A constrained approach to multiscale stochastic simulation of chemically reacting systems

Cotter, Simon L., Zygalakis, Konstantinos C., Kevrekidis, Ioannis G. and Erban, Radek (2011) A constrained approach to multiscale stochastic simulation of chemically reacting systems The Journal of Chemical Physics, 135, (9), p. 94102. (doi:10.1063/1.3624333).


Full text not available from this repository.


Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems

Item Type: Article
Digital Object Identifier (DOI): doi:10.1063/1.3624333
ISSNs: 0021-9606 (print)
Keywords: fokker-planck equation, molecular dynamics method, reaction kinetics, stochastic processes
Organisations: Applied Mathematics
ePrint ID: 340573
Date :
Date Event
1 September 2011Published
Date Deposited: 25 Jun 2012 14:36
Last Modified: 17 Apr 2017 16:54
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/340573

Actions (login required)

View Item View Item