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Abstract

Synthetic turbulence for inflow conditions formulated on a 2-D plane gener-

ally produces unphysically large pressure fluctuations in direct numerical and

large-eddy simulations. To reduce such artificial fluctuations a divergence-

free method is developed with incompressible flow solvers. The procedure

of the velocity-pressure solvers is slightly modified on a vertical plane near

(rather than at) the inlet by inserting the synthetic turbulence on that plane

during the procedure. Simple analytic and numerical error estimations are

used to show that the impact of the modified solvers on solution accuracy

is small. The final synthetic turbulence satisfies the divergence-free condi-

tion. No additional CPU time is required to achieve this condition. The

method was tested via simulations of a plane channel flow with Reτ = 395.

Reynolds stresses, wall skin friction and power spectra of velocity fluctuations

are compared with those obtained from using periodic inlet-outlet boundary

conditions. In particular, the variances and power spectra of pressure fluc-

tuations are shown to be accurately predicted only when the divergence-free
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inlet condition is used.

Keywords: inflow condition, divergence-free, pressure fluctuations, peak

loading

1. Introduction1

Partial differential equations cannot be solved without imposing proper2

boundary conditions (BCs). In aerodynamics, especially for convective flows,3

inflow conditions strongly influence the results. Direct Numerical Simulation4

(DNS) and Large-Eddy Simulation (LES) resolve all the unsteady, three-5

dimensional and energy-containing eddies. For laminar inflow, ‘smooth’ ve-6

locity profiles naturally provide sufficient inlet conditions, whereas for a tur-7

bulent inflow appropriate details of the fluctuating motions are required.8

Present inflow methods so far fall mainly in two categories. The first is9

the recycle/rescale method in which inflow data is collected either from a10

certain point downstream of the same simulation or from an auxiliary simu-11

lation. The second is the synthetic approach, in which artificially generated12

turbulence fluctuations are provided, using random sequences. Usually, sta-13

tistical information required for representing the inflow turbulence includes14

first and second moments, space and time correlations and spectra. Compre-15

hensive reviews according to these categories can be found in, for example,16

Keating et al. [1], Jarrin [2] and Tabor and Baba-Ahmadi [3].17

Only a very few papers in literature introduce synthetic inlet turbulence18

satisfying the divergence-free condition. Smirnov et al. [4] considered the19

divergence-free condition using a superimposition of harmonic functions to20

provide synthetic turbulence. Huang et al. [5] improved the Smirnov method21
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by imposing von Karman spectra rather than a Gaussian model. Kornev22

and Hassel [6] derived the velocity potential which satisfies the divergence-23

free condition and then numerically calculated the solution. Poleto et al.24

[7] recently proposed a similar method and showed a significant decrease of25

pressure fluctuations in a turbulent channel flow using their new method.26

Nevertheless, none of these authors analysed in any depth the impact of27

the inflow condition on pressure fluctuations, such as variance and spectra.28

For many applications the pressure fluctuation field is of primary interest.29

The major objective in the present work was therefore to develop a more30

satisfactory method in this regard.31

We propose here a divergence-free inflow generation method which is32

based on Xie and Castro’s method [8] (hereafter, XC) with a slight, but33

crucial, modification of the incompressible flow solvers. This is described in34

§2, followed by a simple accuracy analysis. Results of simulations of a plane35

channel flow and comparisons between these and those obtained using the36

original method [8] and periodic inlet-outlet boundary conditions, as well as37

canonical direct numerical simulation (DNS) data for the same flow [10], are38

presented in §3. Summary and concluding remarks are followed in §4.39

2. Methodology40

2.1. A brief review of the XC [8] inflow condition41

The XC model is a synthetic turbulence generation method and imposes42

correlations using an exponential function to satisfy the prescribed space and43

time correlations. The usual relation for the inlet velocities is,44

ui = Ui + aiju∗,j, (1)
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where i, j = 1, 2, 3. ui is an instantaneous velocity which is imposed at the45

inlet boundary, Ui is a mean velocity, aij is an amplitude tensor and u∗,j is46

an unscaled fluctuation with a zero mean, zero cross-correlations and a unit47

variance. Lund et al. [9] suggested a suitable form for aij, using Cholesky48

decomposition of the Reynolds stress tensor, Rij,49

aij =








√
R11 0 0

R21/a11

√

R22 − a2
21 0

R31/a11 (R32 − a21a31)/a22

√

R33 − a2
31 − a2

32








. (2)

This provides scaling and cross-correlations for u∗,j in Eq. 1. The XC50

method adopted an exponential function to impose correlations in time on51

random sequences. The digital filter method was used to generate spatial52

correlations,53

ψm =
N∑

j=−N

bjrm+j, (3)

where N = 2n, n = I/∆x, ∆x is grid size and I is an integral length scale.54

ψ is the intermediate velocity field and r is a 1D random number sequence55

with zero mean and unit variance. ψ is a 1D number sequence with zero56

mean, unit variance and spatial correlation. Note that the subscripts, m, j,57

are the position indices. The model constant bj is estimated as58

bj =
b′j

(
N∑

l=−N

b′
2
l

)1/2
with b′j = exp

(

−π|j|
2n

)

. (4)
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It is straightforward to generate spatial correlations for a 2D space (cf.59

Eq.3) as,60

ψm,l =
N∑

j=−N

N∑

k=−N

bjbkrm+j,l+k. (5)

Only one slice of the 2D signal, ψm,l, is generated at each time and is61

correlated with the velocity at previous time level using,62

u∗,i(t + ∆t) = u∗,i(t)exp

(

−CXC∆t

T

)

+ ψi(t)

[

1 − exp

(

−2CXC∆t

T

)]0.5

,

(6)

where the model constant CXC = π/4 and T is the Lagrangian time scale63

which is estimated using T = I/U where, again, I is a turbulence integral64

length scale and U is a mean convective velocity. Note that the subscript i65

is a vector index, i.e. i = 1, 2, 3. The process in Eq. 6 effectively imposes66

an exponential correlation in the streamwise direction. The XC method67

generates synthetic turbulence by using Eqs. 1 − 6. In general, the integral68

length scales, I, depend on each velocity component and direction, see Eq.69

7.70

It is to be noted that in XC the correlation functions were modelled as71

C(r) = exp(−πr
2I

). Based on DNS data [10, 11] of turbulent channel flows,72

the exponential model for correlations was examined carefully at different73

wall-normal distances. If the integral length scale is defined as the enclosed74

area of the correlation function (Eq. 7), the function C(r) = exp(−πr
4I

) gives75

a better fit compared to that used in XC, so is used throughout this paper.76

Iij =

∫ rij,0.1

0

Ci(rêj)dr, (7)
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where Ci(rêj) is the correlation function, i and j correspond to the com-77

ponents of the velocity vector and directions, respectively, and rij,0.1 is the78

separation distance where Ci(rêj) = 0.1.79

80

2.2. Inlet mass flux correction81

Ideally the 2D plane of velocity fluctuations generated from Eq. 6 has a82

zero mean. However usually the mean is not strictly zero because the size of83

the inlet area is finite in practice. Thus the instantaneous mass flux at the84

inlet by using the XC model changes very slightly in time. A small fractional85

difference in the mass flux may lead to significant modifications on the global86

pressure because of the nature of incompressible flow. Other types of inflow87

generator might have a similar issue due to the finite number of sampling88

points or interpolation errors, rather than the specific way of producing the89

synthetic inflow turbulence. Effects of the non-constant mass flux on the90

pressure fluctuations were reported in [7] through numerical studies. Artifi-91

cial pressure fluctuations due to the time dependent mass flux were observed92

in [12] using a recyling/rescaling inflow method.93

We introduce a simple correction to maintain the constant mass flux.94

Instantaneous velocity at the inlet boundary is corrected as,95

ui =
Ub

Ub,T

ui,T ,

where, Ub,T =

∫

S
un,T dS

S
,

(8)

where ui,T is the generated velocity from the XC model and un,T is the com-96

ponent of ui,T normal to the inlet boundary. S is the surface area of the97

inlet, Ub is the prescribed bulk velocity and Ub,T is the instantaneous bulk98
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velocity calculated from the uncorrected velocities. Simulations which use99

the corrected velocity in Eq. 8 will be denoted by XCMC. Effects of the100

mass flux correction on the pressure and velocity fields are reported in §3.101

102

2.3. Divergence-free modification103

To satisfy the divergence-free condition, first the generated synthetic tur-104

bulence is inserted on a plane near the inlet after having solved the momen-105

tum equations. The velocities are then adjusted by the velocity-pressure cou-106

pling procedure. This means that, on application of the pressure-correction107

step, the imposed velocities on the plane where the synthetic turbulence is108

introduced only act as intermediate velocities. Applying synthetic turbu-109

lence on the inlet boundary itself, in contrast, fixes those velocities as final110

velocities throughout one time step.111

Once the synthetic turbulence goes through the velocity-pressure coupling112

procedure, the velocities are adjusted and are not generally exactly the same113

as the original. Nevertheless the changes are expected to be small [13]. The114

important feature of the method presented here is that it does not require any115

additional computational cost. A brief description of the standard sequence116

of velocity-pressure coupling procedure with incompressible flow solvers is117

presented to show the modification for the divergence-free method.118

2.3.1. Velocity and pressure coupling procedure119

The non-dimensionalised incompressible Navier-Stokes equations without120

any source term, in Cartesian coordinates, are121
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∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂τij

∂xj

, (9)

∂ui

∂xi

= 0, (10)

where i, j are vector indices and Re is Reynolds number. Eq. 9 can be122

written in a semi-discretised form at each node (suffix P ) as [14],123

AP un+1
i,P +

∑

l

Alu
n+1
i,l = −

(
∂pn+1

∂xi

)

P

+ Qi, (11)

where n is the time index and l denotes the neighbouring points around124

node P , whose choice depends on the discretisation schemes. Qi is a sum of125

boundary conditions and quantities at previous time levels. Eq. 11 can be126

re-written as,127

un+1
i,P =

Qi −
∑

l Alu
n+1
i,l

AP

− 1

AP

(
∂pn+1

∂xi

)

P

. (12)

The first term on the right-hand-side (R.H.S.) can be written in a brief128

form as,129

ũn+1
i,P =

Qi −
∑

l Alu
n+1
i,l

AP

, (13)

so that130

un+1
i,P = ũn+1

i,P − 1

AP

(
∂pn+1

∂xi

)

P

. (14)

Requiring un+1
i,P to be divergence free and applying the divergence operator131

on Eq. 14 leads to,132

∂

∂xi

[
1

AP

∂pn+1

∂xi

]

P

=

[
∂ũn+1

i

∂xi

]

P

. (15)
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Eqs. 14 and 15 are essentially discretised forms of the momentum and con-133

tinuity equations respectively and now the pressure field are directly solved134

by using the velocity field in Eq. 15. Both un+1 and pn+1 are unknown so135

they need to be solved for simultaneously; there are several methods for this136

calculation. The PISO algorithm by Issa [15] is one of the most widely used137

method for a transient solver thus it is introduced here. The PISO algorithm138

comprises one predictor and multiple, generally two, corrector steps.139

In the predictor step, an intermediate velocity u∗
i is calculated based on140

p, Al and AP at the previous time level,141

u∗
i,P = ũ∗

i,P − 1

AP

(
∂pn

∂xi

)

P

, (16)

u∗
i generally does not satisfy the divergence-free condition. To satisfy this142

requirement, corrections are introduced for both velocity and pressure, u∗∗
i =143

u∗
i + u′

i, p∗ = pn + p′. Then the first corrector step is,144

u∗∗
i,P = ũ∗

i,P + ũ′
i,P − 1

AP

(
∂p∗

∂xi

)

P

, (17)

where145

ũ′
i,P = −

∑

l Alu
′
i,l

AP

. (18)

ũ′
i is neglected at the first corrector step and applying the divergence146

operator to Eq. 17 to calculate p∗ yields147

∂

∂xi

[
1

AP

∂p∗

∂xi

]

P

=

[
∂ũ∗

i

∂xi

]

P

. (19)

Note that the corrected velocities u∗∗
i are required to satisfy the divergence-148

free condition. The neglected term ũ′
i in Eq. 17 can be approximated via149
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introducing one further correction, u∗∗∗
i = u∗∗

i + u′′
i , p∗∗ = p∗ + p′′. This leads150

to the second corrector step,151

u∗∗∗
i,P = ũ∗

i,P + ũ′
i,P − 1

AP

(
∂p∗∗

∂xi

)

P

= ũ∗∗
i,P − 1

AP

(
∂p∗∗

∂xi

)

P

.

(20)

The corrected pressure p∗∗ can be calculated requiring that the further152

corrected velocities u∗∗∗
i are divergence free,153

∂

∂xi

[
1

AP

∂p∗∗

∂xi

]

P

=

[
∂ũ∗∗

i

∂xi

]

P

. (21)

More corrector steps are possible but it has been shown that further154

corrections are superfluous for most practical purpose [15]. u∗∗∗
i and p∗∗ are155

considered be accurate approximations of the exact solutions, un+1
i and pn+1,156

and they are ready to be used for the next time step. The equations used157

here are consistent with those in the source code in OpenFOAM v1.7.1 [16]158

and the literature [e.g. 14] as shown in Appendix A.159

2.3.2. Divergence-free inflow condition method160

Based on the XC method, a new method with divergence-free condition161

satisfied is suggested and is denoted by XCDF. In Eq. 16, ũ∗
i can be con-162

sidered as the velocity excluding contributions of the pressure gradient [14].163

The idea of the divergence-free turbulence method is to let ũ∗
i on one 2D164

transverse plane near the inlet contain turbulence contents and then correct165

them with appropriate pressure contributions to satisfy the divergence-free166

condition. The velocity fluctuations generated from the XC model are im-167

posed appropriately on the 2D plane at x = x0 (see §3), rather than at the168
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inlet as in [8]. After the predictor step, Eqs. 17 and 19 at x = x0 are modified169

as,170

u∗∗
i,P = ũg∗

i,P − 1

AP

(
∂p∗

∂xi

)

P

, (22)

∂

∂xi

[
1

AP

∂p∗

∂xi

]

P

=

[
∂ũg∗

i

∂xi

]

P

, (23)

where ũg∗
i is defined in the same way as in Eq. 18; Eqs. 17 and 19 are not171

changed in the rest of the domain. ug∗
i (x0) is the generated velocity using172

the XC model. Note that ũ′
i in Eq. 22 is neglected as in the standard PISO173

algorithm.174

Now the first corrected velocity u∗∗
i in Eq. 22 satisfies the divergence-175

free condition and contains turbulence motions. Substituting the generated176

velocity ug∗
i for the predicted velocity u∗

i at x = x0 is rather analogous to177

imposing momentum sources in the computational domain or, perhaps, to178

placing ‘shark teeth’ shape 2D elements in a wind tunnel near the inlet to179

produce a ‘simulated’ atmospheric boundary layer [17].180

A similar modification is introduced in the second corrector step. Eqs.181

20 and 21 at x = x0 thus become182

u∗∗∗
i,P = ũg∗∗

i,P − 1

AP

(
∂p∗∗

∂xi

)

P

, (24)

∂

∂xi

[
1

AP

∂p∗∗

∂xi

]

P

=

[
∂ũg∗∗

i

∂xi

]

P

. (25)

The same generated velocities as in Eq. 22 are imposed at x = x0, i.e.183

ug∗∗
i (x0) = ug∗

i (x0). Further correction steps are possible but simulations184
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showed no further improvement in terms of the development distance of wall185

skin friction and pressure fluctuations. Thus u∗∗∗
i and p∗∗ are considered to186

be the solution for the next time level. Note that the corrected velocities u∗∗∗
i ,187

in Eq. 24 are not used to calculate u∗,i(t + ∆t) in Eq. 6, so that the velocity188

correction in Eq. 24 would not affect the correlations which are imposed in189

Eqs. 3 - 6. Further analysis and remarks are presented below in subsections190

2.3.3 and 3.3.1.191

2.3.3. Accuracy analysis for the XCDF model192

The PISO algorithm is a non-iterative method in the sense that the mo-193

mentum equation is solved only once within one time step. Once the velocity194

is predicted based on the pressure and flux at the previous time level then it195

is adjusted through several corrector steps. Thus it is important to show that196

the final corrected velocities are a reasonable approximation. Comprehen-197

sive studies by Issa [15] on the accuracy and stability for the PISO algorithm198

showed that the errors induced in each predictor and corrector step decay199

with some power of the time step, i.e. dtn.200

Synthetic turbulence is substituted only on one transverse 2D plane (near201

the inlet); the velocity-pressure coupling procedure in the rest of the whole202

domain remains unchanged. We would therefore not expect the the modifi-203

cation to lead to solution divergence. It is nonetheless desirable to consider204

accuracy and consistency for the sake of reliability of the overall model. We205

can estimate the decay of errors in terms of dt both analytically and numer-206

ically. The analysis presented below, however, should be considered only as207

a guideline since, like that in [15], it is based on linear partial differential208

equations. It must be tested in actual computations. Thus the full effects of209
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the modification for the XCDF model is analysed and validated in §3.210

Euler time discretization is adopted for the accuracy analysis but other211

discretization methods should, in principle, provide the same conclusion. As212

in [15], AP in Eq. 11 is decomposed into two parts, one is for the temporal213

discretised term and the other is for the rest,214

AP =
1

dt
+ A′

P , (26)

For the accuracy analysis, new error terms for velocity and pressure are215

introduced,216

εk
i = un+1

i − uk
i ,

ξl = pn+1 − pl,
(27)

where k = ∗, ∗∗, ∗ ∗ ∗ and l = n, ∗, ∗∗. Subtracting Eq. 16 from Eq. 14 gives,217

AP ε∗i,P = −
∑

l

Alε
∗
i,l −

(
∂ξn

∂xi

)

P

, (28)

where ξn is O(dt) via the Taylor series expansion under the Euler discretiza-218

tion scheme, i.e. ξn = pn+1 − pn = O(dt).219

Rewriting Eq. 28,220

ε∗i,P
dt

= −A′
P ε∗i,P −

∑

l

Alε
∗
i,l −

(
∂ξn

∂xi

)

P

, (29)

yields ε∗i = O(dt2).221

In a similar way, we subtract Eqs. 22, 23 from Eqs. 14, 15 and get the222

error equations on the 2D plane where synthetic turbulence is imposed,223

AP ε∗∗i,P = −
∑

l

Alε
g∗
i,l −

(
∂ξ∗

∂xi

)

P

, (30)
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and224

∂

∂xi

[
1

AP

∂ξ∗

∂xi

]

P

=
∂

∂xi

[

− 1

AP

(
∑

l

Alε
g∗
i,l

)]

P

, (31)

where εg∗
i = un+1

i − ug∗
i . It is difficult to accurately estimate εg∗

i at this225

stage. Nevertheless it is inherently no greater than the full difference of the226

generated (uncorrected) velocities between the time steps n+1 and n. When227

the time indices are t + ∆t → n + 1 and t → n in Eq. 6, the full difference228

of the generated velocity, εg
i , can be estimated by combining Eqs. 1 and 6,229

εg
i = aij

(
un+1
∗,i − un

∗,i

)

= aij






−un

∗,i

(

1 − e(−
CXT

T
dt)

)

︸ ︷︷ ︸

∼O(dt)

+ψn
i

(

1 − e(−2
CXT

T
dt)

)0.5

︸ ︷︷ ︸

∼O(dt)







.
(32)

Then it is estimated that εg
i = O(dt) and εg∗

i = O(dt). We assume ε∗i =O(dt2)230

is still valid for the pressure in the rest of the domain (i.e. except for x = x0).231

Then the velocity error along the streamwise direction, i.e. ε∗i =O(dt2) (for232

x 6= x0 ) and εg∗
i (for x = x0) is in a Dirac delta function form. Note in Eq.233

31, the L.H.S. term is a second order spatial derivative, whereas the R.H.S.234

term is a first order spatial derivative. As usual for simpler analyses, we start235

by considering a 1D form of Eq. 31 in which synthetic velocity fluctuations236

are imposed only at x = x0 . Given that non-dimensional equations are237

being used and the CFL number dt × u/dx ∼ 1, integrating Eq. 31 in space238

leads to ξ∗=O(dxεg∗)=O(dtεg∗). Nevertheless, our real problem is 3D and239

thus it is difficult to give an accurate estimation for ξ∗ in terms of εg∗. If we240
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agree that neither ξ∗ = O(εg∗
i ) nor ξ∗ = O(dtεg∗

i ) is an accurate estimation,241

perhaps ξ∗ = O(dtβεg∗
i ) = O(dt1+β) is a slightly better one, where 0 < β < 1.242

Using Eq. 30 and following the same procedure as for the estimation for243

ε∗i , we obtain ε∗∗i = O(dt2). It is to be noted that ξ∗ = O(dt1+β) and ε∗∗i =244

O(dt2) are the worst errors at x = x0; further downstream the errors reduce245

to the levels suggested in [15].246

The errors in the second corrector step are calculated by subtracting Eqs.247

24 and 25 from Eqs. 14 and 15. The magnitudes of the errors from this step248

are the same as those in the first corrector step because the same generated249

velocity is imposed at the second corrector too. Thus the maximum errors250

are ξ∗∗ = O(dt1+β) and ε∗∗∗i =O(dt2) on the transverse plane x = x0.251

This analysis has revealed that the maximum velocity error (i.e. at x =252

x0) is one order higher than the truncation error (i.e. ∼ O(dt) for the Euler253

discretisation). However, the maximum pressure error is less than one order254

higher than the truncation error O(dt). As discussed earlier, the modification255

is applied only on one 2D plane. Again it is expected that the errors are not256

significant near the plane and decay downstream to the levels suggested in257

[15].258

In order to get more confidence in the error analysis, the decay of the259

errors are numerically calculated for plane channel flows and are compared260

with those using periodic in-outlet boundary conditions (PBC). The compu-261

tational details for the two cases are identical except for the inflow conditions.262

Details of the numerical settings are presented in §3. The spanwise- and time-263

averaged profiles of the errors for velocity and pressure are presented in Fig.1.264

Note that the velocity error from case XCDF is based on the generated ve-265
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locity field on the plane at x = x0, i.e. |ε∗| = |un+1
1 − ug∗

1 |, and the pressure266

error ξ∗ is that defined in Eqs. 27 and 31 . Note we are not able to get exact267

solutions un+1
i and pn+1 as in Eq.27, thus the final numerical solutions are268

used instead.269

It is not surprising that the absolute magnitudes of the velocity errors for270

case XCDF are significantly greater than those for case PBC in Fig. 1(a).271

However, the error decay with time step for case XCDF is similar to that for272

case PBC shown in the inset at the upper corner of the figure. Both cases273

clearly show that as dt → 0, the velocity errors decay towards zero at a rate274

close to dt−1, confirming the εg∗
i = O(dt) behaviour estimated analytically.275

Again, the errors at x = x0 shown here are the worst for case XCDF, whereas276

in the regions downstream (i.e. x/δ > 5), they are close to those for case277

PBC. This confirms that the errors decays downstream to the levels suggested278

in [15].279

The pressure errors for cases PBC and XCDF in Fig. 1(b) show rather280

similar magnitude as that of the velocity errors. However the decay rate281

of the pressure errors for case XCDF seems significantly slower than that282

of the velocity errors. This is because the pressure errors are also affected283

by the spatial discretization error as in Eq. 31. In these tests the mesh284

size was fixed in order to check the error decay rates in terms of time step,285

and also to save computational cost. It is expected that varying the grid286

size with the time step and keeping the CFL number dt × u/dx unchanged287

would lead to a faster decay rate of the pressure errors for case XCDF.288

Because it is impossible to get the exact solutions, the numerical procedure289

for the error estimation is not identical to the analytic procedure discussed290
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earlier. Nevertheless, the former in general confirms those suggested by the291

latter. Again the numerical procedure shows that the errors in velocities292

and pressure decrease with decreasing time step dt. This suggests that our293

modification with the PISO procedure is self-consistent.294

3. Validations of turbulent inflow conditions on a plane channel295

flow296

The XC, XCMC and XCDF methods are used as inflow conditions to sim-297

ulate a plane channel flow. These models are assessed through a validation298

against using periodic in-outlet boundary conditions (PBC) for the plane299

channel flow. The purpose of using periodic simulation data (as done in a300

number of previous papers - e.g. [1, 8, 18, 19, 20, 21]) is simply to provide a301

straightforward validation for the inflow method without the other uncertain-302

ties which would inevitably arise when using non-periodic test cases. Once303

the method is validated on a channel flow, it can be used for both free and304

wall-bounded flows. The input parameters, such as Reynolds stresses and305

integral length scales, can be obtained from the available experimental data306

and/or appropriate empirical stress ratios [e.g. 22].307

308

3.1. Numerical description309

The Reynolds number of the channel flow based on the friction velocity,310

uτ and the half depth of the channel, δ, was Reτ = 395. The domain size311

was 60δ × 2δ × 3.5δ in the streamwise (x), wall-normal (y) and spanwise312

(z) directions respectively (see Fig. 2). A uniform mesh was used in the313

streamwise and spanwise directions and a stretched mesh in the wall-normal314
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direction for which y+
1 ≤ 1 was satisfied at the first cell centre. The number315

of grid points was 600×60×70 in the x, y and z directions respectively. The316

resolutions in the x and z directions were ∆x+ = 39.5 and ∆z+ = 19.8.317

All statistics were averaged over 40t∗, where t∗ = tuτ/δ, and the averaging318

started after an initialization period of 20t∗. The Smagorinsky subgrid-scale319

model with van-Driest damping [23] was adopted with the constant Cs =320

0.065 [24]. The time step satisfied the condition that the CFL number was321

less than unity, corresponding to ∆t∗ = ∆t × uτ/δ = 0.002. A second order,322

implicit scheme was used for time discretization, with a second order central323

difference scheme for spatial discretization. The transient incompressible324

flow solver in OpenFOAM 1.7.1 [16] was used and the PISO algorithm was325

adopted for the velocity-pressure coupling for most of the simulations. The326

number of pressure correctors was set to two. We noticed that increasing the327

number of correctors did not improve the results.328

A periodic boundary condition was applied in the spanwise direction and329

no-slip wall boundary conditions were applied on the bottom and top walls330

for all cases. Other boundary conditions are summarized in Table 1. For the331

XCDF model, generated synthetic turbulence from Eq. 1 by using the XC332

model was imposed at the cell centres of a yz plane which was placed in the333

domain near the domain inlet, e.g. at x = x0 = δ rather than at the inlet334

boundary (i.e. x = 0). Meanwhile, the mean velocity profile was specified at335

the domain inlet to fix the mass flow rate to a constant. Ideally, the shifted336

inflow plane is to be placed as close as possible to the inlet boundary to save337

the computational cost. The XCDF model work well for x0 ≥ 0.5δ. However,338

we noticed that placing the plane at the centres of the first cell from the inlet,339
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generates higher peaks of time- and spanwise- averaged variance of the wall340

pressure fluctuations near the inlet. This might be due to the fixed mean341

velocity specified at the inlet boundary and the nature of the incompressible342

flow. Nevertheless, the magnitude of these pressure variance peaks are far343

less than those generated by the XCMC model.344

3.2. Specifying input parameters345

The XC, XCMC and XCDF models need first and second moment statis-346

tics and integral length scales as input parameters. These were taken from347

DNS data [10] and case PBC. The mean velocity and Reynolds stress pro-348

files for case PBC are compared with reference DNS data in Fig. 3. Over-349

predictions of mean velocity at the channel centre and 〈u′u′〉+ near the wall,350

and under-predictions of 〈v′v′〉+ near the wall are common observations in351

LES with a similar resolution [e.g. 2, 25].352

The integral length scales were calculated by integrating two-point cor-353

relations until the value of the correlation reached 0.1. The correlations are354

taken from DNS data [10]. Nine integral length scales were estimated for355

the three components of the velocity vector (u, v, w) in all three directions356

(x, y, z) (see Eq. 7). For instance, the integral length scale in the spanwise357

direction (j = 3) for the correlation Ci (i = 1) (i.e. based on the u1 compo-358

nent) is I13. The channel flow in the wall-normal direction is inhomogeneous359

thus Ii2 cannot be obtained by using Eq. 7. For simplicity, it was assumed360

that Ii2 = Ii3. Fig. 4 shows the integral length scales used for the input data361

of the XC, XCMC and XCDF models. It is to be noted that we managed to362

use as much as possible the available reference data to have a rigorous test. In363

more practical applications, it is straightforward to use fewer integral length364
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scales.365

For the inflow models, the distribution of the x-direction length scales,366

Ii1, along the wall-normal direction is a function of the local mean velocity,367

U1(y). Only one 2-D slice of the signal is generated and convected into the368

domain at every time step. Thus we get Ii1(y) = Ti1 × U1(y) using Taylor’s369

hypothesis where Ti1 is the Lagrangian time scale. The local turbulence370

intensity is mostly far less than 0.3 for the test case, thus Taylor’s hypothesis371

holds across the domain [26]. Implementations of the generated velocity by372

the models were performed on a virtual uniform mesh and then they were373

interpolated to the non-uniform mesh at the inlet.374

3.3. Results and discussion375

In the XCDF model, the synthetic turbulence is imposed on a transverse376

plane at x = x0 and is adjusted through the velocity-pressure coupling proce-377

dure. The changes are expected to be small, otherwise the Reynolds stresses378

and the integral length scales used to generate the synthetic turbulence must379

be reconsidered. Fig. 5 shows a typical example of the changes of time series380

of the streamwise velocity before and after the continuity equation is satis-381

fied. As expected, the difference between the two sets of velocities is very382

small.383

An accurate prediction of the pressure fluctuations is the focus of the384

present paper. Fig. 6(a) show the effects of the mass flux correction and385

the divergence-free modification on the dimensionless time- and spanwise-386

averaged variance of the normalised wall pressure fluctuations, < p′2w >+=<387

p′2w > /(ρ2u4
τ ). Significantly high wall pressure fluctuations are introduced388

by the XC model near the inlet, and they decrease monotonically to zero389
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at the outlet where the pressure was fixed to a constant ambient pressure.390

In contrast, the variances of the wall pressure fluctuations for both cases391

XCMC and XCDF are in good agreement with the reference data (i.e. PBC)392

downstream from x/δ = 10. The simple mass correction in case XCMC393

brings a significant improvement on pressure fluctuations and its performance394

in Fig. 6(a) seems similar to that of case XCDF. However, the generated395

inflow synthetic turbulence in case XCMC does not satisfy the divergence-396

free condition, and there must be some signature for this.397

In checking the Probability Density Functions (PDFs) of the pressure398

fluctuations sampled at various stations at the centre of the channel (see399

Fig. 7), we observed more extreme peak pressure fluctuations in case XCMC400

compared to case XCDF. Fig. 7 shows that the occurrence of extreme peak401

pressure fluctuations for case XCMC can be more than twice that for case402

XCDF. This certainly shows an good feature of the XCDF model.403

Unphysical peaks near the inlet are generated for both cases where the404

synthetic turbulence was imposed. Case XCMC gave an order higher pressure405

fluctuations near the inlet compared with case XCDF (see the inset in Fig.406

6(a)). The XCMC model may thus be less satisfactory than the XCDF model407

if the region of interest is close to the inlet.408

Fig. 6(b) show profiles of the dimensionless time- and spanwise-averaged409

variance of the pressure fluctuations, < p′2 >+=< p′2 > /(ρ2u4
τ ), at different410

downstream locations. The pressure fluctuations for case XCDF downstream411

from x/δ = 10 and for case XCMC from x/δ = 20 are in an excellent agree-412

ment with the reference data (i.e. PBC). Note that the < p′2 >+ for case413

XC is far too large to be shown in Fig. 6(b).414
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It is of interest to check the turbulence statistics profiles. As a typical415

example, Fig. 8 present the time- and spanwise-averaged velocity and ve-416

locity fluctuation variances at x = 20δ obtained from using different inflow417

methods. All of the quantities are normalised appropriately by friction ve-418

locity uτ and they all show a good performance when compared with the419

reference - case PBC. This suggests that the three inflow models are in a420

similar performance in this aspect.421

The flow development in terms of the recovery distances of wall shear422

stress and Reynolds shear stress in crucial for the inflow methods. Fig.423

9(a) shows dimensionless wall shear stress τ+
w = τw/(ρu2

τ ). In spite of the424

significantly different pressure fluctuations between cases XC and XCMC425

shown in Fig. 6, the wall shear stress and Reynolds shear stress profiles for426

both cases are almost identical as shown in Fig. 9. The development distance427

in terms of the recovery of the wall shear stress and Reynolds shear stress for428

the XC and XCMC models is x/δ ≈ 10, which is similar to those in Deck et429

al. [27] in which a turbulent boundary layer was simulated using a different430

synthetic turbulence inflow method [2]. The development distance for case431

XCDF is noticeably greater than those for cases XC and XCMC, partly432

because the effective inflow plane for case XCDF is at x0 = δ. Nevertheless,433

the error of wall shear stress at x/δ = 15 for case XCDF is within 5%. Setting434

the 5% error as the criteria to define the development distance, then it is 14δ435

for the XCDF model counting from the plane at x0.436

Fig. 9(b) shows dimensionless Reynolds shear stress profiles −〈u′v′〉+=437

−〈u′v′〉/u2
τ . The error of Reynolds shear stress at (x/δ = 10, y/δ = 0.1) for438

case XCDF is about within 5%.439
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To visualize the near wall structures, the second invariant of the velocity440

gradient tensor can be used – often called the Q-criterion (e.g. [28]), which441

is written as,442

Q =
1

2
(ΩijΩij − SijSij), (33)

where Ωij = ( ∂ui

∂xj
− ∂uj

∂xi
)/2 and Sij = ( ∂ui

∂xj
+

∂uj

∂xi
)/2. Essentially Q is the443

balance between the rotation (Ωij) and strain (Sij) rates. Thus a positive444

value of Q indicates that the strength of rotation overcomes that of the445

strain. Fig. 10 shows the iso-surface Q = 200 in the upstream region of the446

domain for XCMC and XCDF models. XCMC shows a delay of development447

of near-wall structures, which is consistent with Fig.9(a). However, XCMC448

and XCDF models show almost same performance downstream of x/δ = 10.449

Power Spectral Densities (PSD) for the pressure fluctuations and stream-450

wise velocity fluctuations at two typical stations are shown in Fig. 11. These451

are consistent with Figs. 6 and 9. The PSD of the pressure fluctuations for452

case XC (in which the constant mass flux condition is not satisfied) is over-453

predicted by orders of magnitude through much of frequency range, whereas454

those for cases XCMC and XCDF show a reasonable agreement with the455

reference data (PBC) at x/δ = 10 and even better agreement at x/δ = 55.456

Spectra of the streamwise velocity fluctuations for all cases are in good agree-457

ment at most frequencies in Figs. 11(c) and 11(d). Case XC over-predicts458

the velocity spectra only at high frequencies.459

3.3.1. Remarks on the XCDF model460

It is a significant challenge to solve the divergence-free problem which461

arises in applying synthetic inflow conditions, especially since the latter462

should include crucial features like turbulence integral length scales, spectra,463
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Reynolds stresses, anisotropy and inhomogeneity, and whilst maintaining464

high computational efficiency. Our proposed divergence-free XCDF model465

certainly is not free of limitations. The development distance in terms of the466

skin friction needs to be improved if estimation of the skin friction is of major467

interest. Combining the XCDF model with some up-to-date stochastic forc-468

ing methods such as [29] would improve the development distance. Imposing469

the synthetic turbulence on a transverse plane near the domain inlet does470

increase computational resources by less than 2% for these test cases, hence471

this overhead is negligible.472

Based on the statistics from the current test cases, the divergence-free473

inflow method does not seem to be superior in all aspects compared to a474

simple mass flux correction approach. However, XCDF has distinctive fea-475

tures. Firstly, the mass correction factor, Ub/Ub,T , in Eq. 8 ranges 1 ± 0.02476

for the current test case which is relatively high considering Ub/uτ = 18.33.477

In practical applications, a very coarse mesh at the inlet may be adopted (i.e.478

fewer sampling points). And subsequently the mass correction factor can be479

even greater which can lead to a noticeable alteration in prescribed Reynolds480

stress in Eq. 2. In such situations, one could argue that the mass flux cor-481

rection effectively modifies the input turbulence parameters. Secondly, there482

is an unphysical peak of pressure fluctuations near the inlet as shown in Fig.483

6(a). It decays rapidly but may cause unphysical and unacceptably high484

noise levels for some aeroacoustic applications, especially when the region of485

interest is inevitably close to the inlet. Thirdly, we noticed that the XCMC486

model generated more extreme peak pressure fluctuations at the middle of487

channel compared to case XCDF, though these are not clearly shown in the488
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spectra of pressure fluctuations.489

The modification to the PISO algorithm is similar in some respects to490

the body-force approach, e.g. [30, 31, 29]. However, there are clear differ-491

ences too. For example, in [31], the stochastic force is isotropic. XCDF, on492

the other hand, can reproduce specified anisotropy by providing individual493

Reynolds stresses and integral length scales. Also no empirical constant is494

involved in the XCDF model, unlike in typical body-force approaches.495

Laraufie et al. [29] suggests that the development distance decreases with496

increasing Reynolds number thus applicability of the XCDF model will likely497

improve further for spatially developing flows at high Reynolds numbers.498

For example, we have used the XCDF model to simulate surface pressure499

fluctuations on the Commonwealth Advisory Aeronautical Council (CAARC)500

standard building at a Reynolds number 3 × 105 based on the free stream501

velocity and the height of the building [32]. The validation against wind502

tunnel experiments has been very promising.503

The divergence-free model can be easily implemented in other CFD codes.504

For example, a similar method has been used in an in-house code [33]. Our505

method has been tested using both PISO and PIMPLE (i.e a combination506

of PISO and SIMPLE) solvers in OpenFOAM, which suggests the significant507

potential of the method.508

4. Conclusions509

A new divergence-free synthetic turbulence inflow technique has been de-510

veloped with incompressible flow solvers. To satisfy the divergence-free cri-511

terion, the velocity-pressure coupling (PISO) procedure is modified slightly512
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by substituting the generated synthetic turbulence for the intermediate ve-513

locities on a transverse plane near the domain inlet before the corrector steps514

are performed. The synthetic turbulence is mildly adjusted through the cor-515

rectors and thus is divergence-free. It is to be stressed that this modification516

of the PISO procedure costs no additional CPU time.517

The effects of the modification of the PISO algorithm on solution accu-518

racy have been examined analytically and numerically. The maximum error519

(always on the transverse plane where synthetic turbulence is imposed) is,520

for the velocity, one order higher than the truncation error, whereas the max-521

imum error for the pressure is less than one order higher than the truncation522

error. This is not surprising because imposing of the synthetic turbulence523

within the domain (rather than at the inlet) is similar in some respects to a524

body-force approach. Maximum disturbances occur where the synthetic tur-525

bulence is imposed. Nevertheless, the errors decay downstream (e.g. x/δ > 5)526

to the levels suggested in [15].527

The suggested divergence-free turbulence inflow model XCDF has been528

tested on a channel flow and compared with the XC model [8] and the XC529

model with a mass flux correction – XCMC. Both XCDF and XCMC give530

very significant improvements on the computed pressure fluctuations. For531

example, the variance and spectra of the pressure fluctuations are in good532

agreement with reference data obtained from a plane channel flow using533

axially periodic boundary conditions. In addition, the XCDF model is gen-534

uinely divergence-free and provides solution improvements in other respects535

too, such as more reasonable peak pressure fluctuations.536

In applications where only time averaged pressure and aerodynamic forces537
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(e.g. mean lift and drag on a wind turbine blade or mean wind loads on a538

building) are of interest, the XC and XCMC models are generally satisfactory.539

However, if instantaneous forces (e.g. peak structural wind loads in wind en-540

gineering applications) are the focus, the divergence-free method XCDF is541

recommended. In particular, the XCDF method can be very useful in some542

applications in which the turbulence motions are required to insert in the543

computation domain. For example, the XCDF method can be used at the544

interfaces of the coupling of a weather-scale model and a street-scale LES545

model to provide sufficient turbulent fluctuations when nested meshes are546

used.547
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Appendix A. Consistency in the PISO algorithm with the Open-636

FOAM code and literature637

Notations for the PISO algorithm in literature and some source codes638

may be confusing for whom is not fully aware of the method. Therefore639

consistency among the equations used in this study, OpenFOAM code v1.7.1640

(OF) [16] and Ferziger and Perić [14] are shown here for reader’s convenience.641

Taking the divergence, Eqs. 17 and 16 are rewritten respectively as,642

∂

∂xi

[
1

AP

∂

∂xi

(pn + p′)

]

P

=

[
∂

∂xi

(ũ∗
i + ũ′

i)

]

P

−
[
∂u∗∗

i

∂xi

]

P

, (A.1)

and643

∂

∂xi

(
1

AP

∂pn

∂xi

)

P

=

[
∂ũ∗

i

∂xi

]

P

−
[
∂u∗

i,P

∂xi

]

P

. (A.2)

Subtracting Eq. A.2 from Eq. A.1, neglecting ũ′
i and requiring ∂u∗∗

i /∂xi = 0644

yields,645

∂

∂xi

(
1

AP

∂p′

∂xi

)

P

=

[
∂u∗

i

∂xi

]

P

. (A.3)

This equation is identical to Eq. 7.39 in [14].646

Neglecting ũ′
i in Eq. 17 and subtracting the equation from Eq. 20 leads,647

u′′
i,P = ũ′

i,P − 1

AP

(
∂p′′

∂xi

)

P

, (A.4)

which is identical to Eq. 7.43 in [14]. Taking divergence and requiring648

∂u′′
i /∂xi = 0 (note u∗∗

i and u∗∗∗
i are divergence free), Eq. A.4 is written as,649

∂

∂xi

[
1

AP

∂p′′

∂xi

]

P

=

[
∂ũ′

i

∂xi

]

P

, (A.5)

This is identical as Eq. 7.44 in [14].650
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Appendix B. A note of notations in the OpenFOAM code [16]651

Again for reader’s convenience, a brief description and the PISO source652

code in OF are respectively presented here and in Appendix C.653

(a) The prediction equation Eq. 16, is corresponding to line 75 in the OF654

code in Appendix C.655

(b) The corrector steps Eqs. 17 and 20 (with ũ′
i,P neglected) are corre-656

sponding to line 123 in the OF code in Appendix C. Note that ũ∗
i,P in Eq.657

17 is temporally saved as U in line 123 in the OF code. Similarly the flux of658

ũ∗
i,P is temporally saved as phi in line 97 in the OF code in Appendix C.659

(c) Poisson equations, Eqs. 19 and 21, are corresponding to line 97 in the660

OF code in Appendix C.661

The generated velocity by the XCDF model is substituted after the pre-662

dictor step but before the flux of ũ∗
i,P is constructed, i.e. between the lines663

84 and 85 in the original OF code in Appendix C.664

Appendix C. pisoFOAM.C in OpenFOAM v.1.7.1

00032 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

00033

00034 # inc lude ”fvCFD .H”

00035 # inc lude ” s inglePhaseTransportModel .H”

00036 # inc lude ” turbulenceModel .H”

00037

00038 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

00039

00040 int main ( int argc , char ∗ argv [ ] )

00041 {

00042 #inc lude ” setRootCase .H”

00043

00044 #inc lude ” createTime .H”
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00045 #inc lude ” createMesh .H”

00046 #inc lude ” c r e a t eF i e l d s .H”

00047 #inc lude ” i n i tCon t i nu i t yEr r s .H”

00048

00049 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

00050

00051 Info << ”\ nStar t ing time loop \n” << endl ;

00052

00053 while ( runTime . loop ( ) )

00054 {

00055 Info << ”Time=” << runTime . timeName() << nl << endl ;

00056

00057 #inc lude ” readPISOControls .H”

00058 #inc lude ”CourantNo .H”

00059

00060 // Pressure−v e l o c i t y PISO cor rec to r

00061 {

00062 // Momentum pred i c t o r

00063

00064 fvVectorMatr ix UEqn

00065 (

00066 fvm : : ddt (U)

00067 + fvm : : div ( phi , U)

00068 + turbulence−>divDevReff (U)

00069 ) ;

00070

00071 UEqn . r e l ax ( ) ;

00072

00073 i f ( momentumPredictor )

00074 {

00075 s o l v e (UEqn == − f v c : : grad (p ) ) ;

00076 }

00077

00078 // −−− PISO loop

00079

00080 for ( int co r r =0; corr<nCorr ; co r r++)

00081 {

00082 vo l S c a l a rF i e l d rAU(1 . 0/UEqn .A( ) ) ;

34



00083

00084 U = rAU∗UEqn .H( ) ;

00085 phi = ( fvc : : i n t e r p o l a t e (U) & mesh . Sf ( ) )

00086 + fvc : : ddtPhiCorr (rAU , U, phi ) ;

00087

00088 adjustPhi ( phi , U, p ) ;

00089

00090 // Non−or thogona l pressure cor r ec to r loop

00091 for ( int nonOrth=0; nonOrth<=nNonOrthCorr ; nonOrth++)

00092 {

00093 // Pressure cor r ec to r

00094

00095 fvSca la rMatr ix pEqn

00096 (

00097 fvm : : l a p l a c i a n (rAU , p) == fvc : : d iv ( phi )

00098 ) ;

00099

00100 pEqn . s e tRe f e r ence ( pRefCel l , pRefValue ) ;

00101

00102 i f

00103 (

00104 co r r == nCorr−1

00105 && nonOrth == nNonOrthCorr

00106 )

00107 {

00108 pEqn . s o l v e (mesh . s o l v e r ( ” pFinal ” ) ) ;

00109 }

00110 else

00111 {

00112 pEqn . s o l v e ( ) ;

00113 }

00114

00115 i f ( nonOrth == nNonOrthCorr )

00116 {

00117 phi −= pEqn . f l u x ( ) ;

00118 }

00119 }

00120
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00121 #inc lude ” con t inu i t yEr r s .H”

00122

00123 U −= rAU∗ f v c : : grad (p ) ;

00124 U. correctBoundaryCondit ions ( ) ;

00125 }

00126 }

00127

00128 turbulence−>c o r r e c t ( ) ;

00129

00130 runTime . wr i t e ( ) ;

00131

00132 Info << ”ExecutionTime=”<< runTime . elapsedCpuTime () << ” s ”

00133 << ”ClockTime=”<< runTime . elapsedClockTime () << ” s ”

00134 << nl << endl ;

00135 }

00136

00137 Info << ”End\n” << endl ;

00138

00139 return 0 ;

00140 }

00141

00142

00143 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Table 1: Summary of boundary conditions for different cases. Ui is the mean velocity and

d/dn is a normal derivative to the boundary. The transverse plane is placed at x0 where

the synthetic turbulence is imposed for XCDF.

Case Inlet Outlet x0/δ = 1

PBC PBC PBC n/a

XC XC dui/dn = 0, p = 0 n/a

XCMC XCMC dui/dn = 0, p = 0 n/a

XCDF ui = Ui, dp/dn = 0 dui/dn = 0, p = 0 XCDF
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Figure 1: Profiles of error of (a) the streamwise velocity component, |ε∗|, and (b) pressure,

|ξ∗|, with different time steps at the plane where synthetic turbulence is imposed, see Eq.

27 for definition. Case PBC: dt∗ = 0.002 ¤, dt∗ = 0.004 ∆; XCDF: dt∗ = 0.002 −,

dt∗ = 0.004 −−, dt∗ = 0.01 −· where dt∗ = dt × uτ/δ. The insets show the errors against

the time step dt∗ at y = 0.5δ. The errors are normalized appropriately by the bulk mean

velocity and density.
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Figure 2: A sketch of the computational domain (not to scale) for a channel flow.
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Figure 3: Profiles of (a) mean velocity and (b) Reynolds stresses from a channel flow.

LES results, lines, with the periodic boundary condition are compared with DNS data

[10], symbols. Superscript + indicates that the quantities are normalised appropriately by

friction velocity uτ , density ρ and dynamic viscosity µ.
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Figure 4: Integral length scales in (a) the streamwise direction and (b) the spanwise

direction (right). Symbols are from DNS [10], lines are specified length scales as input

data of the XC, XCMC and XCDF models. The definition of Iij is written in Eq. 7. Note

I21 = I31, I13 = I23 and Ii2 = Ii3.
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Figure 5: A typical example of the changes of the streamwise velocity before and after the

continuity equation (Eq. 15) is satisfied. ug

i is the XC model generated velocity before

the continuity equation, and ui is the adjusted velocity after the continuity equation.
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Figure 6: (a) Development of dimensionless time- and spanwise- averaged variance of the

wall pressure fluctuations, < p′2w >+. The inset shows a zoomed view of the dashed box on

the left bottom corner. (b) Profiles of dimensionless time- and spanwise-averaged variance

of pressure fluctuations in the wall-normal direction at the different downstream locations,

< p′2 >+. PBC ¤, XC —, XCMC −−, XCDF − · −.
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Figure 7: Probability Density Functions (PDFs) of dimensionless pressure fluctuations

p′+ = p′/ρu2
τ sampled at x/d=5, 10, 20, 30, 40, 55 and y/d=1. The total number of

samples is 2.4 × 106.
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Figure 8: Profiles of statistics at x = 20δ obtained from using different inflow methods are

compared with those for case PBC.
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Figure 9: (a) Development of dimensionless wall shear stress τ+
w . (b) Profiles of dimension-

less time and spanwise averaged Reynolds shear stress −〈u′v′〉+ at different downstream

locations. PBC ¤, XC —, XCMC –, XCDF − · −.
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Figure 10: Iso-surface of Q = 200 in (x/δ ≤ 32, 0 < y/δ < 0.25). XCMC model(top), and

XCDF model(bottom).
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Figure 11: Power spectral density of pressure fluctuations (a,b) and the streamwise velocity

fluctuations (c,d) at y/δ = 1. (a,c) x/δ = 10; (b,d) x/δ = 55. All quantities are normalized

appropriately by uτ and δ.
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