

Deposition and Characterization of Copper Indium Gallium Sulphide Thin Films Fabricated by Chemical Vapour Deposition with Metal Chloride Precursors

Kevin C. C. Huang*, Kenton Knight and Daniel W. Hewak

Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK

*Corresponding Author

Abstract

Chemical vapour deposition (CVD) is a widely used method in the optoelectronics and semiconductor industries, producing high purity thin films, in crystalline, amorphous and epitaxial phases. A variety of materials can be produced in this way although for the most part use of the technique has focussed on polysilicon, silicon dioxide, silicon nitride and metallic materials. The advantages of CVD processing, which offers superior quality compared to conventional methods such as sputtering or co-evaporation, include conformality, coverage, and stoichiometry control. The process should also be more economical and scalable to large substrates as it can take place at atmospheric pressure rather than under vacuum conditions.

The ORC has a long history of exploiting CVD for optoelectronic applications, initially depositing high purity silica for the achievement of some the worlds' lowest loss optical fibres. Since 2001, we have been extending our CVD technology to the chalcogenides and are now routinely depositing germanium and antimony based sulphides on a variety of substrates including glass, silicon and flexible metallic and polyimide materials. Copper indium gallium sulphide/selenide (CIGS) is a new chalcogenide material which is typically deposited by vacuum-based processes which co-evaporate or co-sputter copper, gallium, and indium, followed by annealing of the resulting film with a sulphide/selenide vapour to form the final CIGS structure [2]. Other non-vacuum-based processes deposit nanoparticles of the precursor materials on substrates and then sinter them in situ [3].

We report here on efforts to extend our CVD technology to the CIGS family of materials and in doing so improving material quality and process repeatability. Our work focuses on the use metal halide precursors such as CuCl, GaCl₃, InCl₃ which are reacted in situ with processing gases such as H₂ and S₂Cl₂.

Cu₁₁In₂₆Ga₈S₅₅ films have been successfully fabricated by our CVD technique. The composition and surface morphology of these films have also been characterized by SEM and EDX techniques. XRD patterns of the CVD-grown CIGS film reveal two crystalline phases, Cu_{(In,Ga)S₂} and Cu_{(In,Ga)S₈} have been formed. The band gap of this CVD-grown CIGS film is about 0.9 eV from the transmission spectrum. The preliminary results of fabrication of CIGS films by CVD with metal halide precursors are very promising. We are now working on the improvement of film quality and adding Se into CIGS films by our CVD techniques.

References

1. C.C.Huang, K.Knight, D.W.Hewak, "Antimony germanium sulphide amorphous thin films fabricated by chemical vapour deposition", *Optical Materials* 29(11) p.1344-1347 (2007).
2. G.Voorwinden, R. Kniese, M. Powalla, "In-line Cu_{(In,Ga)Se₂} co-evaporation processes with graded band gaps on large substrates", *Thin Solid Films* 431 –432 (2003) 538–542
3. S.Ahna, K. Kimb, K. Yoon, "Nanoparticle derived Cu_{(In, Ga)Se₂} absorber layer for thin film solar cells", *Colloids and Surfaces A: Physicochem. Eng. Aspects* 313–314 (2008) 171–174