The University of Southampton
University of Southampton Institutional Repository

Spatial variations in surface sediment structure in riffle-pool sequences: a preliminary test of the Differential Sediment Entrainment Hypothesis (DSEH)

Spatial variations in surface sediment structure in riffle-pool sequences: a preliminary test of the Differential Sediment Entrainment Hypothesis (DSEH)
Spatial variations in surface sediment structure in riffle-pool sequences: a preliminary test of the Differential Sediment Entrainment Hypothesis (DSEH)
Riffle-pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in-situ grain-scale field measurements from a riffle-pool sequence to parameterise a physically-based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution DEMs acquired using Terrestrial Laser Scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilises pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a 2D Computational Fluid Dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle-pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel-bed rivers.
entrainment, sediment packing, riffle-pool, terrestrial laser scanning, bed shear stress
0197-9337
449-465
Hodge, Rebecca
b1d32ae8-df98-4726-a2f7-83f34a01ddfd
Sear, David A.
ccd892ab-a93d-4073-a11c-b8bca42ecfd3
Leyland, Julian
6b1bb9b9-f3d5-4f40-8dd3-232139510e15
Hodge, Rebecca
b1d32ae8-df98-4726-a2f7-83f34a01ddfd
Sear, David A.
ccd892ab-a93d-4073-a11c-b8bca42ecfd3
Leyland, Julian
6b1bb9b9-f3d5-4f40-8dd3-232139510e15

Hodge, Rebecca, Sear, David A. and Leyland, Julian (2013) Spatial variations in surface sediment structure in riffle-pool sequences: a preliminary test of the Differential Sediment Entrainment Hypothesis (DSEH). Earth Surface Processes and Landforms, 38 (5), 449-465. (doi:10.1002/esp.3290).

Record type: Article

Abstract

Riffle-pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in-situ grain-scale field measurements from a riffle-pool sequence to parameterise a physically-based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution DEMs acquired using Terrestrial Laser Scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilises pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a 2D Computational Fluid Dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle-pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel-bed rivers.

This record has no associated files available for download.

More information

Published date: April 2013
Keywords: entrainment, sediment packing, riffle-pool, terrestrial laser scanning, bed shear stress
Organisations: Earth Surface Dynamics

Identifiers

Local EPrints ID: 340536
URI: http://eprints.soton.ac.uk/id/eprint/340536
ISSN: 0197-9337
PURE UUID: 77814c4e-a532-49d7-84aa-9c7d158b3611
ORCID for David A. Sear: ORCID iD orcid.org/0000-0003-0191-6179
ORCID for Julian Leyland: ORCID iD orcid.org/0000-0002-3419-9949

Catalogue record

Date deposited: 25 Jun 2012 12:59
Last modified: 15 Mar 2024 03:24

Export record

Altmetrics

Contributors

Author: Rebecca Hodge
Author: David A. Sear ORCID iD
Author: Julian Leyland ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×