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I. THE PrOOF OF THEOREM 1

We assume a continuous exponential distributed randonahMam TS with the mean of
1/u TS, whose cumulative distribution function T <t) = 1 —exp(ut). T is discretiZed
into a new random variabl® = [T/At], where At is a time unit far less than one TS.

Consequently the probability mass function (PMF)Nbois derived as

P(N:n):P(n—1<Altsn):P((n—l)At<T§nAt)

_ [1 - (1 _ exp( _ pAt))]n_l[l - exp( - /JAt)]. 1)
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According to the fact thatt TS is small enough and is in the region of [01]. With the

aid of the equation * exp(~x) = x whenx — 0, we may rewrite Equation (1) as
P(N = n) = (1 - pAt)" - uAt. (2)

Obviously Equation (2) is the PMF of the geometric distrézltiscrete random variabhé

with parametepAt. uAt represents the successful packet reception probabiltipénduration
of At TS. And N represents that the packet is first successfully receivetthéyarget at the
Nth duration ofAt. As a result, the total time spent to transmit this pack&t-ist. We can see
clearly that ifAt is small enough, which make the discrete random variablesroontinuous,
we can model the time spent in transmitting one packet as panextial distribution. The

Theorem 1 is proved.

[I. Tue DerivatioN oF ®(A, B) anp @'(A, B)

We assume having two random variables, which Xare Gammafny, 1/my) with a PDF
of fx(x) andY ~ Gammainy, 1/my) with a PDF of fy(y), respectively. We set out to find the

probability of P[X > A + BY], which may be derived as:

P[X> A+ BY] = fj; oy fx(X) fy(y)dxdy. 3)

According to [?], if mis a positive integer, then the following equations hold:

m-1 _n

r(m) = (m-1)! andr(m %) = (m-1)ke™ Y % @)
n=0

Given (3) and (4), we succeed in finding the closed-form podiba P[X > A + BY] for the
following two special cases.
Case 1. my must be a positive integer, but my can be any arbitrary real number.

Let us now define the new functioh(A, B) representing the probabilit?[X > A + BY]
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as.

00

(A, B) = P[X > A+ BY] = fo " fy(y)dy f f()lx. (5)

A+BYy

where the second integral in (5) may be calculated as:

I'(my, mx(A + By))
I'(my)

foo fx(X)dx = P[X > A+ By] = (6)
A+By

Substituting (6) into (5), a general expression of the podlig P[X > A + BY] may be

obtained:

= T'Tmy, mx(A + By)]
I'(my)

P[X > A+ BY] = fo - fy(y)dy. (7)

Given the assumption thamy must be a positive integer buty can be any real number,

according to the relationship shown in (4) we may rewrite d§)

my—-1
=~ X" B"(A/B nmn
f (dx = e ™A ). alhal (8)
A+By

Upon invoking the binomial theorem to further expand Equai(8), we arrive at

Oo my(A+B (mXB)
J e 5 S (G 0

Substituting (9) into (5), we have

x—1 n n— 00
®(A, B) = mz: Z m”BkA ) mY e—mxA.f yrm—1+ke—(mxB+rm)ydy (10)
4 KI(n— k) T(my) 0

As our next step, variable substitution is carried out far fake of simplifying (10). Upon

introducinga = (myxB+my), we get the closed-form solution to the integral in (10)@#oivs:

foo me_]_+|<e—(mxB+my)ydy _ (;)mwk foo a™klamagy = (;)wwr(w "
o myB + my 0 myB + my

(11)
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Substituting Equation into (10), we finally arrive at the sgd-form formula for®d(A, B) in
Case 1, which is seen in Equation (4) of the submitted paper.
Case 2. my can be any arbitrary real number, but my must be a positive integer.

In order to satisfy the requirements Ghse 2, we should change the order of the integrals
in (5), which may be rewritten as

x=A

@'(A,B) = P[X > A+ BY] = fA " ()dx fo "ty (y)dy, (12)

where the second integral may be formulated as

X=A

® _ . Ty, 258
fo iy = 1- —o B (13)

Given the relationship in (4), whemy is a positive integer, (13) is written as:

XA

ﬁ B fy(y)dy =1 - g Mv(x-A)/B ni M "
n=0

B"n!

The term &—A)" may be expanded with the aid of the Binomial theorem undeasisemption
thatmy is a positive integer, which leads Equation (14) to
2 my(x=A)/B k¢ pyn-k
fo fu(y)dy =1—e nZ(; kZ: Bnn'( )x (~A)k (15)

Substituting (15) into (12), we have:

O'(A B) = Iﬂ(mx,mXA) Z i( )( )nemY A™ kmmx fAOO XKM=L X(Mx+my /B) (5

n=0 k=0 nir(my)

(16)

Again, as our next step, variable substitution is carried fou simplifying (16). Upon

introducinga = x(my + my/B), we arrive at the closed-form representation of the iraegr
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(16):

” on(onwnw/B) '™ leda
f M =1 =x(Mx+my/B) 4y —
A

(My + My /B)k+mx = ( L )k+mxr[k + My, A(mx + ﬂ)]

My + my/B B
17)

Finally, upon substituting (17) into (16), we arrive at tHesed-form function ofd’(A, B) in

Case 2, which is seen in Equation (4) of the submitted paper.
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