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Abstract—In this work we present the design, development and evaluation of a real-time target tracking system for wireless
embedded nodes, capable of effectively tracking manoeuvring targets. The proposed tracking system is designed to operate
solely on range measurements obtained with the use of a two-way Time-of-Flight method without the need for additional hardware
being incorporated in the nodes. To address the challenge of coping with manoeuvring targets, the tracking problem is formulated
as a dynamical estimation problem where an adaptive multiple-model approach is employed to represent the motion pattern of
manoeuvring targets. The ranging observations are produced in real-time and used as inputs to a Particle Filter algorithm which
produces the estimates of the target’s kinematic variables. Simulations are provided to assess the effect of several factors on the
system’s performance. Ultimately, the entire system is implemented on commercially available hardware and tested in an outdoor
deployment. A total of 25 experiments demonstrate an average rms accuracy of 2.6m for position and 1.9m/s for velocity, in a
15m x 15m area. Such performance, which is additionally confirmed from simulation results reveals the potential of the proposed
range-only system in application scenarios where real-time tracking of mobile targets is needed.

Index Terms—Wireless sensor networks, Real-time and embedded Systems, Target Tracking

1 INTRODUCTION

FTER a decade of continuous evolution and de-
Avelopment, Wireless Sensor Networks (WSNSs),
have earned a prominent spot among pervasive com-
puting technologies. The flexibility they offer, by
encompassing various sensor modalities, low-power
wireless communication and processing ability, in a
limited-sized hardware platform, initiated research
in various interdisciplinary directions for exploiting
this novel technology in a number of application
domains [1]. Examples include environmental mon-
itoring, smart structures, habitat monitoring, military
defense applications, surveillance and security, mobile
robotics, health care and medical applications, agricul-
ture and asset management [2], [3].

Locationing and tracking objects of interest is con-
sidered to be a pivotal functionality for a number of
application domains. WSNs are considered to be a
technology able to provide innovative solutions for
locationing and tracking applications. They offer the
possibility of employing a large number of observers,
tasked with monitoring the same phenomena, an ap-
proach that enables decentralised sensing, distributed
computing and collaborative signal processing [4]. An
abundant amount of information is accumulated from
the network with high spatial and temporal resolu-
tion. For locationing and tracking, this is of particular
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interest, facilitating the development of more robust,
flexible and cost-effective tracking systems [5], [6].
The basic concept for target tracking with WSNs is
to deploy a number of cooperative embedded nodes
to monitor a specific region of interest. Whenever a
target is present, the nodes interact with the target and
collect useful information for the tracking operation.
Generally in tracking systems, the target’s dynamics
are inferred by processing specific information, as-
sociated with the target’s kinematic variables (posi-
tion, velocity, direction of movement). For example,
from various sensor readings (e.g. acoustic energy)
the relative distance between the source (target) and
the sensor (anchor) can be derived. The collected
data, are then imported into the “tracking algorithm”,
which produces an estimate of the target’s kinematic
variables.

Under this context, the work presented in this pa-
per attempts to exploit the capabilities of distributed
WSNs in developing a real-time, range-only target
tracking system. The range-only characterization of
the system pertains to the type of data that the system
utilizes in order to infer the target’s kinematics. The
proposed system operates exclusively on range obser-
vations acquired with the use of a two-way Time-of-
Flight (ToF) ranging method. Our choice of employing
ToF ranging, differentiates the proposed system from
a number of approaches that employ additional types
of observations (bearings, velocity) which require
costly and energy demanding additional hardware
(micro RADARS, directional antennas) to be installed
on the wireless nodes.

The tracking problem is theoretically formulated
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as a dynamical system with the objective being, the
real-time estimation of the target’s kinematic variables
based on range observations. The proposed system
is intended to effectively track manoeuvring targets,
which is the case in the majority of real-world tracking
scenarios. For this, a multiple-model approach is used
to represent the dynamics of manoeuvring targets.
Such an approach diversifies the proposed system
from other approaches in the area that only consider
a constant velocity (CV) model for describing the
target’s dynamics, thus providing limited support for
manoeuvring targets [7], [8], [9]. The resulting system
is non-linear, due to the non-linearity between the
range observations and the kinematic variables. To
solve this system, an adaptive multiple-model Particle
Filter (PF) tracking algorithm is proposed. By apply-
ing multiple models to represent the evolution of the
target’s dynamics in time, we demonstrate that our
design tracks manoeuvring targets efficiently. Simula-
tion results of applying the proposed framework on
manoeuvring targets can be found in our previous
work [10]. As an expansion of this work, the multiple-
model approach is verified through a simulation com-
parison against the CV model for a manoeuvring sce-
nario. Moreover, we study and quantify the effect of
two important parameters on the performance of the
tracking system, namely the number of particles and
the sampling interval. We also calculate the Cramer-
Rao lower bound (CRLB) and utilise it as a benchmark
to assess the performance of our system. This analysis
is based on the accuracy obtained by the ToF ranging
method which is also analysed here and incorporated
in the tracking system.

As a final extension to our previous work, in this
paper we present a working prototype of our system,
implemented on Commercially-off-the-Self (COTS)
hardware. The T.I. EZ430-RF2500 platform was used
for this. In our prototype, three types of node are
designated; the anchor nodes, the target node and the
central node. For each different class of nodes a sepa-
rate piece of software was developed. In addition, the
tracking algorithms were implemented as MATLAB
routines, which collect the ranging data and produce
an estimate of the target’s trajectory in real-time. The
system was deployed in 15m x 15m outdoors area
and multiple experiments were executed with the
target moving in a variety of trajectories. The results
obtained are compared to simulations which verify
the achieved performance. These prominent outcomes
justify the choice of a range-only tracking system for
embedded nodes and also reveal that the proposed
system satisfies the three main objectives of accuracy
(~ 1% of the area), real-time operation and tracking
of manoeuvring targets.

The rest of the paper is structured as follows.
Section 2 summarizes related work in the literature.
The two-way ToF ranging method is discussed in
Section 3. In Section 4 we provide the mathematical

formulation of the tracking problem as a nonlinear
estimation problem and introduce the models that
account for the motion dynamics as well as the ob-
servations. In addition this section reviews the PF
tracking algorithms. Simulation results are presented
in Section 5 alongside the calculation of the CRLB
which is used as a benchmark to compare the system’s
performance. Section 6 presents the implementation
on COTS hardware of the tracking system. Results
obtained from the outdoors experimentation of the
full system are provided in Section 7 alongside a
comparison to simulation results. In the final sec-
tion, concluding remarks and future directions are
discussed.

2 RELATED WORK

Many ideas regarding tracking and locationing with
WSNs are present in the relevant literature. We will
restrain ourselves to the tracking systems that were
implemented and demonstrated at full scale. Coates ef
al. consider a clustered WSN for tracking, comprising
of class-B sensor nodes that measure, either the range
or the bearing of the target and class-A cluster heads
that aggregate the data gathered from the class-B
nodes. Each of the class-A cluster heads runs its own
local PF, based on the data acquired from the class-B
nodes in its neighborhood (cluster). The weights for
each particle are then calculated based on information
from all cluster heads. Each cluster head represents a
particle with a certain weight associated to it and a
global estimation can then be extracted. The drawback
of such an approach is that there is a need for a
large number of cluster heads-particles (> 200) and
subsequently even larger for class-A nodes, to achieve
accurate performance, resulting in a network that
involves an excessive number of nodes [11], [12].

The CRICKET indoor locationing system [13] de-
veloped at MIT, consists of beacons that are attached
to the ceiling of a building, and receivers, called
listeners, that require locationing. The beacons peri-
odically transmit their location information in an RF
message. At the same time, the beacons also transmit
an ultrasonic pulse. The listeners listen to beacon
transmissions and compute their own locations by
calculating the TDoA of the two signals emitted from
nearby beacons. The user’s location is determined in
relation to the already known location of the mounted
nodes [14]. The CRICKET locationing method is used
in a centralised localization and tracking algorithm
named LaSLAT. LaSLAT algorithm reported a few
centimeters of error in an 7m x 7m indoor area and
approximately 0.5m error in an 27m x 32m dense
outdoor deployment [15].

RADAR is another indoor locationing system which
is based on low-power WSNs. A number of infras-
tructure nodes, positioned in known locations is used
to generate RSSI values for different positions in the
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coverage area and build a signal strength database.
Whenever a blind node requires positioning, its RSSI
value is measured by the closest infrastructure nodes.
The observations are fused to a central server, which
examines the signal strength map to obtain the best
fit for the current transmitter position. The achieved
accuracy is between 2 to 3 meters [16]. Ahmed et al.
address the combined problem of target detection and
tracking. Target presence or absence is modeled by
a probability function. The tracking algorithm that is
used estimates, apart from the target’s state vector,
an extra binary variable which indicates the presence
of the target [17]. In the prototype system, a dense
network of MicaZ nodes provided range readings
inferred by measuring the acoustic intensity and a PF
algorithm, which employs a large number of particles
(5000) produces both the target’s dynamics as well as
desides on the presence of the target. The reported
results are in the area of 0.1 - 0.25m in an indoors 1 x
3m area with the use of at least 8 anchor nodes [18].

Radio interferometry was presented as a ranging
method for embedded nodes in [19]. Kusy et al. em-
ploy this method in the inTrack tracking system [20]. In
inTrack, the target node is programmed to transmit an
unmodulated high frequency sine wave. One station-
ary infrastructure node, positioned in known coordi-
nates, transmits a similar signal simultaneously with
the target. The resulting composite signal demon-
strates a phase offset, which when measured at other
infrastructure nodes depends only on the in-node
distance between the participating nodes. The target’s
position is inferred, by employing multiple anchors to
measure the phase offset. An extension of inTrack, is
presented, where the Doppler shift of the transmitted
sine-wave is also measured at the infrastructure nodes
and is used to estimate the target’s velocity. A tracking
algorithm combining the extended Kalman Filter and
a constrained non-linear least squares optimisation
method is used to infer the target’s position and
velocity. The reported accuracy of the system increases
with increasing number of participating anchor nodes
[21]. A deployment of 8 infrastructure nodes in a 50m
x 30m area reported results of 1.3 - 2.2m for position
and 0.13 - 0.35 m/s for velocity [22], [23].

Previous research considered a linear model in or-
der to represent the target’s motion dynamics. How-
ever this approach can not effectively cope with al-
terations in the position and velocity vectors of a
manoeuvring target. To achieve tracking of manoeu-
vring targets, adaptive estimation algorithms and a
multiple-model approach to describe the development
of the target’s dynamics in time are investigated in
this work. The ToF method to be used in the pro-
posed tracking system yields several advantages over
acoustic ranging methods. The systems that are based
on acoustic ranging not only require a dense deploy-
ment of anchor nodes even in small areas, but also
have the need for additional hardware like ultrasound

transceivers to be attached on the WSNs nodes. If
audible acoustic signals are used, the target must
itself produce these acoustic signals. Different to the
interferometric ranging method which required the
target node and another node to transmit sine waves
simultaneously, the proposed ToF ranging scheme
only has a calibration requirement.

3 Two-WAY TIME-OF-FLIGHT RANGING

In this section we highlight the major aspects of the
ToF ranging technique that we employ in the pro-
posed range-only tracking system. For a detailed anal-
ysis the reader is directed to our previous work which
was focused entirely on this method [24]. In principle,
ToF methods attempt to estimate the transit time of a
signal. The a-priori knowledge of the signal’s velocity
allows the approximation of the distance between
transmitter and receiver. The developed method in-
tends to quantify the distance between a pair of
unsynchronised wireless nodes and is considered to
be ideal for the range-only tracking system that we
consider. The fundamental idea of our ToF ranging
method is to achieve an estimation of the distance
between the two nodes by conducting multiple two-
way message exchanges and calculating the mean ToF
value.

The objective is to estimate the distance between
node A and node B (Fig. 1). A local timer on node A is
employed to provide the ToF timing values. Initially
node A sends the first ranging signal and captures
the time of its timer (t;4p). Node B receives the
signal and after a period of time, that corresponds to
node B swapping its state, from receiver to transmitter
(as well as a number of other delays) node B sends
a ranging signal back to node A. Following, node
A receives the reply signal and stores the time of
its reception (t,p4). The timer in node A measures
t4a =t,pa — trap multiple times.

Within t 4, the delay related to the ranging message
being processed at node B is included. In order to
measure the amount of time that corresponds to de-
lays that occur during the two-way message exchange
process and remove it, we introduce a calibration
stage. This is accomplished by placing the transceivers
at a very close distance (< 0.2m), so the ToF period is
minimal and executing multiple transactions that are
averaged to produce the minimum time (t,,;,) that
is required in order to complete a message exchange.
This amount of time corresponds to a minimal ToF
period and reveals all the hardware and software de-
lays that occur during a two-way ranging transaction.
We make the assumption that the these delays remain
constant and are independent of the distance between
the nodes. Subsequently only the propagation delay
will increase the two-way time transfer value as the
nodes are placed at greater distance.

Fig. 2 illustrates a timing diagram of a message
exchange between the two nodes. Send and receive
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Fig. 1. Proposed Two-way ToF Ranging

occurs on the rising edge of the nodes clocks. Assum-
ing that for a given distance, the t7,r will be the same
and the delay Tg_pro. that node B requires to process
the ranging signal and submit the reply is constant,
the only ambiguity will be inserted by the delays as-
sociated to the clocks phase shift and frequency drift.
Given that the two clocks are unsynchronized and
have a small difference in frequency the phase offset
between the devices will oscillate, thus the delays
Ty1 and Ty will follow a similar varying pattern. By
oversampling, we capture a normally distributed set
of multiple timing transactions centered around the
mean ToF value. Therefore, capturing a sufficiently
large number of timing values will allow us to extract
the mean ToF value which can be, linearly associated
to the distance between the nodes.

A—Send (t,g) A—Receive (t,g,)

MMUTJIHJUtJHﬁJ

ta proc | troe ta

constant | constant | |

| e '| |

B - Receiv i B - Send

Shiniimblilsin]

Fig. 2. Timing Diagram of a two-way message ex-
change

Following the completion of the required number
of two-way transactions, node A enters the calculation
phase. The calculation phase involves the extraction
of the ToF out of the multiple stored timer values. In
the event that one, or in general a small fraction of
these n transactions has produced erroneous timing,
including them in the average calculation will result
ind distorting the correct mean value. To avoid this,
the following procedure is followed. Let us assume
that we obtain n two-way ToF values t,,. Initially the
mean tr,r and standard deviation of the n values
are calculated. In the following step, we calculate the
absolute difference of each one of the n values from
trop. Ultimately, out of the n collected ToF values
we exclude the ones that fall outside the one deviant
limit. The final t7,r value is calculated by averaging
the remaining m values. The mean tTO r two-way ToF
value is then converted to distance by executing the

following.
1) Calibrate the fTo r value by subtracting it from
the minimum two-way ToF (t.;ir).
2) Divide the calibrated value by two, to get a

single-way ToF time. tror;,,., = (t1or — tmin)-

3) Multiply the above by the speed2 of light in air
(c/1.0003) to convert time to distance

3.1 Implementation and Evaluation

The ranging system was implemented on the TI
EZ430-RF2500 platform and two types of nodes were
designated and programmed with different pieces of
software. A requester node, which is in essence node
A, that initiates the entire tracking operation, logs the
two-way timing values and executes the calculation
phase and a responder that acts as the relay node B.
The clock on node A was set to the maximum possible
frequency of 16 MHz. We carried out experiments in
various environments outdoors and indoors with 1000
ranging transactions at data rate settings 250kbps and
500kbps. The achieved accuracy was in the area of 1-
3m RMS.

To verify the distribution of the measurements that
the proposed ToF ranging system yields, an experi-
ment is designed were two nodes are placed in short
distance (~2m) indoors and a vast number of ToF esti-
mates is logged over a period of time. Approximately
10000 ToF estimations were logged. Fig. 3 depicts the
histogram of the obtained values and it is clear that
they can be considered as normally distributed.
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Fig. 3. Timing Histogram of 10000 two-way values at
500 kbps

In our implementation the node performed the
calculation phase whenever 100 two-way transactions
were completed. Part of the process is the calculation
of the standard deviation for these 100 transactions in
order to exclude the timing values that fall outside the
single deviant boundary. This procedure is repeated
10 times to reach the required 1000 transactions. From
all the experiments carried out the standard deviation
of the timing values was initially in the range of
1.4cc — 1.8cc (cc:clock cycles) for the 500kbps setting
and 2.4cc — 3cc at 250kbps. After averaging the values
(excluding the ones outside the one deviant limit)
the deviation was reduced to 0.3cc — 0.9cc at both
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500kbps and 250kbps. The deviation in the outdoors
experiments was found to be smaller than the one
indoors. Particularly for the 500kbps datarate setting,
which is used in the tracking system, the standard
deviation that the two-way ranging values exhibit was
approximately 0.4cc on average. Dividing this by two
we get o7, = 0.2cc. This value is expressed in clock
cycles and a single clock cycle of the 16MHz timer is
(1/16MHz) = 62.5ns. Thus the standard deviation of
the proposed system can be approximated as or,r =
12.5ns. This translates to a standard deviation of ap-
proximately 3.7m calculated from o,qnging = € * Otof-

4 TRACKING SYSTEM OVERVIEW

In this section, we provide the theoretical foundation
of the proposed range-only tracking system. We con-
sider a scenario where a dedicated WSN is deployed
in an area, in order to track a target of interest. A
number of anchor nodes is considered to be deployed
in known positions. Fig. 4 illustrates the envisioned
setup. The proposed tracking system is formulated as
a dynamic state estimation problem in the discrete-
time state-space domain. Here we focus on the mathe-
matical formulation of the tracking problem assuming
that the range observations becomedd available from
the ToF scheme analysed in the previous section. In
this section we also analyse the developed tracking
algorithms which are used to solve the dynamic prob-
lem and infer the target’s kinematic variables.
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Fig. 4. Tracking System Overview

To begin with, the state vector is populated from the
target’s kinematic variables that the system attempts
to estimate. Since we consider ground targets, we
choose to estimate the target’s planar coordinates and
two-axis velocity. Thus the state vector is given as,

X = [.%‘ Y Vg ”y]T (1)

Next, we consider that the target’s motion pattern can
be described with the following dynamic model.

x(t) =Fx(t—1)+ Tw(t—1) (2)
o where,
T2 0
. 0 T?/2
r= T, 0 3)
0 T,

o T: is the sampling period,

e w(t—1):is a2 x1iid process noise vector with
dimension of acceleration m/s?, sampled from
a known distribution which represents any mis-
modeling effects or disturbances in the motion
model

o and x(t): is the state vector, defined in Eq.1

For the purposes of the proposed tracking system
we follow two different approaches in populating the
motion matrix F in Eq.2.

In the first approach, F is formed according to the
constant velocity (CV) model under which, the target
is assumed to be constantly moving with velocity
around a certain value. In this case matrix F is given
as:

10T, 0
01 0 T,
F=100 1 o )
00 0 1

One of the main objectives of the proposed tracking

. system is to provide enhanced support in tracking

manoeuvring targets. Therefore, to provide the re-
quired support for manoeuvring targets, we adopt an
approach where the state-update equation is modeled
with the use of multiple switching dynamic models.
The multiple-model approach intends to provide ad-
ditional support for when a manoeuvring target is
the object of interest and effectively capture the sud-
den changes in the velocity vector that manoeuvring
targets exhibit. In this case our system is modeled
using three switching dynamic models. The models
we consider are the CV model described previously
and two coordinated turn models.

An integer parameter, termed as regime variable,
is introduced in the multiple-model case. The regime
variable r(t) dictates which of the three state models
(regimes) is in use during the time interval (¢ — 1,¢].
The regime variable r(¢) is modeled as a time ho-
mogeneous, three-state, first-order Markov chain with
transitional probability matrix given by the following
relationship:

Tmn = Prob{r(t) =m|r(t —1) =n} (5)

The probability matrix indicates the probability of
a regime transition occurring, between consecutive
sampling steps, as well as the probability of the
system remaining on the same regime.
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Fig. 5. Regime probability transitions

In the multiple-model case, the state update equa-
tion is formulated as follows:

x(t) = F(r(t))x(t — 1) + Tw(t — 1) ©6)

The state transition matrix F, at time ¢ is defined
according to the value of the regime variable r(¢),
(F(r(t))) and can be one of the following:

1) The Constant Velocity motion model provided

in Eq.4

2) The First Coordinated Turn model, defined as:

(1) (1) a szn(wg“s%/;;/ (cos.(w(Tsj)jS/l)/w
F(2) = 00 cos(wT:) fsm(ost)
0 0 sin(wTs) cos(wTs)

@)

3) The Second Coordinated Turn model given as:

(1) (i a szn(wg“s%/%/ (cos(wg“s%;/l)/w
F(3) = 0 0 cos(wT:) —sm(ust)
0 0 —sin(wTs) cos(wTs)

®)
T: denotes the sampling interval and,
w: is the turning rate, expressed in rad/s and
considered to be constant.

The two coordinated turn models are used to model
turning manoeuvres in the anticlockwise and the
clockwise direction respectively. These type of motion
modeling has been used previously in scenarios in-
volving bearings only tracking as well as in aircraft
navigation [25], [26].

4.1 Observations Model

The measurements vector obtained at each time step,
contains an estimation of the distance between the
target’s position and the position of each one of
the N; anchor nodes. These range estimations are
produced with the use of the two-way ToF ranging
method. Subsequently at each time step the complete
measurements vector is given as,
zi(t) = [21,22,23 - 2N, ], 0 =1,2--- | N )
The completion of the dynamical system requires
the definition of the measurements equation, which
mathematically relates the observations z(t) and the

state-vector x(t). Since we consider ranging measure-
ments the equation is formed with the use of the
Euclidean norm:

2i(t) = v/ (y(t) —y:)? + (2(t) — 2:)? + v(t),i = 1--- Ny
(10)
x(t),y(t): are the target’s x-y coordinates at time ¢ and
N, ,yn, are the coordinates of the anchor nodes and,
v(t): is a Ns x 1 noise vector sampled from a known
distribution that represents the observations noise.
From our ranging experiments we see that the ob-
servations error in position follows a Gaussian distri-
bution with zero mean and 3.7m standard deviation.

4.2 Tracking Algorithms

Based on the state model (single, multiple) that is
used, we develop an algorithmic framework for the
recursive solution of the formulated tracking system.
Considering the non-linear nature of the system, we
choose to employ PF as the basis of our tracking algo-
rithms. PF are a class of recursive Bayesian Estimation
methods inspired by the techniques of Importance
Sampling and Monte Carlo Integration [27], [28]. In
the Bayesian Estimation framework an unknown state
(in this case the state vector x(t)) is estimated in a two-
stage procedure given the incoming measurements
(observations) and a mathematical process model [29].

To calculate a state estimate at time ¢ given the se-
quence of measurements z(t) up to that time, the pos-
terior probability density function (pdf) p(x(t)|z(t))
of the state at time ¢ should be estimated. After
obtaining the posterior pdf p(x(¢) | z(t)), an estimation
of the state vector can then be produced with the
use of a certain criterion like the Minimum Mean
Square Error (MMSE). In PF based algorithms, to
estimate the pdf p(x(t) | z(t)) at time ¢, N particles are
generated from a proposal distribution g(x(t)|z(t)).
Let’s denote the generated particles at time ¢ as, x(t)
and their corresponding weights as w(t)’. The weights
are calculated from the following:

pOx(t) | 2()
q(x()" | 2(t))
After obtaining the weight for each particle an es-

timation of the desired pdf at time ¢ can be produced
from:

w(t)® o (11)

p(x(t) | 2(1)) = Zw(t)i5(X(t) -x(t)")  (12)

where ¢ is Dirac’s delta function.

A well-known issue of concern in PF is the degen-
eracy problem. In practical terms, after a number of
iterations all but one particles have negligible weights.
Thus, a substantial amount of computation is devoted
in updating particles with minimal contribution to the
approximation of the pdf. To avoid this, a measure,
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called effective sample size N.¢, is introduced and
defined as follows:

I
S (w(t))?

A resampling step is carried out whenever Ny is
found to be smaller than a pre-defined threshold Nip,..
Resampling eliminates samples with low importance
weights while multiplies samples with high impor-
tance weights [27].

Negp = (13)

4.3 Range-Only Tracking Particle Filter Algorithm
(ROT-PF)

The algorithm described in this section is intended
for a tracking scenario where the target’s motion is
represented by the CV model. To begin with, we
considered that both the state and measurements
noise follow known distributions that can be sampled.
The transitional prior p(x(¢)|x(t — 1)) is chosen as
the importance density function to sample particles
from. Initial particles (at time ¢ = 0) are drawn from
a distribution p(zo) which represents the system’s
prior knowledge regarding the target’s initial state
condition.

To produce a sample from the transitional prior,
a noise sample w(t — 1)’ is initially generated and
used in Eq.2 to produce a sample x(t)" distributed
accordingly to the transitional prior. Upon receiving
a new measurement the weight for each particle is
computed. Because the transitional prior is chosen as
the importance density function, Eq.11, which calcu-
lates the weight for each particle, simplifies to w(¢)" o
p(z(t)|x(t)") which is the likelihood of the measure-
ment vector (real observation) z(t) = [z1,22--- 2],
given the predicted observation z(t)?, calculated from
Eq.9, using the sampled particle x(t)".

The measurements z(t) follow a Gaussian distribu-
tion N(u,,0,) , the weight w(t)* for particle x(t) is
calculated from:

N, ,
_ (z(t) — 2(t)")”
— 1;[ 27r02 exp <— 2072 (14)
The final step in the ROT-PF algorithm involves re-
sampling, whenever N.s; is found to be smaller than
Nthr-

4.4 Range only Tracking Multiple Model Particle
Filter Algorithm ROT-MMPF

To recursively estimate the state vector in the
multiple-model case, a multiple model PF algorithm is
employed. The state vector in the multiple-model case
is the augmented state vector which contains both the
state x(t) and the regime variable r(¢). The augmented
state vector is denoted as, y(t) = [x(t) r(t)].

In this case, initial particles are drawn from two
distributions p(rg) and p(xg). Particles for the state
x(t) are sampled from the transitional prior similar to
the ROT-PF algorithm, while particles for the regime
variable are sampled according to the transitional
probability matrix II = [m,,]. As with the ROT-
PF algorithm, whenever a new measurement vector
becomes available the weight for each particle is com-
puted by using the likelihood function p(z(t)|y(t)?),
which in this case depends on the augmented state
vector. Similar, to the ROT-PF algorithm the predicted
observation z(t)* is calculated based on the sampled
particles of the state vector x(t)’, using Eq.9. The
final step of the ROT-MMPF algorithm includes the
resampling step whenever it is necessary.

An iteration of the ROT-PF and the ROT-MMPF
algorithms is given in Fig. 6.

Initialize
- Draw Initial Particles
fori=1to N do
xo ~ p(xo), (~: denotes sampling from)
ro ~ p(ro) (for the ROT-MMPF case only )
end for
Sequential Importance Sampling Step
- Sample Particles and Calculate Weights
fori=1to N do
r(t)" ~ m’j (for the ROT-MMPF case only )
x(t)' ~ p(e(t)[e(t — 1))
@(t)" = p(z(t)|z(t)") (for ROT-PF)
()" = p(=(t)[x(t)",r(t)") (for ROT-MMPF)
end for
- Calculate total weight
t= Zi\le 15(75)Z
- Normalize weights
fori=1to N do
w(t) =t~ o)
end for
Resampling Step
if Neys < Ninr then
- Resample with replacement to obtain N new parti-
cles distributed according to p(z(t)|Zo:¢)
end if

Fig. 6. Pseudocode of the ROT-PF and ROT-MMPF Algo-
rithms

5 SIMULATION EVALUATION

This section provides results from simulating the
proposed tracking system under various two-
dimensional scenarios where a single target is
considered. We aim to compare the multiple-model
approach against the single-model one and investigate
the effect on the achieved accuracy that the sampling
interval and number of particles have. Moreover in
this section we derive the theoretical Cramer-Rao
lower bound of the proposed system and compare it
with results obtained from simulations.

To quantify the accuracy achieved in estimating
the target’s coordinates the Root Mean Square Error
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(RMSE) is used. The RMSE for position is defined as
follows:

Nl

RMSE = J D (@(t) = @(t)est)? + (y(t) = y(t)est)?
t=1 (15)

5.1

Here a comparison of the two approaches that are
employed to form the state equation, takes place.
A scenario were the target performs a predefined
trajectory which involves a quick two-turn manoeuvre
is simulated with the single and multiple-model state
formulation. From the Fig. 7 it is clear that the MMPF-
ROT algorithm can successfully track the target’s ma-
noeuvres. On the other hand the PF-ROT algorithm
keeps track of the target during the first turn but
looses focus in the second turn and requires some
time until the algorithm’s output converges back to
the target’s trajectory.

Multiple-Model vs Single-Model

Trajectory Estimation

N ®  Anchors Positions
200 A

real trajectory
A il Y

A A single-model estimate
A '© ' multiple-model estimate

150 A

® initial position

100}

50

y - coordinate (m)

=100

x = coordinate (m)

Fig. 7. Comparison of the two models under a ma-
noeuvring scenario

5.2 Sampling Interval - Number of Particles

Two of the system parameters that affect the accuracy
of the proposed system in a real-world scenario, is
the sampling period Ts and the number of particles
the PF algorithms employ to approximate the state
vector. Increased T, translates to smaller number of
observations becoming available to the system within
a specific amount of time. The Sampling Period is
heavily dependent on the amount of time required by
the anchor nodes to collect and fuse the ranging esti-
mates. Moreover the Sampling Period is also affected
by the time the system requires to run the tracking
algorithm and produce an estimate. Conversely in-
creasing the number of generated particles results in

increased accuracy since the posterior pdf is approxi-
mated with higher precision. To evaluate the effect of
these two parameters, we conduct simulations where
initially we simulate the system for constant number
of particles N = 500 but with increasingly sampling
period Ts = 2,3,4,5,6,7sec and following we main-
tain the sampling period at T's = 2s and use a varying
particle size N = 500, 1000, - - - ,4000. For each set of
values, 100 Monte Carlo trials are conducted. At each
execution the RMSE for position was calculated and
finally the average RMSE was calculated for the total
of 100 runs. In Fig. 8 the average RMSE is illustrated
against both of these parameters for the ROT-PF (a,b)
and ROT-MMPF (c,d) algorithms respectively.

5.3 Posterior Cramer - Rao lower bounds

The Cramer-Rao lower bound (CRLB) is a theoreti-
cally derived lower bound of the second-order error
of an unbiased estimator. The CRLB is utilised as
a benchmark for evaluating the performance of dy-
namic estimation algorithms [30], [31]. In the majority
of the situations the CRLB is calculated recursively
with the use of the Fisher information matrix . This
bound is called “posterior” since it is applicable in
systems modeled with nonzero process noise [32]. We
compute the posterior CRLB for the two approaches,
used to formulate the state dynamics of the proposed
range-only tracking system. Moreover simulations are
presented to assess the performance of the proposed
system against the theoretically derived lower bound.
For a dynamical estimation problem, the covariance
matrix P(¢) of an unbiased estimator %(t¢) of the state
vector at time k£ has a lower bound (CRLB) which is
expressed as :

P(t) £ E{(X(t) - x(1))(%(t) = x(t)) "} > I()~" (16)

where J(t) is the Fisher’s information matrix.

5.3.1 CRLB for the ROT-PF algorithm

In this case the state equation is modeled with the use
of the CV model. Considering the process noise to be
zero (w(t) = 0), which means a purely deterministic
trajectory, matrix J(¢) is recursively calculated from
the following [33].

N
I(t)=[F 730t - DF '+ HO)R(); H(t):
=1 (17)
where: N, is the number of anchors, H(t); is the Jaco-
bian of the measurements equation (Vi) zi(t)) with
respect to the state vector, evaluated at the true value
of x(t) and R(t); ! is the inverse of the observations
noise covariance matrix.
Since the initial density to sample particles from,
is chosen to be Gaussian (p(xg) = N(xo; tto, Po)) the
iteration begins with Jo = P;*
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Fig. 8. The effect of the sampling interval and the particle size on the system’s accuracy: (a),(b)ROT-PF

algorithm. (c),(d) MMPF-ROT algorithm

The Jacobian matrix of the measurements equation
z(t) is a 1 x 4 matrix given in Eq. 18.

(x(t) — x4)
Ht);[1,1] =
(t)[1,1] J@) _(xégj n (y)(t) —yi)?
HEOuL2 - Yyit) — i 18
Y e e e o e
H(t);[1,3] = 0
H(t)i[1,4] = 0

To compare the ROT-PF algorithm against the
CRLB, we simulate the following scenario. Four an-
chor nodes are considered deployed at coordinates
S1 = [10 0],82 = [50 0]783 = [10 25],54 = [50 25]
In line with the theoretical assumptions the process
noise is considered zero while the observations noise
is considered Gaussian with o, = 3.7m. The target’s
initial state vector is o = [10m 10m 0.1m/s 0.1m/s]
and initial particles are sampled from a Gaussian
distribution with g = z¢ + N(0,1) and covariance
matrix Sy = J;! = diag[1 1 1 1]. This scenario was
simulated for 400 time steps for a total of 500 Monte
Carlo runs and the CRLB for position was calculated
as:

CRLB,,s = /J(t)"1[1, 1]+ J(t)~1[2,2]  (19)

where J(¢)7![1,1] and J(¢)71[2,2] are the diagonal
elements of the information matrix corresponding to
the CRLB for = and y coordinates respectively.

Results are illustrated in Fig. 9, from where it is
clear that the achieved RMS error follows a similar to
the CRLB trend cases and is bounded by it.

5.3.2 CRLB for the ROT-MMPF algorithm

In the multiple-model case the derivation of CRLB is
being done using the same approach as for the single-
model case presented previously. Consequently, tak-
ing into account a zero process noise system, the
CRLB is computed recursively for a sequence of
regime variables [34].

Considering a specific sequence of regime variables
r)t & {r(D)L @) ...,r@®)!), with I = 1,2,...,s¢
being the possible regime values up to time ¢, the co-
variance of an estimator of the state vector is given by
Eq. 16 conditioned on the particular regime sequence.

CRLB vs RMSE

4—r— . . :
f —CRLB
AY
TEEEN - --RMSE
] SN 1
' R
EN
5 2f
EL Tl
’ g ------------
1
0 . .

0 50 100 150 200 250 300 350 400
Simulation Time (sec)

Fig. 9. CRLB for the ROT-PF algorithm

P(t) £ E{(%(t) - x(1))(%(t) — x(t))"|r(t)} > [3(®)] "

(20)

Fisher’s information matrix J(¢)! is computed for

the specific regime variable sequence 7(¢)' from Eq. 17.

The conditional (on the regime sequence r(t)!) CRLB

is given as known from the inverse of the information
matrix:

CRLB'(x(t)) 2 [3(1)!] " @1)

Considering that at time k the regime variable can
be any of the possible sk different permutations, the
unconditional CRLB is calculated as the expectation
of the conditional bounds [34],

CRLB(x(t) =Y prir@)I®)) " (22)
=1

where pr(r(t)!) is the forward probability of a partic-
ular sequence of regimes, of the first order Markov
chain defined by the transition probability matrix
IT = [rij] (see Eq. 5)

The computational complexity of the CRLB defined
in Eq. 22 increases exponentially with time and re-
quires the enumeration of the growing regime se-
quences. As a result this bound can only be calculated
for small numbers of ¢ [35]. For this in a number of
works on target tracking [36], [37] an a-priori known
regime sequence R(t)° is considered. This sets the



10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MONTH 201X

probability of that particular sequence to “1” and the
probability of any other regime sequence to “0” in
Eq. 22. The CRLB in this case is simplified to the
following equation (similar to Eq. 17).

J(@) [F(t =17 TI(E - 1)F(E - 1)+
= XL [HE) RO H;

(23)

The evaluation of the CRLB for the MMPF took
place both with the enumeration method as well as
for a purely deterministic trajectory (absent process
noise, a-priori known regime sequence). The simula-
tion setup was similar to the one for the investigation
of the CRLB for the ROT-PF algorithm. The target’s
initial state vector is o = [10m 10m 1lm/s 1m/s].
The manoeuvring turning rate was set to w, = 7/3.
Initial particles for the regime variable were sampled
with equal probability P, = [1/3 1/3 1/3] and the
transitional probability is set to m = 0.95.

A realisation of a regime sequence for K = 100 time
steps was produced and it was used to calculate the
CRLB in a deterministic way for that particular regime
sequence. this scenario was simulated for a total of
500 Monte Carlo runs and the results are shown in
Fig. 10b. For the enumeration method the total time
steps were set to K = 12. Results of 500 Monte Carlo
runs are illustrated in Fig. 10a.

From Fig. 10a and Fig. 10b it is clear that the RMSE
of the MMPE-ROT system follows a similar trend as
the theoretical CRLB for both cases.

6 SYSTEM IMPLEMENTATION AND EXPERI-
MENTATION

In the prototype implementation of the complete
tracking system we designate three different types
of wireless embedded nodes. For each different class
of nodes a specific piece of software was developed
to implement the node’s operation. The T.I. EZ430-
RF2500 hardware was used.

6.1

The anchor nodes are a number of embedded nodes
deployed in known locations and their mission is to
interact with the target-node in order for the ranging
data to be produced from the two-way ToF technique.
Our approach is to designate the anchor nodes as
responder nodes and have them operate in the exact
way that the responder node operates in the two-way
ToF method.

Anchor nodes

6.2 Target node

The target node is the mobile object of which the
trajectory the system attempts to estimate. For the
two-way ToF ranging method we employ, it was
deduced that the role of requester would be suitable

for the target node. In the resulting system the target
initiated the communication between itself and the
anchors. Initially, the target engages in a ranging
process with the first anchor node; as soon as the
nominal number of transactions is achieved and the
two-way ToF estimate is calculated, the value is fused
to the central node and the target-node carries on and
starts ranging with the next anchor node. A data cycle
is completed when the target-node has acquired one
ranging estimate from every anchor node. The four
estimates are sequentially fused to the central node at
the moment of their production.

The target-node must exchange ranging transac-
tions on a one-to-one basis with each one of the
anchors within a single sampling period. To guaran-
tee this, and prevent message collisions between the
target and the anchors, each anchor’s CC2500 radio is
programmed to operate on a different communication
channel. This approach allows the target-node to com-
plete the ranging process with a specific anchor with-
out the risk of another anchor node intercepting this
process which would result in faulty time readings.
The target-node is aware of the communication chan-
nel that each anchor operates on and loops through
these during each sampling interval.

6.3 Central node

The central node is responsible for the collection
of ranging estimates and for the execution of the
tracking algorithm. Several important challenges were
considered in the design of the central-node software.
Firstly the issue of time synchronization between the
data acquired and the estimates produced. As soon as
the central node acquires the required data from the
anchor nodes, the execution of the tracking algorithm
is initialized and the state estimates are produced.
Following, a new set of observations will be available
at the central node and the algorithm is executed
based on the new set of data to produce the next
state estimate. It is imperative to ensure, that both
the operations of continuous data accumulation and
execution of the algorithm will run in the central
node effectively. Under these conditions a choice was
made to employ a laptop computer as the platform to
execute the PF tracking algorithm. An EZ430-RF2500
node connected to a USB port acts as the bridge
between the target-node and the laptop. The central
EZ430-RF2500 node forwards each ranging estimate to
its UART port which is connected to the laptop and
then the software running on the laptop takes over
for further processing.

The tracking algorithm (either MMPF-ROT or PF-
ROT) is implemented as a MATLAB routine. A top-
level script initializes the procedure and it is there
where all the relevant system parameters are set.
These involve the noise levels, the distribution from
which the initial particles are sampled, the target’s
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Fig. 10. CRLB for the MMPF-ROT algorithm: (a) using the enumeration method; (b) using a predefined trajectory

initial location, the anchor’s positions and the con-
nection parameters with the EZ430-RF2500 central
node are all defined before the initialisation of the
tracking operation. The front-end script monitors the
serial port where the central node is connected and
is programmed to signal an interrupt whenever the
required amount of bytes (i.e. four range estimates)
is accumulated. The tracking algorithm routine is
scheduled to run whenever such an interrupt is raised.
After the tracking algorithm runs to completion the
results are stored and the program waits for another
set of ranging data to become available.

Different to our simulation experiments, the sam-
pling interval for the real-world experiments was not
set to a constant value. The sampling interval is the
time elapsed between two successive executions of
the tracking algorithm or in terms of the state-space
model, the time elapsed between the current and the
previous state vectors. It is a parameter which has
a significant effect on the system’s performance as it
was revealed through the simulations investigation.
In the real-world experiments the sampling interval
is affected primarily by the amount of time required
to collect a ranging estimate from all the anchors.
We have observed that on the EZ430-RF2500 the
ToF method ideally requires approximately 152ms
to execute on the requester node with 100 two-way
transactions. Subsequently a sampling interval of 1s
can be achieved in the presence of four anchors, if no
delays are introduced.

Nevertheless, in the event that the connection be-
tween the target and the anchors is not ideal, retrans-
missions of the ranging messages may be required in
order to reach the nominal number of 100 two-way
transactions, which is required to obtain a ToF range
estimate between the target and the respective anchor.
Subsequently this will result in an increase of the
sampling interval since more time is required to ob-
tain the range estimates. To avoid using an erroneous
sampling interval in our model, an adaptive scheme
is employed. The sampling interval is calculated in
MATLAB as the required amount of time to obtain
the four range estimates (time when the interrupt is
raised). The value of a real-world clock is captured

whenever an interrupt is raised. By subtracting the
previous value of that clock the sampling interval can
be calculated. Using this method, we guarantee that
the state-update model that is employed takes into
account the varying amount of time that has lapsed
between two successive executions of the tracking
algorithm.

7 EXPERIMENTS EXECUTION AND RESULTS
71

In the experiments carried out the four anchors were
placed in known positions in the corners of a 15m
x 15m square area with excellent LoS conditions.
The central processing node was placed on the top
of the square area. In our experiment we restrained
in tracking a single mobile node. The target mobile
node was carried in the hands of a person which
was walking in the designated square area. Finally
the nodes were strapped on plastic traffic poles and
elevated from the ground ( 1m) in order to avoid
potential deflection of the RF signals from the ground.
The target node was carried at a similar height as the
anchor nodes.

In all experiments the nominal number of two-
way ranging transactions with each anchor node was
set to 100. The reason for choosing 100 two-way
transactions to estimate the range between the target
and each anchor is related to the required real-time
system operation. The EZ430-RF2500 does not have
enough memory to store more than 100 timing values,
which means that in order to utilise more than 100
transactions the ranging routine should be executed
multiple times. This was done without a problem in
the ranging experiments where real-time operation
was not a critical component. However in the tracking
system where the ranging estimates must reach the
central node in a timely manner with minimum delay
such an approach would add significant latency that
would hinder the ability for real-time operation. Due
to the these issues, we chose to proceed with setting
the nominal number of ranging transactions to 100.

The rest of the parameters for the tracking al-
gorithms were defined as follows. The state noise

Preliminaries
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Fig. 11. The deployment of the anchor nodes and the
dimensions of the experimental area

was defined as zero-mean white Gaussian noise with
0w = 0.5. Similarly the observations noise is also
defined as zero-mean white Gaussian with o, = 3.7.
The target’s initial state was known. The sampling
interval was set as described previously (6.3). In the
implementation of the PF tracking algorithms the
particle size was set to NV = 1500 to provide improved
robustness in case the sampling period increased. The
distribution to sample the initial particles from was
a Gaussian distribution with zero mean and unity
covariance. Finally the transition probability for the
regime variable was set at m = 0.8 for the MMPF-
ROT algorithm. The constant turning rate was set at
w/4 rad/s. The datarate was set to 500kbps.

To calculate the proposed system’s tracking accu-
racy the output obtained from the system is compared
with respect to the ground truth of the target. To effec-
tively measure the ground truth, the target’s trajectory
was predefined before the experiments and divided
into individual segments at which the target moved
at a straight line with approximately constant speed.
During the execution of the experiment we recorded
the times when the ranging data from all nodes were
collected (reached the central node). Additionally, the
total time of each individual straight line segment
was recorded. This facilitated the computation of the
target’s true velocity in each segment of it’s trajectory.
In addition by knowing the estimation times, we were
able to interpolate and calculate the target’s ground
truth position and velocity at the time of the execution
of the algorithm. Following this approach, the esti-
mation produced by the system could be compared
against an accurate enough approximation of the true
target variables.

7.2 Experimental Results

In this section we present results from a number of
experiments that were carried out with the proposed
tracking system. The experiments are categorized in
three groups based on the target’s trajectory. Straight
Line Trajectories, Trajectories involving one or two
manoeuvres, Trajectories involving more than two
manoeuvres. Examples of tracking results are illus-
trated in Fig. 12. A total of 25 tracking experiments are
investigated in this sections. The position and velocity
errors are calculated with respect to the ground truth.
The collective performance results are illustrated in
Table. 1.

Position x-velocity y-velocity
RMSE (m) | RMSE (m/s) | RMSE (m/s)

Average 2.62 1.57 1.22

Best Case 1.4612 0.1883 0.7864

Worst Case | 4.0774 3.4838 2.5435

TABLE 1
Accuracy results from 25 outdoor experimental
executions
7.2.1 Comparison to Simulation Results

Here we present a comparison between the results
obtained from the full-scale experiments with simula-
tions results obtained after simulating multiple times
a tracking scenario similar to the one we experi-
mented with in the full-scale experiments. Four an-
chors were considered placed in coordinates ((0m,0m),
(15m,0m), (Om,15m), (15m,15m)) exactly as in the out-
doors deployment. The system parameters (target’s
initial state, distribution to sample initial particles),
the PF algorithm parameters (particle size) and the
noise levels, where the same as in the full-scale ex-
periments .

To approximate the behaviour the system demon-
strated in the full-scale experiments, we used a varied
sampling interval. Based on observations from the
real-world experiments, the minimum observed value
of the sampling interval during the experiments was
around 0.8s and the maximum one around 2.2s. To
approach this in our simulations we randomized the
sampling interval variable between 0.8 and 2.2s. The
simulations were run for 30 time steps and with each
step having varying sampling interval. This approach
resulted in simulation executions that run for a total
time similar to the one that the real-world experiments
lasted for. We simulated this scenario for 100 runs
and included both random and deterministic trajec-
tories. The deterministic trajectories were the same
as the ones used in the full-scale experiments and
included straight line trajectories as well trajectories
with predefined manoeuvres. The average RMSE ob-
tained from the simulation analysis is 2.5m, a result
which is very close to the one (2.6m) observed in our
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manoeuvres

real-world experiments. Additionally the accuracy in
the velocity estimation obtained from simulations is
1.89m/s which again is similar to the one obtained
in the full-scale experiments (1.9m/s). The RMSE for
position, from 100 simulations of this simulation set-
up are illustrated in Figure 13.

Histogram of Root Mean Square Error

Frequency (counts)
N
S

10,

4
RMSE (m)

Fig. 13. Histogram of RMSE evaluated from 100
simulations under similar conditions with our real-world
experiments

8 CONCLUSIONS

In this paper we have presented the design, im-
plementation and evaluation of a real-time, range-
only target tracking system for wireless embedded
nodes. The motivating idea of this work considers a
small number of wireless embedded nodes (anchors)
to be deployed in known coordinates tasked with
acquiring ranging information and a central node
which receives the accumulated data and executes
the tracking algorithm in real-time, to estimate the
target’s position and velocity. The proposed system
aims to achieve accurate performance, real-time op-
eration as well as provide support for manoeuvring
targets. The proposed system is based on range obser-
vations produced by utilising a two-way ToF ranging
method. To provide enhanced support for manoeu-
vring targets, the target’s pattern is modeled with
the use of multiple switching motion models. Two

Particle Filters based algorithms were designed for
the tracking system. The performance of the proposed
system is evaluated in a simulation environment and
we quantify the effect that two important system
parameters, the number of particles and the sampling
interval have on the system’s accuracy. Additionally
we deduce the CRLB and compare the performance of
the system against the theoretical bound. Finally we
implement the entire tracking system on T.I. EZ430-
RF2500 hardware and conduct experiments in an out-
door area of 225m?. From a total of 25 experiments, an
average accuracy of 2.6m for position and 1.9m/s for
velocity was observed. Additionally, the simulation
investigation attests and verifies the accuracy levels
and the system’s performance, as it was demonstrated
in the real-world experiments.
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