriTM

any
tc

where
grd_TCCheckFail ReplyCtrlTM_seq: tc € TCCheck_Fail
grd_TCCheckFail ReplyCtrlTM : tc ¢ TCCheckFail_ReplyCtriTM

then



act_TCCheckFail ReplyCtrlTM: T'CCheckFail_ReplyCtrlTM =
TCCheckFail_ReplyCtrlTM U {tc}
end

Event TCEzecOk_ReplyCtriTM =
refines TCFExecOk_ReplyCtriTM

any
tc

where
grd_TCExecOk_ReplyCtrlTM_seq: tc € TCCore_Execute_Ok U TCDevice_Execute_Ok
grd_TCExecOk_ReplyCtrlTM: tc ¢ TCExecOk_ReplyCtriTM

then
actl: TCEzecOk_ReplyCtriTM := TCExecOk_ReplyCtriTM U {tc}

end

END

B.4 3rd Refinement

B.4.1 Context: C2

CONTEXT C2
EXTENDS C1
SETS

DATA
END

B.4.2 Machine: M3

MACHINE M3
REFINES M2
SEES C2

VARIABLES
ReceiveTC, TCCheck_Ok, TCCore_Execute_Ok, SendTC_Core_to_Device,
CheckTC_in_Device_Ok, SendOkTC_Device_to_Core, TCCheck_Fail, TCCore_Execute_Fail,
CheckTC_in_Device_Fail, SendFailTC_Device_to_Core, TC_GenerateData_in_Device,
TC_TransferData_Device_to_Core, TCValid_ReplyDataTM, TCExecOk_ReplyCtrlTM,
TCExecFail_ReplyCtrlTM, TCCheckFail_ReplyCtrlTM

INVARIANTS
inv_SendTC_Core_to_Device_seq: SendTC_Core_to_Device C TCCheck_Ok
inv_CheckTC_in Device_ Ok _seq: CheckTC_in_Device_Ok C SendTC_Core_to_Device
inv_CheckTC_in Device_Fail : CheckTC_in_Device_Fail C SendTC_Core_to_Device
inv_Send0kTC_Device_to_Core_seq: SendOkTC_Device_to_Core C CheckTC_in_Device_Ok

inv_SendFailTC_Device_to_Core_seq: SendFailTC_Device_to_Core C
CheckTC_in_Device_Fail

inv_TCExecOk_ReplyCtrlTM_seq: TCEzecOk_ReplyCtriTM C
TCCore_Ezecute_Ok U SendOkT C_Device_to_Core

linv_TCExec_ReplyCtrlTM_seq: TCEzecFail_ReplyCtriTM C
TCCore_Ezecute_Fail U SendFailTC_Device_to_Core

inv_TC_GenerateData in Device : TC_GenerateData_in_Device C TC x DATA

inv_TC_GenerateData_in Device_seq: dom(TC_GenerateData_in_Device) C
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core \\ weak seq

inv_TC_TransferData Device_to_Core_seq: TC_TransferData_Device_to_Core C
dom(TC_GenerateData_in_Device)
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inv_xorl : partition(TCCore_Ezecute_Ok U CheckTC_in_Device_Ok,
TCCore_Execute_Ok, CheckTC_in_Device_Ok)

inv_xor2 : partition(TCCore_Ezecute_Fail U CheckTC_in_Device_Fail,
TCCore_Execute_Fail, CheckTC_in_Device_Fail)

inv_CheckTC_in Device_0Ok_gluing : CheckTC_in_Device_Ok = TCDevice_Ezecute_Ok

inv_CheckTC_in Device_Fail_gluing: CheckTC_in_Device_Fail = TCDevice_Ezecute_Fail

inv_TC_TransferData Device_to_Core_gluing : TC_TransferData_Device_to_Core =
TCValid_GenerateData

inv2: partition(TCCore_Ezecute_Ok U TCCore_Ezecute_Fail U SendTC_Core_to_Device,
TCCore_Execute_Ok, TCCore_FEzecute_Fail, SendTC_Core_to_Device) \\ manually

invs : CheckTC_in_Device_Ok N CheckTC_in_Device_Fail = @ \\ manually
invé : Vic-(tc € dom(TC_GenerateData_in_Device) =
TC_Type(tc) € {HK _on_TC,SCI_on_TC?})
\\ manually, proving (TransferData_Device_to_Core/GRD)
inv7 : Vic-(tc € dom(TC_GenerateData_in_Device) = PID(tc) € {mizsc, mizst, sizsp, sizsT})
\\ manually, proving (TransferData_Device_to_Core/GRD)
inv8: Vic-(tc € SendTC_Core_to_Device = PID(tc) € {mizsc, mizst, sizsp, siwsz})
\\ manually, proving (CheckTC_in_Device_Fail/GRD)
EVENTS
Initialisation
begin
act_ReceiveTC: ReceweTC := &
act_TCCheck 0k : TCCheck_Ok := &
act_TCCore_Execute_0k : TCCore_FEzecute_Ok := &
act_SendTC_Core_to_Device : SendTC_Core_to_Device := &
act_CheckTC_in_Device_ 0k : CheckTC_in_Device_Ok := &
act_Send0kTC_Device_to_Core : SendOkTC_Device_to_Core := &
act_TCCheck Fail : TCCheck_Fail := &
act_TCCore_Execute_Fail : TCCore_Ezecute_Fail := &
act_CheckTC_in Device_Fail : CheckTC_in_Device_Fail := @&
act_SendFailTC_Device_to_Core : SendFailTC_Device_to_Core := &
act_TC_GenerateData_in Device : TC_GenerateData_in_Device := &
act_TC_TransferData Device_to_Core : TC_TransferData_Device_to_Core := &
act_TCValid_ReplyDataTM: T'CValid_ReplyDataTM = @&
act_TCExecOk_ReplyCtrlTM : TCEzecOk_ReplyCtriTM := &
act_TCExecFail ReplyCtrlTM: TCEzecFuail_ReplyCtriTM := &
act_TCCheckFail ReplyCtrlTM: T'CCheckFail_ReplyCtriTM = &
end
Event ReceiveTC =
extends ReceiveTC
any
tc
where
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiveTC := ReceiveTC U {tc}

end
Event TCCheck_Ok =
extends TCCheck_Ok

any
tc

where
grd_TCCheck 0Ok_seq: tc € ReceiveTC
grd _TCCheck 0Ok : tc ¢ TCCheck_0Ok
grdl : tc ¢ TCCheck_Fail

then
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act_TCCheck Ok : TCCheck Ok := TCCheck 0k U {tc}
end

Event TCCore_Ezecute_Ok =
refines TCCore_Ezxecute_Ok

any
tc

where
grd_TCCore_Execute_0k_seq: tc € TCCheck_Ok
grd_TCCore_Execute_0k : tc ¢ TCCore_Ezecute_Ok
grd_TCCore_Execute_0k_xor : tc ¢ SendTC_Core_to_Device
grd2: tc ¢ TCCore_Execute_Fail \\ manually
grd3: PID(tc) = csw \\ manually

then
act_TCCore_Execute_Ok : TCCore_Ezecute_Ok := TCCore_Ezecute_Ok U {tc}

end

Event SendTC_Core_to_Device =

any
tc
where
grd_SendTC_Core_to_Device_seq: tc € TCCheck_Ok
grd_SendTC_Core_to_Device : tc ¢ SendTC_Core_to_Device
grd_SendTC_Core_to_Device_xorl : tc ¢ TCCore_Ezecute_Ok
grd_SendTC_Core_to_Device_xor2: tc ¢ TCCore_Ezecute_Fail
grdl: PID(tc) € {mizsc, mizst, sizsp, sixsz}
then
act_SendTC_Core_to_Device : SendTC_Core_to_Device := SendTC_Core_to_Device U {tc}
end

Event CheckTC_in_Device_Ok =
refines TCDevice_FExecute_Ok

any
tc
where
grd_CheckTC_in Device Ok _seq: tc € SendTC_Core_to_Device
grd_CheckTC_in Device_0k : tc ¢ CheckTC_in_Device_Ok
grdl: tc ¢ CheckTC_in_Device_Fail
then
act_CheckTC_in Device 0Ok : CheckTC_in_Device_Ok :=
CheckTC_in_Device_Ok U {tc}
end
Event SendOkTC_Device_to_Core =
any
tc
where
grd_Send0kTC_Device_to_Core_seq: tc € CheckTC_in_Device_Ok
grd_Send0kTC_Device_to_Core : tc ¢ SendOkTC_Device_to_Core
then
act_Send0kTC_Device_to_Core : SendOkTC_Device_to_Core :=
SendOkTC_Device_to_Core U {tc}
end
Event TCCore_Ezecute_Fail =
refines TCCore_Execute_Fail
any
tc
where
grd _TCCore_Execute_Fail seq: tc € TCCheck_Ok
grd_TCCore_Execute_Fail : tc ¢ TCCore_Ezecute_Fail
grd_TCCore_Execute_Fail_xor : tc ¢ SendTC_Core_to_Device
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grd2 : tc ¢ TCCore_Execute_Ok \\ manually

grd3: PID(tc) = csw \\ manually
then

act_TCCore_Execute_Fail : TCCore_Ezecute_Fail := TCCore_Ezecute_Fail U {tc}
end

Event CheckTC_in_Device_Fail =

refines TCDevice_FExecute_Fail

any
tc

where
grd_CheckTC_in Device_Fail_seq: tc € SendTC_Core_to_Device
grd_CheckTC_in Device_Fail : tc ¢ CheckTC_in_Device_Fail
grdl: tc ¢ CheckTC_in_Device_Ok

then
act_CheckTC_in Device_Fail : CheckTC_in_Device_Fail :=

CheckTC_in_Device_Fail U {tc}
end

Event SendFailTC_Device_to_Core =

any
tc
where
grd_SendFailTC_Device_to_Core_seq: tc € CheckTC_in_Device_Fail
grd_SendFailTC_Device_to_Core : tc ¢ SendFailTC_Device_to_Core
then
act_SendFailTC_Device_to_Core : SendFailTC_Device_to_Core :=
SendFail TC_Device_to_Core U {tc}
end

Event TCCheck_Fail =
extends TCCheck_Fail

any
tc
where
grd _TCCheck Fail seq: tc € ReceiveTC
grd_TCCheck Fail : tc ¢ TCCheck Ok
grdl : tc ¢ TCCheck_Fail
then
act_TCCheck_Fail : TCCheck_Fail := TCCheck Fail U {tc}
end

Event TC_GenerateData_in_Device =

any
tc
d
where
grd_TC_GenerateData_in Device_seq: tc €
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core
grd_TC_GenerateData_in Device : tc — d ¢ TC_GenerateData_in_Device
grdl: TC_Type(tc) € {HK_on_TC,SCI_on_TC} \\ manually
grd2 : PID(tc) € {mizsc, mizst, sizsp, sixsz}
manually, it limits to tc : SendOkTC_Device_to_Core
then
act_TC_GenerateData_in Device : TC_GenerateData_in_Device :=
TC_GenerateData_in_Device U {tc — d}
end

Event TC_TransferData_Device_to_Core =
refines TCValid_GenerateData

any
tc



data

where
grd _TC_TransferData Device_to_Core_seq: tc € dom(TC_GenerateData_in_Device)
grd_TC_TransferData Device_to_Core: tc ¢ TC_TransferData_Device_to_Core
grdl: data = TC_GenerateData_in_Device[{tc}] \\ manually

then
act_TC_TransferData Device_to_Core : TC_TransferData_Device_to_Core :=

TC_TransferData_Device_to_Core U {tc}
end

Event TCValid_ReplyDataTM =
refines TCValid_ReplyDataTM

any
tc
where
grd_TCValid ReplyDataTM_seq: tc € TC_TransferData_Device_to_Core
grd_TCValid ReplyDataTM: tc ¢ TCValid_ReplyDataTM
then
act_TCValid ReplyDataTM: T'CValid_ReplyDataTM := TCValid_ReplyDataTM U {tc}
end

Event TCEzecOk_ReplyCtriTM =
refines TCFExecOk_ReplyCtriTM

any
tc
where
grd_TCExecOk_ReplyCtrlTM_seq: tc €
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core \\ weak seq
grd_TCExecOk_ReplyCtrlTM: tc ¢ TCEzecOk_ReplyCtriTM
then
act_TCExecOk_ReplyCtrlTM : T CEzecOk_ReplyCtriTM :=
TCEzecOk_ReplyCtrliTM U {tc}
end

Event TCEzecFail_ReplyCtriTM =
refines TCFExecFail_ReplyCtriTM

any
tc
where
grd_TCExecFail ReplyCtrlTM_seq: tc €
TCCore_Ezecute_Fail U SendFailTC_Device_to_Core
grd _TCExecFail ReplyCtrlTM: tc ¢ TCExecFail_ReplyCtriTM
then
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM :=
TCEzecFail_ReplyCtriTM U {tc}
end
Event TCCheckFail_ReplyCtrlTM =
extends TCCheckFail_ReplyCtrlTM
any
tc
where
grd _TCCheckFail ReplyCtrlTM_seq: tc € TCCheck Fail
grd_TCCheckFail ReplyCtrlTM: tc ¢ TCCheckFail ReplyCtrlTM
then
act_TCCheckFail ReplyCtrlTM: TCCheckFail ReplyCtrlTM :=
TCCheckFail ReplyCtrlTM U {tc}
end

END



B.5 Core Sub-model

B.5.1 Context: Context M3

CONTEXT Context_M3

SETS
TC, PIDS, TC_Types_Set

CONSTANTS
PID, csw, mixsc, mixst, sixsp, sixsx, TC_Type, HK_on_TC, SCI_on_TC

AXIOMS
typing PID: PID € P(TC x PIDS)
typing csw: csw € PIDS
typing mixsc: mizsc € PIDS
typing mixst : mizst € PIDS
typing sixsp: sizsp € PIDS
typing sixsx : sizsz € PIDS
typing_TC_Type : TC_Type € P(TC x TC_Types_Set)
typing HK on TC: HK_on_TC € TC_Types_Set
typing SCI_on TC: SCI_on_TC € TC_Types_Set
CO_axm2: TC_Type € TC — TC_Types_Set
Cl_axml : partition(PIDS, {csw}, {mizsc}, {mizst}, {sizsp}, {sizsz})
Ci_axm2: PID € TC — PIDS

END

B.5.2 Machine: M3

MACHINE M3
SEES Context_M3

VARIABLES
ReceiveTC, TCCheck_Ok, TCCore_Execute_Ok, SendOkTC_Device_to_Core, TCCheck_Fail,
TCCore_Execute_Fail, SendFailTC_Device_to_Core, TC_TransferData_Device_to_Core,
TCValid_ReplyDataTM, TCExecOk_ReplyCtrlTM, TCExecFail_ReplyCtrlTM,
TCCheckFail_ReplyCtrlTM

INVARIANTS
typing_TCCheck _Fail : TCCheck_Fail € P(TC)
typing_TCCheck 0k : TCCheck_Ok € P(TC)
typing_TCCheckFail ReplyCtrlTM: TCCheckFail_ReplyCtriTM € P(TC)
typing ReceiveTC: ReceiveTC € P(TC)
typing TCValid_ReplyDataTM: TCValid_ReplyDataTM € P(TC)
typing_ TCCore_Execute_0k : TCCore_FEzecute_Ok € P(TC)
typing SendFailTC_Device_to_Core : SendFailTC_Device_to_Core € P(TC)
typing TCCore_Execute_Fail : T'CCore_FEzecute_Fail € P(TC)
typing TC_TransferData Device_to_Core : TC_TransferData_Device_to_Core € P(TC)
typing_Send0OkTC_Device_to_Core : SendOkTC_Device_to_Core € P(TC)
typing TCExecOk ReplyCtrlTM : TCEzecOk_ReplyCtriTM € P(TC)
typing TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM € P(TC)
MO_inv_ReceiveTC: ReceiveTC C TC
Mi_inv_TCCheck_Ok_seq: TCCheck_Ok C ReceiveTC
Mi_inv_TCCheck_Fail seq: TCCheck_Fail C ReceiveTC
M1_inv_TCCheckFail ReplyCtrlTM_seq: T'CCheckFail_ReplyCtrlTM C TCCheck_Fail
Mi_invl: TCCheck_Ok N TCCheck_Fail = @
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M2_inv_TCCore_Execute_0k_sequencing : TCCore_Ezecute_Ok C TCCheck_Ok
M2_inv_TCCore_Execute_Fail_sequencing : TCCore_Ezecute_Fail C TCCheck_Ok

M3_inv_TCExecOk_ReplyCtrlTM _seq: TCExecOk_ReplyCtriTM C
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core

M3_linv_TCExec_ReplyCtrlTM_seq: TCEzecFail_ReplyCtrlTM C
TCCore_Ezecute_Fail U SendFailTC_Device_to_Core
EVENTS
Initialisation
begin
act_ReceiveTC: ReceiweTC := &
act_TCCheck 0k : TCCheck_Ok := &
act_TCCore_Execute_ 0k : TCCore_FEzxecute_Ok := &
act_Send0OkTC_Device_to_Core : SendOkTC_Device_to_Core := &
act_TCCheck _Fail : TCCheck_Fail := &
act_TCCore_Execute_Fail : T'CCore_Ezecute_Fail := @
act_SendFailTC_Device_to_Core : SendFailTC_Device_to_Core := &
act_TC_TransferData Device_to_Core : TC_TransferData_Device_to_Core := &
act_TCValid_ReplyDataTM: TCValid_ReplyDataTM := &
act_TCExecOk_ReplyCtrlTM: TCEzecOk_ReplyCtriTM = &
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtriTM = @&
act_TCCheckFail ReplyCtrlTM : T'CCheckFail_ReplyCtriTM = &
end

Event ReceiweTC =

any
tc
where
typing tc: tc € TC
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiveTC := ReceiveTC U {tc}
end

Event TCCheck_Ok =

any
tc
where
typing tc: tc € TC
grd_TCCheck Ok_seq: tc € ReceiveTC
grd_TCCheck Ok : tc ¢ TCCheck_Ok
grdl: tc ¢ TCCheck_Fail
then
act_TCCheck 0k : TCCheck_Ok := TCCheck_Ok U {tc}
end

Event TCCore_FEzecute_Ok =

any
tc
where
typing tc: tc € TC
grd_TCCore_Execute_0k_seq: tc € TCCheck_Ok
grd _TCCore_Execute_0k : tc ¢ TCCore_Ezecute_Ok
grd2: tc ¢ TCCore_Ezecute_Fail
grd3: PID(tc) = csw
then
act_TCCore_Execute_0k : TCCore_Ezecute_Ok := TCCore_Ezecute_Ok U {tc}
end

Event SendTC_Core_to_Device =

any
tc



232 Appendix B The Event-B Model of the BepiColombo System

where
typing_tc: tc € TC
grd_SendTC_Core_to_Device_seq: tc € TCCheck_Ok
grd_SendTC_Core_to_Device_xorl: tc ¢ TCCore_Ezecute_Ok
grd_SendTC_Core_to_Device_xor2: tc ¢ TCCore_Ezecute_Fail
grdl: PID(tc) € {mizsc, mizst, sizsp, sixsz}

then
skip

end

Event SendOkTC_Device_to_Core =

any
tc
where
typing tc: tc € TC
grd_Send0kTC_Device_to_Core : tc ¢ SendOkTC_Device_to_Core
then
act_Send0OkTC_Device_to_Core : SendOkTC_Device_to_Core :=
SendOkTC_Device_to_Core U {tc}
end

Event TCCore_FEzecute_Fail =

any
tc
where
typing tc: tc € TC
grd_TCCore_Execute_Fail_seq: tc € TCCheck_Ok
grd_TCCore_Execute_Fail : tc ¢ TCCore_Ezecute_Fail
grd2: tc ¢ TCCore_Ezecute_Ok
grd3: PID(tc) = csw
then
act_TCCore_Execute_Fail : TCCore_Ezecute_Fail := TCCore_Ezecute_Fail U {tc}
end

Event SendFailTC_Device_to_Core =

any
tc
where
typing tc: tc € TC
grd_SendFailTC_Device_to_Core : tc ¢ SendFailTC_Device_to_Core
then
act_SendFailTC_Device_to_Core : SendFailTC_Device_to_Core :=
SendFailTC_Device_to_Core U {tc}
end

Event TCCheck_Fail =

any
tc
where
typing tc: tc € TC
grd_TCCheck_Fail_seq: tc € ReceiveTC
grd_TCCheck Fail : tc ¢ TCCheck_Ok
grdl: tc ¢ TCCheck_Fail
then
act_TCCheck_Fail : TCCheck_Fail := TCCheck_Fail U {tc}
end
Event TC_GenerateData_in_Device =
any
tc
where
typing tc: tc € TC
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grd_TC_GenerateData_in Device_seq: tc € TCCore_Ezecute_Ok U SendOkTC_Device_to_Core
grdl: TC_Type(tc) € {HK_on_TC,SCI_on_TC%}
grd2: PID(tc) € {mizsc, mixst, sizsp, sizsz}
then
skip
end
Event TC_TransferData_Device_to_Core =
any
tc
where
typing tc: tc € TC
grd _TC_TransferData Device_to_Core : tc ¢ TC_TransferData_Device_to_Core
then
act_TC_TransferData Device_to_Core: TC_TransferData_Device_to_Core :=
TC_TransferData_Device_to_Core U {tc}
end
Event TCValid_ReplyDataTM =
any
tc
where
typing tc: tc € TC
grd_TCValid_ReplyDataTM_seq: tc € T'C_TransferData_Device_to_Core
grd _TCValid ReplyDataTM: tc ¢ TCValid_ReplyDataTM
then
act_TCValid ReplyDataTM: TCValid_ReplyDataTM := TCValid_ReplyDataTM U {tc}

end
Event TCEzecOk_ReplyCtriTM =

any
tc
where
typing tc: tc € TC
grd_TCExecOk_ReplyCtrlTM_seq: tc €
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core
grd_TCExecOk_ReplyCtrlTM: tc ¢ TCEzecOk_ReplyCtriTM
then
act_TCExecOk_ReplyCtrlTM : TCExecOk_ReplyCtriTM :=
TCEzecOk_ReplyCtrlTM U {tc}
end
Event TCEzecFail_ReplyCtriTM =
any
tc
where
typing tc: tc € TC
grd _TCExecFail ReplyCtrlTM _seq: ic €
TCCore_Ezecute_Fail U SendFailTC_Device_to_Core
grd_TCExecFail ReplyCtrlTM: tc ¢ TCEzecFail_ReplyCtriTM
then
act_TCExecFail ReplyCtrlTM: TCEzecFail_ReplyCtrlTM :=
TCEzecFail_ReplyCtriTM U {tc}
end

Event TCCheckFail_ReplyCtriTM =

any
tc
where
typing_tc: tc € TC
grd_TCCheckFail ReplyCtrlTM_seq: tc € T'CCheck_Fail
grd_TCCheckFail ReplyCtrlTM: tc ¢ T'CCheckFail_ReplyCtriTM



then
act_TCCheckFail ReplyCtrlTM: T'CCheckFail_ReplyCtriTM =
TCCheckFail_ReplyCtriTM U {tc}
end

END

B.5.3 1st Refinement

B.5.3.1 Context: Context_M/

CONTEXT Context_M4
EXTENDS Context_M3
SETS

™
END

B.5.3.2 Machine: M4

MACHINE M4
REFINES M3
SEES Context_M4

VARIABLES
ReceiveTC, TCCheck_Ok, TCCore_Execute_Ok, SendOkKkTC_Device_to_Core, TCCheck_Fail,
TCCore_Execute_Fail, SendFailTC_Device_to_Core, TC_TransferData_Device_to_Core,
TCValid_ProcessCtrlTM, TCValid_CompleteCtrlTM, TCExecOk_ProcessCtrlTM, TCExecOk_CompleteCtrlTM,
TCExecFail_ProcessCtrlTM, TCExecFail_CompleteCtrlTM, TCCheckFail_ProcessCtrlTM,
TCCheckFail_CompleteCtrlTM

INVARIANTS
inv_TCValid ProcessCtrlTM: T CValid_ProcessCtriTM C TC x TM

inv_TCValid ProcessCtrlTM_seq: dom(TCValid_ProcessCtriTM) C
TC_TransferData_Device_to_Core

inv_TCValid_CompleteCtrlTM_seq: T'CValid_CompleteCtriTM C
dom(TCValid_ProcessCtriTM)

inv_TCExecOk_ProcessCtrlTM : TCExzecOk_ProcessCtriTM C TC x TM

inv_TCExecOk_ProcessCtrlTM seq: dom(TCEzecOk_ProcessCtriTM) C
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core

invl: Vtc-finite( TCExecOk_ProcessCtriTM [{tc}])
manually, to prove (inv_TCExecOk_ProcessCtrlTM_one/WD)

inv_TCExecOk_ProcessCtrlTM one : V tc-card( TCEzecOk_ProcessCtriTM [{tc}]) < 1
inv_TCExecOk_CompleteCtrlTM _seq: TCEzecOk_CompleteCtriTM C dom(TCExecOk_ProcessCtriTM)
inv_TCExecFail ProcessCtrlTM : T'CExecFail_ProcessCtrlTM C TC x TM

inv_TCExecFail ProcessCtrlTM_seq: dom(TCEzecFail_ProcessCtriTM) C
TCCore_FEzxecute_Fail U SendFailTC_Device_to_Core

inv2 : Vtc-finite( TCEzecFail_ProcessCtriTM[{tc}]) \\ manually
inv_TCExecFail ProcessCtrlTM_one : Vtc-card(TCEzecFail_ProcessCtriTM[{tc}]) < 1

inv_TCExecFail CompleteCtrlTM_seq: TCEzecFail_CompleteCtriTM C
dom(TCEzecFail_ProcessCtrlTM)

inv_TCCheckFail ProcessCtrlTM: TCCheckFail_ProcessCtrlTM C TC x TM
inv_TCCheckFail ProcessCtrlTM_seq: dom(TCCheckFail_ProcessCtrlTM) C TCCheck_Fail
inv3: Vic-finite( TCCheckFail_ProcessCtriTM[{tc}]) \\ manually

inv_TCCheckFail ProcessCtrlTM_one : Vtc-card(TCCheckFail_ProcessCtriTM [{tc}]) < 1
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inv_TCCheckFail CompleteCtrlTM_seq: T CCheckFail_CompleteCtriTM C
dom(TCCheckFail_ProcessCtrlTM)

inv_TCValid CompleteCtrlTM _gluing : T'CValid_CompleteCtrlTM = TCValid_ReplyDataTM
inv_TCExecOk_CompleteCtrlTM_gluing : T CEzecOk_CompleteCtriTM = TCEzecOk_ReplyCtriTM

inv_TCExecFail CompleteCtrlTM gluing : T'CEzecFail_CompleteCtriTM =
TCEzecFail_ReplyCtriTM

inv_TCCheckFail CompleteCtrlTM_gluing: T'CCheckFail_CompleteCtriTM =
TCCheckFail_ReplyCtriTM
EVENTS
Initialisation
begin
act_ReceiveTC: ReceiweTC := &
act_TCCheck 0k : TCCheck_Ok =@
act_TCCore_Execute 0k : TCCore_Ezxecute_Ok := &
act_Send0kTC_Device_to_Core : SendOkTC_Device_to_Core := &
act_TCCheck _Fail : TCCheck_Fail := &
act_TCCore_Execute_Fail : T'CCore_Ezecute_Fail := @
act_SendFailTC_Device_to_Core : SendFailTC_Device_to_Core := &
act_TC_TransferData Device_to_Core : TC_TransferData_Device_to_Core := &
act_TCValid ProcessCtrlTM: T'CValid_ProcessCtriTM = &
act_TCValid_CompleteCtrlTM: TCValid_CompleteCtriTM := &
act_TCExecOk_ProcessCtrlTM : TCEzecOk_ProcessCtriTM = @
act_TCExecOk_CompleteCtrlTM : TCExzecOk_CompleteCtriTM := @&
act_TCExecFail ProcessCtrlTM: TCFExecFail_ProcessCtriTM := &
act_TCExecFail CompleteCtrlTM: TCEzecFail_CompleteCtriTM := &
act_TCCheckFail ProcessCtrlTM: T'CCheckFail_ProcessCtriTM = &
act_TCCheckFail CompleteCtrlTM : T'CCheckFail_CompleteCtriTM := &
end
Event ReceiveTC =
extends ReceiveTC
any
tc
where
typing_tc: tc € TC
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiveTC := ReceiveTC U {tc}
end
Event TCCheck_Ok =
extends TCCheck_Ok
any
tc
where
typing_tc: tc € TC
grd_TCCheck 0Ok_seq: tc € ReceiveTC
grd _TCCheck 0Ok : tc ¢ TCCheck 0k
grdl : tc ¢ TCCheck_Fail
then
act_TCCheck Ok : TCCheck Ok := TCCheck_0k U {tc}
end
Event TCCore_Ezecute_Ok =
extends T'CCore_Ezecute_Ok
any
tc

where
typing_tc: tc € TC
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grd _TCCore_Execute_0Ok_seq: tc € TCCheck 0Ok
grd_TCCore_Execute_0k : tc ¢ TCCore_Execute_Ok
grd2: tc ¢ TCCore_Execute_Fail
grd3 : PID(tc) = csw
then
act_TCCore_Execute_0k : TCCore_Execute_Ok := TCCore_Execute_0k U {tc}
end
Event SendTC_Core_to_Device =
extends SendTC_Core_to_Device
any
tc
where
typing_tc: tc € TC
grd_SendTC_Core_to_Device_seq: tc € TCCheck 0k
grd_SendTC_Core_to_Device_xorl: tc ¢ TCCore_Execute_Ok
grd_SendTC_Core_to_Device_xor2: tc ¢ TCCore_Execute_Fail
grdl: PID(tc) € {mixsc,mixst,sixsp, sixsx}
then
skip
end
Event SendOkTC_Device_to_Core =
extends SendOkTC_Device_to_Core
any
tc
where
typing_tc: tc € TC
grd_Send0OkTC_Device_to_Core : tc ¢ SendOkTC_Device_to_Core
then
act_SendOkTC_Device_to_Core : SendOkTC_Device_to_Core :=
Send0kTC_Device_to_Core U {tc}
end
Event TCCore_Ezecute_Fail =
extends T CCore_Ezecute_Fail
any
tc
where
typing_tc: tc € TC
grd _TCCore_Execute_Fail_seq: tc € TCCheck_0Ok
grd_TCCore_Execute_Fail : tc ¢ TCCore_Execute_Fail
grd2: tc ¢ TCCore_Execute_Ok
grd3 : PID(tc) = csw
then
act_TCCore_Execute_Fail : TCCore_Execute_Fail := TCCore_Execute_Fail U {tc}

end
Event SendFailTC_Device_to_Core =
extends SendFailTC_Device_to_Core

any
tc
where
typing_tc: tc € TC
grd_SendFailTC_Device_to_Core: tc ¢ SendFailTC_Device_to_Core
then
act_SendFailTC_Device_to_Core: SendFailTC_Device_to_Core := SendFailTC_Device_to_Core
U {tc}
end

Event TCCheck_Fail =
extends TCCheck_Fail
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any
tc
where
typing_tc: tc € TC
grd _TCCheck Fail seq: tc € ReceiveTC
grd_TCCheck Fail : tc ¢ TCCheck Ok
grdl : tc ¢ TCCheck_Fail
then
act_TCCheck Fail : TCCheck_Fail := TCCheck Fail U {tc}
end

Event TC_GenerateData_in_Device =

extends TC_GenerateData_in_Device

any
tc
where
typing_tc: tc € TC
grd _TC_GenerateData in Device _seq: tc € TCCore_Execute_Ok U SendOkTC_Device_to_Core
grdl : TC_Type(tc) € {HK_on_TC, SCI_on _TC}
grd2 : PID(tc) € {mixsc,mixst,sixsp, sixsx}
then
skip
end

Event TC_TransferData_Device_to_Core =

extends T C_TransferData_Device_to_Core

any
tc
where
typing_tc: tc € TC
grd _TC_TransferData Device_to_Core: tc ¢ TC_TransferData Device_to_Core
then
act_TC_TransferData Device _to_Core: TC_TransferData Device_to_Core :=
TC_TransferData Device_to_Core U {tc}
end

Event TCValid_ProcessCtriTM =

any
tc
tm

where

grd_TCValid ProcessCtrlTM_seq: tc € TC_TransferData_Device_to_Core
grd_TCValid ProcessCtrlTM: tc — tm ¢ TCValid_ProcessCtrlTM
then
act_TCValid ProcessCtrlTM: TCValid_ProcessCtrliTM := TCValid_ProcessCtriTM U{tc — tm}
end
Event TCValid_CompleteCtriTM =
refines TCValid_ReplyDataTM
any
tc
where
grd_TCValid CompleteCtrlTM seq: tc € dom(TCValid_ProcessCtrITM)
grd _TCValid CompleteCtrlTM: tc ¢ T'CValid_CompleteCtrlTM
then
act_TCValid CompleteCtrlTM: TCValid_CompleteCtriTM := TCValid_CompleteCtriTM U {tc}
end
Event TCEzecOk_ProcessCtriTM =
any
tc

tm
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where
grd_TCExecOk_ProcessCtrlTM _seq: tc € TCCore_Ezecute_Ok U SendOkTC_Device_to_Core
grd_TCExecOk_ProcessCtrlTM: tc — tm ¢ TCEzecOk_ProcessCtrlTM
grd_TCExecOk_ProcessCtrlTM one : tc ¢ dom(TCEzecOk_ProcessCtrITM)
then
act_TCExecOk_ProcessCtrlTM : TCEzecOk_ProcessCtrlTM :=
TCEzecOk_ProcessCtriTM U {tc — tm}
end

Event TCEzecOk_CompleteCtriTM =
refines TCExecOk_ReplyCtriTM

any
tc

where
grd_TCExecOk_CompleteCtrlTM _seq: tc € dom(TCExzecOk_ProcessCtrlTM)
grd_TCExecOk_CompleteCtrlTM : tc ¢ TCEzecOk_CompleteCtriTM

then
act_TCExecOk_CompleteCtrlTM : T'CEzecOk_CompleteCtriTM := TCEzecOk_Complete CtriTM U

{tc}
end

Event TCEzecFail_ProcessCtrlTM =

any
tc
tm

where
grd_TCExecFail_ProcessCtrlTM_seq: tc € TCCore_Ezecute_FailU SendFailTC_Device_to_Core
grd_TCExecFail ProcessCtrlTM: tc +— tm ¢ TCEzecFail_ProcessCtriTM
grd_TCExecFail ProcessCtrlTM_one : tc ¢ dom(TCEzecFail_ProcessCtriTM)

then
act_TCExecFail ProcessCtrlTM : TCExecFail_ProcessCtrlTM := TCEzxecFail_ProcessCtriTM U

{tc — tm}
end

Event TCEzxecFail_CompleteCtrlTM =
refines TCEzecFail_ReplyCtrlTM

any
tc

where
grd_TCExecFail_ CompleteCtrlTM_seq: tc € dom(TCEzecFail_ProcessCtriTM)
grd_TCExecFail CompleteCtrlTM: tc ¢ TCFEzecFail_CompleteCtriTM

then
act_TCExecFail CompleteCtrlTM: TCEzecFail_CompleteCtriTM :=

TCEzecFail_CompleteCtriTM U {tc}
end

Event TCCheckFail_ProcessCtrlTM =

any
tc
tm
where
grd_TCCheckFail ProcessCtrlTM_seq: tc € T'CCheck_Fail
grd_TCCheckFail ProcessCtrlTM: tc +— tm ¢ TCCheckFail_ProcessCtriTM
grd_TCCheckFail ProcessCtrlTM_one : tc ¢ dom(TCCheckFail_ProcessCtriTM)
then
act_TCCheckFail ProcessCtrlTM: TCCheckFail_ProcessCtrlTM :=
TCCheckFail_ProcessCtrlTM
U {tc — tm}
end

Event TCCheckFail_CompleteCtriTM =
refines TCCheckFail_ReplyCtrliTM



any
tc

where
grd_TCCheckFail CompleteCtrlTM_seq: tc € dom(TCCheckFail_ProcessCtriTM)
grd_TCCheckFail CompleteCtrlTM: tc ¢ T'CCheckFail_Complete CtriTM

then
act_TCCheckFail CompleteCtrlTM : TCCheckFail_CompleteCtriTM :=

TCCheckFail_CompleteCtriTM U {tc}

end

END

B.5.4 2nd Refinement

B.5.4.1 Context: Context_M5

CONTEXT Context_M5
EXTENDS Context_M4
SETS

TM_Types_Set

CONSTANTS
Exec_nok_TM, Exec_ok_TM, SCI_TM, HK_TM, TM_Type, Check_nok_TM

AXIOMS
axm3 : TM_Types_Set = {Check_nok_TM, Exec_ok_TM, Ezec_nok_TM,HK_TM,SCI_TM}
axm4 : TM_Type € TM — TM_Types_Set

END

B.5.4.2 Machine: M5

MACHINE M5
REFINES M4
SEES Context_M5

VARIABLES
ReceiveTC, TCCheck_Ok, TCCore_Execute_Ok, SendOkTC_Device_to_Core, TCCheck_Fail,
TCCore_Execute_Fail, SendFailTC_Device_to_Core, TC_TransferData_Device_to_Core,
Produce_DataTM, Send_DataTM, TCValid_CompleteCtrlTM, Produce_ExecOkTM,
Send_ExecOkTM, TCExecOk_CompleteCtrlTM, Produce_ExecFailTM, Send_ExecFailTM,
TCExecFail_CompleteCtrlTM, Produce_CheckFailTM, Send_CheckFailTM,
TCCheckFail_CompleteCtrlTM

INVARIANTS
inv_Produce_DataTM: Produce_DataTM C TC x TM
inv_Produce_DataTM_seq : dom(Produce_DataTM) C TC_TransferData_Device_to_Core
inv_Send_DataTM_seq: Send_DataTM C Produce_DataTM
inv_TCValid CompleteCtrlTM seq: TCValid_CompleteCtriTM C dom(Produce_DataTM)
inv_Produce_ExecOkTM : Produce_FErecOkTM C TC x TM

inv_Produce_ExecOkTM seq : dom(Produce_ExecOkTM) C
TCCore_Ezecute_Ok U SendOkTC_Device_to_Core

invl : Vic-finite(Produce_EzecOkTM [{tc}])
inv_Produce_ExecOkTM one : V tc-card(Produce_EzecOkTM [{tc}]) < I
inv_Send ExecOkTM_seq : Send_ErecOkTM C Produce_EzecOkTM

inv_TCExecOk_CompleteCtrlTM_seq: TCExecOk_CompleteCtriTM C
dom(Produce_ExecOkTM)

inv_Produce_ExecFailTM : Produce_FEzxecFailTM C TC x TM
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inv_Produce_ExecFailTM_seq: dom(Produce_EzecFailTM) C
TCCore_Ezecute_Fail U SendFailTC_Device_to_Core
inv2: Vtc-finite( Produce_EzecFailTM [{tc}])
inv_Produce_ExecFailTM_one : V tc-card(Produce_EzecFailTM [{tc}]) < 1
inv_Send ExecFailTM_seq: Send_FEzecFailTM C Produce_EzecFailTM
inv_TCExecFail CompleteCtrlTM_seq: TCEzecFail_CompleteCtrlTM C dom(Produce_EzxecFailTM)
inv_Produce_CheckFailTM : Produce_CheckFailTM C TC x TM
inv_Produce_CheckFailTM _seq: dom(Produce_CheckFailTM) C TCCheck_Fail
inv3: Vtc-finite(Produce_CheckFail TM [{tc}])
inv_Produce_CheckFailTM_one : V tc-card(Produce_CheckFailTM [{tc}]) < 1
inv_Send CheckFailTM_seq: Send_CheckFailTM C Produce_CheckFailTM
inv_TCCheckFail CompleteCtrlTM_seq: T CCheckFail_CompleteCtriTM C
dom(Produce_CheckFailTM)
inv_Produce_DataTM_gluing : Produce_DataTM = TCValid_ProcessCtrlTM
inv_Produce_ExecOkTM gluing : Produce_ExecOkTM = TCEzecOk_ProcessCtriTM
inv_Produce_ExecFailTM_gluing : Produce_EzecFailTM = TCFEzxecFail_ProcessCtriTM
inv_Produce_CheckFailTM_gluing : Produce_CheckFailTM = TCCheckFail_ProcessCtriTM
EVENTS
Initialisation
begin
act_ReceiveTC: ReceiweTC := &
act_TCCheck 0k : TCCheck_Ok := &
act_TCCore_Execute_ 0k : TCCore_Ezecute_Ok := &
act_SendOkTC_Device_to_Core: SendOkTC_Device_to_Core := &
act_TCCheck_Fail : TCCheck_Fail := @&
act_TCCore_Execute_Fail : TCCore_FEzxecute_Fail := &
act_SendFailTC_Device_to_Core : SendFailTC_Device_to_Core := &
act_TC_TransferData Device_to_Core: TC_TransferData_Device_to_Core := &
act_Produce_DataTM: Produce_DataTM = &
act_Send DataTM: Send_DataTM := &
act_TCValid CompleteCtrlTM : T'CValid_CompleteCtriTM = @&
act_Produce_ExecOkTM : Produce_ErecOkTM = &
act_Send ExecOkTM : Send_FExecOkTM := &
act_TCExecOk_CompleteCtrlTM : TCEzecOk_CompleteCtriTM = &
act_Produce_ExecFailTM : Produce_EzecFailTM = &
act_Send ExecFailTM : Send_FEzecFailTM := &
act_TCExecFail CompleteCtrlTM: TCEzecFail_CompleteCtriTM := &
act_Produce_CheckFailTM : Produce_CheckFailTM = &
act_TCCheckFail CompleteCtrlTM : T'CCheckFail_CompleteCtrlTM := &
act_Send CheckFailTM : Send_CheckFailTM := &
end

Event ReceiweTC =

extends ReceiveTC

any
tc
where
typing_tc: tc € TC
grd_ReceiveTC: tc ¢ ReceiveTC
then
act_ReceiveTC: ReceiveTC := ReceiveTC U {tc}
end

Event TCCheck_Ok =
extends TCCheck_Ok

any
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where

then

end

typing_tc: tc € TC

grd_TCCheck Ok_seq: tc € ReceiveTC
grd_TCCheck_0k : tc ¢ TCCheck_Ok
grdl : tc ¢ TCCheck Fail

act_TCCheck Ok : TCCheck Ok := TCCheck_0k U {tc}

Event TCCore_Ezecute_Ok =
extends TCCore_Ezecute_Ok

any
tc
where
typing_tc: tc € TC
grd_TCCore_Execute_0k_seq: tc € TCCheck 0Ok
grd_TCCore_Execute 0k : tc ¢ TCCore_Execute_Ok
grd2 : tc ¢ TCCore_Execute_Fail
grd3: PID(tc) = csw
then
act_TCCore_Execute_0k : TCCore_Execute_Ok := TCCore_Execute_ Ok U {tc}
end

Event SendTC_Core_to_Device =

extends SendTC_Core_to_Device

any
tc

where
typing_tc: tc € TC
grd_SendTC_Core_to_Device_seq: tc € TCCheck 0Ok
grd_SendTC_Core_to_Device_xorl: tc ¢ TCCore_Execute_Ok
grd_SendTC_Core_to_Device_xor2: tc ¢ TCCore_Execute_Fail
grdl: PID(tc) € {mixsc,mixst,sixsp, sixsx}

then
skip

end

Event SendOkTC_Device_to_Core =
extends SendOkTC_Device_to_Core

any
tc
where
typing_tc: tc € TC
grd_Send0kTC_Device_to_Core : tc ¢ SendOkTC_Device_to_Core
then
act_Send0kTC_Device_to_Core : SendOkTC_Device_to_Core := Send0OkTC_Device_to_Core U {tc}
end

Event TCCore_FEzxecute_Fail =

extends TCCore_Ezecute_Fail

any
tc

where
typing_tc: tc € TC
grd _TCCore_Execute_Fail_seq: tc € TCCheck_Ok
grd_TCCore_Execute_Fail : tc ¢ TCCore_Execute_Fail
grd2 : tc ¢ TCCore_Execute_0k
grd3 : PID(tc) = csw

then

end

act_TCCore_Execute_Fail : TCCore_Execute_Fail := TCCore_Execute_Fail U {tc}
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Event SendFailTC_Device_to_Core =
extends SendFailTC_Device_to_Core

any
tc
where
typing_tc: tc € TC
grd_SendFailTC_Device_to_Core : tc ¢ SendFailTC_Device_to_Core
then
act_SendFailTC_Device_to_Core: SendFailTC_Device_to_Core := SendFailTC_Device_to_CoreU
{tc}
end

Event TCCheck_Fail =
extends TCCheck_Fail

any
tc
where
typing_tc: tc € TC
grd _TCCheck Fail_seq: tc € ReceiveTC
grd_TCCheck Fail: tc ¢ TCCheck Ok
grdl : tc ¢ TCCheck Fail
then
act_TCCheck_Fail : TCCheck Fail := TCCheck_Fail U {tc}
end

Event TC_GenerateData_in_Device =

extends TC_GenerateData_in_Device

any
tc

where
typing_tc: tc € TC
grd_TC_GenerateData in Device_seq: tc € TCCore_Execute_Ok U SendOkTC_Device_to_Core
grdl : TC_Type(tc) € {HK_on_TC, SCI_on _TC}
grd2 : PID(tc) € {mixsc,mixst,sixsp, sixsx}

then
skip

end

Event TC_TransferData_Device_to_Core =

extends TC_TransferData_Device_to_Core

any
tc
where
typing_tc: tc € TC
grd_TC_TransferData Device_to_Core: tc ¢ TC_TransferData Device_to_Core
then
act_TC_TransferData Device_to_Core: TC_TransferData Device_to_Core :=
TC_TransferData Device_to_Core U {tc}
end

Event Produce_DataTM =
refines TCValid_ProcessCtriTM

any
tc
tm

where
grd_Produce_DataTM_seq: tc € TC_TransferData_Device_to_Core
grd_Produce_DataTM: tc +— tm & Produce_DataTM
grdl: TM_Type(tm) € {HK_TM,SCI_TM}

then

act_Produce_DataTM : Produce_DataTM := Produce_DataTM U {tc — tm}
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end
Event Send_DataTM =

any
tc
tm
where
grd_Send_DataTM_sequencing : tc — tm € Produce_DataTM \ Send_DataTM
then
act_Send DataTM: Send_DataTM := Send_DataTM U {tc — tm}
end
Event TCValid_CompleteCtrlTM =
refines TCValid_CompleteCtriTM
any
tc
where
grd_TCValid CompleteCtrlTM seq: tc € dom(Produce_DataTM)
grd_TCValid CompleteCtrlTM: tc ¢ T'CValid_CompleteCtrlTM
then
act_TCValid CompleteCtrlTM : TCValid_CompleteCtriTM := TCValid_CompleteCtriTM U {tc}
end

Event Produce_ExzecOkTM =
refines TCEzxecOk_ProcessCtrlTM

any
tc
tm

where

grd_Produce_ExecOkTM_seq : tc € TCCore_Ezecute_Ok U SendOkTC_Device_to_Core
grd_Produce_ExecOkTM: tc — tm ¢ Produce_ExecOkTM
grd_Produce_ExecOkTM one : tc ¢ dom(Produce_EzecOkTM)
grdl : TM_Type(tm) = Ezec_ok_TM
then
act_Produce_ExecOkTM : Produce_EzecOkTM := Produce_ExecOkTM U {tc — tm}
end

Event Send_ErecOkTM =

any
tc
tm

where

grd_Send_ExecOkTM _seq: tc — tm € Produce_ExecOkTM \ Send_EzecOkTM
grd_Send_ExecOkTM: tc — tm ¢ Send_EzecOkTM
then
act_Send _ExecOkTM : Send_EzecOkTM := Send_ExecOkTM U {tc — tm}
end
Event TCEzecOk_CompleteCtriTM =
refines TCExzecOk_CompleteCtriTM
any
tc
where
grd_TCExecOk_CompleteCtrlTM_seq: tc € dom(Produce_ExecOkTM)
grd_TCExecOk_CompleteCtrlTM : tc ¢ TCExecOk_CompleteCtriTM
then
act_TCExecOk_CompleteCtrlTM : T'CEzecOk_CompleteCtriTM = TCEzecOk_CompleteCtriTM U
{tc}
end

Event Produce_ExecFailTM =
refines T CExecFail_ProcessCtrlTM
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any
tc
tm
where
grd_Produce_ExecFailTM_seq: tc € TCCore_Ezecute_Fail U SendFailTC_Device_to_Core
grd_Produce_ExecFailTM: tc +— tm ¢ Produce_EzecFailTM
grd_Produce_ExecFailTM_ one : tc ¢ dom(Produce_ExecFailTM)
grdl: TM_Type(tm) = Ezec_nok_TM
then
act_Produce_ExecFailTM : Produce_EzecFailTM := Produce_ExecFailTM U {tc — tm}
end

Event Send_EzecFailTM =

any
tc
tm
where
grd_Send ExecFailTM_seq: tc +— tm € Produce_EzecFailTM
grd_Send ExecFailTM: tc +— tm ¢ Send_FEzecFailTM
then
act_Send ExecFailTM: Send_EzecFailTM := Send_ExecFailTM U {tc — tm}
end

Event TCEzecFail_CompleteCtriTM =
refines TCExecFail_CompleteCtrlTM
any
tc
where
grd _TCExecFail_ CompleteCtrlTM seq: tc € dom(Produce_EzecFailTM)
grd_TCExecFail_CompleteCtrlTM: tc ¢ TCEzecFail_CompleteCtriTM
then
act_TCExecFail CompleteCtrlTM: TCEzecFail_CompleteCtriTM =
TCEzecFail_CompleteCtriTM U {tc}
end

Event Produce_CheckFailTM =
refines TCCheckFail_ProcessCtriTM

any
tc
tm
where
grd_Produce_CheckFailTM seq: tc € TCCheck_Fail
grd_Produce_CheckFailTM: tc +— tm ¢ Produce_CheckFailTM
grd_Produce_CheckFailTM one : tc ¢ dom(Produce_CheckFailTM)
grdl: TM_Type(tm) = Check_nok_TM
then
act_Produce_CheckFailTM : Produce_CheckFailTM := Produce_CheckFailTM U {tc — tm}
end

Event Send_CheckFailTM =

any
tc
tm
where
grd_Send CheckFailTM seq : tc +— tm € Produce_CheckFailTM
grd_Send CheckFailTM sequencing : tc +— tm ¢ Send_CheckFailTM
then
act_Send CheckFailTM : Send_CheckFailTM := Send_CheckFailTM U {tc — tm}
end

Event TCCheckFail_CompleteCtriTM =
refines TCCheckFail_CompleteCtriTM



any
tc
where
grd_TCCheckFail CompleteCtrlTM_seq: tc € dom(Produce_CheckFailTM)
grd_TCCheckFail CompleteCtrlTM: tc ¢ T'CCheckFail_Complete CtriTM
then
act_TCCheckFail CompleteCtrlTM : T CCheckFail_CompleteCtriTM =
TCCheckFail_CompleteCtriTM U {tc}
end

END

B.6 Device Sub-model

B.6.1 Context: Context_M3

CONTEXT Context_M3

SETS
TC, DATA, TC_Types_Set, PIDS

CONSTANTS
TC_Type, HK_on_TC, SCI_on_TC, PID, mixsc, mixst, sixsp, sixsx, csw
AXIOMS
typing TC_Type : TC_Type € P(TC x TC_Types_Set)
typing HK_on TC: HK_on_TC € TC_Types_Set
typing SCI_on TC: SCI_on_TC € TC_Types_Set
typing_PID: PID € P(TC x PIDS)
typing mixsc: mizsc € PIDS
typing mixst : mizst € PIDS
typing sixsp: sizsp € PIDS
typing sixsx: sizsz € PIDS
typing csw: csw € PIDS
Co_axm2: TC_Type € TC — TC_Types_Set
Cl_axml : partition(PIDS, {csw}, {mizsc}, {mizst}, {sizsp}, {sizsz})
Ci_axm2: PID € TC — PIDS
END

B.6.2 Machine: M3

MACHINE M3
SEES Context_M3

VARIABLES
CheckTC_in_Device_Ok, CheckTC_in_Device_Fail, TC_GenerateData_in_Device,
SendTC_Core_to_Device

INVARIANTS
typing TC_GenerateData in Device : TC_GenerateData_in_Device € P(TC x DATA)
typing CheckTC_in Device 0k : CheckTC_in_Device_Ok € P(TC)
typing_SendTC_Core_to_Device : SendTC_Core_to_Device € P(TC)
typing_CheckTC_in Device_Fail : CheckTC_in_Device_Fail € P(TC)
M3_inv_CheckTC_in Device_ 0Ok _seq: CheckTC_in_Device_Ok C SendTC_Core_to_Device
M3_inv_CheckTC_in Device_Fail : CheckTC_in_Device_Fail C SendTC_Core_to_Device
M3_inv_TC_GenerateData in Device: TC_GenerateData_in_Device C TC x DATA
M3_invb : CheckTC_in_Device_Ok N CheckTC_in_Device_Fail = &
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M3_inv6 : Vtc-(tc € dom(TC_GenerateData_in_Device) =
TC_Type(tc) € {HK _on_TC,SCI_on_TC?})
M3_inv7 : Vtc-(tc € dom(TC_GenerateData_in_Device) =
PID(tc) € {mixsc, mizst, sicsp, sizsz})
M3_inv8: Ytc-(tc € SendTC_Core_to_Device = PID(tc) € {mizsc, mizst, sizsp, sizsc})
EVENTS
Initialisation
begin
act_SendTC_Core_to_Device : SendTC_Core_to_Device := @
act_CheckTC_in Device_0k : CheckTC_in_Device_Ok := &
act_CheckTC_in Device_Fail : CheckTC_in_Device_Fail := @&
act_TC_GenerateData_in Device : TC_GenerateData_in_Device := &
end
Event TCCore_Ezecute_Ok =
any
tc
where
typing tc: tc € TC
grd_TCCore_Execute_0k_xor : tc ¢ SendTC_Core_to_Device
grd3: PID(tc) = csw
then
skip
end
Event SendTC_Core_to_Device =

any
tc
where
typing_tc: tc € TC
grd_SendTC_Core_to_Device : tc ¢ SendTC_Core_to_Device
grdl: PID(tc) € {mizsc, mizst, sizsp, sixsz}
then
act_SendTC_Core_to_Device : SendTC_Core_to_Device := SendTC_Core_to_Device U {tc}
end
Event CheckTC_in_Device_Ok =
any
tc
where
typing_tc: tc € TC
grd_CheckTC_in_Device Ok _seq: tc € SendTC_Core_to_Device
grd_CheckTC_in Device 0Ok : tc ¢ CheckTC_in_Device_Ok
grdl: tc ¢ CheckTC_in_Device_Fail
then
act_CheckTC_in Device 0Ok : CheckTC_in_Device_Ok := CheckTC_in_Device_Ok U {tc}

end

Event SendOkTC_Device_to_Core =

any
tc
where
typing_tc: tc € TC
grd_Send0OkTC_Device_to_Core_seq: tc € CheckTC_in_Device_Ok
then
skip
end

Event TCCore_Execute_Fail =

any
tc
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where
typing_tc: tc € TC
grd_TCCore_Execute_Fail_xor : tc ¢ SendTC_Core_to_Device
grd3: PID(tc) = csw
then
skip
end

Event CheckTC_in_Device_Fail =

any
tc
where
typing_tc: tc € TC

grd_CheckTC_in Device_Fail_seq: tc € SendTC_Core_to_Device

grd_CheckTC_in Device_Fail : tc ¢ CheckTC_in_Device_Fail
grdl : tc & CheckTC_in_Device_Ok
then

act_CheckTC_in Device_Fail : CheckTC_in_Device_Fail := CheckTC_in_Device_Fail U {tc}

end
Event SendFailTC_Device_to_Core =
any
tc
where
typing_tc: tc € TC

grd_SendFailTC_Device_to_Core_seq: tc € CheckTC_in_Device_Fail

then
skip
end

Event TC_GenerateData_in_Device =

any
tc
d
where

typing-d: d € DATA
typing_tc: tc € TC

grd_TC_GenerateData_in Device : tc — d ¢ TC_GenerateData_in_Device

grdl: TC_Type(tc) € {HK_on_TC,SCI_on_TC}
grd2 : PID(tc) € {mizsc, mizst, sizsp, sixsz}
then

act_TC_GenerateData_in Device: TC_GenerateData_in_Device :=

TC_GenerateData_in_Device U {tc — d}
end

Event TC_TransferData_Device_to_Core =

any
tc
data
where

typing tc: tc € TC
typing_data: data € P(DATA)

grd_TC_TransferData Device_to_Core_seq: tc € dom(TC_GenerateData_in_Device)

grdl : data = TC_GenerateData—_in_Device[{tc}]
then

skip
end

END
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