The potential for assessing residual stress using thermoelastic stress analysis: a study of cold expanded holes

Robinson, A.F., Dulieu-Barton, J.M., Quinn, S. and Burguete, R.L. (2012) The potential for assessing residual stress using thermoelastic stress analysis: a study of cold expanded holes Experimental Mechanics (doi:10.1007/s11340-012-9633-1).


Full text not available from this repository.


Thermoelastic stress analysis (TSA) is a well established tool for non-destructive full-field experimental stress analysis. In TSA the change in the sum of the principal stresses is derived, usually when a component is subjected to a cyclic load. Therefore the mean stress or any residual stress in a component cannot be obtained from the thermoelastic response. However, modifications to the linear form of the thermoelastic equation that incorporate the mean stress may provide a means of establishing the residual stresses. It has also been shown that the application of plastic strain modifies the thermoelastic constant in some materials, causing a change in thermoelastic response, which may also be related to the residual stress. The changes in response due to plastic strain and mean stress are of the order of a few mK and are significantly less than those expected to be resolved in standard TSA. Recent developments in infra-red detector technology have enabled these small variations in the thermoelastic response to be identified, leading to renewed interest in the use of TSA for residual stress analysis in realistic components. The component studied in this work is an aluminium plate that contains a cold expanded hole, hence providing an opportunity to examine any changes in thermoelastic response caused by the residual stress in the neighbourhood of the hole. The variations in thermoelastic response due to residual stress are shown to be measurable and significant; validation of the residual stress field is provided by laboratory X-ray diffraction. The potential for a TSA based approach for residual stress analysis is revisited, and the feasibility of applying it to components containing realistic residual stress levels is assessed.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1007/s11340-012-9633-1
ISSNs: 1741-2765 (print)
Venue - Dates: 8th International Conference on Advances in Experimental Mechanics: Integrating Simulation and Experimentation for Validation, 2011-09-07 - 2011-09-09
Keywords: thermoelastic stress analysis (tsa), residual stress, cold expansion, plastic deformation, non-destructive
Organisations: Engineering Science Unit
ePrint ID: 340838
Date :
Date Event
27 June 2012e-pub ahead of print
Date Deposited: 04 Jul 2012 10:43
Last Modified: 17 Apr 2017 16:51
Further Information:Google Scholar

Actions (login required)

View Item View Item