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Abstract—Active learning and experimental data acquisition
address the same problems, understanding a system under inves-
tigation with as few resources as possible. However there are few
instances where the theoretically principled techniques in active
learning or sequential experimental design have been applied to
managing data acquisition in physical experimentation. Partly
this is due to fundamental differences between the problems
investigated within active learning and the issues faced in much
physical experimentation. From a previous study we conducted
into autonomous experimentation, where we developed a system
capable of automatically designing experiments and proposing
potential hypotheses, we aim to investigate and highlight the
differences between theoretical active learning and the require-
ments of experimentalists. We also propose an update of the
multi-armed bandit problem that provides a theoretical problem
more closely aligned to that found in physical experimentation.
We believe that for active learning techniques to be used more
widely as tools within physical experimentation, a greater focus
of research has to be placed on theoretical problems that have
assumptions more closely aligned to those found commonly within
physical experimentation. Assumptions such as extremely limited
resources, more so than typically considered in active learning
problems, along with erroneous observations or noisy oracles,
should become standard features of active learning problems, as
in experimentation there are rarely enough resources available to
be certain about the validity of the data obtained and the quality
of the hypotheses produced.

I. INTRODUCTION

In many discovery or experimentation problems, there are
large numbers of possible experiments that could be per-
formed, but the amount of experiments that can be performed
is usually heavily restricted by some cost or resource avail-
ability. Take for example biological response characterisation,
where there are a large number of potential chemical combi-
nations that could be used to form an experiment, however the
cost involved in each experiment can be large. Alternatively
consider medical diagnosis, where a patient can undergo a
wide range of different tests, but each test will have a monetary
cost, along with a potential cost to patient health particularly
in cancer diagnosis. Therefore, algorithms for minimising the
resource usage whilst maximising the information gained are
highly sort after.

In previous work we have investigated the creation of a
system that can autonomously discover, which was tested with
an experimental laboratory problem [1]. The purpose of this
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Fig. 1. Overview of autonomous experimentation. Algorithms for automatic
hypothesis proposal and experiment selection interact with an automated
experimentation platform. The platform shown on the right is a microfluidic
system currently in development [6].

work was to develop a system that closes the loop between
autonomous intelligent experiment selection and an automated
experimentation platform, to allow for fully autonomous ex-
perimentation, as shown in Fig. 1. This work brought in-
sight into discovery problems and highlighted discrepancies
between current active learning research and problems faced
within laboratory experimentation. In particular it was noted
that whilst active learning provides mathematically rigorous
techniques, they often overlook issues within physical exper-
imentation, meaning ad-hoc techniques are often added to
account for the limitations of the active learning methods.
Investigations into autonomous discovery have previously had
several successes using more ad-hoc techniques [2], [3], [4],
although more mathematically rigorous techniques have also
been utilised, albeit within an extremely small problem area
with a large amount of previous knowledge [5].

In this paper we will highlight the lessons learned from
our work in developing an autonomous experimentation sys-
tem. This will lead towards potential new abstract problems
that could be used to benchmark future work on theoretical
autonomous discovery.



II. LESSONS LEARNED FROM AUTONOMOUS
EXPERIMENTATION

Autonomous experimentation is a union between a com-
putational system that can design experiments and propose
hypotheses, with an automated laboratory platform. In pre-
vious work we investigated how response characterisation of
biological systems could be conducted through autonomous
experimentation [1], [7]. The approach taken was to investigate
the computational decision making aspect of the problem,
by understanding and then mimicking how a successful hu-
man experimenter makes decisions about the experiments
to perform. Whilst this approach led us to investigate the
philosophical and practical considerations of experimentation,
in a vein similar to early work on computational scientific
discovery [8], we also aimed to include mathematically sound
components to the design of the algorithms. In doing so
we were able to determine ways to improve upon concepts
contained within computational scientific discovery by ap-
plying more mathematical grounding to them, whilst also
identifying the limitations of current active learning research
and its use within physical experimentation. In the following
we consider the limitations that were identified to exist within
active learning research.

A. Limited Resources

Experimentation is restricted by the resources available.
Typically these resources are extremely small in comparison
to the dimensionality of the parameter spaces that can be
explored. In active and sequential learning, the problem of
learning from limited numbers of data points is addressed,
however generally the number of experiments used are not as
low as may be expected in physical experimentation.

Take for example the examination of sequential exper-
imental design techniques through the multi-armed bandit
problem [9]. Generally the multi-armed bandit problem is
considered where the number of experiments performed, or
levers pulled, may be many times larger than the total number
of unique experiments possible. Some of the best techniques,
such as upper confidence bounds, rely on performing each
experiment once to build an initial model of the rewards
available, then subsequent experiments are used to obtain
the highest reward [10]. In many physical systems however,
the number of experiments available will not be so vast. In
fact they are likely to be many times smaller than the total
number of possible experiments. Therefore the limited number
of experiments brings with it a large amount of uncertainty,
as there is no possible way of performing all experiments.

More concrete uses of active learning within particular
problems have also not adequately addressed the high cost
of experimentation. A different investigation into autonomous
experimentation used active learning to minimise the cost
required to fill in the gaps of understanding within a lim-
ited problem domain, however it disregarded the high cost
required in experimentally obtaining the vast amount of prior
information to initialise the system [11]. Whilst another inves-
tigation considered active learning within regression problems

similar to how experiments would be chosen within response
characterisation experiments, however the techniques were
evaluated over several hundred experiments per parameter
dimension [12], far beyond that realistically available in much
physical experimentation.

B. Experimental Noise and Erroneous Observations

Very few experimental domains exist where observations are
obtained noise free. In most cases, performing the same ex-
periment will result in an observation that is slightly different.
Often this noise can be considered as an adjustment on the true
behaviour by an additive noise model, for example Gaussian or
some other known noise distribution. Additionally, there is the
notion of erroneous observations. Erroneous observations are
the results from experiments where something undetectable
goes wrong. For example the reactants are contaminated
or there is an equipment failure, which causes a different
experiment to be performed than was requested. In these
situations the observation returned is unrepresentative of the
true behaviour you would expect to see and can be described
as being erroneous. However, it is important to note that not
all experiments will result in erroneous observations, instead
only a minority of experiments will be erroneous.

In a regression problem, we can consider the effect of such
noise in the following equation:

y=f(z)+e+o (1)

where the observation obtained is adjusted by standard exper-
imental noise, ¢, and some, but not all experiments, may have
additional adjustments through experimental error ¢. Whilst €
can generally be considered as a Gaussian distribution, a gen-
eral distribution for ¢ is not known, but could be considered
as a normal distribution with large standard deviation or non-
zero mean. Colloquially, ¢ may be considered as shock-noise,
which provides a sharp adjustment to the actual observation.
Erroneous observations would generally appear as outliers
in regression problems. By assuming there are two possible
distributions of distortions being applied to an observation,
techniques such as a robust Gaussian process could be applied
to effectively ignore the erroneous observations [13, Ch. 5].
However, the limited resources mean that there will be very
few observations, making outlier identification difficult. Addi-
tionally, with only a small number of observations available,
the uncertainty in the model space will be large, meaning
that if an outlier could be identified, it would be unclear
if the outlier is due to an erroneous observation or due to
the prediction of the hypothesis being incorrect. Therefore
anything that is suspected to be an erroneous observation needs
to be examined to determine if it is erroneous or whether the
current hypothesis is wrong. The uncertainties presented by the
combination of limited resources and erroneous observations
may best be handled by ensemble based approaches [1].
Query-by-committee is an ensemble approach to determin-
ing the most likely hypothesis [14], which is similar in how
philosophers of science would argue that multiple hypotheses
should be considered in experimentation to ensure a range



of different ideas are kept in consideration [15]. In a manner
similar to falsification [16], the ensemble of hypotheses are
then used to determine experiments by selecting where the
committee disagrees the most. However, query-by-committee
considers experimental observations to be noise-free [14]. By
assuming observations to be noise free, query-by-committee
does not build alternate hypotheses that actively question
the validity of observations, instead hypotheses are generally
created randomly. Additionally, query-by-committee does not
refine hypotheses that are weakened by an experiment to
propose better hypotheses, as is required for falsification.
These two problems mean that first obtaining accurate hy-
potheses will be slow if all adjustments to the hypotheses occur
randomly, whilst secondly the technique does not match well
with how a scientist may consider hypotheses within a lab
meaning that experimenters may not trust or value their use.
There have been a small number of investigations into active
learning with noisy oracles, or where the labels obtained may
be inaccurate, however the assumptions made of the oracles
are not the same as that found in experimentation, where the
errors have no well defined occurrence mechanism [17].

C. Incomplete Model Space

A Popperian view of experimentation is that the true hy-
pothesis can never be found and that there will always be
improvements that can be made. In many experimentation
problems this view is easily demonstrated, as the limited
resources and erroneous observations ensure that there will
be a high amount of uncertainty within any hypothesis de-
veloped. However, in many active learning problems, the
possible classes of outcomes are already known and is often
reduced to a binary problem [14], [18]. Whilst an autonomous
experimentation machine has been developed that uses active
learning for classification where the available model space is
known [5], a vast amount of prior information was required
and the quality of the discoveries made were subject to error
if there were any mistakes with the prior assumptions.

As the nature of discovery is to find things that were not
known before experimentation began, there will be periods
where a representative hypothesis will not exist within those
hypotheses under consideration. Take for example a case in
response characterisation, where only one experiment in a
particular region of the parameter space has been performed,
which yielded an erroneous observation. With only the one
experiment in that region, using a single distribution to predict
the response across the parameter space would state the
observation to be indicative of the true underlying behaviour.
However, as the observation is erroneous, the prediction is
incorrect and the true hypothesis is not in consideration. This
is a problem not addressed in core active learning research,
where there is often an assumption that either the current
distribution can be shrunk down to the target model or that
the true hypothesis exists within the set of possible hypothe-
ses [19], [20]. Essentially these techniques can be thought of
as exploitation only, as they use the models and data available
to repeatedly identify the differences to determine which of the

hypotheses are the most likely. Such techniques will perform
poorly if a mistake has been made in assuming the validity
of the observations and the set of hypotheses under consid-
eration does not contain a representative hypothesis. Instead
techniques are required to also explore the parameter space to
determine if there are features of the behaviour or system being
investigated that are not captured by the hypotheses. Therefore
a suitable trade-off between exploration and exploitation is
required, where many existing techniques have been devised
through investigating the multi-armed bandit problem and as
such are designed to work on performing much larger numbers
of experiments than will be typically available.

D. Experimentation is not Always Classification

A smaller consideration for making active learning tech-
niques more accepted within physical experimentation is the
class of problem that they address. Active learning considers
mostly classification problems [17] and there have been ex-
amples of active learning in laboratory problems [18], [5].
However, many problems within laboratory discovery are
not classification problems and bring with them their own
set of additional issues, such as an incomplete model space
as discussed above. Another problem is that few physical
experimenters will have the mathematical background to take a
solution considered in classification and apply it to regression.
By ensuring problems are addressed that match those found
in experimentation, there may be a wider acceptance and
understanding of the mathematically principled techniques for
experiment selection.

III. TOWARDS A BETTER FRAMEWORK FOR DISCOVERY

From the lessons learned in autonomous experimentation,
we consider a new abstract problem for active learning.
For simplicity of the description we consider learning in a
discovery problem using an ensemble of hypotheses, which
was how our previous work considered the problem and how
experimenters and philosophers of science would consider
the problem. Although the translation to a system using a
distribution based single hypothesis could be made. Here we
focus on the problem of experiment selection and in particular
the trade-off between exploration and exploitation within a
discovery system.

The multi-armed bandit problem has provided a platform for
understanding sequential experimental design. The problem
consists of a number of different arms, or experiments, which
can be performed to obtain some reward. In the original
multi-armed bandit problem the rewards obtained from a lever
were normally distributed amongst some predefined mean and
standard deviation for that lever [9]. Although the multi-armed
bandit problem has been extended to allow alterations such as
the rewards at the levers changing over time [10], or to allow
the rewards at each lever to be dependent on neighbouring
levers [21]. The problem has been used to develop theoretical
solutions that can then be applied to practical problems. For
our abstract depiction of experiment selection in discovery,
we believe the multi-armed bandit problem can be used as



the basis. The advantage of using the multi-armed bandit as a
basis for this problem, is that the problem is already widely
accepted as a means to understanding experimental design, and
also as experiments are independent to each other, it allows for
the dimensionality of multi-parameter discovery to be reduced
down to a single parameter, the choice of experiment.

To enable the extension we consider how the multi-armed
bandit problem matches with a discovery problem. First we
consider the reward metric. In the multi-armed bandit problem
the reward obtained is notionally defined as a monetary reward.
Whilst in a discovery problem there is no direct monetary re-
ward to performing an experiment, rather each experiment will
provide information that can be used to discriminate between
existing hypotheses and allow improved predictions of the be-
haviour under investigation to be made. Therefore the reward
obtained will be the information the experiment provides. In
a discovery system the expected information can be predicted,
by either determining the degree to which hypotheses disagree
with each other within a multiple hypotheses approach, or
measuring the uncertainty or error bar within a single hypoth-
esis. The expected information will be maximal where the
uncertainty is greatest, which in a multiple hypotheses system
could be considered as the maximum disagreement between
good hypotheses. However, the actual reward obtained may be
higher in some instances where the hypotheses are incorrect in
their prediction or where an erroneous observation is obtained.
In the autonomous experimentation problem we considered
previously, a key part of the problem was to decide when to
exploit the information held within the hypotheses, to evaluate
them and differentiate between them, with when to explore the
parameter space to discover new features of the behaviour not
yet discovered. With information as the reward, the proposed
framework for discovery captures this trade-off.

Next we consider how this reward changes over time. If we
repeat the same experiment multiple times and obtain the same
result, it is clear that the information the experiment provides
will decrease, as we would expect to be able to predict the
result accurately by the later experiments. Therefore the reward
an experiment provides should generally decrease on subse-
quent performances of that experiment. However, there are
instances whereby the information may increase on a repeated
performance of the experiment. For example, consider the
case where an observation disagrees with the consensus of
the hypotheses. This disagreement will be due to either none
of the hypotheses being suitable, or the observation being
erroneous. This observation will provide some information
but a subsequent observation will provide more information
through either confirming the observation to be true and the
hypotheses false, or by confirming the observation to be
erroneous. Therefore we consider the reward obtained for
a particular experiment z, to be relative to the last reward
obtained for that experiment. The adjustment in information
obtained is handled through a simple approximation 3, which
is a variable scalar modelled through some distribution that
allows the next reward to be higher or lower than the current
reward. The reward that will be obtained the next time an

experiment is performed, Iz, (), is the reward obtained when
the experiment was last performed, Iz(x), scaled by 5, and
hard bounded between zero and one:

Bl (x) if 0 < pIz(x) <1,
T (@) =4 1 if Bl(x) > 1, 2)
0 otherwise.

where time ¢ is independent for each unique experiment
parameter, to demonstrate how the information obtained for
an experiment adjusts based on the last time that particular
experiment was performed. There are open choices for choos-
ing 3, here we choose a normal distribution for simplicity,
with 4 = 0.8 and 02 = 0.4, to ensure that the information
will decrease in most instances but still has the ability to
increase. The maximum and minimum values permitted from
the normal distribution are hard limited by the requirement
that 0 < I, 4 (z) < 1.

Next we consider how the information available is initially
distributed across the possible experiments. In experimentation
not all experiments will provide information. For example if
all of the hypotheses predict the observation obtained for a
particular experiment, then the experiment did not provide
any additional information. However, the percentage of ex-
periments that will provide information cannot be generalised
to a particular parameter setting. Instead it would be of
interest to examine the effect of adjusting the proportion of
experiments that provide information with respect to the total
number of possible experiments. Therefore a range of different
percentages of experiments with information initially available
should be tested, where the information is set arbitrarily high
for some and arbitrarily low for others. Experiments capable of
providing information should be randomly distributed through
the possible experiment parameters.

Finally we consider the number of experiments available.
Typically the number of experiments allowed will be low,
however the exact value may depend on the cost of resources
and dimensionality of the problem. However, we can assume
an absolute maximum number of experiments to be the number
of unique possible experiments, | X|, which can be performed,
although in reality the number will generally be far smaller.
The number of unique possible experiments can be considered
as a discrete set, as equipment used in physical experimenta-
tion to perform the experiments will typically have limited
precision. Therefore each trial of the problem will occur over
| X| experiments, with the performance of the techniques over
time being considered in the evaluation, instead of simply
performance after |X| experiments, to account for situations
where techniques have different rates of increase in perfor-
mance over time.

To summarise the problem, we have designed the abstraction
to meet the following issues:

o The reward is the information provided by the experi-
ment.

o Not all experiments will provide information, it may be
only a small minority of experiments that do.



o Repeating an experiment will generally yield lower re-
wards on the repeat experiments

o Sometimes erroneous observations will occur that may
make an experiment appear to provide more information
than it really does. In these cases the reward for that
experiment will statistically drop rapidly on subsequent
trials.

e Resources will be extremely limited, generally not
enough to perform all experiments.

A. Evaluation

To evaluate the techniques there are several measures that
can be made. First the cumulative reward, w, obtained:

T
w=Y i 3)
t=1

where 1" are the number of time steps performed and i is
the actual reward obtained at time ¢. Second the regret, p,
can be measured between the highest available reward and the
selected reward at each time step:

p= é (rgg{lm} - %t) &)

where max,ex{I[;(x)} is the maximum reward possible at
time ¢, and X is the set of possible experiments. Finally the
mean of the actual reward obtained at each time step, I;, over
the repeated trials can be taken.

IV. INITIAL TECHNIQUES USED
A. Relative Information Gain Switching

In the previous work developing an artificial experimenter,
the information obtained by an experiment was captured as
the information gain between the confidences of the ensemble
of hypotheses under consideration, before and after an ex-
periment was performed [7]. The information measure, was
captured as the KL-divergence:

=3 Choytog g((’;g )

where C(h;) was the confidence of hypothesis ¢ before the
experiment was performed and C’(h;) was the confidence
of the hypothesis after the experiment was performed. The
motivation for using the KL-divergence in this way came
from work by Itti and Baldi that produced a quantification
of surprise based around the KL-divergence [22]. Having
a quantification for surprise was desirable in developing an
artificial experimenter, as surprise had been expressed in pre-
vious investigations into how successful human experimenters
conduct experiments [23], [24].

In our previous work, the confidence was the likelihood
measure of whether the data obtained during the experimen-
tation agreed with the predictions for each hypothesis. As
the prior and posterior distributions were not normalised and
potentially different, the result of the KL-divergence could
be negative. A negative information gain stated that the last

experiment provided no new information to the hypotheses,
whilst a positive value stated the experiment did provide new
information as overall the observation disagreed with the most
likely hypotheses at that time. In the referenced work, this
information gain was equated to a notion of surprise, to allow
it to fit within a framework of building machine learning
techniques that mimic how human experimenters perceive the
data they obtain. The most successful technique demonstrated
in that study managed the exploration—exploitation trade-off
by exploiting when the last experiment was surprising, or in
other words when the information gain was increasing. The
technique explored when the experiment was not surprising,
or when the information gain was decreasing.

This leads to the first technique considered, where the next
experiment to be performed, x},; is chosen as:

* —
Tep1 = {

where X is the set of possible experiments, I(z) is the
prediction of the reward that will be obtained by performing
experiment x, and I; is the information obtained a time t.
In words this method says, if the last experiment provided
more information than the previous, exploit by choosing
the experiment with the highest predicted information gain,
otherwise explore.

if Iy —I;_1 >0,
otherwise

max,ex ()

random(X) ©

B. Repeating Relative Information Gain Switching

The above selection method is a direct translation from
previous work. A potential downside of this approach is that
the experiment it chooses may not be the same as the last
experiment performed that increased the relative information
gain. In this second strategy we consider repeating an experi-
ment if it increases the relative information gain:

* —
Tip1 = {

C. Baseline Strategies

x; lf It—Itfl > 0,
random(X) otherwise

)

For reference, we provide several baseline strategies: ran-
dom experiment selection; e-first selection; and performing
each experiment once. The e-first selection will perform a
number of initial exploration experiments, then perform greedy
selection thereafter. Greedy selection performs where the
highest predicted reward occurs:

Tipg = rgcnea%l(x) ®)
Performing each experiment once is provided as the absolute
baseline strategy and is the first stage of upper confidence
bound techniques, however it should be noted that the eval-
uation of the techniques should also occur when the number
of experiments performed is far below the total number of
different experiments.
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Performance of techniques tested in terms of their mean cumulative reward w, regret p and reward for each experiment I¢. In (a—d), mean total

reward w over proportion of experiments performed (¢/|X|) when 10%, 30%, 50% and 70% of the experiments are initially interesting respectively. In (e-h),
the regret p for those same trials is shown. In (i-1), the mean of the actual reward collected at each time step is shown for those same trials. The techniques
shown are: Perform each experiment (Perform All) — black; Random — green; e-greedy (e = 0.1) — yellow; e-greedy (¢ = 0.3) — red; Relative information
gain switching (RIGS)- magenta; Repeating relative information gain switching (RRIGS) — dark blue;

V. PRELIMINARY RESULTS

To evaluate the different techniques, the three evaluation
methods described in Section III-A were used. Additionally
the proportion of experiments that initially provided infor-
mation was varied, as the amount of information available,
or discoveries possible, in a discovery problem is unlikely to
be known a priori and will vary between different discovery
problems. This variation meant we were not fixed to an invalid
a priori assumption within our framework problem. Finally the
performance of the techniques was monitored over the number
of experiments performed, with a range of zero to the number
of experiment performed being equal to the number of unique
experiments available.

Presented here are the results for when 10%, 30%, 50%
and 70% of the possible experiments, X, initially yield a
high amount of information. Each technique was tested over
1000 trials, where each trial had a maximum number of 1000
experiments that could be afforded, n 1000, and there
were 1000 different experiments possible, | X| = 1000. The

experiments that would provide a high amount of information
were randomly selected, with each being given an arbitrarily
high initial reward of I(x) = 0.5, which allows future rewards
for that experiment to grow or shrink. All other experiments
were set with zero information reward available, which would
remain zero throughout the trial. Throughout, the predicted
reward | (z) is the value of the last reward obtained, or zero if
not previously performed. In Fig. 2, the total reward and regret
are shown over the proportion of experiments performed.

First we consider a general overview of the results shown.
When the number of information rewarding experiments are
low, the passive baseline techniques perform poorly in terms
of total reward, except for the e-greedy technique with e = 0.3.
However, as the proportion of experiments that provide a
reward increases, the random and perform each experiment
techniques perform similarly to the more effective active
strategies. This is interesting because the problems where the
number of informative experiments available is low in propor-
tion to the total number of experiments that can be afforded,



would appear to be the hardest and arguably most realistic
problems. These results demonstrate that active learning is
able to provide an advantage over more passive approaches
and confirms that the techniques applied in the previous
autonomous discovery work would provide an advantage over
more baseline techniques. Interestingly, in these results the rate
of increase on the actual reward obtained appears to remain
largely constant across t.

Throughout, the regret for the two e-greedy strategies is
lower than the majority of the alternate strategies, but their
cumulative rewards do not illustrate them to be the most
rewarding strategies. This is due to how the reward for an ex-
periment can increase and decrease over repeated experiments.
In the e-greedy techniques the majority of the experiments will
be exploitation, which means that when a rewarding experi-
ment is found, the experiment will most likely be repeated
immediately, obtaining all of the reward possible for that
experiment. As rewarding experiments have an initial reward
of 0.5 and reward will tend to zero over repeated performances,
the most rewarding experiment available will generally have a
value no greater than 0.5 for these strategies. However, in the
alternate strategies, such as random, a rewarding experiment
may be found but not immediately repeated. As I;11(x)
can be larger than I;(z), the maximum reward available at
any particular time may grow beyond 0.5 for those alternate
strategies. This means that the mean regret can be higher for
those alternate techniques, even if the mean reward obtained is
also higher, as can be seen in Fig. 2 (e-h) and (i-1). Therefore,
future studies would need to ensure that regret is not the sole
evaluator used within this problem.

The e-greedy strategies have a reasonably constant regret,
as any rewarding experiments are immediately repeated, pre-
venting the rate from increasing, whilst not performing enough
exploration to identify all of the experiments with rewards,
which prevents the regret from decreasing. The relative infor-
mation gain switching acts in a similar manner of immediately
repeating the most rewarding experiment, except that it per-
forms a larger amount of exploration, caused by the strategy
exploring each time the information obtained is less than was
obtained in the previous experiment, then the technique reverts
to exploitation when the information obtained increases over
the previous experiment. Whilst the other strategies all identify
rewarding experiments without repeating them to reduce their
information available. The repeating relative information gain
switching performs far worse than the relative information
gain switching, as the repeating version will stop repeating
a particular experiment as soon as the reward decreases and
not return to that experiment, even if the predicted reward for
it is the highest, until it randomly selects the experiment again
through exploration.

Throughout, the relative information gain switching (RIGS)
technique outperforms the alternate techniques, as it did in our
previous work on physical automated discovery. The benefit
this technique provides can be seen most clearly in the actual
reward obtained evaluators (w and I;) shown in Fig. 2(a—d)
and (i-1). An interesting new insight into the RIGS technique

made possible by this new framework, is its performance
compared to other techniques with respect to the proportion of
experiments that yield informative and rewarding observations.
The results indicate that as the proportion of experiments that
are rewarding decreases, the benefit of the RIGS technique
over alternate and baseline techniques increases. In other
words, as the problem becomes harder, our active learning
technique becomes more beneficial.

VI. CONCLUSION

Autonomous discovery and learning are important and
growing fields of interest. They provide challenges in machine
and active learning that have not yet received appropriate
attention and can lead to solutions that are widely applicable in
many domains of discovery. In this work we have considered
the current mismatch between active learning solutions and
the physical experimentation domains that would most benefit
from them. The biggest mismatch is the issue of resources.
Whilst most active learning problems consider learning from
smaller datasets, the size of those datasets are still considerably
larger than what would be able to be provided for most
physical experimentation. The second mismatch is the issue
of erroneous observations. Considerations in active learning
have been made for noisy oracles, however their usage in
problems is not that wide spread. In physical experimentation,
errors occur regularly enough to warrant the consideration of
erroneous observations to be a more mainstream problem when
considering active learning problems for data acquisition.

Additionally we have proposed an adjustment to the multi-
armed bandit problem, to provide a theoretical problem that
is more similar to experiment selection within physical ex-
perimentation than existing problems provide. We have de-
parameterised the problem of discovery within high dimen-
sional parameter spaces, to address the problems of having
very few resources, very large numbers of possible experi-
ments, and limited number of experiments that will return a
reward, or useful information in a physical experiment. The
issue of erroneous observations are captured within the update
on the reward, where in some instances multiple repetitions of
an experiment will see the reward drop to zero very quickly,
as would be seen by repeating an erroneous experiment and
not obtaining the error again. The proposed problem has
demonstrated that a translation of the technique used within a
previous autonomous discovery system to successfully charac-
terise biological systems [7], outperforms a range of baseline
techniques. However, we would expect that new techniques
will be able to outperform this in the theoretical problem. Ad-
ditionally we do not consider this to be a problem that captures
all aspects of discovery, for example hypothesis proposal under
high uncertainty, but rather a problem that addresses some of
the important issues within the data acquisition aspect of active
learning.

Future work should be careful to address the issues of the
problem most related to autonomous learning or discovery.
This is largely the issue of exploration—exploitation within
a problem where there are extremely limited resources in



comparison to the number of experiments to choose from. Of
less importance within the multi-armed bandit based problem
is how to predict the expected reward, due to the abstract
nature of reward within this problem. In a real implementation
of an autonomous learner, there would be a mechanism for
determining expected information gain, for example through
measuring the discrepancy between hypothesis predictions
within an ensemble of hypotheses. Here we have used the last
reward obtained as the prediction for a particular experiment,
however alternatively we could have assigned the true reward
that will be obtained on repeating an experiment to the pre-
dictions for experiments that have been performed previously.
This alternate method for setting the predicted reward would
only provide the true next reward to those experiments that
had been performed, which is analogous to physical exper-
imentation where the predicted reward could be reasonably
estimated by comparing the hypotheses under consideration.
Whilst experiments that had not been previously performed
would have a predicted reward of zero. This alteration would
remove the need for considering reward estimation within
potential solutions, however may be less acceptable in peer
review.
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