First International Conference on Engineering Failure Analysis

Military Helicopters: Have the seeds of future accidents already been sown?

Dr Nicola Symonds *
Dr Cheryll Pitt

Aircraft Materials Evaluation

Group AD AJM

12-14 July 2004 Lisbon, Portugal

Contents

- Military Aerospace Materials Failure Investigations
 - History of AD AIM
 - Failure analysis process
- Techniques for detecting failure
- Introduction of faults
 - Design issues
 - Processing errors
 - Manufacturing errors
 - environmental and service issues
- Case Study Failure of Bearing (processing error)

A Brief History of AD AIM

- Established in 1945 as Naval Aircraft Materials Laboratory
 - Investigate chemical and metallurgical problems
 - Advise on new materials and processes
 - Assist with Accident Investigations

A Brief History of AD AIM

- Today AD AIM has expanded into a greater role
- Work with all branches of the forces: RAF, NAVY & ARMY
- Failure investigations
- Air crash investigations
- Aircraft Integrity Monitoring
 - Non Destructive Testing
 - Fuels monitoring
 - Wear Debris Analysis
 - Health and UsageMonitoring Systems

The Failure Analysis Process

A common question from a military customer: -

"Should my aircraft Fleet be grounded as a result of this failure?"

- Wide reaching implications
- Determining the failure mode is not the end of the story
- Prevention of future occurrences is a priority
 - Service environment- maintenance schedules
 - Operational needs

The Failure Analysis Process

 Failure: Inability of a part or assembly to perform its intended function.

A common question from a military customer: -

"Should my aircraft Fleet be grounded as a result of this failure?"

Wide reaching implications - flight safety

The Failure Analysis Process - Initial work

- Understand your failed component
 - Specifications
 - materials and manufacturing route
 - Drawings
 - Look at whole one, in situ
- Understand its usage
 - Designed usage and real usage
- Understand its history
 - Environmental (marine, desert etc)
 - maintenance

Root Cause

 Solutions to prevent reoccurrence of problems cannot be developed without identification of the root cause

Quotes

- You can't wait for inspiration. You have to go after it with a club.
 - Jack London (1876 1916)
- Genius is one per cent inspiration, ninety-nine per cent perspiration.
 - Thomas A. Edison (1847 1931),

The Modern Military Helicopter

The Modern Military Helicopter - Operational Success

- Versatile, rapidly deployable vehicle
- Work-horse for moving men and loads
- Multi-role, multi-environment:
 - Sea air rescue
 - Utility, battlefield support
 - Attack
 - Anti-submarine warfare
 - Anti-surface warfare
 - Airborne early warning
 - Casualty evacuation

The Modern Military Helicopter - Mechanical nightmare

- Deployed into corrosive, erosive, wet or hot environments
- Limited redundancy often only one load path
- Rotating highly loaded components
- Vibrations pass through the structure
- Novel aerospace materials
- Varied types of materials and components
- Multiple modifications unique configurations
- Hand made
- Unpredictable flying/ loading regimes

Case Study: Chinook Bearing Failure

- Tribological failure investigation of a roller bearing
- Part of a rejected gearbox within a RAF Chinook
- Rejected due to an increasing vibration trend.
- Aims of investigation
 - Understand the cause, prevent re-occurrence
 - Interpret vibration data in terms of physical cause

Conclusions

- Examination of a HUMS rejected bearing revealed serious surface distress after only completing 33% of its service life.
- The bearing displayed evidence consistent with the final stages of life. And therefore the transmission was saved by removal of the CB1 bearing.
- By thoroughly inspecting the damage mechanism a greater understanding of bearing failure mechanisms has been reached.
- This understanding has allowed informed decisions to be made when setting HUMS automated threshold alerts to facilitate early detection and accurate diagnosis of transmission faults through vibration analysis.

