
Under consideration for publication in Formal Aspects of Computing

External and Internal Choice with
Event Groups in Event-B
Michael Butler
Electronics and Computer Science

University of Southampton, UK

Abstract.
Abrial’s Event-B formalism for refinement-based system development is influenced by Back’s action

system approach. Morgan has defined a CSP-like failures-divergence semantics for action systems that dis-
tinguishes internal and external choice of actions. Morgan’s semantics has the characteristic that the choice
between enabled actions is external while internal choice is represented less directly through nondetermin-
istic effect of actions. Practical experience with Event-B has demonstrated the need to be able to represent
both internal and external choice between enabled events more explicitly. In this paper, Morgan’s failures
semantics for action systems is modified to allow both internal and external choice to be represented directly.
This is achieved by grouping events so that external choice is between event groups and internal choice is
within event groups. This leads to a refinement rule for preservation of choice between event groups while
allowing for reduction of choice within event groups. We also provide a refinement rule for splitting event
groups in order to increase external choice. The refinement rules are justified in terms of failures refinement.

1. Introduction

Abrial’s Event-B is a formalism for refinement-based development of discrete event systems [Abr10]. Its
deployment is supported by the Rodin toolset which includes proof obligation generation and verification
through a collection of mechanical provers [ABH+10]. An Event-B machine consists of a collection of vari-
ables, invariants on those variables and a collection of guarded events that may update the machine variables.
An Event-B development consists of a collection of machines linked by refinement and each event of a refined
machine must either refine some event of its abstraction or must refine skip. Refinement between events is
defined using the standard notion of refinement for programs based on preservation of a gluing invariant
between abstract and concrete variables.

An action system consists of a collection of guarded atomic actions acting on some state variables as
defined by Back [Bac90]. At each execution step, an enabled action is nondeterministically chosen. No
distinction is made between whether the action to be executed is chosen internally or externally. Action
system behaviour is modelled by the possible state traces a system may perform and refinement is defined
semantically in terms of state trace inclusion: any trace of a refined model must be a trace of the abstract
model [BvW94]. As in Event-B, the refinement proof rule for action systems requires that each action
of a refined system refines some abstract action or refines skip. The refinement rule also requires that

Correspondence and offprint requests to: Michael Butler e-mail: mjb@ecs.soton.ac.uk. This work is supported by the FP7
DEPLOY Project (ICT 214158), www.deploy-project.eu

2 M. Butler

the disjunction of all abstract action guards entails the disjunction of the concrete guards under a gluing
invariant.

Hoare’s failures-divergence model for CSP distinguishes internal and external choice of events [Hoa85].
In this model, external choice must be preserved by refinement while internal choice may be reduced or
may be made external through refinement. Morgan has defined a CSP-like failures-divergence semantics for
action systems that distinguishes internal and external choice of actions [Mor90]. Morgan’s semantics has
the the characteristic that the choice between enabled actions is external while internal choice is represented
less directly through the nondeterministic effect of actions. Woodcock and Morgan have defined proof rules
for action system refinement that ensure failures-divergence refinement at the semantic level [WM90]. The
enabledness preservation parts of those proof rules are more fine-grained than in Back’s rule: they require
that the guard of every abstract action should entail the guard of its corresponding refined action. This is
stronger than Back’s rule which only requires entailment between the disjunction of all abstract action and
the disjunction of all refined events.

Although it is possible to model internal choice between events indirectly through nondeterministic
actions, practical experience with Event-B has demonstrated the need to be able to represent both internal
and external choice between enabled events more explicitly. We will illustrate this in Section 2 with an
example of a database transaction whose completion is modelled by two events: Update and Abort. These
two events represent alternative outcomes of a transaction. In an abstract model, both the Update and Abort
events have the same guard. The reason for this is that it is convenient to abstract away from the cause of
the transaction failure and to focus on the effect of success or failure at the specification level. The refined
transaction model in Section 2 explicitly represents the occurrence of a fault and the guards of the Update
and Abort events are strengthened accordingly. However, under the failures interpretation, this is not a
refinement of the specification since the choice between Update and Abort is external in the abstract model
whereas it is internal in the refined model. Clearly the choice should not be external in the abstraction either:
if we abstract away from the cause of failure within the system, then we cannot offer the choice between
success or failure to the external environment. It would be more natural to view the choice between the
abstract completion events as internal. The transaction is representative of a range of existing case studies
that have been undertaken in Event-B including an electronics funds transfer system [BY08], a replicated
database system [YB06], multi-agent systems [BB09], a flash-based file system [DB09], a data management
system for a satellite [FRB11] and a gear control system for a car [SB11]. All these cases involve treatment of
faults with the specification focusing on the effect of success or failure and abstracting away from the causes
of failure. Occurrence of failure is introduced in later refinements.

In this paper, Morgan’s failures semantics for action systems is modified to allow both internal and exter-
nal choice to be represented directly by taking account of event grouping. We also modify the enabledness-
preservation part of the refinement rule of [WM90] so that there is entailment between disjunctions of event
guards within groups. Our new refinement rule is shown to be sound w.r.t. failures refinement. Although
the results presented in this paper are motivated by experience with Event-B, the results apply to action
systems in general. We use Event-B as the notation in practice but what is important from the point of view
of this paper is that we treat events1 as weakest precondition predicate transformers. It is possible to treat
events as relations in order to give machines a failures-divergence semantics as found in Josephs [Jos88] and
He [He89]. An advantage of predicate transformers over relations is that they provide a uniform treatment of
nontermination; termination is embodied in the wp semantics and does not need to be treated explicitly, for
example, using a special bottom observation. Having said that, in this paper we will not be concerned with
nontermination and will focus instead on the distinction between internal and external choice. Thus we will
only work with failures of Event-B machines but not divergences. Recently Schneider et al [STW11] have
given a CSP semantics directly to Event-B in a similar style to [Mor90] that treats traces and divergences
but not failures.

It is worth pointing out a further more recent contribution by Back and von Wright, that of distinguishing
demonic and angelic choice in action systems [BvW00]. This is very elegant work that defines angelic choice
as the dual of demonic choice. While demonic choice is the same as CSP internal choice, angelic choice is
more general than CSP external choice: angelic choice can be widened in refinement and the angel will avoid
a non-terminating choice if possible. Nondeterminism in Event-B is demonic so that treating angelic and
demonic choice would require a major change to the language. As we will demonstrate, treating CSP-style

1 Back uses the term ‘action’ while Abrial uses the term ‘event’.

External and Internal Choice with Event Groups in Event-B 3

internal and external choice can easily be accommodated in Event-B through finessing of the enabledness-
preservation proof obligations.

None of the existing work on giving a CSP semantics to action systems/Event-B supports the explicit
treatment of internal choice within an event group; that is the novel contribution of this paper. After
presenting motivating examples in the Section 2, we outline Morgan’s existing definition of action system
failures in Section 3. Section 4 presents the new definition of failures using event groups and proves some
validating theorems about the definition. Section 5 presents a revised data refinement rule that takes account
of event groups while Section 6 presents a simple rule showing that syntactically splitting event groups is a
valid refinement step.

Author’s note: the work in [Mor90] served as the starting point for my own DPhil thesis [But92] (su-
pervised by Carroll Morgan at Oxford). A number of extensions were made to the semantic definitions and
refinement of action systems in my DPhil: better treatment of unbounded nondeterminism through the def-
inition of an infinite traces model, treatment of internal events and convergence, treatment of parameterised
actions that distinguishes input and output parameters and treatment of synchronised parallel composition
of action systems. These issues will not be addressed in this paper however. Besides providing the starting
points for my DPhil, Carroll always encouraged me to follow his typical style of presenting proofs in a clear
calculational way (following Dijkstra) and I have endeavoured to follow that style here.

2. Motivating Examples

The distinction between internal and external choice is illustrated by the two Event-B models of drinks
vending machines in Fig. 1. In the machine VM 1, initially the only event enabled is the Coin event. Execution
of the Coin event leads to a state where control variable m1 = vend and thus both the Tea and Coffee events
are enabled. Using the failures-divergence semantics of Morgan, the choice between these events would be
external, that is, the choice between Tea and Coffee would be resolved by the environment of VM 1. In the
second machine, VM 2, the control variable m2 is nondeterministically assigned either the value tea or the
value coffee when the Coin event is executed. Execution of the Coin event will either lead to a state in which
Tea is enabled or to a state in which Coffee is enabled. Under the failures semantics, we assume that the
environment of an Event-B machine observes the execution of the machine events but not the values of the
machine variables. Thus the environment cannot directly observe or control the nondeterministic effect on
variable m2 of the Coin event in VM 2. This gives rise to internal choice between Tea or Coffee; that is, the
choice between offering the Tea event or the Coffee event to the environment is made internally by VM 2
and the environment has no control over that choice.

It is possible to show that each event of VM 2 refines its corresponding event in VM 1. In addition,
VM 2 does preserve overall enabledness of the events, i.e., we can construct a gluing invariant in which the
disjunction of the abstract guards entails the disjunction of the concrete guards. However VM 2 does not
preserve the enabledness of individual events, i.e., it is not possible to construct a gluing invariant in which
the guard of Tea in VM 1 entails the guard of Tea in VM 2 (and similarly for the Coffee events). This is
as expected since VM 2 does not retain the external choice between Tea and Coffee and is therefore not a
failures refinement of VM 1. From the point of view of a customer using a vending machine, VM 1 is a better
machine than VM 2 since VM 1 allows the customer to choose between tea and coffee whereas VM 2 chooses
the drink for the customer nondeterministically. Thus it is appropriate here to use a notion of refinement in
which VM 2 is not a valid refinement of VM 1.

Although it is possible to model internal choice between events indirectly through nondeterministic
actions, as illustrated by VM 2 of Fig. 1, practical experience with Event-B has demonstrated the need
to be able to represent both internal and external choice between enabled events more explicitly. This is
exemplified by the transaction system in the machines of Fig. 2. The left-hand machine, Transaction1, is a
simple model of a transaction that might succeed or abort. In the case that the transaction succeeds (Update
event), the database is updated. In the case that the transaction aborts (Abort event), the database remains
unchanged. In Transaction1, both the Update and Abort events have the same guard. This is because we
abstract away from the cause of the transaction failure and focus on the effect of success or failure. In the
machine Transaction2 of Fig. 2, the flag f is introduced to represent occurrence of a fault and the guards
of the Update and Abort events are strengthened accordingly. However, under the failures interpretation,
Transaction2 is not a refinement of Transaction1 since the choice between Update and Abort is external in
Transaction1 whereas it is internal in Transaction2. It would be more natural to view the choice between

4 M. Butler

machine VM1
variables m1 ∈ {idle, vend}
initialisation

m1 := idle
events

Coin =̂ when
m1 = idle

then
m1 := vend

end
Tea =̂ when

m1 = vend
then

m1 := idle
end

Coffee =̂ when
m1 = vend

then
m1 := idle

end

machine VM2
variables m2 ∈ {idle,tea,coffee}
initialisation

m2 := idle
events
Coin =̂ when

m2 = idle
then

m2 :∈ {tea,coffee}
end

Tea =̂ when
m2 = tea

then
m2 := idle

end
Coffee =̂ when

m2 = coffee
then

m2 := idle
end

Fig. 1. Simple vending machines with external (VM1) and internal (VM2) choice

machine Transaction1
variables ts, db
invariants

ts ∈ {pending, success, abort}
db ∈ DataBase

initialisation
ts := pending || db := DB0

events
Update =̂ when

ts = pending
then

ts := success
db := update(db)

end
Abort =̂ when

ts = pending
then

ts := abort
end

machine Transaction2
variables ts, db, f
invariants

ts ∈ {pending, success, abort}
db ∈ DataBase
f ∈ Bool

initialisation
ts := pending || db := DB0

f :∈ Bool
events
Update =̂ when

ts = pending ∧ f = false
then

ts := success
db := update(db)

end
Abort =̂ when

ts = pending ∧ f = true
then

ts := abort
end

Fig. 2. Simple transaction system and its refinement in Event-B

the completion events in Transaction1 as internal as well. So while the failures semantic model is appropriate
for the vending machine example, it seems to be less appropriate for the transaction example.

One solution would be to use the enabledness preservation rule of Back for the transaction example
which involves entailment between disjunctions of guards. This would work for the example of Fig. 2: we can
prove that the disjunction of the guards of Update and Abort in the abstraction entails the disjunction of
the concrete guards. However that would lose more than we want. We still wish to retain external choice for
other events. For example, if the transaction model also included an event for reading the database, then we
would like to specify that the environment can chose between attempting to update the database or reading

External and Internal Choice with Event Groups in Event-B 5

the database. The solution we adopt is to syntactically group the Update and Abort events together and to
place the Read event into a separate group. Our interpretation is that the choice between enabled events in
different groups is external whereas the choice between enabled events within a group is internal.

3. Background definitions

We outline the CSP failures model of Hoare as well as Morgan’s definition of the failures of an action system.
In CSP, a failure is a pair consisting of an event trace and a set of refusal events. If A is the alphabet of
events that a system M can engage in, then a failure of M is a pair of the form (s,X) where s ∈ A∗ is a finite
trace of events and X ⊆ A is a refusal set. The interpretation of the pair is that M may engage in the trace
of events s after which it may refuse to engage in any of the events in the refusal set X. For example, VM 1
of Fig. 1 can refuse Coin immediately after it executes Coin thus it containts the failure (〈Coin〉, {Coin}).
VM 1 can refuse neither Tea nor Coffee after Coin thus it does not contain the failures (〈Coin〉, {Tea}) nor
(〈Coin〉, {Coffee}). Because of internal choice, VM 2 may refuse Tea after Coin. VM 2 has the failures,

(〈Coin〉, {Tea}) and (〈Coin〉, {Coffee}).

VM 2 does not have the failure (〈Coin〉, {Tea,Coffee}) since it cannot refuse both Tea and Coffee after Coin.
The event labels (e.g., Coin, Tea, Coffee) are used to construct the traces and the refusal sets. We write

A for the (finite) set of labels of the events of machine M and write wpM (a,Q) for the weakest precondition
guaranteeing that the event with label a ∈ A of machine M will establish postcondition Q. In Event-B, an
event operates on a list of machine variables v. An event labelled a from machine M has a canonical form
defined in terms of a guard and a before-after predicate as follows [Abr10]:

a =̂ when G(v) then v : | BA(v, v′) end.

The weakest precondition of this canonical form is,

wpM (a,Q) =̂ G(v)⇒ (∀v′ ·BA(v, v′)⇒ Q[v′/v]).

Event-B has a feasibility proof obligation that requires that BA(v, v′) is satisfiable for some v′ whenever
G(v) holds.

Similar to [Mor90], we write wpM (s,Q) for the weakest precondition of the sequential composition of the
events of M labelled by trace s We write t; s for concatenation of traces and have that:

wpM (s; t, Q) = wpM (s, wpM (t, Q)).

Traces and failures represent possible behaviour whereas weakest preconditions represent guaranteed
behaviour, i.e, the postcondition is guaranteed no matter what path is followed during execution of a non-
deterministic event. To represent possible behaviour, Morgan defined the conjugate weakest precondition as
follows:

wpM (s,Q) =̂ ¬wpM (s,¬Q).

wpM (s,Q) represents the weakest precondition under which execution of s might lead to a state satisfing Q.
We write grdM (a) for the guard of an event aof machine M and say that a is enabled whenever it is possible
to reach some state by executing a, thus,

grdM (a) =̂ wp(a, true).

The feasibility obligation of Event-B means that for the canonical form of an event, grdM (a) = G(v).
For any set of labels X ⊆ A, we write grdM (X) for the disjunction of the guards of actions labelled

from X. We write i for the special initialisation event of M . We write FM for the set of failures of M and,
following Morgan [Mor90], a pair (s,X) is a failure of machine M as follows:

(s,X) ∈ FM =̂ wpM (i; s, ¬grdM (X)).

That is, (s,X) is a failure of M if it is possible for M to execute the sequence of events i; s and reach a state
in which none of the events in X is enabled.

6 M. Butler

4. The new definition of failures

As explained in the introduction, we want to group events in order to specify that the choice between enabled
events within a group is internal rather than external. As outlined in the previous section, the definition of
failures in [Mor90] means that an event may be refused when it is not enabled. We want to broaden the
condition under which an event may be refused to take account of other events in the same event group. For
example, assume that the Update and Abort events of the abstract transaction model, Transaction1, were
to be grouped together, then it should be possible for Update to be refused either when Update is disabled
or when Abort is enabled. More generally, assume that a is part of a group of events G, then the condition
under which a may be refused are,

¬grdM (a) ∨ grdM (G \ {a}).

That is, a may be refused when a is disabled or when some event other than a in the same group G is
enabled. This condition can be re-written as an implication:

grdM (a) ⇒ grdM (G \ {a}).

In order to define the failures, we need to find the refusal condition for a set of events X. We do this by
factoring X into its groups so that X ∩G will be those events of X that are in a group G while G\X will be
the events of G that are not in X. Generalising the above refusal condition for a single event to the events
of X from G gives the following:

grdM (X ∩G) ⇒ grdM (G \X).

Experience with proofs similar to those presented later in this paper led to the observation that this can be
re-written as follows:

grdM (X ∩G)⇒ grdM (G \X)

= (grdM (X ∩G)⇒ grdM (G \X)) ∧ (grdM (G \X)⇒ grdM (G \X)) tautology

= (grdM (X ∩G) ∨ grdM (G \X)) ⇒ grdM (G \X) factorisation

= grdM (G) ⇒ grdM (G \X) (X ∩G) ∪ (G \X) = G

The condition grdM (G) ⇒ grdM (G \X) is easier to reason with since X only appears once.
We assume that a machine M has a set of event group labels, written grpM , that the set of events in

a group labelled g ∈ grpsM is given by evtsM (g) and that every event in A is in at least one group. For
example, if we grouped the Tea and Coffee events of VM 1 in Fig. 1, then we would have,

grpVM1 = {G1, G2}, evtsVM1(G1) = {Coin}, evntsVM1(G2) = {Tea,Coffee}.

When setting out on the work described in this paper our intention was that the events would be partitioned
by the groups, i.e., the event groups are disjoint, as this conforms to the usage we encountered in practice.
However, disjointness is not required for any of the proofs that we do. The only requirement is that every
event is in at least one group (otherwise it will always be refused according to our definition).

We are now in a position to give a more precise definition for the refusal condition for a set X:

Definition 1. For Event-B machine M with event alphabet A and event set X ⊆ A, the refusal predicate
of X, written refM (X) is defined as follows:

refM (X) =̂
∧

g∈grpM

grdM (evtsM (g)) ⇒ grdM (evtsM (g) \X).

This in turn leads to our new definition of machines failures:

Definition 2. For Event-B machine M with event alphabet A, (s,X) ∈ A∗×P(A) is a failure of M , written
FM , as follows:

(s,X) ∈ FM =̂ wpM (i; s, refM (X)).

To illustrate the definition of refM , we calculate some refusal predicates for example VM 1 (Fig.1) with
event groups {Coin} and {Tea,Coffee}; that is, the choice between Tea and Coffee is internal since they are
placed in the same group. The conditions under which the set {Tea} is refused is calculated as follows:

External and Internal Choice with Event Groups in Event-B 7

ref({Tea})
= (grd({Coin})⇒ grd({Coin})) ∧ (grd({Tea,Coffee})⇒ grd(Coffee)) Definition 1

= true ∧ ((m1 = vend ∨m1 = vend)⇒ m1 = vend) Fig.1, definition of VM1

= true

Thus it is always possible for VM 1 to refuse {Tea} (and similary {Coffee}). However VM 1 can refuse both
Tea and Coffee only when it is not in the vending state:

ref({Tea,Coffee})
= (grd({Coin})⇒ grd({Coin})) ∧ (grd({Tea,Coffee})⇒ grd({}))

= true ∧ ((m1 = vend ∨m1 = vend)⇒ false)

= m1 6= vend

Finally it is never possible for VM 1 to refuse all three events:

ref({Coin, Tea,Coffee})
= (grd({Coin})⇒ grd({})) ∧ (grd({Tea,Coffee})⇒ grd({}))

= (m1 = idle⇒ false) ∧ ((m1 = vend ∨m1 = vend)⇒ false)

= m1 6= idle ∧ m1 6= vend

= false

Hoare has defined several well-formedness conditions for the failures model of CSP as follows [Hoa85]:

(〈〉, {}) ∈ F (1)

(s; t,X) ∈ F ⇒ (s, {}) ∈ F (2)

(s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y) ∈ F (3)

(s,X) ∈ F ∧ a ∈ A ∧ a 6∈ X ⇒ (s,X ∪ {a}) ∈ F ∨ (s; a, {}) ∈ F (4)

To validate his definition of failures, Morgan shows that that these conditions follow as theorems from the
definition [Mor90]. We prove the same for our new definition. Proving Conditions (1) and (2) is independent
of our definition of refM so we concentrate on Conditions (3) and (4). For Condition (3) we will use the
following lemma that follows easily from the fact that grdM (X) is defined as a disjunction:

Lemma 1. For Y ⊆ X, we have that grdM (Y)⇒ grdM (X).

Next we prove the following lemma concerning closure of refusal conditions:

Lemma 2. For Y ⊆ X, we have that refM (X)⇒ refM (Y).

Proof:

refM (X)

=
∧
g ∈ grpM · grdM (G)⇒ grdM (G \X) Definition 1, writing G for evtsM (g)

⇒
∧
g ∈ grpM · grdM (G)⇒ grdM (G \ Y) by Lemma 1 and (G \X) ⊆ (G \ Y)

= refM (Y) Definition 1

Theorem 1. (s,X) ∈ FM ∧ Y ⊆ X ⇒ (s, Y) ∈ FM .

Proof:

(s,X) ∈ FM

= wpM (i; s, refM (X)) Definition 2

⇒ wpM (i; s, refM (Y)) by Lemma 2 , Y ⊆ X and monotonicity of wp

= (s, Y) ∈ FM Definition 2

Proof that Condition (4) of the failures model is satisfied requires a case split. We proceed with the
theorem and its proof and then introduce a required lemma:

8 M. Butler

Theorem 2. (s,X) ∈ FM ∧ a ∈ A ∧ a 6∈ X ⇒ (s,X ∪ {a}) ∈ FM ∨ (s; a, {}) ∈ FM .

Proof:

(s,X) ∈ FM

= wpM (i; s, refM (X)) Definition 2

= wpM (i; s, refM (X) ∧ (¬grdM (a) ∨ grdM (a))) introduce cases

= wpM (i; s, refM (X) ∧ ¬grdM (a)) ∨ wpM (i; s, refM (X) ∧ grdM (a)) wp is disjunctive

⇒ wpM (i; s, refM (X ∪ {a})) ∨ wpM (i; s, refM (X) ∧ grdM (a)) Lemma 3

⇒ wpM (i; s, refM (X ∪ {a})) ∨ wpM (i; s, wpM (a, true)) grdM (a) = wpM (a, true)

= (s,X ∪ {a}) ∈ FM ∨ (s; a, {}) ∈ FM Definition 2

Lemma 3. For a ∈ A, a 6∈ X we have that refM (X) ∧ ¬grdM (a) ⇒ refM (X ∪ {a}).

refM (X) ∧ ¬grdM (a)

= (
∧
g ∈ G · grdM (G)⇒ grdM (G \X)) ∧ ¬grdM (a) Definition 1, writing G for evtsM (g)

⇒
∧
g ∈ grpM · grdM (G) ⇒ (grdM (G \X) ∧ ¬grdM (a)) Logic

Case a ∈ G:

=
∧
g ∈ grpM · grdM (G) ⇒ ((grdM ((G \ (X ∪ {a})) ∪ {a}) ∧ ¬grdM (a)) a ∈ G, a 6∈ X

=
∧
g ∈ grpM · grdM (G) ⇒ ((grdM (G \ (X ∪ {a})) ∨ grdM (a)) ∧ ¬grdM (a)) Defn of grdM

⇒
∧
g ∈ grpM · grdM (G) ⇒ grdM (G \ (X ∪ {a})) Logic

= refM (X ∪ {a})

Case a 6∈ G is trivial to prove since in that case G \X = G \ (X ∪ {a}).

It is important to bear in mind that because of nondeterminism in events, a single sequence of events can
give rise to multiple execution paths. For example, the event sequence i;Coin in VM 2 (Fig. 1) may result in
variable m2 = tea or m2 = coffee. Condition wpM (i; s, Q) holds when all execution paths of the sequence
i; s result in a state satisfying Q. This includes the case where i; s has no execution paths, i.e., is not a trace
in the failures model. Morgan’s definition of system failures (Section 3) means that if an event is guaranteed
to be enabled via all execution paths of a sequence i; s, then that event cannot be refused after that trace:

wpM (i; s, grdM (a)) = ¬ wpM (i; s, ¬grdM (a))

= (s, {a}) 6∈ FM by Morgan’s definition

If two events a and b are guaranteed to be enabled after i; s and i; s is a trace, then neither a nor b can
be refused after i; s, i.e., the choice between a and b after i; s is external. The equivalent result with our
definition is at the level of event groups rather than individual events. If G is the set of all events in a single
group, then it can be shown that refM (G) = ¬grdM (G), thus,

wpM (i; s, grdM (G)) = ¬ wpM (i; s, ¬grdM (G))

= ¬ wpM (i; s, refM (G))

= (s,G) 6∈ FM by our definition

That is, if execution of event sequence i; s is guaranteed to lead to a state in which some event in G is
enabled, then G cannot be refused after s. By Property (3) above, if (s,G) 6∈ FM then no set larger than G
can be refused after s either. So, as expected, our definition means that the choice between event groups is
external.

5. Data refinement and event groups

Data refinement is the standard development technique in Event-B and proving data refinement requires the
use of a gluing invariant linking abstract and concrete variables. Abrial formulates the proof obligation for

External and Internal Choice with Event Groups in Event-B 9

refinement in Event-B as a condition on the canonical form of events [Abr10]. Assume we are data-refining
abstract event aM operating on abstract variables v by concrete event aN operating on concrete variables
w. The respective events have the following canonical form:

aM =̂ when G(v) then v : | S(v, v′) end

aN =̂ when H(w) then w : | R(w,w′) end

The modeller needs to provide a gluing invariant I(v, w) that relates the abstract and concrete variables and
verify the following proof obligation for each pair of corresponding abstract and refined events:

I(v, w) ∧ H(w) ∧ R(w,w′) ⇒ G(v) ∧ ∃v′ · S(v, v′) ∧ I(v′, w′) (5)

In this paper, we assume a one-to-one correspondence between abstract and concrete events. In general, in
Event-B, each abstract event may be refined by one or more concrete events and there may be concrete
events that refine skip.

Abrial also defines an enabledness-preservation obligation, similar to Back’s condition on guards, requiring
that the disjunction of abstract guards, grdM (A), entails the disjunction of concrete guards, grdN (A), under
the gluing invariant:

I(v, w) ∧ grdM (A) ⇒ grdN (A) (6)

We use a different formulation of event refinement in terms of wp (as found in work on refinement
such as [GM91, Mor89, von94]). Rather than having a gluing predicate I, we use a special kind of predi-
cate transformer called a representation transformer that maps predicates on v to predicates on w. Given
representation transformer rep, data refinement is formulated as follows:

rep(wpM (a,Q)) ⇒ wpN (a, rep(Q)), for all postconditions Q on v (7)

If rep(Q) is defined as (∃v · I(v, w) ∧ Q) then it can be shown that (5) entails (7) [GM91, Mor89, von94].
This definition of rep is disjunctive which is an assumption we will exploit below. We use a representation
transformer rather than gluing predicate as it is algebraically simpler and thus simplifies our proofs, i.e., we
use rep(Q) rather than (∃v · I(v, w) ∧Q).

In the CSP failures model, refinement is defined as failures inclusion, that is, M is refined by N when
FN ⊆ FM . Simulation is a standard technique for verifying data refinement between state-based systems.
Woodcock and Morgan define forwards and backwards simulation rules for action system that are shown
to be sound and jointly complete in the failure-divergences model [WM90]. Here we focus on the forwards
simulation rule, modifying it slightly to take account of the event groupings. The motivation for introducing
rep in [GM91] is that it captures both forwards and backwards simulation in a single definition; disjunctive
rep corresponds to forwards simulation while conjunctive rep corresponds to backwards simulation. However,
since we assume that rep is disjunctive, we are restricting our treatment of refinement to forwards simulation.
Our forward simulation rule is as follows:

Definition 3. Let machines M and N both have the same event alphabet A and the same event groupings
(grpM = grpN) and let that rep be a disjunctive representation transformer linking the states of M and N .
M is forward simulated by N under rep provided:

(i) wpM (i, Q) ⇒ wpN (i, rep(Q)), for initialisation event i, all postconditions Q on v

(ii) rep(wpM (a,Q)) ⇒ wpN (a, rep(Q)), for all a ∈ A, all postconditions Q on v

(iii) rep(grdM (evtM (g))) ⇒ grdN (evtM (g)) for all g ∈ grpM

As outlined above, Conditions (i) and (ii) in this rule are entailed by the data refinement rule in Event-B.
Condition (iii) concerns enabledness preservation between the guards of corresponding event groups. This
third condition is the essential difference between our simulation rule and those of the forward simulation
rule of [WM90] and Abrial’s rule represented by (6) above. Our rule is in between both of those: in [WM90],
the enabledness obligation is at the level of individual events rather than event groups while (6) treats all
events as a single group.

Our simulation rule allows us to verify that VM 1 is refined by VM 2 (Fig. 1) provided Tea andCoffee are
in the same event group. It also allows us to verify that Transaction1 is refined by Transaction2 (Fig. 2)
provided Update andAbort are in the same event group.

We formulate and prove the soundness of our simulation rule w.r.t. our failures semantics:

10 M. Butler

Theorem 3. If M is forward simulated by N under rep, then FN ⊆ FM .

Proof of this theorem will use the following lemma:

Lemma 4. If M is forward simulated by N under rep, then for all s ∈ A∗

wpM (i; s, Q) ⇒ wpN (i; s, rep(Q)).

This lemma is easily proved using induction over traces and Conditions (i) and (ii) of Definition 3.
Proof of Theorem 3 is by contrapositive and proceeds as follows:

(s,X) 6∈ FM

= wpM (i; s, ¬refM (X)) Definition 2

⇒ wpN (i; s, rep(¬refM (X))) Lemma 4 with ¬refM (X) for Q

⇒ wpN (i; s, ¬refN (X)) Lemma 5

⇒ (s,X) 6∈ FN Definition 2

Lemma 5. If M is forward simulated by N under rep, then for any X ⊆ A:

rep(¬refM (X)) ⇒ ¬refN (X).

Proof:

rep(¬refM (X))

= rep(¬
∧

g ∈ grpM · grdM (G)⇒ grdM (G \X)) Definition 1, writing G for evtsM (g)

=
∨
g ∈ grpM · rep(¬(grdM (G)⇒ grdM (G \X))) rep is disjunctive

⇒
∨
g ∈ grpM · rep(grdM (G)) ∧ rep(¬grdM (G \X)) Logic, rep is monotonic

⇒
∨
g ∈ grpM · grdN (G) ∧ rep(¬grdM (G \X)) Condition (iii) of simulation rule

⇒
∨
g ∈ grpM · grdN (G) ∧ ¬grdN (G \X) Lemma 7

= ¬
∧
g ∈ grpM · grdN (G)⇒ grdN (G \X) Logic

= ¬refN (X) Definition 1, grpM = grpN

Note that the proof of this lemma makes use of group enabledness preservation (Condition (iii) of the
simulation rule) but also makes use of the fact that refinement between events entails guard strengthening
(Lemma 7) which is the opposite direction to Condition (iii). According to our definition of the refusal
predicate, an abstract event a may be refused when some other event b in its group is enabled. For the concrete
model to be a valid failures refinement, a should not be refused in more cases than in the abstract model
thus b should not be more enabled in the concrete model. Event refinement (Condition (ii) of simulation)
ensures that the concrete version of b is not more enabled (Lemma 6):

Lemma 6. If M is forward simulated by N under rep, then we have for a ∈ A:

rep(¬grdM (a)) ⇒ ¬grdN (a)

Proof:

rep(¬grdM (a))

= rep(wp(aM , false)) Definition of grdM (a)

⇒ wp(aN , rep(false)) Condition (ii) of simulation rule

= wp(aN , false) rep is disjunctive so rep(false) = false

= ¬grdN (a) Definition of grdN (a)

We use this to prove Lemma 7:

Lemma 7. If M is forward simulated by N under rep, then for any Y ⊆ A, we have:

rep(¬grdM (Y)) ⇒ ¬grdN (Y)

Proof:

External and Internal Choice with Event Groups in Event-B 11

rep(¬grdM (Y))

= rep(¬
∨
a ∈ Y · grdM (a)) Definition of grdM (Y)

= rep(
∧
a ∈ Y · ¬grdM (a)) Logic

⇒
∧
a ∈ Y · rep(¬grdM (a)) rep is monotonic

⇒
∧
a ∈ Y · ¬grdN (a) Lemma 6

⇒ ¬
∨
a ∈ Y · grdN (a) Logic

= ¬grdN (Y) Definition of grdN (Y)

6. Refinement by group subsetting

In the previous section, we presented a simulation rule that required verifying preservation of enabledness
between corresponding event groups. In this section, we show that another, very simple, method of machine
refinement is to break event groups into smaller groups. This has the effect of converting internal choice into
external choice. For example, suppose we started with a version of VM1 (Fig. 1) with two event groupings,

G1 = {Coin}, G2 = {Tea,Coffee}

so that the choice between Tea andCoffee is internal. Let us refer to this as VM1a. Now we construct another
version, VM1b say, where the group G2 is split so VM1b has event groups,

H1 = {Coin}, H2 = {Tea}, H3 = {Coffee}

and now the choice between Tea andCoffee is external. We would expect that VM1a is refined by VM1b. We
present a theorem that shows that such a rearrangement of event groupings that increases external choice is
always a valid refinement. In practice, we would expect to partition groups but disjointness is not a necessity.

We say that machines M and N are equivalent modulo event groupings if they differ only in the way
events are grouped so that their variables and events are the same. We assume the re-mapping of groups
from M to N is defined by a function gmap ∈ grpM → P(grpN). For the example above,

gmap(G1) = {H1}, gmap(G2) = {H2, H3}.

The following definition characterises the conditions under which such a re-mapping will preserve enabledness:

Definition 4. Assume M and N are equivalent modulo their event grouping. A re-mapping of event groups
of M to N , gmap ∈ grpM → P(grpN), is enabledness preserving if it satisfies the following conditions:

(i) (
⋃
g ∈ grpM · gmap(g)) = grpN

(ii) (
⋃
h ∈ gmap(g) · evtN (h)) = evtM (g), for all g ∈ grpM

Re-mapping the event groupings using an enabledness-preseving gmap is refinement-preserving under the
failures model:

Theorem 4. If gmap is an enabledness-preserving remapping of event groups from M to N , then FN ⊆ FM .

Proof: Since M and N are equivalent modulo their event grouping, it is easy to show that wpN (i; s,Q) =
wpM (i; s,Q) for any trace s and predicate Q (proof omitted). The proof then continues as follows:

(s,X) ∈ FN

= wpN (i; s, refN (X)) Definition 2

= wpM (i; s, refN (X))) wpN (i; s,Q) = wpM (i; s,Q)

⇒ wpM (i; s, refM (X))) Lemma 8

= (s,X) ∈ FM Definition 2

The main impact of the re-mapping of groups is that refM and refN are different. Instead refM and refN
are related as follows:

12 M. Butler

Lemma 8. If M and N are equivalent modulo their event grouping and gmap is an enabledness-preserving
remapping of event groups, then for any X ⊆ A, we have:

refN (X) ⇒ refM (X)

refN (X)

=
∧
h ∈ grpN · grdN (evtN (h))⇒ grdN (evtN (h) \X) Definition of refN (X)

=
∧
g ∈ grpM ·

∧
k ∈ gmap(g) · grdN (evtN (k))⇒ grdN (evtN (k) \X) Condition (i)

⇒
∧
g ∈ grpM · (

∨
k ∈ gmap(g) · grdN (evtN (k))) ⇒

(
∨
k ∈ gmap(g) · grdN (evtN (k) \X)) Logic

=
∧
g ∈ grpM · grdN (

⋃
k ∈ gmap(g) · evtN (k)) ⇒

grdN ((
⋃

k ∈ gmap(g) · evtN (k) \X)) Definition of grdM

=
∧
g ∈ grpM · grdN (

⋃
k ∈ gmap(g) · evtN (k)) ⇒

grdN ((
⋃

k ∈ gmap(g) · evtN (k)) \X) \ distributes through ∪
=

∧
g ∈ grpM · grdM (evtM (g)) ⇒ grdM (evtM (g) \X) Condition (ii), grdM = grdN

= refM (X) Definition of refM (X)

7. Concluding

We introduced the notion of event groups for the Event-B formalism in order to distinguish internal choice
of enabled events from external choice. At the semantic level, this distinction comes from the CSP failures
model and was applied to Event-B by modifying Morgan’s definition of the failures model for action systems.
External choice should be maintained by refinement while internal choice may be reduced. The refinement
theorems give us what we had set out to achieve: a semantic justification for a proof rule that requires
enabledness preservation between groups of events (rather than between all events at one extreme or between
individual events at the other extreme) as well as a justification for re-mapping of event groups.

An attraction of the proof rules is that they fit well with the existing proof rules for Event-B as embodied
in the Rodin tool. Although there is no single behavioural semantic model for Event-B, the basic proof rules
for event refinement and enabledness preservation apply to several semantic models including sequential and
concurrent programs. This is explored further by Hallerstede in [Hal11].

There are several concepts in Event-B for which we have yet to explore how they relate to event groups
with internal choice. These include new events in a refinement, machine composition and event parameteri-
sation. The ability to distinguish explicitly between internal and external choice should be especially useful
for distinguishing input and output parameters of events. As is the case in CSP, the choice of value for input
parameters is best treated as external choice: the environment chooses the value of an input and the choice of
possible input values should be maintained through refinement. Where there is more than one choice of value
for an output parameter in a particular state, then the choice is best treated as internal: the environment
does not choose the value of a parameter output to it and the choice of output value may be reduced (though
not removed completely) in refinement.

References

[ABH+10] J.-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: an open toolset for modelling
and reasoning in Event-B. STTT, 12(6):447–466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010.
[Bac90] R.-J.R. Back. Refinement calculus II: Parallel and reactive systems. In J.W. de Bakker, W.P. de Roever, and G.

Rozenberg, editors, Stepwise Refinement of Distributed Systems, volume LNCS 430. Springer–Verlag, 1990.
[BB09] E. Ball and M. Butler. Event-B patterns for specifying fault-tolerance in multi-agent interaction. In Methods,

Models and Tools for Fault Tolerance, volume 5454 of LNCS, pages 104–129. Springer, 2009.
[But92] M. Butler. A CSP Approach To Action Systems. D.Phil. Thesis, Programming Research Group, Oxford University,

1992.
[BvW94] R.-J.R Back and J. von Wright. Trace refinement of action systems. In CONCUR, volume 836 of LNCS, pages

367–384. Springer, 1994.
[BvW00] R.-J.R Back and J. von Wright. Contracts, games, and refinement. Inf. Comput., 156(1-2):25–45, 2000.

External and Internal Choice with Event Groups in Event-B 13

[BY08] M. Butler and D. Yadav. An incremental development of the Mondex system in Event-B. Formal Asp. Comput.,
20(1):61–77, 2008.

[DB09] K. Damchoom and M. Butler. Applying event and machine decomposition to a flash-based filestore in Event-B.
In SBMF 2009, volume 5902, pages 134–152. Springer LNCS, 2009.

[FRB11] A.S. Fathabadi, A. Rezazadeh, and M. Butler. Applying atomicity and model decomposition to a space craft
system in Event-B. In NASA Formal Methods, volume 6617 of LNCS, pages 328–342. Springer, 2011.

[GM91] P.H.B. Gardiner and C.C. Morgan. Data refinement of predicate transformers. Theoretical Computer Science,
87:143–162, 1991.

[Hal11] S. Hallerstede. On the purpose of Event-B proof obligations. Formal Asp. Comput., 23(1):133–150, 2011.
[He89] J. He. Process refinement. In J. McDermid, editor, The Theory and Practice of Refinement. Butterworths, 1989.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice–Hall, 1985.
[Jos88] M.B. Josephs. A state-based approach to communicating sequential processes. Distrib. Comput., 3:9–18, 1988.
[Mor89] J.M. Morris. Laws of data refinement. Acta Informatica, 26:287–308, 1989.
[Mor90] C.C. Morgan. Of wp and CSP. In W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra, editors, Beauty is

our business: a birthday salute to Edsger W. Dijkstra. Springer–Verlag, 1990.
[SB11] M.R. Sarshogh and M. Butler. Specification and refinement of discrete timing properties in Event-B. In AVoCS

2011, September 2011.
[STW11] S. Schneider, H. Treharne, and H. Wehrheim. A CSP Account of Event-B Refinement. In Refine, volume 55 of

EPTCS, pages 139–154, 2011.
[von94] J. von Wright. The lattice of data refinement. Acta Informatica, 31(2):105–135, 1994.
[WM90] J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurrent systems. In D. Bjørner, C.A.R. Hoare,

and H. Langmaack, editors, VDM ’90, volume LNCS 428. Springer–Verlag, 1990.
[YB06] D. Yadav and M. Butler. Rigorous design of fault-tolerant transactions for replicated database systems using Event

B. In RODIN Book, volume 4157 of LNCS, pages 343–363. Springer, 2006.

