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Abstract

The approach o8IAM J. Matrix Anal. Appl.26(4):1083-1099 for solving structured total least sgqsgrob-
lems is generalized to weighted structured low-rank appration with missing data. The method proposed is
based on elimination of the correction matrix and solutibthe resulting nonlinear least squares problem by local
optimization methods. The elimination step is a singulegdir least-norm problem, which admits an analytic solu-
tion. Two approaches are proposed for the nonlinear lepstres minimization: minimization subject to equality
constraints and unconstrained minimization with regakicost function. The method is generalized to weighted
low-rank approximation with singular weight matrix andllastrated on matrix completion, system identification,
and data-driven simulation problems. An extended versiahe paper is a literate program, implementing the
method and reproducing the presented results.

Keywords: low-rank approximation, structured total least squarasgable projections, missing data, system iden-
tification.

1 Introduction and notation

The paper describes a solution method for matrix structlowerank approximationi.e., approximation of a given
matrix by another matrix whose elements satisfy certaidgfined relations (matrix structure) and whose rank is less
than or equal to a predefined value. The combination of matmk low-rank structure makes structured low-rank
approximation a tool for data modeling. Low-rank properfyaamatrix is equivalent to existence of an exact low-
complexity linear model for the data. Moreover, the rankhaf matrix is related to the complexity of the model.
The structure, imposed on the approximation, is relatedapegrties of the model. For example, Hankel structure
corresponds to time-invariance of a linear dynamical méafethe data.

Structured low-rank approximation has been studied in itkeature from different viewpoints: numerical al-
gorithm for computing locally optimal or suboptimal sotuis, statistical properties of the resulting estimatonsl, a
applications. The subjectis closely related to the stnecttotal least squares method. The similarities and éiffess
between the low-rank approximation and total least squaaeedigms are well documented in the literature [12, 6, 8]
and will not be repeated here.

A novel feature of the low-rank approximation problem, ddased in this paper, is that elements of the data
matrix can be missing (not specified). Missing data may oircpractical applications due to malfunctioning of mea-
surement device, communication channel, or storing deVitsuch cases, the best strategy is to collect a complete
data record by repeating the data collection experimenathar applications, however, the missing data problem is
intrinsic and can not be avoided by repeated experimentexample of such an application is the prediction of the
user ratings of products (recommendation systems), wheusexs rate some, but rarely all, products and the task
is to predict the missing ratings. Methods for solving unstinred low-rank approximation problems with missing
data have been proposed in the literature [4, 5, 16, 1, 7]elew to the best of the authors knowledge none of
these methods can deal with matrix structure. In this papeigeneralize the method of [13] to structured low-rank
approximation with missing data.
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Problem formulation

We denote missing data values by the symii®N (“not anumber”). The considered low-rank approximation prob-
lem is

minimize overpe R Z (pi—p)?
{i | pANaN} (SLRA)
subjectto rank.#(p)) <r,

where

Np
S R% — R™N, defined by ./(p) =S+ ZSﬁi, ()
i=
(defaults0 2a)= (4 9b)
if ~exist('s0") || isenpty(s0), sO = zeros(m n); end

is the matrix structure—an affine function from the struetparameter spad’ to the set of matriceR™<". With ¢
denoting the vector of indices of the given valges p; # NaN } (in decreasing order) arl; denoting the subvector
of p with indices in&, the approximation criterion can be written as

S (b —B)? =lps — B3
ic¥

Using the kernel representation of the rank constraint
rank(#(p)) <r <= thereisRe R™M "M such thaR¥(p) = 0 andR has full row rank

the following equivalent problem to (SLRA) is obtained

minimize overpe R™ andRe R(™ XM ||p, — By |3

. N (SLRAR)
subjectto R¥(p)=0 and Rhas full row rank
Problem (SLRA) is a double minimization over the parametBrand p
minimize overRe R(M XM M(R) subjectto Rhas full row rank (SLRAY)
where
M(R) := min| py — P~||3 subjectto RZ(p)=0. (INNER)
p

The evaluation of the cost functidyl, i.e., solving (INNER) for a given value R, is refered to as th#ner mini-
mization problem This problem is solved analytically in Section 2. The remra problem of minimizingvl overR

is refered to as theuter minimization problemit is a nonlinear least-squares problem, which, in genawdhits no
analytic solution. General purpose local optimizationtmes are used in Section 4 for its numerical solution. In Sec-
tion 3, the approach is generalized to weighted 2-norm aqiattion criteria with singular weight matrix. Numerical
examples of solving approximation problems with missintadegy the proposed methods are shown in Section 5.

Notation

In the rest of the paper, we use the following notation.

e Ay g isthe submatrix oA with rows in.# and columns in#. The row/column index can be replaces by the
symbol “”, in which case all rows/columns are selected.

o .7 | ¥4 is the vector of indices of (in decreasing order) that are missing / given.

2b (define# and¥ 2b)= (4 9a)
Im= find(isnan(p)); lg = setdiff(1:np, In;



e AT is the pseudo inverse éfandA* is a matrix which rows form a basis for the left null spacedof

3a (defineper p 3a)= (3c)
perp = @a) null(a)’;

e For given.” andR e R(M)*M we define the matrix
G:=[veqRS) - veqR$,)] € RIM MM, (G)

where ve¢:) is the column-wise vectorization operator.

3b (define G3h)= 4)
g = reshape(R * phi * reshape(bfs, mp, n * np), size(R 1) * n, np);

2 Analytical solution of the inner minimization problem

In this section, we consider the inner minimization probl@NNER).

Problem 1. Given linear structure”, structure parameter vectpre R™ UNaN, and a kernel parametBre R(M-")xm
find the cost functiotM (R), defined in (INNER), and a value @fthat attains the minimum.

Theorem 2. Under the following assumptions:
1. G 4 isfull column rank,
2. 1< (m—r)n—nm < np—nm, and
3. G:= G}J,G;g is full row rank,

3¢ (defineG 3= 4)
(defineper p 3a), perp_gm = perp(g(:, Im); bg = perp_gm= g(:, 19);

Problem 1 has a uniqgue minimum

M(R)=s'(GG')'s  where s=(Gp,—G.,vedRS)), (M)

attained by o
Ps=ps—G'(GG')'s and p,=-G',GyPs. (0
3d (compute M and@ 3d)= 4)

dpg = bg’ * pinv(bg * bg’) * (bg * p(lg) - perp_gm= vec(R * s0));
M= dpg’ * dpg; ph(lg) = p(lg) - dpg; ph = ph(:);
ph(lm = - pinv(g(:, Im) = g(:, 1g) * ph(lg);

Proof. Defining
and using the identity

we have
R7(p)= —vedRS) <  [Gy G.,] [p‘f - AW] — _vedRS).

Therefore, (INNER) is equivalent to

M(R) := min |Apy||3 subjectto [G.y G. /] [Agf } =G.ypy —vedRY),
ApyceR"P-"m § , cRm —Px '
which is a generalized linear least norm problem. The smiuidllows from Lemma 3. O
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4 (msfit_ext 4=
function [M ph] = msfit_ext(R tts, p, w, bfs, phi)
(8 +— (m,n,np) 168
(defaultphi 16d)
(defaults0 2a)
if ~exist('bfs’) | isenpty(bfs), (S~ Sieb, end
define.# and¥ 2b)
preprocesp andbf s with w5b)
define G3b)
defineG 3c)
compute M ang 3d)
postprocesph with w 6a)

o~~~ o~~~

Generalized least norm problem
Lemma 3. Consider the generalized linear least norm problem
f = min |X|3 subjectto Ax-By=c, (GLN)
with Ae R™"™ B e R™M™ and ce R™. Under the following assumptions:
1. Bis full column rank,
2. 1<m-ny <ny, and
3. A:=B'Ais full row rank,
problem (GLN) has a unique solution
f=c'(BY)"(AAT) 'B'c,
_ (SOL)
x=AT(BHT(AAT) 'B'c and  y=B'(c—AX.

Proof. Under assumption B has a nontrivial left kernel of dimensian— ny. Therefore for the nonsingular matrix
T= {gj] € RM<M
B* TB [l
p— = —_— ny
ro-lafo- freal - 6]
Pre-multiplying both sides of the constraint of (GLN) Bywe have the following equivalent constraint

BFAx LY Bfc]
BYAx| ' |0] ~ |Bic|”

y=B"(c—Ax)

uniquely determineyg, givenx. The second equation

The first equation

BLAx=B'c (*)

defines a linear constraint faronly. By assumption 2, it is an underdetermined system eglirequations. Therefore,
(GLN) is equivalent to the following standard least normipeon

f = min |x||3 subjectto BAx=B'c. (GLN")

By assumption 3 the solution is unique and is given by (SOL). O
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Note4 (About assumptions 1-3Assumption 1 is a necessary condition for uniqueness ofdheien. Relaxing
assumptions 1 implies that any vector in the affine space

% =B"(c— AXx) + null(B)

is a solution to (GLN). Assumption 2 ensures that the prokkemleast norm problem and has a nontrivial solution.
In the casem = ny, the problem has a trivial solutioh = 0. In the casean—ny > ny, the problem generically has
no solution because the constrair} {s an overdetermined system of equations. Assumption Bdsraquired for
uniqueness of the solution. It can also be relaxed, makimgnunique.

Note5 (Link to weigted least norm problems with singular weightrix). Consider the weighted least norm problem

min z'Wz subjectto Dz=c,

with singular positive semidefinite weight matkit. Using a change of variables= T ~'z, whereT is an nonsingular
matrix, we obtain the equivalent problem

min Z T'WTz subjectto DTz=c.
There exists an nonsingular matiix such that
T'WT= {'”X o}
PartitioningzandD := DT ! conformably as
7= m and D=[A B

we obtained problem (GLN).

3 Weighted approximation

Problem (SLRA) is generalized in this section to the weidlgieuctured low-rank approximation problem

minimize overp€ R™  (py — Py) ' Wy(ps — Py)

. A (WSLRA)
subjectto rank.#(p)) <r,
whereW is a positive definite matrix. The change of variables
Py =vWgps  and Py = /WPy (p—p)
reduces Problem (WSLRA) to an equivalent unweighted prol{eLRA). We have
Z(P) =S+vec }(Sp),  where S:=[vedS;) --- vedS)] € R™™ M. S
((S,p)—D=7(p) 59=
dh = phi * reshape(bfs * ph, np, n);
The structure¥” of the equivalent problem is defined by the matri§eandS = {vec(sll) - ved§,) |, where
S7g = Sg \ / Wg_l and g/// == 57% (y — y/)

We showed that problem (WSLRA) is solved by:

1. preprocessing the dapeand the structure, as in p— p') and (¥ — .,

5b (preprocesp andbf s with wsb)= (4 9a)
if exist("w) & ~isenmpty(w)
sqrt_w = sqgrtmw); inv_sqgrt_w = pinv(sqgrt_w); bfs = doubl e(bfs);
p(lg) = sqgrt_w=* p(lg); bfs(:, 1g) = bfs(:, Ig) = inv_sqrt_w,
end
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2. solving the equivalent unweighted problem with struetparameter vectqu', structure specificatiory”’, and
rank specificatiom, and

3. postprocessing the soluti@ obtained in step 2, in order to obtain the solutfbn= \/Wg‘lb”g of the original
problem.

6a (postprocesph with w6a)= (4 9a)
if exist("w) & ~isenpty(w), ph(lg) =inv_sqrt_w+* ph(lg); end

Using the transformationp(— p'), (¥ — .&’) and the solution (M) of (SLRA), we obtain the following eiqil
expression for the cost function of (WSLRA)

M(R) = (Gps — G-, vedRS)) W, 'GT (GW; G") 'GW, *(Gpy — G-, vedR%)), (Mw)

whereG = G! ,G. 4 andG is defined in G).

Note6 (Weighted structured low-rank approximation with a slagaveight matrix) A more general formulation of
problem (WSLRA) is

minimize overpe R™ (p—p)'W(p—p)

WSLRA
subjectto rank.7(p)) <r, ( )

with positive semidefinite weight matri%/. Problem (WSLRA') can be reduced to an equivalent unwedalde-rank
approximation problem with missing data (SLRA). There ex@énonsingular matriX, such that

I
T _ |'ng
TWT { O] .

Defining structures”, specified by the matrice® andS = ST, and changing the variablgg =T 1p, o = T~1p,
we obtain an equivalent problem in the form (SLRA) with lagt- rank(\W) values missing.

Note7 (Solving (SLRA) as weighted unstructured probler@pnsider an instance of problem (SLRA), refer to as
problem P1, with structure” = .1 and an instance of problem (WSLRA), refer to as problem P@y wistructured
correction and weight matrix

wW=55". (7 —W)

(s2weh)=
function w = s2w(s)
tts = s2s(s);
(8 +— (m,n,np) 163
(S S16b)
w = doubl e(bfs) * doubl e(bfs)’;

It can be verified by inspection that the cost functions (MJ &) of problems P1 and P2, respectively, coincide.
The weight matrixvV € R™™M" defined in ( — W), however is singular (rarfV) is equal to the number of structure
parameters of problem P1, which is less tinan). In the derivation of the cost function (V) it is assumed thaty

is positive definite, so that minimization of () is not equivalent to problem P2. Using pseudo-inversesatsof
inverse in p — p') and (¢ — ') and observing thaW )" =W, minimization of (My) for problem P2 yields and
equivalent problem to problem P1.

(test equivalence of structure and weigbts=
% Hankel
sl.m=2;, sl.n =5; r =1,
npl = s2np(sl); pl = 0.8 .~ (1:npl)’ + 0.01 * randn(npl, 1);
opt.solver = 'm;
[ph1, infol] = slra(pl, sl1, r, opt);
Dhl = bl khank(phl, sl1.nm;
D = bl khank(pl, s1.m; norm(D - Dhl, 'fro')



% Wi ghed

s2.m=ones(sl.m 1); s2.n = ones(sl.n, 1); s2.w = pinv(s2w(sl));
p2 = vec(D);

[ph2, info2] = slra(p2, s2, r, opt);

Dh2 = reshape(ph2, s1.m sl1.n); norm(D - Dh2, '"fro')

%ormpl - [Dh2(1l:s1l.m 1); Dh2(end, 2:s1.n)’])

vec(D - Dh2)’ * s2.w * vec(D - Dh2)

addpath ~/nfiles/wtls

[R P I ra(Dh2, r);

opt . pO P; opt.Maxlter = 1000; opt. Tol Fun = le-10; opt.Display = "off’;
[Ph, M Dh3, info3] = wtlsap(D, r, s2.w, opt)

vec(D - Dh3)’ * s2.w * vec(D - Dh3)

4 Outer minimization problem

The outer minimization problem (SLRA\is a nonlinear least-squares problem, which we solve begépurpose
local optimization methods. In order to apply standardrojatation methods, however, we need first to replace the
rank constraint with equivalent equality or inequality straints.

The kernel parametdR is constrained to have a specified structure

R R — RM-1)>xm
i.e, R=2(0), for somef € R". An example of a kernel structug# is a linear function
R=2%(0) :=vec,!, (W), (6—R

defined by a matrix € R"ex(m-rm,

(defaultt h2R7a)= (9b)
if ~exist("th2R'), th2R = @th) reshape(th * psi, m- r, n); end

(defaultpsi 7h)= (9b)
if ~exist('psi’, 'var’) | isenpty(psi), psi = eye(mx* (m- r)); end

The full row rank constraint oR is equivalent to and can be enforced in the parameter ogtiaiz method by
the equality constraint

RR" =lm . (f.rr. R
€(0):=%(0)Z"(0)—Imr=0. (f.rr. R)
(default? 7c)= (9b)

if ~exist("C), C= @th) th2R(th) * th2R(th)’ - eye(m- r); end
Then the outer minimization problem becomes a constraioetinear least squares problems

minimize overRe R(M*™ M(R) subjectto RR' —Ip_ =0, (SLRAY)

which can be solved by general purpose constrained optiimizenethods [14]. Another approach of solving the
outer minimization problem is to reformulate it as a regakdl unconstrained nonlinear least squares problem by
adding the regularization tergj|RR" — Ip,_;||2 to the cost functioni.e.,

minimize overRe RM*M  M(R)+y||RR — Iy ||. (SLRAY)

The parametey should be chosen “large enough” in order to enforce the cainst(f.r.r. R). A corollary of the

following theorem shows that= ||p||3 is sufficiently large.

(definey 7d)= (9a)
if ~exist('opt’) || ~isfield(opt, g ) || isenmpty(opt.g), opt.g = norm(p(lg)) ™~ 2; end



Theorem 8. Let M: R(M")*™ _, R . be a homogeneous functidre., M(R) = M(TR), for any R and a nonsingular
mx m matrix T. The optimal solutions of problem (SER#ith y = maxgM(R) coincide with the optimal solutions
of (SLRA).

Proof. Let Rbe an solution to (SLRA). We will show that
IRR" — I (|2 = m—r —rankR). (%)
There exists an orthogonal mattixdiagonalizingRR'". We have

HRRT - |mfrH% = U RRIU™ — |mfr|||2:

= ||diag(as,...,8ankR),0s---,0) — Im—r[|2, ~ wherea >0
rank(R)

— ZI (@ —1)2+m—r—rankR).

Suppose thad; # 1 for some. The matrix
R =diag1,...,1,1/\/&,1,...,1)R

has the same kernel and rankRso that by the homogeneity propertyMf M(R) = M(R'). However, we have
IRR" — I [|E > [IRR" = I ||,

so thatR' achieves smaller value of the cost function of (SLfR#hanR. This is a contradiction. Therefore, = 1
for all i. This concludes the proof of).
So far we showed that the cost function of (SLEAs

M(R)+ y(m—r —rankR)). (M”)

Denote byM; the optimal value of (SLRA) (the index in the subscript is the upper bound for the ranki reote that
the optimal value of (SLRA) is equal toM; provided that the solutioR of (SLRAY) is full row rank. Therefore, in
order to prove the theorem it is sufficient to show that the fiosction of (SLRAg) achieves its minimum for a full

rankR, i.e.,
. 1 ,
Mf<M_j+yi = y> i—(M;*—M;Li), fori=212....m—r. (x%)
SinceM; > 0, y = maxrM(R) is a sufficient condition fors(x). O
8a (set optimization solver and optiogg)= (9a)

prob = optinset();
reg = exist('opt’) & isfield(opt, 'nethod ) && strcnp(opt.nmethod, 'reg’);

if reg

prob. solver = 'fmnunc’;
el se

prob. sol ver = ' fnincon’;
end

prob.options = optinmset(’'disp’, 'off’);
prob.x0 = Rth(Rini, phi = p(tts), psi);

8b (call optimization solveBb)= (9a)
if reg
[x, fval, flag, info] = fm nunc(prob);
el se
[x, fval, flag, info] = fm ncon(prob);
end

info.fmn = fval;



9a (nonlinear optimization over BRa)= (9b)
(set optimization solver and optiogs)
(define# and¥ 2b)
(preprocesp andbf s with w5hb)
if reg
(definey 7d)
prob. obj ecti ve

@th) msfit _ext(th2R(th), tts, p, []
+ opt.g * norm(C(th), "fro) A

bfs, phi)

el se
pr ob. obj ecti ve @th) msfit_ext(th2R(th), tts, p, [], bfs, phi);
prob. nonlcon = @th) deal ([], C(th));

end

(call optimization solveBb), info.Rh = th2R(x);

[M ph] = msfit_ext(info.Rh, tts, p, [], bfs, phi);

(postprocesgh with w 6a)

The resulting function is:

9b (Structured low-rank approximatiodb) =
function [ph, info] = slra_ext(tts, p, r, w, Rini, phi, psi, opt, th2R, C
(8+ (m,n,np) 168
(S + S16b)
(defaultphi 16d)
(defaults 0 2a)
(defaultpsi 7b)
(defaultt h2R 7a)
(default? 7c)
(default initial approximatiorsc)
(nonlinear optimization over Ba)
(definel r a 9d)
(defineR2t h 10)

Note 9 (Initial approximation) Solving the outer minimization problem by either constegiror requilarized lo-
cal minimization requires an initial approximation for tharameterR, i.e., a suboptimal solution of the structured
low-rank approximation problem. Such a solution can be attegh from a heuristic that ignores the data matrix
structure.”” and fills in zeros for the missing values. The resulting wastred low-rank approximation problem can
then be solved analytically in terms of the singular valueodeposition.

9c (default initial approximatiorec)= (9b)
if ~exist("Rini') | isenpty(Rini), Rini =Ilra(phi » p(tts), r); end
ad (definel ra 9d)= (9b)

function [R P, dh] lra(d, r)
d(find(isnan(d))) =
[u, s, v] = svd(d); =u(:, (r +1:end)’; P=u(:, 1:r);

if nargout > 2, dh = u(:, 21:r) * s(l:r, 2:r) = v(:, 1:r)’; end

0;
R

The computed or user supplied initial approximatigm may not satisfy the constrain® (— R). In the case
whenW is square and nonsingular, for aRy;, there is corresponding,; parameter:

Bini == VeCT(Rini )q_,—l.

In the general case of rectangutmatrix, an approximation is needed in order to obta#,aparameter, such that
Z(6ni) is in some sense close®y,;. LetDjy be the best unstructured approximation with image is equedt R )
of the data matrix.

9% ((RD)—Doe= (10)
P=null(R; dh =P * (P\ d);
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Since,RniDini = 0, the closeness betweBp; andZ (6ii) can be measured by the Frobenius norm of the residual
2 (6ni )Dini. Imposing the normalization constraih@ni|| = 1, the resulting approximation problem is

minimize over@ | %(8)Dii|r subjectto [6] =1, (INI)

which is equivalent to unstructured approximation of therima!(D & I ) by a rankng — 1 matrix.

(defineR2t h 10)= (9b)
function th = RRth(R, d, psi)
if size(psi, 1) == size(psi, 2)
th = R(:)’ [/ psi;
el se
((R,D) — D 9¢)
th = lra(psi * kron(dh, eye(size(R, 1))), size(psi, 1) - 1);
end

Note 10 (Efficient computation and software implementatioBjficient evaluation of the cost function and its deriva-

tives in the special case of mosaic-Hankel matrix structsineresented in a companion paper [17]. The method,
presented in this paper (general linear structure) andfivéeat methods of [17] are implemented in Matlab (using

Optimization Toolbox) and C++, respectively. Descriptifithe software and overview of its applications is given

in [10].

5 Applications

As an illustration of how the developed methods can be usedactice and as a verification of their effectiveness,
we present in this section three sample applications:

e unstructured noisy matrix completion,
e scalar autonomous system identification with missing datel,
e data-driven simulation.

Numerical examples comparing the methods developed ingperpwith alternative methods, specifically developed
for these applications, are shown. All simulations are donglatlab and are reproducible in the sense of [2]. An
extended version [11] of this paper is a literate programn@iweb format [15]), implementing the methods in the
paper and generating the presented numerical results. éidessary m-files can be downloaded from

http://eprints.soton. ac. uk/ 340718.

5.1 Unstructured matrix with missing data

In the case of unstructured data matrix, the results olddigghe methods in the paper are compared with the results
of alternative methods

e the alternating projections method of [7] and
e the singular value thresholding method of [3].

The alternating projections method for weighted low-rapkraximation uses an image representaffin where
Pismxr andL isr x n, of them x n rank+ matrix.#(p). The algorithm iteratively minimizes the cost function
over P with fixed L from the previous iteration step and ovewith fixed P to its previously computed values. Both
problems—minimization ovelP and minimization oveL—are weighted linear least-squares problems, so that they
can be solved globally and reliably. The cost function vadumonotonically non-increasing over the iterations of the
alternating projections method. The method is adapted]ito[the case of missing data and is effective in solving
large scale noisy matrix completion problems. A Matlab iempéntation is available fromtt p: // epri nts.

ecs. sot on. ac. uk/ 18296/ .
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11b

11c

11d

Singular value thresholding is a method for low-rank matmpletion,i.e., a low-rank approximation with
missing and exact values only. Although singular valuestheoéding is initially designed for the exact data case, it
is shown to handle noisy data as well. Therefore, it solveramk approximation problems with missing data. The
method is based on convex relaxation of the rank constraimidaes not require an initial approximation. A Matlab
implementation is available frommt t p: / / svt . cal t ech. edu/

The results of a numerical example with a data matrix withfthlewing pattern of missing values

NaN X X NaN X X NaN X X X
X NaN X X NaN X X NaN X X
X X NaN X X NaN X X NaN X

and rank one specification are shown in Tables 1 and 2. Tab#®ws the approximation erroM; = ||p., —
p.«| achieved by the algorithms upon convergence and Tableswsstie number of iterations performed by the
algorithms.

# of missing values | 1 2 3 4 5 6 7 8 9
(SLRAR) 0.8859 0.8642 0.8598 0.7900 0.7570 0.7568 0.6659 0.6031022.6
(SLRAY) 0.8859 0.8639 0.8593 0.7900 0.7570 0.7568 0.6658 0.6031022.6

alternating projections 0.8859 0.8639 0.8593 0.7900 0.7570 0.7568 0.6658 0.603102D.6
singular value thresholding 0.8892 0.8668 1.0539 1.0393 1.0467 1.0468 1.0310 0.9890633.8

Table 1: Approximation erroi; x 103 for the compared methods on problems with. 1,9 missing values.

#of missingvalues |1 2 3 4 5 6 7 8 9
(SLRAR) 4 3 4 3 4 4 4 3 10
(SLRAY) 3 45 3 555 6 14
alternating projectons 3 3 4 4 4 4 4 4 7

Table 2: Number of iterations for convergence of the congbanethods on the problems in Table 1.

The results show that the proposed methods based on quadcpidlity constraint (SLRA and regulariza-
tion (SLRAR) achieve the same approximation error as the alternatiojggiions method and require similar number
of iterations (starting from the same suboptimal initighagximation, see Note 9). The approximation error achieved
by the singular value thresholding method increases wéhrtbrease of the number of missing values.

The simulation parameters are matrix simen, rankr, noise standard deviatiaml , indices of fixedl f , and
missing values m
(unstructured matrix with missing data example)= 11b>

clear all, randn(’seed’, 0), rand(’seed , 0)
m=3; n=10; r = 1; nl = 0.03;
If =[]; IM=[159 10 14 18 19 23 27];

The following lines are pointing Matlab to the alternatingjpctions and singular value thresholding methods.

(unstructured matrix with missing data example) += <lla 1le
addpath ~/nfil es/ m ssing-data
addpath ~/ nfil es/candes/ matri x-conpl etion/
addpath ~/ nfil es/candes/ matri x-conpl eti on/ PROPACK si npl e

The true dat#O is generated as the productrofx r andr x n random factors.

(unstructured matrix with missing data example) += <11b 11d
pO = rand(m r) * rand(r, n);
e =randn(m n); pf = p0 +nl » e/ norme, "fro') * normpO0, 'fro’);
The approximation methods are applied on data wif).1. missing data points.
(unstructured matrix with missing data example) += <llc
np = m=+ n; tts = reshape(l:np, m n); opt.nethod = 'reg’; %slra_ext calling paraneters
tau = 5 * sqrt(m=+ n); % SVT calling paraneters
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for i = 1:length(IM
Im=1M121i); lg = setdiff(l:np, IM;
w = ones(np, 1); w(Im = 0; wIf) = inf;
p = pf; p(If) =p0(If); p(Im = NaN

[ph, info] = slra_ext(tts, p(:), r, diag(wlg)), [1. []. []);
opt.g = norn(p(lg));

[ph_, info ] = slra ext(tts, p(:), r, diagiWm1qg)), [1, [1, [1, opt);
[Ph, Lh, infowral] =wra(p, r, sqgrt(reshape(w, m, n)));

delta = 1.2/ (length(lg) / m/ n);

[U SV, iter_svt] = SVI([mn], Ig, p(lg), tau, delta, 10000);
ph_svt = U(:, 21:r) = S(2:r, L:r) = V(:,1:r)";

e = vec(p - ph_svt); frmin_svt = norm(sqrt(w(lg)) . e(lg)) " 2;

res fmn(:, i) =]
info.fmn
info_.fmn
info_wWra.err
fmn_svt

1;

res_iter(:, i) =1
info.iterations
info_.iterations
info wra.iter
iter_svt
1

end

res fmn=* 1e3, res_iter

5.2 System identification with missing data

Identification of a linear time-invariant system from a ryoigajectory of the system is a mosaic-Hankel structured
low-rank approximation problem [17]. In the simplest cafa scalar autonomous system, the structure is Hankel

(pr P2 p3 - Pn ]
P2 Pz - Pni1

Hoan(P) = ps : € R™
LPm Pm+1 - Pmin—1]

and the identification problem is

minimize oveyeRT |[lyq—Vi3
subjectto rank. %1 7-(Y)) <Y,

where/ is the system’s lag (assumed known) and
ya = (Ya(1),...,ya(T)) € RT

is the given trajectory. As an application of the algorithdeseloped in the paper, we consider autonomous system
identification when samples gf are missing at arbitrary locations.
Figure 1 shows the results of a simulation example with tistesy defined by the difference equation

y(t) = 1.456y(t — 1) — 0.81y(t — 2).
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13a

13b

13c

The data is a trajectory of the system perturbed by additiiserwithT = 50 samples. (For details on the simulation
setup, see [11]) The missing values are distributed pexadigli with a period of 3 samples, so that standard system
identification methods are not applicable. In this expenitbe default initial approximation results in convergenc
to a poor local minimum and is replaced 8 —1.5 1].

15

Figure 1: System identification with periodically missiratal (crosses on thieaxis). Noisy samples (circles), optimal
approximation (dashed blue), and true trajectory (solit}.re

The simulation parameters are the noise standard deviati@and the distribution of the missing values.

(system identification with missing data examiie = 13b>
clear all, randn(’seed’, 0), rand(’seed , 0)
ell =2, T=50; Im= 1:(ell + 1):T; nl = 0.4
The true trajectory is the impulse response of a second system.
(system identification with missing data exanyde += <13a 13¢

sysO = zpk(1, 0.9 = [exp(i * pi / 5) exp(-i = pi / 5)], 1, 1);

y0 = inpul se(sys0O, T); y0 = y0(2:end);

e = randn(T, 1); vy =y0 + nl » e/ nornm(e) * norm(y0); y(Im = NaN
Apply the method and plot the results.

(system identification with missing data exanyie += <13b
tts = bl khank(1: T, ell + 1); Rini =[0.8-1.51];
[yh, info] = slra_ext(tts, y, ell, [], Rni)
plot(y, 'ok’), hold on,
plot(yo(1:T), "r-"), plot(yh, "b-")
ax = axis;
plot(Im ax(3) * ones(size(lm), *Xk', 'markersize', 15)
axi s(ax), print_fig('slra-ext-f1")

5.3 Data-driven simulation

Data-driven simulation problems [9] are special cases sbimg data low-rank approximation. The to-be-simulated
system is assumed to be linear time-invariant with a knowgeupound of the lag. The system is implicitly specified
by a trajectorwvfjl) = (uéz), Ef)) € (RY) ™. The to-be-simulated trajectowéz) = (uéz), ((12)) € (RY) " is specified by
the initial conditionswi, = (wéz)(l), . ,wff) (¢)) and the inpu(uéz) (+1),..., uéz) (T2)). The data-driven simulation
problem is a mosaic-Hankel structured low-rank approxiomgproblem

minimize overw ||wg — W||3

(1) (2)
subject to ranL< [‘%ﬁ”l(u?l)) jﬁﬂ(uf’z))] ) <2041,
Hi1(Yq') Hia(yy')

with missing data being the to-be-simulated respc(lyézé(ﬁr 1),... ,yf) (Tz)).
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Consider a simulation example with the second order simglet single-output system, defined by the difference
equation
y(t) = 1.456y(t — 1) — 0.81y(t — 2) +-u(t) —u(t —1).
The datawél) is a trajectory of the system generated from random inputaaiditive noise. The to-be-simulated
trajectorwaf) is the impulse respongeof the systemi.e., the response under zero initial conditions and pulse input

u;’ =(0,...,0,1,0,...,0 and =(0,...,0,h(0),h(1),...,h(T, —¢—1)).
d ( ’ IRt Rt ] ’ )7 yd ( ’ " ( )7 ( )7 ’ ( 2 ))
l pulse input l impulse response

Figure 2 shows the true and estimated by the proposed lokagproximation method impulse responses.

15

10 20 30 40
t

Figure 2: Data-driven simulation of impulse response: {rad solid line), optimal approximation (dashed blue).

14 (data-driven simulation example) =
clear all, close all, randn(’seed’, 0), rand(’seed , 0)
Tl = 30; T2 = 52; nl = 0.4;

sysO = zpk(1, 0.9 = [exp(i * pi / 5) exp(-i = pi / 5)], 1, 1); ell = 2;
ul = rand(T1, 1); yl = Isinm(sys0, ul);
E=rand(T1, 2); wi =[ul y1] + nl » E/ norm(E, "fro') * norm([ul yl1], "fro’);

u2
y2

[zeros(ell, 1); 1; zeros(T2 - ell - 1, 1)];
[zeros(ell, 1); NaN * ones(T2 - ell, 1)]; w2 = [u2 y2];

tts = [ bl khank(reshape(1l: (T1 = 2), 2, T1), ell + 1)
bl khank(reshape(Tl = 2 + (1:(T2 = 2)), 2, T2), ell + 1)];
[wh, info] = slra_ext(tts, vec([wl w2']), 2 * ell + 1);

ylh = wh(2:2:(2 *» T1));

hh
hO

Wh(((TL + ell) » 2 + 2):2:end);
i mpul se(sys0, T2 - ell - 1);

pl ot (hh(2:end), '-b’), hold on, plot(hO(2:end), '-r’")
ax = axis; axis([1, T2 - ell - 1, ax(3:4)]), print_fig('slra-ext-f2")

6 Conclusions

A variable-projection-like approach for structured loank approximation with missing data was developed. The ap-
proach was furthermore generalized to weighted structioredank approximation with singular weight matrix. Two
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optimization strategies were proposed for the nonlineastiequares optimization: optimization subject to quidcra
equality constraints and regularized unconstrained opdition. The problem and solution methods developed have
applications in matrix completion (unstructured problgnsystem identification with missing data, and data-driven
simulation and control (mosaic-Hankel structured proldemrhe performance of the methods was illustrated on
simulation examples from these applications and was caedpaith the performance of problem specific methods.
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16d

A Special case of affine structure
A commonly encountered special case of the affine structure i
[Y(ﬁ)]ij = SPs; for some Sj € {1,...,np }™" (S)

In (8), each element of the structured mats(p) is equal to the sum of th&;th element of the parameter vector
and the constarfy ;. The structure is then specified by the matrifgsinds. Although §) is a special case of the
general linear structureA), it covers many linear modeling problems and will therefbe used in the implementation
of the solution method.

In the implementation of the algorithm, the mat&ixcorresponds to a variabtet s. Given the matrixS, spec-
ifying the structure, and a structure parameter veptdhe structured matrix”(p) is constructed bylh = s0 +
ph(tts). The matrix dimensionsy n, and the number of parameterp are obtained frons as follows:

(S (mn,np) 168 = (4 6b 9b)
[mp, n] = size(tts); np = max(max(tts));
if exist('phi’, "var’) && ~isenpty(phi), m= size(phi, 1); else m= np; end

The transition from the specification )(to the specification in the general linear casé) (s done by

(s S16h= (4 6b 9b)
vec_tts = tts(:); NP = 1:np;
bfs = vec_tts(:, ones(1l, np)) == NP(ones(np * n, 1), :);

Conversely, for a linear structure of the tyy$, (defined byS (andm, n), the matrixs is constructed by

(S— S 160=

tts = reshape(bfs = (1:np)’, np, n);

For compatibility with the software package for mosaic-kelrmatrices [17], we consider structures of the form
®., where® is a full row rank matrix and is an affine structure. The default value fbiis the identity matriX.
(defaultphi 16d= (4 9b)

if ~exist('phi’, *var’) | isenpty(phi), phi = eye(size(tts, 1)); end

16



