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Abstract: We predict theoretically and demonstrate experimentally the ability to generate and con-
trol the strengths of various second-harmonic signals in birefringent poled fiber. This is done by
simply twisting the fiber.
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1. Introduction
The linear properties of twisted birefringent fibers have been well-studied [1]. However, studies of the nonlinear optical
properties of twisted birefringent fiber have focused mainly on self-phase and cross-phase modulation [2]. Here, we
report for the first time that twisting a birefringent fiber with an artificially-induced χ(2) can result in the generation of
new phase-matched second-harmonic (SH) signals not observed in the untwisted fiber.

We demonstrate this in a periodically poled fiber [3] with an induced χ(2), which arises from a frozen-in DC field
EDC

x and the Kerr nonlinearity: χ(2)
ijk = 3χ

(3)
ijkxE

DC
x . The non-zero χ(2) tensor elements that arise from this model

have been found to be experimentally valid for our fiber: χ(2)
xxx = 3χ

(2)
xyy = 3χ

(2)
yxy = 3χ

(2)
yyx.

Our poled fiber is quasi-phase-matched [4] for the second-harmonic generation (SHG) of λSH ≈ 775 nm light
in the LP01 mode. The four non-zero elements of the χ(2) tensor result in the presence of three distinct SHG signals
(y + y → x, x + x → x, y + x → y) with relative nonlinear transmittances in the expected ratio of 1:9:4 for the
untwisted fiber (Fig. 1a). The three peaks are spectrally-separated due to the fiber birefringence at the fundamental
and SH wavelengths. We attribute this to the fiber geometry (inset of Fig. 1a). The principal axes (x, y) of the fiber are
aligned with the direction of the frozen-in DC field (EDC

x ) as again shown in the inset of Fig. 1a.

2. Theory
When a birefringent fiber is twisted, its polarization eigenmodes (X , Y ) are no longer linear (x, y) but are in general
elliptically-polarized [1]:
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where Ω is the twist rate (measured in radians per metre), g is the elasto-optic coefficient (a unitless constant, univer-
sally 0.14-0.16 for fused silica fibers [1]), and βx (βy) is the propagation constant for the x- (y-) polarized light in the
untwisted birefringent (βx ̸= βy) fiber. Note that the expressions in (1) are un-normalized. In general, the polarization
eigenmodes (1) at the fundamental (ω) and second-harmonic (2ω) are different (X⃗(ω) ̸= X⃗(2ω)) because the fiber
birefringences at the two frequencies are not equal:
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. In the limit where there is no

twist (Ω → 0), the eigenmodes turn back into x̂ and ŷ.
By twisting the fiber, new second-order mixings between the eigenmodes that were not allowed in the untwisted

fiber can appear. Taking X⃗(ω) = x̂− (ϵ)ŷ, and X⃗(2ω) = x̂− (δ)ŷ, we can calculate the relative strengths of all these
signals (Table 1). Fig. 1b plots the nonlinear transmittances of the SHG signals as a function of the twist.

Table 1. Relative Strengths of Second-Harmonic Signals in Twisted Poled Fiber
Signal Relative Strength
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Fig. 1. a) The experimental SHG spectrum of the untwisted poled fiber, showing the expected 1:9:4 ratio of the peaks. The inset shows the fiber
cross-section, where one of the principal axes (x) is also aligned to the direction of the frozen-in DC field EDC

x .
b) The theoretical efficiencies of the six SHG signals listed in Table 1 are plotted as a function of twist (L is the length of the poled fiber). The

efficiencies are scaled to reflect the experimentally-obtained χ(2) values of the untwisted fiber. The X +X → Y signal is not labeled because its
estimated efficiency is significantly smaller than the other signals.

3. Experiment
We effect a twist in the poled fiber by fixing one of its connectorized ends, while rotating the other end. A tunable
CW laser source at the fundamental wavelength is used for the SHG experiment. Its polarization is adjusted with a
free-space polarization controller before being launched into the poled fiber. For each value of the twist, the principal
polarizations (X(ω), Y (ω)) of the fiber are found experimentally. A wavelength sweep is performed using three polar-
izations (X(ω), Y (ω), and X(ω) + Y (ω)) at wavelengths where the peaks associated with the 6 SHG signals (Table 1)
are expected to be. At the output of the poled fiber, the fundamental and SH beams are separated with a wavelength
division multiplexer (WDM); the fundamental power and polarization are monitored with a polarimeter, while the SH
power is measured with a silicon detector.

Fig. 2a plots the nonlinear transmittance of the SHG signals for various twists; they are in good agreement with the
theory (the solid lines). Fig. 2b gives the experimental SHG spectrum for three values of twisting, which is also in good
agreement with the theory (Fig. 2c). The theoretical nonlinear transmittances are calculated using the experimentally
determined χ(2) values of the untwisted fiber.

Fig. 2. a) The experimental nonlinear transmittances of the SHG signals plotted against the fiber twist. b) The experimental SHG spectrum for the
twisted fiber at varying twists (red = 0 turns, green = 0.66 turns, blue = 0.95 turns). The arrows denote the direction in which the peaks will drift for

increasing twist. c) The theoretical SHG spectrum, also at the same three values of the twists as Fig. 2b.

4. Conclusion
We have demonstrated that additional SHG signals in birefringent poled fiber can be generated and their strengths
controlled by twisting the fiber. This results from the eigenmodes of the twisted fiber evolving from linearly-polarized
to elliptically-polarized, which allows for the intermix of the various χ(2) tensor elements of the fiber.

We believe that analogous results can be achieved for parametric processes involving the Kerr (χ(3)) nonlinearity
by twisting birefringent step-index and microstructured fibers.
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