
Structured low-rank approximation with missing data

Ivan Markovsky and Konstantin Usevich

School of Electronics and Computer Science
University of Southampton

{im,ku}@ecs.soton.ac.uk

Abstract

The approach ofSIAM J. Matrix Anal. Appl., 26(4):1083–1099 for solving structured total least squares prob-
lems is generalized to weighted structured low-rank approximation with missing data. The method proposed is
based on elimination of the correction matrix and solution of the resulting nonlinear least squares problem by local
optimization methods. The elimination step is a singular linear least-norm problem, which admits an analytic solu-
tion. Two approaches are proposed for the nonlinear least-squares minimization: minimization subject to equality
constraints and unconstrained minimization with regularized cost function. The method is generalized to weighted
low-rank approximation with singular weight matrix and is illustrated on matrix completion, system identification,
and data-driven simulation problems. An extended version of the paper is a literate program, implementing the
method and reproducing the presented results.

Keywords: low-rank approximation, structured total least squares, variable projections, missing data, system iden-
tification.

1 Introduction and notation

The paper describes a solution method for matrix structuredlow-rank approximation,i.e., approximation of a given
matrix by another matrix whose elements satisfy certain predefined relations (matrix structure) and whose rank is less
than or equal to a predefined value. The combination of matrixand low-rank structure makes structured low-rank
approximation a tool for data modeling. Low-rank property of a matrix is equivalent to existence of an exact low-
complexity linear model for the data. Moreover, the rank of the matrix is related to the complexity of the model.
The structure, imposed on the approximation, is related to properties of the model. For example, Hankel structure
corresponds to time-invariance of a linear dynamical modelfor the data.

Structured low-rank approximation has been studied in the literature from different viewpoints: numerical al-
gorithm for computing locally optimal or suboptimal solutions, statistical properties of the resulting estimators, and
applications. The subject is closely related to the structured total least squares method. The similarities and differences
between the low-rank approximation and total least squaresparadigms are well documented in the literature [12, 6, 8]
and will not be repeated here.

A novel feature of the low-rank approximation problem, considered in this paper, is that elements of the data
matrix can be missing (not specified). Missing data may occurin practical applications due to malfunctioning of mea-
surement device, communication channel, or storing device. In such cases, the best strategy is to collect a complete
data record by repeating the data collection experiment. Inother applications, however, the missing data problem is
intrinsic and can not be avoided by repeated experiments. Anexample of such an application is the prediction of the
user ratings of products (recommendation systems), where all users rate some, but rarely all, products and the task
is to predict the missing ratings. Methods for solving unstructured low-rank approximation problems with missing
data have been proposed in the literature [4, 5, 16, 1, 7], however, to the best of the authors knowledge none of
these methods can deal with matrix structure. In this paper,we generalize the method of [13] to structured low-rank
approximation with missing data.

1

Problem formulation

We denote missing data values by the symbolNaN (“not anumber”). The considered low-rank approximation prob-
lem is

minimize overp̂∈ R
np ∑

{ i | pi 6=NaN}
(pi − p̂i)

2

subject to rank
(
S (p̂)

)
≤ r,

(SLRA)

where

S : Rnp → R
m×n, defined by S (p̂) = S0+

np

∑
i=1

Si p̂i , (S)

2a 〈defaults0 2a〉≡ (4 9b)
if ~exist(’s0’) || isempty(s0), s0 = zeros(m, n); end

is the matrix structure—an affine function from the structure parameter spaceRnp to the set of matricesRm×n. With G
denoting the vector of indices of the given values{ i | pi 6= NaN} (in decreasing order) andpG denoting the subvector
of p with indices inG , the approximation criterion can be written as

∑
i∈G

(pi − p̂i)
2 = ‖pG − p̂G ‖2

2.

Using the kernel representation of the rank constraint

rank
(
S (p̂)

)
≤ r ⇐⇒ there isR∈ R

(m−r)×m, such thatRS (p̂) = 0 andRhas full row rank,

the following equivalent problem to (SLRA) is obtained

minimize overp̂∈ R
np andR∈ R

(m−r)×m ‖pG − p̂G ‖2
2

subject to RS (p̂) = 0 and Rhas full row rank.
(SLRAR)

Problem (SLRAR) is a double minimization over the parametersRand p̂

minimize overR∈ R
(m−r)×m M(R) subject to Rhas full row rank, (SLRA′

R)

where
M(R) := min

p̂
‖pG − p̂G ‖2

2 subject to RS (p̂) = 0. (INNER)

The evaluation of the cost functionM, i.e., solving (INNER) for a given value ofR, is refered to as theinner mini-
mization problem. This problem is solved analytically in Section 2. The remaining problem of minimizingM overR
is refered to as theouter minimization problem. It is a nonlinear least-squares problem, which, in general, admits no
analytic solution. General purpose local optimization methods are used in Section 4 for its numerical solution. In Sec-
tion 3, the approach is generalized to weighted 2-norm approximation criteria with singular weight matrix. Numerical
examples of solving approximation problems with missing data by the proposed methods are shown in Section 5.

Notation

In the rest of the paper, we use the following notation.

• AI ,J is the submatrix ofA with rows inI and columns inJ . The row/column index can be replaces by the
symbol “:”, in which case all rows/columns are selected.

• M / G is the vector of indices ofp (in decreasing order) that are missing / given.

2b 〈defineM andG 2b〉≡ (4 9a)
Im = find(isnan(p)); Ig = setdiff(1:np, Im);

2

• A+ is the pseudo inverse ofA andA⊥ is a matrix which rows form a basis for the left null space ofA.

3a 〈defineperp 3a〉≡ (3c)
perp = @(a) null(a’)’;

• For givenS andR∈ R
(m−r)×m, we define the matrix

G :=
[
vec(RS1) · · · vec(RSnp)

]
∈ R

(m−r)n×np, (G)

where vec(·) is the column-wise vectorization operator.

3b 〈define G3b〉≡ (4)
g = reshape(R * phi * reshape(bfs, mp, n * np), size(R, 1) * n, np);

2 Analytical solution of the inner minimization problem

In this section, we consider the inner minimization problem(INNER).

Problem 1. Given linear structureS , structure parameter vectorp∈R
np∪NaN, and a kernel parameterR∈R

(m−r)×m,
find the cost functionM(R), defined in (INNER), and a value of̂p that attains the minimum.

Theorem 2. Under the following assumptions:

1. G:,M is full column rank,

2. 1≤ (m− r)n−nm ≤ np−nm, and

3. Ḡ := G⊥
:,M G:,G is full row rank,

3c 〈defineḠ 3c〉≡ (4)
〈defineperp 3a〉, perp_gm = perp(g(:, Im)); bg = perp_gm * g(:, Ig);

Problem 1 has a unique minimum

M(R) = s⊤
(
ḠḠ⊤)−1

s, where s:=
(
ḠpG −G⊥

:,M vec(RS0)
)
, (M)

attained by
p̂G = pG − Ḡ⊤(ḠḠ⊤)−1

s and p̂M =−G+
:,M G:,G p̂G . (p̂)

3d 〈compute M and̂p 3d〉≡ (4)
dpg = bg’ * pinv(bg * bg’) * (bg * p(Ig) - perp_gm * vec(R * s0));
M = dpg’ * dpg; ph(Ig) = p(Ig) - dpg; ph = ph(:);
ph(Im) = - pinv(g(:, Im)) * g(:, Ig) * ph(Ig);

Proof. Defining
∆pG := pG − p̂G

and using the identity
RS (p̂) = 0 ⇐⇒ Gp̂=−vec(RS0),

we have

RS (p̂) =−vec(RS0) ⇐⇒
[
G:,G G:,M

][pG −∆pG

p̂M

]
=−vec(RS0).

Therefore, (INNER) is equivalent to

M(R) := min
∆pG ∈Rnp−nm, p̂M∈Rnm

‖∆pG ‖2
2 subject to

[
G:,G G:,M

][∆pG

−p̂M

]
= G:,G pG −vec(RS0),

which is a generalized linear least norm problem. The solution follows from Lemma 3.

3

4 〈misfit_ext 4〉≡
function [M, ph] = misfit_ext(R, tts, p, w, bfs, phi)
〈S 7→ (m,n,np) 16a〉
〈defaultphi 16d〉
〈defaults0 2a〉
if ~exist(’bfs’) | isempty(bfs), 〈S 7→ S 16b〉, end
〈defineM andG 2b〉
〈preprocessp andbfs with w 5b〉
〈define G3b〉
〈defineḠ 3c〉
〈compute M and̂p 3d〉
〈postprocessph with w 6a〉

Generalized least norm problem

Lemma 3. Consider the generalized linear least norm problem

f = min
x,y

‖x‖2
2 subject to Ax+By= c, (GLN)

with A∈ R
m×nx, B∈ R

m×ny, and c∈R
m. Under the following assumptions:

1. B is full column rank,

2. 1≤ m−ny ≤ nx, and

3. Ā := B⊥A is full row rank,

problem (GLN) has a unique solution

f = c⊤(B⊥)⊤
(
ĀĀ⊤)−1

B⊥c,

x= A⊤(B⊥)⊤
(
ĀĀ⊤)−1

B⊥c and y= B+(c−Ax).
(SOL)

Proof. Under assumption 1,B has a nontrivial left kernel of dimensionm−ny. Therefore for the nonsingular matrix

T =
[

B+

B⊥

]
∈R

m×m

TB=

[
B+

B⊥

]
B=

[
T+B
T⊥B

]
=

[
Iny

0

]
.

Pre-multiplying both sides of the constraint of (GLN) byT, we have the following equivalent constraint
[
B+Ax
B⊥Ax

]
+

[
y
0

]
=

[
B+c
B⊥c

]
.

The first equation
y= B+(c−Ax)

uniquely determinesy, givenx. The second equation

B⊥Ax= B⊥c (∗)

defines a linear constraint forx only. By assumption 2, it is an underdetermined system of linear equations. Therefore,
(GLN) is equivalent to the following standard least norm problem

f = min
x

‖x‖2
2 subject to B⊥Ax= B⊥c. (GLN’)

By assumption 3 the solution is unique and is given by (SOL).

4

Note4 (About assumptions 1–3). Assumption 1 is a necessary condition for uniqueness of the solution. Relaxing
assumptions 1 implies that any vector in the affine space

Y = B+(c−Ax)+null(B)

is a solution to (GLN). Assumption 2 ensures that the problemis a least norm problem and has a nontrivial solution.
In the casem= ny, the problem has a trivial solutionf = 0. In the casem− ny > nx, the problem generically has
no solution because the constraint (∗) is an overdetermined system of equations. Assumption 3 is also required for
uniqueness of the solution. It can also be relaxed, makingy nonunique.

Note5 (Link to weigted least norm problems with singular weight matrix). Consider the weighted least norm problem

min
z

z⊤Wz subject to Dz= c,

with singular positive semidefinite weight matrixW. Using a change of variables ¯z= T−1z, whereT is an nonsingular
matrix, we obtain the equivalent problem

min
z

z̄⊤T⊤WTz̄ subject to DTz̄= c.

There exists an nonsingular matrixT, such that

T⊤WT=

[
Inx

0

]
.

Partitioningz̄andD̄ := DT−1 conformably as

z̄=

[
x
y

]
and D̄ =

[
A B

]

we obtained problem (GLN).

3 Weighted approximation

Problem (SLRA) is generalized in this section to the weighted structured low-rank approximation problem

minimize overp̂∈ R
np (pG − p̂G)

⊤Wg(pG − p̂G)

subject to rank
(
S (p̂)

)
≤ r,

(WSLRA)

whereWg is a positive definite matrix. The change of variables

p′G =
√

WgpG and p̂′G =
√

Wg p̂G (p 7→ p′)

reduces Problem (WSLRA) to an equivalent unweighted problem (SLRA). We have

S (p̂) = S0+vec−1(Sp̂), where S :=
[
vec(S1) · · · vec(Snp)

]
∈ R

mn×np. (S)

5a 〈(S, p̂) 7→ D̂ = S (p̂) 5a〉≡
dh = phi * reshape(bfs * ph, mp, n);

The structureS ′ of the equivalent problem is defined by the matricesS0 andS′ =
[
vec(S′1) · · · vec(S′np

)
]
, where

S′
:,G = S:,G

√
W−1

g and S′
:,M = S:,M . (S 7→ S ′)

We showed that problem (WSLRA) is solved by:

1. preprocessing the datap and the structureS , as in (p 7→ p′) and (S 7→ S ′),

5b 〈preprocessp andbfs with w 5b〉≡ (4 9a)
if exist(’w’) & ~isempty(w)

sqrt_w = sqrtm(w); inv_sqrt_w = pinv(sqrt_w); bfs = double(bfs);
p(Ig) = sqrt_w * p(Ig); bfs(:, Ig) = bfs(:, Ig) * inv_sqrt_w;

end

5

2. solving the equivalent unweighted problem with structure parameter vectorp′, structure specificationS ′, and
rank specificationr, and

3. postprocessing the solution̂p′, obtained in step 2, in order to obtain the solutionp̂G =
√

W−1
g p̂′G of the original

problem.

6a 〈postprocessph with w 6a〉≡ (4 9a)
if exist(’w’) & ~isempty(w), ph(Ig) = inv_sqrt_w * ph(Ig); end

Using the transformation (p 7→ p′), (S 7→ S ′) and the solution (M) of (SLRA), we obtain the following explicit
expression for the cost function of (WSLRA)

M(R) =
(
ḠpG −G⊥

:,M vec(RS0)
)⊤

W−1
g Ḡ⊤(ḠW−1

g Ḡ⊤)−1
ḠW−1

g

(
ḠpG −G⊥

:,M vec(RS0)
)
, (MW)

whereḠ= G⊥
:,M G:,G andG is defined in (G).

Note6 (Weighted structured low-rank approximation with a singular weight matrix). A more general formulation of
problem (WSLRA) is

minimize overp̂∈ R
np (p− p̂)⊤W(p− p̂)

subject to rank
(
S (p̂)

)
≤ r,

(WSLRA’)

with positive semidefinite weight matrixW. Problem (WSLRA’) can be reduced to an equivalent unweighted low-rank
approximation problem with missing data (SLRA). There exists a nonsingular matrixT, such that

T⊤WT=

[
Ing

0

]
.

Defining structureS ′, specified by the matricesS0 andS′ = ST, and changing the variablesp′ = T−1p, p̂′ = T−1p̂,
we obtain an equivalent problem in the form (SLRA) with lastnp− rank(W) values missing.

Note7 (Solving (SLRA) as weighted unstructured problem). Consider an instance of problem (SLRA), refer to as
problem P1, with structureS = S1 and an instance of problem (WSLRA), refer to as problem P2, with unstructured
correction and weight matrix

W = S1S1
⊤. (S 7→W)

6b 〈s2w 6b〉≡
function w = s2w(s)
tts = s2s(s);
〈S 7→ (m,n,np) 16a〉
〈S 7→ S16b〉
w = double(bfs) * double(bfs)’;

It can be verified by inspection that the cost functions (M) and (MW) of problems P1 and P2, respectively, coincide.
The weight matrixW∈R

mn×mn, defined in (S 7→W), however is singular (rank(W) is equal to the number of structure
parameters of problem P1, which is less thanmn). In the derivation of the cost function (MW) it is assumed thatWg

is positive definite, so that minimization of (MW) is not equivalent to problem P2. Using pseudo-inverse instead of
inverse in (p 7→ p′) and (S 7→ S ′) and observing that(W+)+ =W, minimization of (MW) for problem P2 yields and
equivalent problem to problem P1.

6c 〈test equivalence of structure and weights6c〉≡
% Hankel
s1.m = 2; s1.n = 5; r = 1;
np1 = s2np(s1); p1 = 0.8 .^ (1:np1)’ + 0.01 * randn(np1, 1);
opt.solver = ’m’;
[ph1, info1] = slra(p1, s1, r, opt);
Dh1 = blkhank(ph1, s1.m);
D = blkhank(p1, s1.m); norm(D - Dh1, ’fro’)

6

% Weighed
s2.m = ones(s1.m, 1); s2.n = ones(s1.n, 1); s2.w = pinv(s2w(s1));
p2 = vec(D);
[ph2, info2] = slra(p2, s2, r, opt);
Dh2 = reshape(ph2, s1.m, s1.n); norm(D - Dh2, ’fro’)
%norm(p1 - [Dh2(1:s1.m, 1); Dh2(end, 2:s1.n)’])

vec(D - Dh2)’ * s2.w * vec(D - Dh2)

addpath ~/mfiles/wtls
[R, P] = lra(Dh2, r);
opt.p0 = P; opt.MaxIter = 1000; opt.TolFun = 1e-10; opt.Display = ’off’;
[Ph, M, Dh3, info3] = wtlsap(D, r, s2.w, opt)

vec(D - Dh3)’ * s2.w * vec(D - Dh3)

4 Outer minimization problem

The outer minimization problem (SLRAR) is a nonlinear least-squares problem, which we solve by general purpose
local optimization methods. In order to apply standard optimization methods, however, we need first to replace the
rank constraint with equivalent equality or inequality constraints.

The kernel parameterR is constrained to have a specified structure

R : Rnθ → R
(m−r)×m,

i.e., R= R(θ), for someθ ∈R
nθ . An example of a kernel structureR is a linear function

R= R(θ) := vec−1
m−r(θΨ), (θ 7→ R)

defined by a matrixΨ ∈ R
nθ×(m−r)m.

7a 〈defaultth2R 7a〉≡ (9b)
if ~exist(’th2R’), th2R = @(th) reshape(th * psi, m - r, m); end

7b 〈defaultpsi 7b〉≡ (9b)
if ~exist(’psi’, ’var’) | isempty(psi), psi = eye(m * (m - r)); end

The full row rank constraint onR is equivalent to and can be enforced in the parameter optimization method by
the equality constraint

RR⊤ = Im−r . (f.r.r. R)

C (θ) := R(θ)R⊤(θ)− Im−r = 0. (f.r.r. R)

7c 〈defaultC 7c〉≡ (9b)
if ~exist(’C’), C = @(th) th2R(th) * th2R(th)’ - eye(m - r); end

Then the outer minimization problem becomes a constrained nonlinear least squares problems

minimize overR∈ R
(m−r)×m M(R) subject to RR⊤− Im−r = 0, (SLRA′

R)

which can be solved by general purpose constrained optimization methods [14]. Another approach of solving the
outer minimization problem is to reformulate it as a regularized unconstrained nonlinear least squares problem by
adding the regularization termγ‖RR⊤− Im−r‖2

F to the cost function,i.e.,

minimize overR∈ R
(m−r)×m M(R)+ γ‖RR⊤− Im−r‖2

F. (SLRA′′
R)

The parameterγ should be chosen “large enough” in order to enforce the constraint (f.r.r. R). A corollary of the
following theorem shows thatγ = ‖pG ‖2

2 is sufficiently large.

7d 〈defineγ 7d〉≡ (9a)
if ~exist(’opt’) || ~isfield(opt, ’g’) || isempty(opt.g), opt.g = norm(p(Ig)) ^ 2; end

7

Theorem 8. Let M : R(m−r)×m→ R+ be a homogeneous function,i.e., M(R) = M(TR), for any R and a nonsingular
m×m matrix T . The optimal solutions of problem (SLRA′′

R) with γ = maxRM(R) coincide with the optimal solutions
of (SLRA′R).

Proof. Let Rbe an solution to (SLRA′′R). We will show that

‖RR⊤− Im−r‖2
F = m− r − rank(R). (∗)

There exists an orthogonal matrixU diagonalizingRR⊤. We have

‖RR⊤− Im−r‖2
F = ‖URR⊤U⊤− Im−r‖2

F

= ‖diag(a1, . . . ,arank(R),0, . . . ,0)− Im−r‖2
F, whereai > 0

=
rank(R)

∑
i=1

(ai −1)2+m− r − rank(R).

Suppose thatai 6= 1 for somei. The matrix

R′ = diag(1, . . . ,1,1/
√

ai ,1, . . . ,1)R

has the same kernel and rank asR, so that by the homogeneity property ofM, M(R) = M(R′). However, we have

‖RR⊤− Im−r‖2
F > ‖R′R′⊤− Im−r‖2

F,

so thatR′ achieves smaller value of the cost function of (SLRA′′
R) thanR. This is a contradiction. Therefore,ai = 1

for all i. This concludes the proof of (∗).
So far we showed that the cost function of (SLRA′′

R) is

M(R)+ γ
(
m− r − rank(R)

)
. (M′′)

Denote byM∗
r the optimal value of (SLRA′R) (the index in the subscript is the upper bound for the rank) and note that

the optimal value of (SLRA′′R) is equal toM∗
r provided that the solutionR of (SLRA′′

R) is full row rank. Therefore, in
order to prove the theorem it is sufficient to show that the cost function of (SLRA′′R) achieves its minimum for a full
rankR, i.e.,

M∗
r < M∗

r−i + γ i ⇐⇒ γ >
1
i
(M∗

r −M∗
r−i), for i = 1,2, . . . ,m− r. (∗∗)

SinceM∗
r > 0, γ = maxRM(R) is a sufficient condition for (∗∗).

8a 〈set optimization solver and options8a〉≡ (9a)
prob = optimset();
reg = exist(’opt’) && isfield(opt, ’method’) && strcmp(opt.method, ’reg’);
if reg
prob.solver = ’fminunc’;

else
prob.solver = ’fmincon’;

end
prob.options = optimset(’disp’, ’off’);
prob.x0 = R2th(Rini, phi * p(tts), psi);

8b 〈call optimization solver8b〉≡ (9a)
if reg
[x, fval, flag, info] = fminunc(prob);

else
[x, fval, flag, info] = fmincon(prob);

end
info.fmin = fval;

8

9a 〈nonlinear optimization over R9a〉≡ (9b)
〈set optimization solver and options8a〉
〈defineM andG 2b〉
〈preprocessp andbfs with w 5b〉
if reg

〈defineγ 7d〉
prob.objective = @(th) misfit_ext(th2R(th), tts, p, [], bfs, phi) ...

+ opt.g * norm(C(th), ’fro’) ^ 2;
else
prob.objective = @(th) misfit_ext(th2R(th), tts, p, [], bfs, phi);
prob.nonlcon = @(th) deal([], C(th));

end
〈call optimization solver8b〉, info.Rh = th2R(x);
[M, ph] = misfit_ext(info.Rh, tts, p, [], bfs, phi);
〈postprocessph with w 6a〉

The resulting function is:
9b 〈Structured low-rank approximation9b〉≡

function [ph, info] = slra_ext(tts, p, r, w, Rini, phi, psi, opt, th2R, C)
〈S 7→ (m,n,np) 16a〉
〈S 7→ S16b〉
〈defaultphi 16d〉
〈defaults0 2a〉
〈defaultpsi 7b〉
〈defaultth2R 7a〉
〈defaultC 7c〉
〈default initial approximation9c〉
〈nonlinear optimization over R9a〉
〈definelra 9d〉
〈defineR2th 10〉

Note 9 (Initial approximation). Solving the outer minimization problem by either constrained or requilarized lo-
cal minimization requires an initial approximation for theparameterR, i.e., a suboptimal solution of the structured
low-rank approximation problem. Such a solution can be computed from a heuristic that ignores the data matrix
structureS and fills in zeros for the missing values. The resulting unstructured low-rank approximation problem can
then be solved analytically in terms of the singular value decomposition.

9c 〈default initial approximation9c〉≡ (9b)
if ~exist(’Rini’) | isempty(Rini), Rini = lra(phi * p(tts), r); end

9d 〈definelra 9d〉≡ (9b)
function [R, P, dh] = lra(d, r)
d(find(isnan(d))) = 0;
[u, s, v] = svd(d); R = u(:, (r + 1):end)’; P = u(:, 1:r);
if nargout > 2, dh = u(:, 1:r) * s(1:r, 1:r) * v(:, 1:r)’; end

The computed or user supplied initial approximationRini may not satisfy the constraint (θ 7→ R). In the case
whenΨ is square and nonsingular, for anyRini , there is correspondingθini parameter:

θini := vec⊤(Rini)Ψ−1.

In the general case of rectangularΨ matrix, an approximation is needed in order to obtain aθini parameter, such that
R(θini) is in some sense close toRini . Let D̂ini be the best unstructured approximation with image is equal to ker(Rini)
of the data matrix.

9e 〈(R,D) 7→ D̂ 9e〉≡ (10)
P = null(R); dh = P * (P \ d);

9

Since,RiniD̂ini = 0, the closeness betweenRini andR(θini) can be measured by the Frobenius norm of the residual
R(θini)D̂ini . Imposing the normalization constraint‖θini‖= 1, the resulting approximation problem is

minimize overθ ‖R(θ)D̂ini‖F subject to ‖θ‖ = 1, (INI)

which is equivalent to unstructured approximation of the matrix Ψ(D⊗ Im−r) by a ranknθ −1 matrix.

10 〈defineR2th 10〉≡ (9b)
function th = R2th(R, d, psi)
if size(psi, 1) == size(psi, 2)
th = R(:)’ / psi;

else
〈(R,D) 7→ D̂ 9e〉
th = lra(psi * kron(dh, eye(size(R, 1))), size(psi, 1) - 1);

end

Note10 (Efficient computation and software implementation). Efficient evaluation of the cost function and its deriva-
tives in the special case of mosaic-Hankel matrix structureis presented in a companion paper [17]. The method,
presented in this paper (general linear structure) and the efficient methods of [17] are implemented in Matlab (using
Optimization Toolbox) and C++, respectively. Descriptionof the software and overview of its applications is given
in [10].

5 Applications

As an illustration of how the developed methods can be used inpractice and as a verification of their effectiveness,
we present in this section three sample applications:

• unstructured noisy matrix completion,

• scalar autonomous system identification with missing data,and

• data-driven simulation.

Numerical examples comparing the methods developed in the paper with alternative methods, specifically developed
for these applications, are shown. All simulations are donein Matlab and are reproducible in the sense of [2]. An
extended version [11] of this paper is a literate program (innoweb format [15]), implementing the methods in the
paper and generating the presented numerical results. The necessary m-files can be downloaded from

http://eprints.soton.ac.uk/340718.

5.1 Unstructured matrix with missing data

In the case of unstructured data matrix, the results obtained by the methods in the paper are compared with the results
of alternative methods

• the alternating projections method of [7] and

• the singular value thresholding method of [3].

The alternating projections method for weighted low-rank approximation uses an image representationPL, where
P is m× r andL is r × n, of them× n rank-r matrix S (p̂). The algorithm iteratively minimizes the cost function
overP with fixed L from the previous iteration step and overL with fixed P to its previously computed values. Both
problems—minimization overP and minimization overL—are weighted linear least-squares problems, so that they
can be solved globally and reliably. The cost function valueis monotonically non-increasing over the iterations of the
alternating projections method. The method is adapted in [7] to the case of missing data and is effective in solving
large scale noisy matrix completion problems. A Matlab implementation is available fromhttp://eprints.
ecs.soton.ac.uk/18296/.

10

Singular value thresholding is a method for low-rank matrixcompletion, i.e., a low-rank approximation with
missing and exact values only. Although singular value thresholding is initially designed for the exact data case, it
is shown to handle noisy data as well. Therefore, it solve low-rank approximation problems with missing data. The
method is based on convex relaxation of the rank constraint and does not require an initial approximation. A Matlab
implementation is available fromhttp://svt.caltech.edu/

The results of a numerical example with a data matrix with thefollowing pattern of missing values

NaN × × NaN × × NaN × × ×
× NaN × × NaN × × NaN × ×
× × NaN × × NaN × × NaN ×

and rank one specification are shown in Tables 1 and 2. Tables 1shows the approximation errorsM∗
r = ‖pM −

p̂M ‖ achieved by the algorithms upon convergence and Tables 2 shows the number of iterations performed by the
algorithms.

of missing values 1 2 3 4 5 6 7 8 9
(SLRA′

R) 0.8859 0.8642 0.8598 0.7900 0.7570 0.7568 0.6659 0.6031 0.6022
(SLRA′′

R) 0.8859 0.8639 0.8593 0.7900 0.7570 0.7568 0.6658 0.6031 0.6022
alternating projections 0.8859 0.8639 0.8593 0.7900 0.7570 0.7568 0.6658 0.6031 0.6022
singular value thresholding 0.8892 0.8668 1.0539 1.0393 1.0467 1.0468 1.0310 0.9890 3.8635

Table 1: Approximation errorM∗
1 ×10−3 for the compared methods on problems with 1, . . . ,9 missing values.

of missing values 1 2 3 4 5 6 7 8 9
(SLRA′

R) 4 3 4 3 4 4 4 3 10
(SLRA′′

R) 3 4 5 3 5 5 5 6 14
alternating projections 3 3 4 4 4 4 4 4 7

Table 2: Number of iterations for convergence of the compared methods on the problems in Table 1.

The results show that the proposed methods based on quadratic equality constraint (SLRA′R) and regulariza-
tion (SLRA′′

R) achieve the same approximation error as the alternating projections method and require similar number
of iterations (starting from the same suboptimal initial approximation, see Note 9). The approximation error achieved
by the singular value thresholding method increases with the increase of the number of missing values.

The simulation parameters are matrix sizem, n, rankr, noise standard deviationnl, indices of fixedIf, and
missing valuesIm.

11a 〈unstructured matrix with missing data example11a〉≡ 11b⊲
clear all, randn(’seed’, 0), rand(’seed’, 0)
m = 3; n = 10; r = 1; nl = 0.03;
If = []; IM = [1 5 9 10 14 18 19 23 27];

The following lines are pointing Matlab to the alternating projections and singular value thresholding methods.
11b 〈unstructured matrix with missing data example11a〉+≡ ⊳11a 11c⊲

addpath ~/mfiles/missing-data
addpath ~/mfiles/candes/matrix-completion/
addpath ~/mfiles/candes/matrix-completion/PROPACK_simple

The true datap0 is generated as the product ofm× r andr ×n random factors.
11c 〈unstructured matrix with missing data example11a〉+≡ ⊳11b 11d⊲

p0 = rand(m, r) * rand(r, n);
e = randn(m, n); pf = p0 + nl * e / norm(e, ’fro’) * norm(p0, ’fro’);

The approximation methods are applied on data with 1,2, . . . missing data points.
11d 〈unstructured matrix with missing data example11a〉+≡ ⊳11c

np = m * n; tts = reshape(1:np, m, n); opt.method = ’reg’; % slra_ext calling parameters
tau = 5 * sqrt(m * n); % SVT calling parameters

11

for i = 1:length(IM)
Im = IM(1:i); Ig = setdiff(1:np, Im);
w = ones(np, 1); w(Im) = 0; w(If) = inf;
p = pf; p(If) = p0(If); p(Im) = NaN;

[ph, info] = slra_ext(tts, p(:), r, diag(w(Ig)), [], [], []);
opt.g = norm(p(Ig));
[ph_, info_] = slra_ext(tts, p(:), r, diag(w(Ig)), [], [], [], opt);
[Ph, Lh, info_wlra] = wlra(p, r, sqrt(reshape(w, m , n)));
delta = 1.2 / (length(Ig) / m / n);
[U, S, V, iter_svt] = SVT([m n], Ig, p(Ig), tau, delta, 10000);
ph_svt = U(:, 1:r) * S(1:r, 1:r) * V(:,1:r)’;
e = vec(p - ph_svt); fmin_svt = norm(sqrt(w(Ig)) .* e(Ig)) ^ 2;

res_fmin(:, i) = [
info.fmin
info_.fmin
info_wlra.err
fmin_svt
];

res_iter(:, i) = [
info.iterations
info_.iterations
info_wlra.iter
iter_svt
];

end
res_fmin * 1e3, res_iter

5.2 System identification with missing data

Identification of a linear time-invariant system from a noisy trajectory of the system is a mosaic-Hankel structured
low-rank approximation problem [17]. In the simplest case of a scalar autonomous system, the structure is Hankel

Hm,n(p) :=

p1 p2 p3 · · · pn

p2 p3 . .
.

pn+1

p3 . .
. ...

...
pm pm+1 · · · pm+n−1

∈ R
m×n

and the identification problem is

minimize over̂y∈R
T ‖yd− ŷ‖2

2

subject to rank
(
Hℓ+1,T−ℓ(ŷ)

)
≤ ℓ,

whereℓ is the system’s lag (assumed known) and

yd =
(
yd(1), . . . ,yd(T)

)
∈ R

T

is the given trajectory. As an application of the algorithmsdeveloped in the paper, we consider autonomous system
identification when samples ofyd are missing at arbitrary locations.

Figure 1 shows the results of a simulation example with the system defined by the difference equation

y(t) = 1.456y(t −1)−0.81y(t −2).

12

The data is a trajectory of the system perturbed by additive noise withT = 50 samples. (For details on the simulation
setup, see [11]) The missing values are distributed periodically with a period of 3 samples, so that standard system
identification methods are not applicable. In this experiment the default initial approximation results in convergence
to a poor local minimum and is replaced by

[
0.8 −1.5 1

]
.

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

t

y d
(t
),

ŷ(
t)

,ȳ
(t
)

Figure 1: System identification with periodically missing data (crosses on thet-axis). Noisy samples (circles), optimal
approximation (dashed blue), and true trajectory (solid red).

The simulation parameters are the noise standard deviationnl and the distribution of the missing values.
13a 〈system identification with missing data example13a〉≡ 13b⊲

clear all, randn(’seed’, 0), rand(’seed’, 0)
ell = 2; T = 50; Im = 1:(ell + 1):T; nl = 0.4;

The true trajectory is the impulse response of a second ordersystem.
13b 〈system identification with missing data example13a〉+≡ ⊳13a 13c⊲

sys0 = zpk(1, 0.9 * [exp(i * pi / 5) exp(-i * pi / 5)], 1, 1);
y0 = impulse(sys0, T); y0 = y0(2:end);
e = randn(T, 1); y = y0 + nl * e / norm(e) * norm(y0); y(Im) = NaN;

Apply the method and plot the results.
13c 〈system identification with missing data example13a〉+≡ ⊳13b

tts = blkhank(1:T, ell + 1); Rini = [0.8 -1.5 1];
[yh, info] = slra_ext(tts, y, ell, [], Rini);
plot(y, ’ok’), hold on,
plot(y0(1:T), ’r-’), plot(yh, ’b-’)
ax = axis;
plot(Im, ax(3) * ones(size(Im)), ’Xk’, ’markersize’, 15)
axis(ax), print_fig(’slra-ext-f1’)

5.3 Data-driven simulation

Data-driven simulation problems [9] are special cases of missing data low-rank approximation. The to-be-simulated
system is assumed to be linear time-invariant with a known upper boundℓ of the lag. The system is implicitly specified
by a trajectoryw(1)

d = (u(2)d ,y(2)d) ∈ (Rq)T1. The to-be-simulated trajectoryw(2)
d = (u(2)d ,y(2)d) ∈ (Rq)T2 is specified by

the initial conditionswini =
(
w(2)

d (1), . . . ,w(2)
d (ℓ)

)
and the input

(
u(2)d (ℓ+1), . . . ,u(2)d (T2)

)
. The data-driven simulation

problem is a mosaic-Hankel structured low-rank approximation problem

minimize overŵ ‖wd− ŵ‖2
2

subject to rank

([
Hℓ+1(u

(1)
d) Hℓ+1(u

(2)
d)

Hℓ+1(y
(1)
d) Hℓ+1(y

(2)
d)

])
≤ 2ℓ+1,

with missing data being the to-be-simulated response
(
y(2)d (ℓ+1), . . . ,y(2)d (T2)

)
.

13

Consider a simulation example with the second order single-input single-output system, defined by the difference
equation

y(t) = 1.456y(t −1)−0.81y(t −2)+u(t)−u(t −1).

The dataw(1)
d is a trajectory of the system generated from random input andadditive noise. The to-be-simulated

trajectoryw(2)
d is the impulse responsēh of the system,i.e., the response under zero initial conditions and pulse input:

u(2)d = (0, . . . ,0︸ ︷︷ ︸
ℓ

,1,0, . . . ,0︸ ︷︷ ︸
pulse input

), and y(2)d = (0, . . . ,0︸ ︷︷ ︸
ℓ

, ĥ(0), ĥ(1), . . . , ĥ(T2− ℓ−1)︸ ︷︷ ︸
impulse response

).

Figure 2 shows the true and estimated by the proposed low-rank approximation method impulse responses.

10 20 30 40
−1

−0.5

0

0.5

1

1.5

t

ĥ(
t)

,h̄
(t
)

Figure 2: Data-driven simulation of impulse response: true(red solid line), optimal approximation (dashed blue).

14 〈data-driven simulation example14〉≡
clear all, close all, randn(’seed’, 0), rand(’seed’, 0)
T1 = 30; T2 = 52; nl = 0.4;

sys0 = zpk(1, 0.9 * [exp(i * pi / 5) exp(-i * pi / 5)], 1, 1); ell = 2;
u1 = rand(T1, 1); y1 = lsim(sys0, u1);
E = rand(T1, 2); w1 = [u1 y1] + nl * E / norm(E, ’fro’) * norm([u1 y1], ’fro’);

u2 = [zeros(ell, 1); 1; zeros(T2 - ell - 1, 1)];
y2 = [zeros(ell, 1); NaN * ones(T2 - ell, 1)]; w2 = [u2 y2];

tts = [blkhank(reshape(1:(T1 * 2), 2, T1), ell + 1) ...
blkhank(reshape(T1 * 2 + (1:(T2 * 2)), 2 , T2), ell + 1)];

[wh, info] = slra_ext(tts, vec([w1’ w2’]), 2 * ell + 1);

y1h = wh(2:2:(2 * T1));

hh = wh(((T1 + ell) * 2 + 2):2:end);
h0 = impulse(sys0, T2 - ell - 1);

plot(hh(2:end), ’-b’), hold on, plot(h0(2:end), ’-r’)
ax = axis; axis([1, T2 - ell - 1, ax(3:4)]), print_fig(’slra-ext-f2’)

6 Conclusions

A variable-projection-like approach for structured low-rank approximation with missing data was developed. The ap-
proach was furthermore generalized to weighted structuredlow-rank approximation with singular weight matrix. Two

14

optimization strategies were proposed for the nonlinear least-squares optimization: optimization subject to quadratic
equality constraints and regularized unconstrained optimization. The problem and solution methods developed have
applications in matrix completion (unstructured problems), system identification with missing data, and data-driven
simulation and control (mosaic-Hankel structured problems). The performance of the methods was illustrated on
simulation examples from these applications and was compared with the performance of problem specific methods.

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERCGrant agreement number 258581 “Structured low-
rank approximation: Theory, algorithms, and applications”.

References

[1] M. Brand. Fast low-rank modifications of the thin singular value decomposition.Lin. Algebra and its Appl., 415(1):20–30,
2006.

[2] J. Buckheit and D. Donoho.Wavelets and statistics, chapter "Wavelab and reproducible research". Springer-Verlag, Berlin,
New York, 1995.

[3] J.-F. Cai, E. Candés, and Z. Shen. A singular value thresholding algorithm for matrix completion.SIAM Journal on
Optimization, 20(4):1956–1982, January 2010.

[4] K. Gabriel and S. Zamir. Lower rank approximation of matrices by least squares with any choice of weights.Technometrics,
21:489–498, 1979.

[5] B. Grung and R. Manne. Missing values in principal component analysis. Chemometrics and Intelligent Laboratory
Systems, 42:125–139, 1998.

[6] I. Markovsky. Structured low-rank approximation and its applications.Automatica, 44(4):891–909, 2008.

[7] I. Markovsky. Algorithms and literate programs for weighted low-rank approximation with missing data, volume 3 of
Springer Proc. Mathematics, pages 255–273. Springer, 2011.

[8] I. Markovsky. Low Rank Approximation: Algorithms, Implementation, Applications. Springer, 2012.

[9] I. Markovsky and P. Rapisarda. Data-driven simulation and control.Int. J. Control, 81(12):1946–1959, 2008.

[10] I. Markovsky and K. Usevich. Software for weighted structured low-rank approximation. Technical Report 339974, Univ.
of Southampton,http://eprints.soton.ac.uk/339974, 2012.

[11] I. Markovsky and K. Usevich. Structured low-rank approximation with missing values. Technical Report 340718, Univ. of
Southampton,http://eprints.soton.ac.uk/340718, 2012.

[12] I. Markovsky and S. Van Huffel. Overview of total least squares methods.Signal Proc., 87:2283–2302, 2007.

[13] I. Markovsky, S. Van Huffel, and R. Pintelon. Block-Toeplitz/Hankel structured total least squares.SIAM J. Matrix Anal.
Appl., 26(4):1083–1099, 2005.

[14] J. Nocedal and S. Wright.Numerical optimization. Springer-Verlag, 1999.

[15] N. Ramsey. Literate programming simplified.IEEE Software, 11:97–105, 1994.

[16] N. Srebro.Learning with matrix factorizations. PhD thesis, MIT, 2004.

[17] K. Usevich and I. Markovsky. Efficient algorithms for mosaic-Hankel weighted low-rank approximation. Technical report,
Univ. of Southampton,http://eprints.soton.ac.uk/, 2012.

15

A Special case of affine structure

A commonly encountered special case of the affine structure is

[
S (p̂)

]
i j
= S0 p̂Si j for some Si j ∈ {1, . . . ,np}m×n. (S)

In (S), each element of the structured matrixS (p) is equal to the sum of theSi j th element of the parameter vectorp
and the constantS0,i j . The structure is then specified by the matricesS0 andS. Although (S) is a special case of the
general linear structure (S), it covers many linear modeling problems and will therefore be used in the implementation
of the solution method.

In the implementation of the algorithm, the matrixS corresponds to a variabletts. Given the matrixS, spec-
ifying the structure, and a structure parameter vectorp̂, the structured matrixS (p̂) is constructed bydh = s0 +
ph(tts). The matrix dimensionsm, n, and the number of parametersnp are obtained fromS as follows:

16a 〈S 7→ (m,n,np) 16a〉≡ (4 6b 9b)
[mp, n] = size(tts); np = max(max(tts));
if exist(’phi’, ’var’) && ~isempty(phi), m = size(phi, 1); else m = mp; end

The transition from the specification of (S) to the specification in the general linear case (S) is done by
16b 〈S 7→ S 16b〉≡ (4 6b 9b)

vec_tts = tts(:); NP = 1:np;
bfs = vec_tts(:, ones(1, np)) == NP(ones(mp * n, 1), :);

Conversely, for a linear structure of the type (S), defined byS (andm, n), the matrixS is constructed by
16c 〈S 7→ S 16c〉≡

tts = reshape(bfs * (1:np)’, mp, n);

For compatibility with the software package for mosaic-Hankel matrices [17], we consider structures of the form
ΦS , whereΦ is a full row rank matrix andS is an affine structure. The default value forΦ is the identity matrixIm.

16d 〈defaultphi 16d〉≡ (4 9b)
if ~exist(’phi’, ’var’) | isempty(phi), phi = eye(size(tts, 1)); end

16

