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Abstract—Numerical three-dimensional formulations using 
vector potential A are examined for magnetic fields, with 
emphasis on the finite-difference (FDM) and edge-element (EEM) 
methods. It is shown that for hexahedral elements the FDM 
equations may be presented in the form similar to the FEM 
equations, providing the products of the nodal potentials and 
distances between the nodes are used as unknowns in FDM, 
instead of the usual nodal potentials.   

I. INTRODUCTION 

Historically, the oldest numerical technique for modelling 
magnetic fields is the finite difference method (FDM) [1]. The 
contemporary view is that this method is unsuitable or 
impractical, especially for 3D fields when the vector potential 
A is used; it may therefore be worth noting that it is possible – 
using the FDM formulation – to arrive at the final equations 
very similar to those obtained by the edge element method 
(EEM) for a mesh consisting of hexahedral elements. 

The authors of this paper have had a long standing 
involvement with both FDM and EEM, the latter increasingly 
becoming a popular choice when vector potential is used in 3D 
simulation. Considering the pedagogical values of the FDM it 
is suggested therefore that the analogy between the two 
formulations should be explored and conditions for the 
equivalence of the final sets of equations investigated. 

II. THE SUBSTITUTION B=CURLA IN FDM AND EEM 

Consider the substitution B=curlA and take as an example 
the Bx and By components. Using the FDM and with reference 
to Fig. 1 these components may be expressed as 
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Multiplying (1a) by ∆y∆z and (1b) by ∆x∆z yields 
1,2,1,2,1 zyzyyzyzx ϕ+ϕ−ϕ−ϕ=φ , 1,2,1,2,1 xzxzzxzxy ϕ+ϕ−ϕ−ϕ=φ   (2a,b) 

where φx1=Bx1∆y∆z, φy1=By1∆x∆z, ϕu,vi=Au,vi∆u, i=1,2; u,v=x,y,z. 
These FDM relationships may also be recognised as well 
known in EEM where they express the facet values of B (for 
the rectangular facets of Fig. 1) in terms of the edge values of 
A, which in (2) are given by the products of the nodal values 
Au,vi and the distances between nodes ∆u. It may therefore be 
argued that (2) represents the substitution B=curlA in EEM. 

III. EQUATION CURLH=J IN FEM AND EEM 

Consider the finite difference form of curlH=J for the Jz 
component. For a uniform grid and with reference to Fig. 2a 

01,2,1,2, )()( zyxyxxyxy JyHHxHH =∆−−∆−                   (3) 

Multiplying (3) by ∆x∆z results in 
  01,2,1,2, zyHxyHxxHyxHy uuuu θ=+−−                          (4) 

which may also be found in the EEM formulation, as the terms 
uHv,wi=Hv,wi∆v (i=1,2; v,w=x,y) are related to the edge values of 
vector H, while θz0 represents the facet value of J. From (3) 
and (4), after substituting Hv,wi=νviBvi (i=1,2; v=x,y), and 
Bvi=νviφvi/(∆z∆v), where νvi =1/µ(Pvi), we find  
     022111122 θzxxxxyyyy RRRR =φ−φ+φ−φ µµµµ                   (5) 
This finite-difference derived relationship is equivalent to the 
loop equation of a magnetic circuit shown in Fig. 2b [2]. From 
(5) and substituting (2) for all nodes Pvi we derive an equation 
analogous to the EEM formulation for the edge with its centre 
at P0 (Figs 1 and 2). The apparent difference between (5) and 
the classical EEM scheme is due to the description of the terms 
Rµvi representing the reluctances. In EEM these terms are 
derived from the integrals of the interpolating functions of the 
facet element. For the hexahedral elements, and employing the 
approximate integration described in [2], the resultant 
formulae will be similar to those of Fig. 2b. 

IV. CONCLUSIONS 

It has been shown that by employing appropriate finite-
difference forms the resultant FDM equations may be made 
identical to the EEM formulation for hexahedral elements; the 
relevant unknowns, ϕu,vi, are products of nodal potentials, Au,vi,  
and distances between nodes, instead of the nodal potentials. 

For non-homogenous and non-linear materials equivalent 
FDM and EEM equations may also be derived by defining 
reluctances νvi associated with points Pvi. 
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Fig.2. Finite difference (a) and circuit (b) representations of curlH=J  
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Fig.1. Graphical representation of the substitution B=curlA in FDM. 
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