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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

NOVEL PHENOMENA IN PLANAR AND LAYERED, PHOTONIC AND
MICROWAVE METAMATERIALS

by Alexander Sven Schwanecke

This work is related to the investigation and development of novel concepts to utilise
planar nanostructures in optics, aided by complementary research in the microwave
domain—in particular:

Strong polarisation conversion capabilities are shown for planar chiral nanoholes in
the near-infrared part of the spectrum. The efficiency is found to depend strongly on
the mutual orientation of the chiral hole and the polarisation of the incident light.

Polarisation-dependent nano-focusing is seen for these nanoholes. Light is concen-
trated to a spot size of 42 % of the wavelength in the proximity of a nanohole.

Broken enantiomeric symmetry is discovered for planar chiral structures excited
with circularly polarised light, it is explained numerically and analytically for optics.

Non-paraxial contributions are analytically proven to be crucial to the description
of the nonlocal response of planar chiral structures.

Asymmetric optical transmission in anisotropically nanostructured planar chiral
metamaterials is demonstrated, for the first time. This phenomenon is mediated by
a new type of excitation: an enantiomerically sensitive plasmon. The normal inci-
dence transmission of circularly polarised light displays a difference exceeding 25 % for
opposite propagation directions.

Giant gyrotropy in bilayered chiral structures is shown for both optical and mi-
crowave spectral regions, for the first time. The maximum relative polarisation rota-
tory power in the microwave domain is found to be 5 orders of magnitude stronger
than in a gyrotropic crystal of quartz; for optical frequencies it exceeds 2500 °/mm.

The first demonstration of an optical magnetic mirror is reported. The phase change
for the electric field of a wave reflected by a nanostructured metal surface is found to
be smaller than 90° (the signature of magnetic mirror behaviour) for a broad spectral
range from 550 to 750 nm, reaching values below 25°.

A unit of planar chirality is proposed, for the first time. Normalisation procedures
for the class of triple-integrated and -summated measures of planar chirality are in-
troduced. A new type of multiplicative measure is defined and its properties and
applicability are demonstrated.

A process for nanoimprint lithography at room temperature is developed. The
production of planar chiral metamaterials for optical applications is validated to be
reliable and reproducible and to provide a strong polarisation effect.
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overall list of figures to facilitate an effortless overview.

Several parts of the discussed results involve the usage of template structures of low
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1. Introduction

Rapid advances in micro- and nano-fabrication over the last decade have opened pre-
viously inaccessible regions of photonics to experimental physicists. At the same time,
ever increasing computational capabilities have made complex numerical analysis more
readily available. This was the fertile ground that fostered the mounting interest
in what have come to be known as metamaterials—artificially designed materials,
carefully structured on the subwavelength scale to create novel kinds of light-matter-
interaction, beyond (meta) the bare physical properties of their constituent elements
and substances.

Control of phase-, as well as frequency-related properties is the key to most types
of metamaterials. While considerable effort was initially focussed on double-negative-
index materials [Pendry, 2003; Smith et al., 2000; Veselago, 1968] and many early
predictions and results emerged from the long-established microwave research com-
munity, the field has since evolved to encompass a significantly broader perspective.

This thesis is motivated by earlier work on planar chiral structures in Southamp-
ton, initially starting with basic theoretical considerations [Svirko et al., 2001], which
sparked systematic experimental investigations for diffracting arrays of planar chiral
nanostructures [Papakostas et al., 2003] and revisited the idea of putting numbers not
only behind the physical properties of such structures, but also their mathematical
degree of symmetry, namely their chirality [Potts et al., 2004; Schwanecke, 2004]. At
the same time, suggested links between the polarisation and resonant properties of
planar chiral structures and a possible “chiral route to negative refraction” [Pendry,
2004] further strengthened the outlook of the project. These aside, the prospect of
polarisation-oriented functionality on the subwavelength scale and with planar dimen-
sions would already possess considerable merits in its own right.

The word chiral stems from the Greek word for hand which is perhaps the simplest
example of a chiral object, as they exist in left and right versions. The definition of
chirality used nowadays goes back to Lord Kelvin and the beginning of the last century
[Kelvin, 1904]:

I call any geometrical figure (...) chiral, and say it has chirality, if its
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image in a plane mirror (...) cannot be brought to coincide with itself.!

Accordingly, two-dimensional objects are deemed planar chiral if they cannot be
found congruent with their own mirror image, obtained against a line in its plane of
existence, by any translation and/or rotation within this plane. Two objects that are
mirror images of one another are called enantiomers.

The terminology around chirality has largely been coined by the chemistry commu-
nity, where various applications of this concept exist primarily on molecular level. It
stems from the discovery that objects consisting of the same elements but in a mirror
image configuration can have significantly different chemical properties. An instruc-
tive introduction into the relations of chemistry and chirality has been provided by
the Nobel laureate Vladimir Prelog [1976].

In biology on the other hand, the concept of chirality allows, for example, one to
distinguish between bacteria that share a mirror-symmetric buildup but differ consid-
erably in their properties: Lactic acid exists in two enantiomeric forms, denoted D(—)
and L(+), where the latter can be broken down much better by common biological
systems like the human body [Wikipedia, 2009).

However, all these terms have their roots in the concept of optical activity. In 1846
Faraday discovered the rotation of the polarisation plane of linearly polarised light
when applying a magnetic field. Two years later Pasteur noted equal but opposite
amounts of polarisation azimuth rotation by different crystals of sodium ammonium
tartrate. Ultimately, Lord Kelvin understood the difference between magnetic rotation
and natural optical activity and introduced the notion of chirality to describe the latter
phenomenon [Barron, 2000].

For this thesis, understanding the optics of individual subwavelength-sized planar
chiral template structures, their symmetries, and interactions became the first step
in bringing chiral metamaterial functionality to optics, not least because polarisation
microscopy had led to puzzling results [Schwanecke et al., 2003]. Chapter 2 provides
a detailed numerical analysis of planar chiral nanoholes, which is further expanded
in Chapter 3. In order to judge and predict the symmetries of such light-matter
interactions and to achieve further clarity regarding the nonlocal nature of the opti-
cal responses, Chapter 4 provides analytical and numerical detail, and more broadly
considers arrays of chiral elements and time-resolved simulations.

Understanding of the resonant and polarisation properties observed and predicted
for planar chiral structures requires the differentiation of planar achiral effects (part I11
of this thesis) from purely planar chiral effects (part I), and from volume or conven-

tional three-dimensional chirality and resulting gyrotropy (part II). This thesis inves-

!Quotation taken from Le Guennec [2000].
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tigates phenomena resulting from each of these three categories:

Fedotov et al. [2006] found evidence for microwave radiation that the normal inci-
dence transmission of circularly polarized waves through an anisotropic planar chiral
metamaterial is asymmetric for opposing propagation directions. Chapter 5 numeri-
cally predicts, while Chapter 6 experimentally confirms that this effect is present in
the visible to near-IR part of the spectrum for adequate topologies of nanostructured
surfaces. It explains how this interaction is mediated by the excitation of enantiomer-
ically sensitive plasmons.

Conventionally, optical activity and gyrotropy are associated with bulk media, with
multi-wavelength dimensions in all three spacial directions [Svirko and Zheludev, 1999).
A single layer with a regular topology of planar chiral templates allows the creation
of resonator cavities solely in its plane, the symmetry of which can only be disturbed
by a substrate supporting the layer. Yet two such layers, located well within their
respective near-fields of interacting electromagnetic waves, would couple these two
resonators. Introducing a respective twist between the individual template structures,
with otherwise identical layers, allows the system to display full 3D-gyrotropy in an
arrangement of well below a wavelength’s thickness. Chapters 7 and 8 show experi-
mentally and numerically how a two-layer arrangement of planar chiral structures can
lead to gigantic specific gyrotropy, relative to the structural thickness and compared
to previously known gyrotropic materials and configurations.

Effectively, all described structures consist of resonators, which produce a phase
change in transmitted light waves. For planar chiral structures this phase change is
less trivial and more sensitive to the relative orientation of the light polarisation and
the chiral object. This phase change can also be utilised in achiral configurations:
Chapter 9 demonstrates how a nanostructed metallic surface effectively interacts with
light as a magnetic mirror. This compares to conventional (or electric) mirrors, where
the electric field at the interface assumes a minimum, producing a reflected wave
with reversed electrical component. A magnetic mirror, however, reflects a wave with
an inverted magnetic component resulting in strong electric field values close to the
interface—beneficial, for example, for the detection of small substances and nanopar-
ticles.

The mathematical property of (planar) chirality in context with its physical manifes-
tation in optics—through its effect on the polarisation of light transmitted or reflected
from such media—has required researchers to develop measures and indices of symme-
try. Many are motivated by simple planar chiral molecules and include optimisation
routines to arrive at a value [Buda and Mislow, 1992; Harris et al., 1999; Le Guennec,
2000; Petitjean, 2003, and references therein]. Complex planar geometries would thus

be difficult to handle and analyse coherently. However, Osipov et al. [1998] introduced
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a new type of measure, which was later improved upon and further revised by Potts
et al. [2004]. Here, a straightforward triple-integration (or summation, respectively)
leads to a unique and reproducible number for any given system. Chapter 10 not only
develops and analyses a new sub-type of such triple-integrated chirality measures, but
introduces a general concept to normalise them. Moreover and for the first time, it ex-
plains how a unit of planar chirality can be introduced for any such measure, enabling
consistent and well defined exchange of values and corresponding templates between
researchers.

All previously suggested continuous media consisted of templates arranged in pla-
nar crystal-symmetry patterns, mostly square lattices. The transmission of light waves
through apertures smaller than the wavelength requires consideration of the strongly
diminished transmission, predicted by Bethe [Bethe, 1944], versus a collective strength-
ening for apertures in arrangements of crystal symmetry [Ebbesen et al., 1998]. Chap-
ter 11 demonstrates for the microwave domain how even a quasicrystalline structure
can not only transmit much more energy than predicted by Bethe for its individual
holes, but also that it hardly affects the phase and intensity of a transmitted electro-
magnetic wave—effectively rendering a screen with subwavelength apertures “invisible”
for a broad spectral domain.

Given the previously described results on planar nanostructures, any further devel-
opment of the field will have to take into account not only state-of-the-art fabrication
techniques for scientific purposes, but also the mass-production prospects of such in-
tricate surface topologies. Chapter 12 explains a method to manufacture planar chiral
metamaterials through nanoimprint lithography at room-temperature and thus con-
siderably reduced cost. Moreover, it demonstrates the presence of basic polarisation
properties in test samples, alluding to the opportunity for industrial exploitation.

Exploring the prospects of nanostructured planar chiral metamaterials, this thesis
describes various aspects and novel phenomena of light-matter interaction for struc-
tured interfaces and surfaces. It arrives at its conclusions through numerical modelling,
analytical and symmetry considerations, experimental analogies in the microwave do-
main, and extensive optical experiments for a variety of arrangements and, ultimately,
it provides a unifying perspective and promising outlook for the employment of the

developed concepts.
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Future Work

The multitude of phenomena for different spectral domains described in this thesis
provides ample room for concepts and investigations deriving from it. Four very
promising candidates should be highlighted.

All employed materials described in this work have been aimed at linear optical
interactions. In particular, the fish-scale designs exemplify how strong resonances
can be combined with chiral or gyrotropic functionality. Preparing the patterned
or substrate material with active and non-linear components would be a natural next
step—mnot only would it provide for hybrid switchable devices, but may also ultimately
strengthen the observed effects, aggregating to viable devices for the optoelectronics
industry.

The investigated magnetic mirrors display a strong concentration of electric field
intensity in the proximity of their interface. This should lead to enhanced interac-
tion with particles in their proximity. Given the considerable remaining cost of such
nanostructured surfaces, which could merely be alleviated by employing nanoimprint
techniques, this might be a promising technique for enhanced trace gas detectors.

On the route to miniaturised optically functional elements, the use of circular polar-
isation may be found advantageous. The described effects of polarisation-dependent
nano-focusing and broken enantiomeric symmetry would provide for selective guidance
of light on the smallest scale. These theoretically predicted phenomena can readily be
verified with polarising scanning near-field microscopy, before taking them further.

This work explains how intricately structured interfaces can assume effective elec-
tromagnetic parameters decidedly different from those of their constituent materials.
Reaching for more complex chiral template designs and cleverly arranging and stack-
ing them will ultimately lead to double negative index media, proving a different route
to intriguing applications like the proposed cloaking devices.

Eventually, developing the investigated metamaterial phenomena into practical de-
vices and evaluating them for different as well as more specific and narrow spectral
ranges, like the fibre telecommunication bands, will provide a fertile ground for the

advancement of this field of science.
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