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Abstract

A new approach to colour-texture segmentation is presented
which uses Local Binary Pattern data and a new colour
quantisation scheme based on hue and saturation to pro-
vide evidence from which pixels can be classified into tex-
ture classes. The proposed algorithm, which we contend
to be the first use of evidence gathering in the field of tex-
ture classification, uses Generalised Hough Transform style
R-tables as unique descriptors for each texture class. Tests
on remotely sensed images demonstrate the superiority of
the colour-texture algorithm compared to the established
JSEG algorithm; a notable advantage of the new approach
is the absence of over-segmentation. The VisTex database
is used to compare the colour-texture algorithm with alter-
native methods, including its grey-scale equivalent, for the
segmentation of colour texture images; providing good re-
sults with smooth texture boundaries and low noise within
texture segments.

1 Introduction

Remotely sensed images contain a variety of colour and tex-
ture information representing many different features, each
formed of its own unique blend of patterns. The images
of the Earth’s surface captured by satellites are used for
many applications; leading to conclusions about the rate
of coastal erosion, deforestation and urban development
within a region. As it is an appropriate focus for the ap-
plication of texture segmentation, we require a technique to
divide the image into regions based on colour-texture fea-
tures.

There are three main ways of combining colour and tex-
ture information into a single operator. The first is a paral-
lel combination, whereby colour and texture operators are
applied separately to an image and the results are concate-
nated into a single feature vector. The advantage of this
approach is that colour information can easily be added to
an existing texture algorithm by applying a colour opera-
tor in parallel. The second approach is sequential, wherein
the colour operator is applied first and the texture algorithm
operates on this “colour-space”; finding texture within the
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Figure 1: Segmenting an image of Hong Kong with new
and comparison algorithms.

colour. The advantage of this method is that the feature vec-
tor provided by the algorithm can still be processed in the
same way as that obtained from a pure texture version. An
example of a sequential colour-texture operator is the JSEG
algorithm developed by Deng and Manjunath [2]. The final
way of combining colour and texture information is the in-
tegrated approach. This involves fusing colour and texture
to form a single feature vector.

Mäenpää and Pietikäinen [3] claimed that using colour and
texture in parallel is not the most effective way of utilising
the information and suggested that under static illumination
conditions colour alone works best, while grey scale alone
works best under varying illumination. However, Palm [8]
showed that adding colour histogram information to grey
scale features in a parallel manner gave better results for
texture classification than the grey scale operator alone. He
further claimed that using an integrated colour texture fea-
ture can yield an even better result.

We describe a new integrated approach to colour-texture
segmentation which determines texture class through evi-
dence gathering, a process well known for its noise reduc-
tion properties. The evidence is collected in the form of a
Local Binary Pattern (LBP) code [7] and colour class for
each pixel, which are stored in Generalised Hough Trans-
form (GHT) [1] style R-tables. Accumulators are used to
store votes for each texture class and determine the final
classification for each pixel. This new approach is the first
use of evidence gathering to determine texture and has been
demonstrated to give appealing results for texture segmen-
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tation, as illustrated by Fig. 1, while maintaining smooth
texture boundaries and minimising noise. This algorithm is
referred to henceforth as the Colour Class Evidence Gath-
ering Texture Segmentation (CCEGTS) algorithm. We also
introduce a new colour quantisation scheme called Hue-
sat which is based on hue and saturation and provides the
colour classes for our CCEGTS algorithm. Our evidence
gathering technique can be used in the absence of colour
information, referred to as the Grey Scale Evidence Gath-
ering Texture Segmentation (GSEGTS) algorithm, and this
is used to demonstrate the additional benefits gained by in-
cluding colour in the segmentation. We demonstrate that
CCEGTS provides consistently better segmentation results
than GSEGTS on a texture database and on satellite im-
ages, as shown in Fig. 1. Since CCEGTS and GSEGTS
both use uniform LBP to provide texture information we
compare our algorithm against LBP histogram comparison,
which performs segmentation based on the statistical dis-
tribution of LBP codes within the image. This comparison
demonstrates that the inclusion of structural information in
the evidence gathering approach benefits texture segmenta-
tion. Additionally, we show that our approach gives better
results than RGB histogram comparison, which is a pure
colour operator, to demonstrate that combining colour and
texture information into a single operator performs better
than either feature on their own. We apply these algorithms
to remotely sensed images to demonstrate the advantages in
segmentation of our new approach.

2 Evidence Gathering Texture Segmentation

A new evidence gathering approach to texture segmentation
is proposed which uses the principles of template match-
ing present in the Generalised Hough Transform (GHT) [1]
and modifies it to match texture instead of shape. The tech-
nique exploits a property of the Local Binary Pattern (LBP)
[7] texture descriptor which is that if there is structure in
the image space, there must be structure in the LBP space.
Mäenpää and Pietikäinen observed in [4] that each LBP
code limits the set of possible codes adjacent to it. This
implies that the arrangement of LBP codes within a tex-
ture is not random and that taking a histogram of the codes
reduces the available information further to that originally
lost in the LBP process. It is possible for several textures
to have the same histogram, rendering such methods inca-
pable of distinguishing between them. By storing the LBP
code along with its offset to the centre of the texture region
for each pixel as an entry into an R-table, this structural in-
formation is not lost and a unique descriptor is produced
which can be used in the classification and segmentation of
images. The descriptor is unique because it can be used to
regenerate the array of LBP codes that represent the tex-
ture sample, unlike a histogram of LBP codes. The new
algorithm is the first use of evidence gathering in texture
segmentation and achieves high efficiency by transferring
the principles of low computational complexity present in
the GHT method to texture analysis.

The idea of segmenting an image by combining colour and

texture information in an integrated manner can be applied
to the evidence gathering approach by indexing each R-
table entry by colour class as well as the LBP code. This
combines colour information with texture and helps to re-
duce votes for incorrect textures by limiting voting to within
colour classes. Our new Huesat colour quantisation algo-
rithm is applied to the image to assign each pixel into a
colour class. The colour classes are determined from the
hue and saturation calculated from the RGB values of each
pixel. Other colour quantisation approaches could also be
used.

2.1 Local Binary Patterns

Local Binary Patterns are texture descriptors which label
individual pixels in an image with a code corresponding to
the local texture pattern surrounding the pixel. First intro-
duced by Ojala et al. [6], the earliest form of LBP used
the centre pixel of a 3 by 3 grid, gc, to threshold each of
the eight neighbouring pixels g0 to g7. This produced an
eight bit binary code which represents the texture element
present at that point. The LBP was later extended to give
the texture pattern for P points on a circle of radius R. It was
observed that certain fundamental patterns make up the ma-
jority of all LBP patterns observed [7]. These were found
to be the patterns which had at most two zero to one tran-
sitions (U(LBPP,R) ≤ 2) and are called uniform LBP pat-
terns. All of the uniform patterns are labelled according
to the number of ‘1’ bits in the code. When P is equal
to eight, there will be ten different patterns: the uniform
patterns from ‘0’ to ‘8’ and the pattern ‘9’ which is the ag-
glomeration of all other patterns (for which U(LBPP,R)
> 2). Since the sampling positions for the neighbouring
points are arranged in a circle, the uniform LBP is, by na-
ture, rotation invariant. This is because if the sample image
texture is rotated, the LBP code produced will still have the
same number of zero to one transitions and the same num-
ber of ‘1’ bits, resulting in an identical uniform LBP code
regardless of the order of the bits. The rotation invariant
uniform LBP code for a point, LBP riu2

P,R , is calculated by:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(1)

where the number of bit changes is

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|
+
∑P−1

p=1 |s(gp − gc)− s(gp−1 − gc)|
(2)

and s(x) is 1 if x ≥ 0 and 0 otherwise.

The values of P and R can be adjusted to fit the require-
ments of the application. A greater number of points in-
creases the resolution of the texture descriptor, allowing a
higher level of differentiation between different texture pat-
terns. Accordingly, increasing P also increases the number
of different LBP codes. The value of the radius determines
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(a) Palette (b) Quantised
Palette

Figure 2: Colour palette before and after quantisation.

the scale of the LBP. If R is high, the LBP code will be
representative of the texture pattern over a large area. Sim-
ilarly, if R is low, the LBP algorithm will use a smaller area
of the image to determine the texture element.

2.2 Colour Quantisation

We have developed a new colour quantisation scheme based
on hue and saturation to assign each pixel into a colour
class. The hue spectrum is quantised into twelve 30 degree
intervals, each of which is assigned a colour class number.
In addition, a thirteenth class is created for colours with a
saturation of less than 25%. Each colour class is intended
to represent a group of colours recognisable under a single
label such as “red”, “pink” or “purple”. The low saturation
class is intended to capture grey pixels. Colours under this
condition can have small visual differences but large dif-
ferences in hue, so it is important to assign them their own
class. Eqn. 3 shows the calculation of colour class from
hue and saturation. The hue values are offset by 15 degrees
to ensure that the primary colours fall in the centres of their
respective colour classes. The effects of this colour quanti-
sation scheme are illustrated in Fig. 2, showing a smoothly
varying palette categorised into regions of colour.

C =

{
trunc

(
hue+15

30

)
if sat ≥ 0.25

12 otherwise
(3)

Twelve colour classes are chosen because this number
means each class is small enough to exploit class separa-
tion, but large enough to ameliorate noise. The new colour
quantisation scheme, referred to as Huesat, can be used
on its own as a colour segmentation algorithm by apply-
ing the same principles of histogram comparison as used
by the RGB histogram comparison algorithm in [10]. This
is shown in Eqn. 4 where n is the number of colour classes,
I is the image histogram and M the model histogram.

H(I,M) =

∑n
j=1 min(Ij ,Mj)∑n

j=1 Mj
(4)

2.3 Evidence Gathering

As with the GHT, before sample images can be analysed
an R-table must be generated for each known texture class.
This describes the structure and composition of a section
of the texture and is used to classify the texture class of

the sample images. Sub-images, or cells, are taken from
the training images and the LBP code and colour class are
calculated for each pixel within the cell. The R-table con-
tains a number of bins equal to the number of different LBP
codes that exist for the version of the LBP that is being used
multiplied by the number of colour classes. For LBP P val-
ues of eight and standard colour quantisation giving thirteen
colour classes, the number of bins will be 130; thirteen bins
for each of the nine uniform LBP codes and thirteen bins
for all other LBP codes which are not classified as one of
the uniform patterns. For each pixel in the cell an entry
is submitted to the bin corresponding to the LBP code and
colour class for that pixel. The entry is a two dimensional
vector r=(xr,yr) representing the translation from the pixel
to the reference point of the cell. This reference point is
usually chosen to be the centre. In Fig. 3, the top left pixel
in the cell has an LBP code of ‘1’ and the colour class is
orange, so an entry is made in the ‘1,0’ bin with the vector
(2,2) which maps the top left pixel to the centre. The size
and number of cells taken from the training images are not
fixed and these parameters can be tailored for different ap-
plications. The size of the cell should be sufficiently large
to contain at least one full example of the repeating pat-
tern in the texture. Having multiple cells for each texture
class will provide more evidence for classification during
the segmentation process.

The following equation is used to calculate the R-table en-
try for each pixel x = (x,y) in a cell of centre c = (xc, yc):

r = c− x (5)

where the R-table index is the LBP code calculated by Eqn.
1 and the colour class calculated by Eqn. 3 at point x =
(x,y). The grey scale version of the algorithm can be eas-
ily achieved by setting the colour class of each pixel to
12 (grey) regardless of the actual colour. This effectively
means that each entry is indexed only by the LBP code.

2.4 Voting

Evidence is stored in an accumulator array and a separate
accumulator is maintained for each of the texture classes
that are being searched for. In the segmentation of sample
images, the LBP code and colour class for each pixel in the
entire image is calculated. The entries in the R-tables rep-
resent the possible locations of the current pixel relative to
the reference point of the cell. For the example in Fig. 3,
if a pixel in the sample image had an LBP code of ‘3’ and
colour class ‘1’ (blue), it could correspond equally to any of
the three positions within the cell also with that combina-
tion of LBP code and colour class. For each in turn, votes
are made for the area that would cover the entire cell po-
sitioned on that pixel. Rephrasing the GHT, the algorithm
becomes: for each pixel x in the image, increment all the
corresponding points in a cell centred on the point x + r in
the accumulator array A where r is a table entry indexed
by the LBP code and colour class at point x. Maxima in A
correspond to possible instances of the texture T.
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1 0 (2,2) 

2 0 (1,0) 

1 (1,2)(-2,2)(2,-2)  

 
3 

0 (0,1)(-2,0) 
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4 0 (2,-1) 

 
5 

0 (0,-2) 
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2 (0,-1)(1,-2) 

6 0 (-1,2) 

2 (-1,0)(-2,-2) 

7 0 (-1,-1) 

8 1 (-1,-2) 

(b) R-table

Figure 3: Example LBP and colour class values for a 5x5
pixel cell and corresponding R-table. The reference point
of the cell is the centre pixel with LBP code ‘3’ and colour
class blue. Empty R-table bins are not shown.

Voting is done in blocks rather than for individual pixels
because texture covers an area and a single pixel on its own
does not contain texture. The area covered by each block
vote is equal to the area of the cell from which the evidence
was gathered. The three block votes for an LBP code of
‘3’ and colour class ‘1’ using the R-table in Fig. 3(b) are
shown in Fig. 4. The algorithm is effectively searching
the sample image for the texture structure observed in the
training cell. In Fig. 4, it can be seen that nine of the pixels
in the image were within all three possible cells for that R-
table and hence these pixels have a higher probability of
belonging to that texture class. Compared to the GSEGTS
algorithm, the computational cost for CCEGTS is reduced
since there will be fewer block votes made for each pixel
in the image since the entries in each grey-scale R-table bin
are spread over a number of bins in the new colour version
of the algorithm.

The R-table can also be extended to include the LBP val-
ues of the eight surrounding pixels as well as the vector as
the R-table entry. When votes are calculated for the sam-
ple image, an extra vote is awarded for each neighbouring
pixel in the sample image whose LBP code matches its cor-
responding pixel included in the R-table entry. This gives a
maximum of nine block votes that can be awarded for each
R-table entry and works on the principle that the higher the
number of neighbouring pixels that match a texture class,
the higher the chance of the centre pixel belonging to that
texture class.

An accumulator for each texture class maintains the number
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Figure 4: Accumulator showing block votes for three R-
table entries, bordered by red, green and blue rectangles.

of votes for each pixel for that texture. If there is more than
one cell for a texture class, the votes of the subsequent cells
are added to the accumulator for the first cell. When the vot-
ing process is finished, the higher the number of votes for
each pixel, the higher the probability of the pixel belonging
to that texture class. It is important to note that analysis of
a single pixel yields evidence for many other pixels. This
works because if there is structure in the texture, the LBP
code at a point is related to those around it. Using a higher
number of cells per texture class increases the amount of
evidence used to classify pixels and leads to a higher accu-
racy. Segmentation is performed by filling an accumulator
for each texture class and assigning each pixel to the texture
class with the highest number of votes at that point.

2.5 Normalisation

It can be observed that different textures have different vot-
ing strengths. This means that some textures could give
a larger number of votes for an incorrect texture than an-
other texture could give for a correct match. This leads to
cases where votes from one texture overpower those from
another, distorting the segmentation results. A solution is to
normalise the voting, whereby the votes from each texture
are weighted according to their strength. One way of calcu-
lating the strength is to add up the total number of votes for
the texture over the entire image and divide by the number
of pixels. When all votes for a texture are divided by its
strength factor the ‘stronger’ textures will have their influ-
ence over the regions of other textures weakened, reducing
the ‘overspill’ effect. The equation for performing normal-
isation on an accumulator A of size w by h is:

Anorm (x, y) =
A (x, y) · w · h∑w
a=0

∑h
b=0 A(a, b)

(6)

If normalisation is required where one texture is ‘weaker’
than the others, its use can restore the texture boundaries to
their correct locations.
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Figure 5: Comparison of performance between new and ex-
isting algorithms at various cell/window sizes. Each point
is the average result from 50 mosaic segmentations.
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Figure 6: Comparison between CCEGTS and GSEGTS
with three cells of size 64x64.

3 Results

3.1 Texture Mosaics

To test our CCEGTS algorithm, a set of fifty mosaics was
generated by random selection from a subset of 30 tex-
tures from the VisTex database [9], which consists of real
world colour texture images. For comparison, segmenta-
tions were also run using GSEGTS, LBP histogram com-
parison [5], RGB histogram comparison [10] and our Hue-
sat colour quantisation. Results from the tests conducted at
four window sizes are shown in Fig. 5 and comparisons be-
tween individual algorithms are shown in Figs. 6, 7 and 8
where the solid blue line represents the line of equality and
the dashed green line represents the trend. Each dot in the
scatterplot represents the segmentation of a single mosaic
under both algorithms being compared.

Tests against the grey-scale EGTS algorithm are important
to show that inclusion of colour information has a positive
effect on the performance of the algorithm. We have found
that the GSEGTS performs significantly better than LBP
histogram comparison on a subset of the Brodatz database,
however the two algorithms gave similar results for the Vis-
Tex subset used in this evaluation. A significant advantage
was noted for GSEGTS for cell sizes of 16 and 128, how-
ever histogram comparison slightly outperformed it for cell
sizes of 32 and 64. This can be attributed to the greater pro-
portion of non-uniformly structured textures present in the
VisTex subset than in the Brodatz subset. As described in

20 30 40 50 60 70 80 90 100
RGB Histogram Comparison (%)

20

30

40

50

60

70

80

90

100

Hu
es

at
 (%

)

Figure 7: Comparison between Huesat and RGB Histogram
Comparison using windows of size 64x64.
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Figure 8: Comparison between CCEGTS with three cells of
size 64x64 and LBP Histogram Comparison using windows
of size 64x64.

Section 2, the evidence gathering method works by recog-
nising the structure of texture elements within an image.
For textures that do not adhere to a rigid structure, such as
the bark images included within the VisTex subset, a per-
formance decrease can be expected.

RGB colour histograms provide a pure colour algorithm
to demonstrate the advantages of our new Huesat quan-
tisation scheme. The result for Huesat is very good and
Fig. 7 shows the huge improvement it offers over the RGB
quantisation. Additionally, the integrated combination of
colour and texture provided by our colour class EGTS al-
gorithm provides better results than either of the pure tex-
ture or colour operators used. This demonstrates that while
colour or textural information on its own can provide a sat-
isfactory solution to image segmentation, the integration of
colour information with textural features in our CCEGTS
algorithm gives notably improved results, while simultane-
ously reducing execution time.

3.2 Remote Sensing

We also applied our new approach to the segmentation of
a number of remotely sensed images. Segmentation us-
ing CCEGTS and GSEGTS requires the provision of sam-
ples of the texture classes to be found in the image prior
to segmentation. These are supplied to the algorithm by
entering the coordinates of a location within the image con-
taining that texture class. The example shown in Fig. 1
shows an aerial view of Hong Kong, containing urban,
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Figure 9: Segmenting an image of New York with new and
comparison algorithms.

(a) Original
Image

(b) GSEGTS
Segmentation

(c) CCEGTS
Segmentation

(d) LBP
Histogram

Comparison

(e) JSEG
Segmentation

(f) Huesat
Segmentation

Figure 10: Segmenting an image of Rio de Janeiro with new
and comparison algorithms.

non-urban and water sections. An improved segmenta-
tion result was achieved using our new CCEGTS algorithm
when compared with the GSEGTS algorithm. In particu-
lar it can be seen that the urban area in the lower half of
the image contains some noise in the GSEGTS segmenta-
tion which is completely eliminated using the colour ver-
sion. Comparisons against RGB histogram comparison,
LBP histogram comparison and JSEG segmentation also
indicate the superiority of our new approach. In an im-
age such as this which contains strong colour differentia-
tion between semantic sections of the image it can be noted
that our CCEGTS segmentation is a less noisy alternative
to pure colour RGB histogram comparison. The unsuper-
vised segmentation result obtained using the JSEG algo-
rithm performs less favourably due to the high rate of over-
segmentation. The inclusion of colour information is es-
pecially important in the image of New York in Fig. 9 as
both GSEGTS and LBP Histogram Comparison give poor
results. CCEGTS and Huesat give more visually appeal-
ing results with CCEGTS again providing a smoother, less
noisy segmentation than Huesat alone. Fig. 10 highlights
again the problems of oversegmentation with the JSEG al-

gorithm, as the city is divided into many regions. CCEGTS
assigns most of the city region into a single contiguous
block; a useful property for later analysis of the results.

4 Conclusions

We have presented a new method for image texture seg-
mentation which we contend to be the first use of an evi-
dence gathering approach in the field of texture analysis. In
contrast to conventional methods which compare measure-
ments from a sample of an image to training data to classify
a single pixel, our approach compiles information gathered
from each pixel into evidence to support the classification
of nearby pixels into each known texture class. We have
also presented a new colour quantisation scheme based on
hue and saturation which is integrated into the texture oper-
ator. Our colour class EGTS algorithm uses the structure of
texture and colour within an image for segmentation. We
have tested the theory of using evidence gathering for tex-
ture by conducting segmentations on a subset of the VisTex
database; demonstrating superiority of our CCEGTS algo-
rithm when compared to the basic operators from which
the evidence gathering method builds upon. When applied
to satellite imagery CCEGTS provides appealing segmenta-
tions which are a substantial improvement on the GSEGTS
algorithm. This, alongside the results obtained from Vis-
Tex, shows that the inclusion of colour information pro-
vides a better result at a decreased computational cost than
texture information alone.
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