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Abstract. We consider a behavior with an equal number of inputs and outputs for which there
exists a quadratic differential form which is positive for nonzero trajectories of the behavior and
whose derivative is equal to the scalar product of the input vector and the derivative of the output
vector. Such systems occur, for example, when considering conservative mechanical systems. We
give a method of computation of a state space realization from an observable image representation
of such a behavior. We apply the insights derived from this realization procedure to the synthesis of
lossless mechanical systems.
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1. Introduction. We deal with the realization of a class of linear lossless systems
with external control u and output y in the form(

d
dtq

d
dtp

)
=

(
0 P

−Q 0

) (
q
p

)
+

(
0
B

)
u,(1)

y = B�q,

where P = P� > 0, Q = Q� > 0 and the signals u and y have the same dimension.
Equations (1) arise naturally when considering conservative mechanical systems,

in which case q is the vector of positions and p that of momenta. In that con-
text, the matrices P and Q are related to the total energy of the system, defined as
1
2 (p

�Pp+q�Qq) =: E(p, q); this total energy is conserved in the sense that d
dtE(p, q) =

1
2 (u

�(dydt ) + (dydt )
�u) for all trajectories (p, q, u, y) satisfying (1), where the functional

1
2 (u

�(dydt ) + (dydt )
�u) appearing on the right-hand side is the mechanical power. In

[7] it has been shown that a state space representation of the form (1) exists for a
time-reversible Hamiltonian system, whose transfer function G ∈ R

u×u(s) is such that

G(s) = G(−s)� = G(−s) ,

and a model reduction procedure for such systems has been described in [8].
A representation (1) sometimes needs to be computed from higher-order descrip-

tions of conservative mechanical systems, for example, when the transfer function of
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REALIZATION OF LOSSLESS BEHAVIORS 1701

such a system is specified. In this paper we deal with the computation of a state
space representation (1) from a given image representation of the external behavior
of (1). Our results consequently enlarge the scope of application of the model reduc-
tion procedure of [8] to those situations when the system under consideration is a
time-reversible Hamiltonian system described in transfer function or image form.

We use the behavioral framework and the calculus of quadratic differential forms
(QDFs); the reader is referred to [4] and [9] for a thorough exposition. We first
define a class of behaviors known as lossless negative imaginary behaviors. We then
show that a realization of a lossless negative imaginary behavior of the form (1) can
be obtained from its image representation using algebraic methods. Our realization
procedure produces positive definite matrices P and Q; a direct consequence of this
fact is that the class of lossless negative imaginary behaviors coincides with the class
of Hamiltonian systems investigated in [8]. We also show that when considering
single-input, single-output (SISO) lossless negative imaginary behaviors, the matrices
P and Q obtained by our realization procedure are also diagonal and tridiagonal,
respectively. This special structure of P and Q can be exploited to synthesize in a
straightforward way a lossless linear mechanical system from a given transfer function
using only springs and masses.

The paper is organized as follows. We review important concepts and algebraic
tools in section 2. In section 3, we discuss further properties of QDFs and properties
of lossless positive real (LPR) matrices that are relevant for the main result of this
paper. We illustrate in section 4 the main result, namely an algorithm to compute
a realization (1) of a lossless negative imaginary behavior. In section 5, we show the
application to the synthesis of lossless mechanical systems.

Notation. The space of n dimensional real vectors is denoted by R
n and the space

of m× n real matrices by Rm×n. The space of m×m symmetric real matrices is denoted
by Rm×m

s . If one of the dimensions is not specified, a bullet • is used, so that for
example, R•×n denotes the set of real matrices with n columns and an unspecified
(finite) number of rows. In order to enhance readability, when dealing with a vector
space R• whose elements are denoted with w (respectively, y, u, x), the notation Rw

(respectively Ry,Ru,Rx) is used, and when dealing with a vector space R• whose
elements are denoted with �, the notation Rl is used; similar considerations hold for
matrices representing linear operators on such spaces. Given two matrices A and B
with the same number of columns, we denote with col(A,B) the matrix obtained by
stacking A over B; given matrices R1 and R2 with the same number of rows, we
denote with row(R1, R2) the matrix obtained by positing the matrix R2 to the right
of R1.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted
by R[ξ]; the ring of polynomials with real coefficients in the indeterminates ζ and η is
denoted by R[ζ, η]. The set of n× m polynomial matrices in ξ is denoted by Rn×m[ξ]
and that consisting of all n× m polynomial matrices in ζ and η by Rn×m[ζ, η]. The
space of real rational functions in the indeterminate ξ is denoted by R(ξ) and the
space of all matrices of size w × l, whose entries are real rational functions of the
indeterminate ξ is denoted by Rw×l(ξ).

The set of infinitely differentiable functions from R to R
w is denoted by C∞(R,Rw).

The class of behaviors with infinitely differentiable manifest variable w is denoted by
Lw. Given a1, . . . , an ∈ R, diag(a1, . . . , an) denotes the diagonal matrix with diagonal
entries a1, . . . , an; this notation is extended to the block-diagonal case when a1, . . . , an
are real square matrices. IN stands for the identity matrix of size N . 0w×l denotes
a matrix of size w × l consisting of zeroes, and 0N denotes a square matrix of size N
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1702 SHODHAN RAO AND PAOLO RAPISARDA

consisting of zeroes. j denotes the imaginary square root of −1. �e(a) and �m(a)
denote the real and imaginary parts of a complex number a. ā denotes the conjugate
of a complex number a. A∗ denotes the conjugate transpose of a square complex
matrix A. The set of positive real numbers is denoted with R+. The set of positive
integers is denoted with Z+. The row rank of a matrix H ∈ R

m×p[ξ] is denoted by
rank(H). M |A denotes the image of a linear map M with domain restricted to the
set A.

2. Background.

2.1. Linear differential behaviors. A linear differential behavior B is a linear
subspace of C∞(R,Rw) consisting of all solutions w of a system of linear constant-
coefficient differential equations. Such a set is represented as

R

(
d

dt

)
w = 0,(2)

where R ∈ R
•×w[ξ], (2) is called a kernel representation of the behavior B := {w ∈

C∞(R,Rw) | w satisfies (2)}, and w is called the manifest or external variable of B.
When modeling physical systems from first principles, we often introduce a num-

ber of latent (or auxiliary) variables � besides the manifest ones; thus latent variable
representations

(3) R

(
d

dt

)
w = M

(
d

dt

)
�

are obtained. Equation (3) describes the full behavior Bf := {(w, �) ∈ C∞(R,Rw+l) |
(3) holds}, and we call the projection of Bf on the w variable, i.e., B := {w ∈
C∞(R,Rw) | ∃� ∈ C∞(R,Rl) such that (3) holds}, the manifest behavior associated
with (3).

When R in (3) is the w-dimensional identity matrix Iw, we call

(4) w = M

(
d

dt

)
�

an image representation of B. A behavior can be represented by (4) if and only if it
is controllable in the behavioral sense (see [4, Chapter 5]). The latent variable � in
(4) is called observable from w if [w = 0] =⇒ [� = 0]. It can be shown that this is the
case if and only if the matrix M(λ) has full column rank for all λ ∈ C, in which case
we speak of an observable image representation. If B is controllable, then it always
admits an observable image representation (4). Given an image representation, an
i/o partition (see [4] for the definition of input and output in the behavioral context)
corresponds to a partition of M as M = col(U, Y ) with U ∈ Rm×m[ξ] nonsingular. In
such a case the transfer function from u to y is the matrix of (not necessarily proper)
rational functions G = Y U−1. Note that for a controllable system, there always exists
an image representation with the number of latent variables equal to the number of
inputs of the system.

A behavior B is called autonomous if for all w1, w2 ∈ B, [w1(t) = w2(t) for all
t ≤ 0] =⇒ [w1 = w2]. If B ∈ Lw is autonomous, then it can be proved that there
exists R ∈ Rw×w[ξ] with det(R) �= 0 such that B = ker

(
R( d

dt )
)
. The roots of the

determinant of such an R are called the characteristic frequencies of B. It can be
shown that the characteristic frequencies are independent of the kernel representation
R of B and consequently are a property of the behavior.
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REALIZATION OF LOSSLESS BEHAVIORS 1703

In this paper we also use the concept of state and of state representation (see [5]
for a thorough discussion). A latent variable � is a state variable for B if and only
if B admits a representation (3) of first order in � and zeroth order in w: E d�

dt +
F� + Gw = 0. Such a representation is called a state representation of B; in this
case we denote the latent variable with x. The minimal number of state variables
in any state representation of B is called the McMillan degree of B and is denoted
with n(B). By combining the notion of state with that of inputs and outputs we
arrive at the input/state/output (i/s/o) representation d

dtx = Ax+Bu, y = Cx+Du,
w = col(u, y).

For a behavior B described in image form, state variables can be computed from
the latent variable � applying to it a polynomial differential operator called a state
map (see [5, section 8]) as in x = X( d

dt )�, with X ∈ Rx×l[ξ]. We call a state map
minimal if it induces a minimal state variable. The problem of computing a state map
from an image representation (4) has been dealt with in [5]; in this paper we propose
an alternative solution based on two-variable polynomial matrix algebra and energy
ideas.

2.2. QDFs. We briefly review the concepts of [9] necessary for the results pre-
sented in this paper. A quadratic functional of an infinitely differentiable trajectory
w and its derivatives can be written as

(5) QΦ(w) =

N∑
h,k=0

(
dhw

dth

)�
Φh,k

(
dkw

dtk

)
,

where Φh,k ∈ Rw×w and N is a nonnegative integer. Such a functional is called a QDF.
With the QDF (5), we associate the two-variable polynomial matrix

Φ(ζ, η) =

N∑
h,k=0

Φh,kζ
hηk .

Without loss of generality, when considering QDFs we may assume that Φ ∈ Rw×w[ζ, η]
is symmetric, i.e., Φ(ζ, η) = Φ(η, ζ)�; we denote the set of all such matrices with
R
w×w
s [ζ, η].

A QDF QΨ is called the derivative of a QDF QΦ if for all w ∈ C∞(R,Rw) it holds
that d

dt (QΦ(w)) = QΨ(w); for the corresponding two-variable polynomial matrices,
there holds (ζ + η)Φ(ζ, η) = Ψ(ζ, η) (see [9]).

In this paper the notions of nonnegativity and positivity of QDFs play an impor-
tant role.

Definition 1. Let Φ ∈ Rw×w
s [ζ, η]. QΦ is said to be nonnegative, denoted by

QΦ ≥ 0 if QΦ(w) ≥ 0 for all w ∈ C∞(R,Rw), and positive, denoted by QΦ > 0, if
QΦ ≥ 0 and [QΦ(w) = 0] =⇒ [w = 0].

When considering the interplay of dynamics and functionals, we consider QDFs
restricted to the trajectories of a given behavior B. The definition of nonnegative or
positive QDF along a behavior is as follows.

Definition 2. Let Φ ∈ Rw×w
s [ζ, η]. QΦ is said to be nonnegative alongB, denoted

by QΦ

B≥ 0, if QΦ(w) ≥ 0 for all w ∈ B, and positive along B, denoted by QΦ

B
> 0,

if QΦ

B≥ 0 and [QΦ(w) = 0 and w ∈ B] =⇒ [w = 0].
These properties translate to properties of the two-variable polynomial matrices

inducing the QDFs as follows.
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1704 SHODHAN RAO AND PAOLO RAPISARDA

Proposition 3. Let Φ ∈ Rw×w
s [ζ, η] and let B = ker(R( d

dt )). Then

1. QΦ

B≥ 0 if and only if there exists F ∈ R•×w[ζ, η] and D ∈ R•×w[ξ] such that

Φ(ζ, η) = D(ζ)�D(η) + F (η, ζ)�R(η) +R(ζ)�F (ζ, η)

2. QΦ

B
> 0 if and only if QΦ

B≥ 0 and col
(
D(λ), R(λ)

)
has full column rank for

all λ ∈ C.
Proof. See [9, Proposition 3.5].

2.3. LPR and lossless negative imaginary transfer functions. In this sec-
tion, we define LPR and lossless negative imaginary transfer functions as in [1] and
[10], respectively. These concepts are needed to understand the results presented in
this paper. We begin with the definition of a positive real transfer function.

Definition 4. A rational matrix B ∈ Ru×u(ξ) is called positive real if the
following conditions hold:

1. All elements of B are analytic in the open right half plane.
2. B(λ)∗ +B(λ) ≥ 0 for Re(λ) > 0.

Given below is the definition of a LPR transfer function.
Definition 5. A rational matrix B ∈ Ru×u(ξ) is called LPR if the following

conditions hold:
1. B is positive real.
2. B(jω)∗ +B(jω) = 0 for all ω ∈ R with jω not a pole of any element of B.

Some properties of positive real functions are the following:
1. The sum of two positive real functions is also positive real.
2. If B ∈ R

u×u(ξ) is positive real, then B−1 is also positive real if it exists. (For
a proof, see [3, Theorem 5–8, p. 126]). Moreover if B is LPR, then so is B−1

if it exists.
Lossless negative imaginary transfer functions were first defined in [10].
Definition 6. A rational matrix G ∈ Ru×u(ξ) is called lossless negative imagi-

nary if H defined by H(ξ) := ξG(ξ) is LPR.

3. Further properties of QDFs and LPR matrices. In this section, we
discuss a property of a QDF that plays an important role in the main result of our
paper. We also discuss some properties of LPR matrices that are required to prove
our main result.

Theorem 7. Let Ψ ∈ R
w×w
s [ζ, η] be such that QΨ ≥ 0. Assume that Φ(ζ, η) :=

(ζ + η)Ψ(ζ, η) can be factored as Φ(ζ, η) = Y (ζ)�I(η) + I(ζ)�Y (η) with I square
and nonsingular and all elements of Z := Y I−1 analytic in the open right half plane.
Then the rational function Z is LPR.

Proof. We make use of the concept half-line nonnegativity of QDFs described
in [9, pp. 1725–1726]. It can be proved (see [9, Theorem 6.3]) that a QDF QΦ is
half-line nonnegative if and only if there exists QΨ ≥ 0 such that d

dtQΨ ≤ QΦ.
Consequently, the QDF QΦ in the statement of Theorem 7 is half-line nonnegative.
From [9, Proposition 6.2], it follows then also that Φ(λ̄, λ) ≥ 0 for all λ ∈ C with
�e(λ) > 0.

This implies that Z(λ)∗ + Z(λ) ≥ 0 for all λ ∈ C with �e(λ) > 0 such that λ is
not a pole of Z. Since Φ(−jω, jω) = 0 for all ω ∈ R, we have Z(−jω)� + Z(jω) = 0
for all ω ∈ R such that jω is not a pole of Z. From Definition 5, it follows that Z is
LPR.

The following theorem will be instrumental in proving the main result of this
paper. It elaborates on the Foster partial fraction expansion of an LPR transfer
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REALIZATION OF LOSSLESS BEHAVIORS 1705

function. It will be used later to obtain a state space realization and a corresponding
state map of a lossless negative imaginary behavior starting from an observable image
representation of the behavior.

Theorem 8. Let N,D ∈ Rl×l[ξ] be nonsingular. Define Z := DN−1. Assume

that Z−1 is strictly proper, Z(ξ) = Z(−ξ), and Z ′(ξ) := Z(ξ)
ξ is LPR. Also assume

that D(0) has full rank.
1. Z can be written as

(6) Z(ξ) = Aξ2 +B −
p∑

i=1

Ci

ξ2 + ω2
i

,

where A,B ∈ Rl×l
s are positive definite, Ci ∈ Rl×l

s are positive semidefinite
for i = 1, . . . , p, and ωi ∈ R+ are such that ωi �= ωj, i �= j, for i = 1, . . . , p.
Moreover, Z(0) is positive definite.

2. N(0) has full rank.
3. N1(ξ) := (Aξ2 +B)N(ξ)−D(ξ) is such that Z1 := N1N

−1 is strictly proper,
Z1(ξ) = Z1(−ξ), and Z ′

1(ξ) := ξZ1(ξ) is LPR.
Proof. (1) In [3, pp. 122–123], it is shown that Z ′ ∈ R

l×l(ξ) is LPR if and only if
it has a Foster partial fraction expansion given by

Z ′(ξ) = J + ξA+
K0

ξ
+

p∑
i=1

(
ξDi + Ei

ξ2 + ω2
i

)
,

where A,K0, Di ∈ Rl×l
s are nonnegative definite, J,Ei ∈ Rl×l are skew symmetric,

and ωi ∈ R+ are distinct for i = 1, . . . , p. Consequently

(7) Z(ξ) = ξZ ′(ξ) = Jξ +Aξ2 +K0 +

p∑
i=1

(
ξ2Di + Eiξ

ξ2 + ω2
i

)
.

Since Z(ξ) = Z(−ξ), we get J = 0 and Ei = 0 for i = 1, . . . , p. Thus

Z(ξ) = Aξ2 +

(
K0 +

p∑
i=1

Di

)
−

p∑
i=1

Diω
2
i

ξ2 + ω2
i

.

Now define B := K0 +
∑p

i=1 Di and Ci := Diω
2
i for i = 1, . . . , p to get (6).

We now prove that A is positive definite. Observe that

D(ξ) = Aξ2N(ξ) +

[
B −

p∑
i=1

Ci

ξ2 + ω2
i

]
N(ξ).

Since D−1 exists, it follows that D has full column rank. Consequently, there exists
a unimodular V ∈ R

l×l[ξ] such that D′ := DV is column reduced (see [2, p. 386]).
Define N ′ := NV . Then

(8) D′(ξ) = Aξ2N ′(ξ) +

[
B −

p∑
i=1

Ci

ξ2 + ω2
i

]
N ′(ξ)

Since Z−1 = N ′D′−1 is strictly proper, it follows that every column of D′ has degree
higher than that of the corresponding column of N ′ (see [2, Lemma 6.3-10, p. 383]).
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1706 SHODHAN RAO AND PAOLO RAPISARDA

This implies that the highest degree terms of every column of D′ are the same as
those of the first term on the right-hand side of (8). Let ni denote the degree of the
ith column of D′. Then we can write

D′(ξ) = D′
hc diag(ξn1 , ξn2 , . . . , ξnl) +B1(ξ),

where D′
hc is the coefficient matrix of the polynomial matrix formed by the highest

degree terms of D′ and B1 ∈ Rl×l[ξ] consists of the remaining lower degree terms of
D′. From the previous discussion, it follows that D′

hc = AA1 for some A1 ∈ Rl×l.
Since D′ is column reduced, it follows that D′

hc = AA1 has full rank. Consequently
A is positive definite.

We now prove that Z(0) and B are positive definite. From (7), it follows that
K0 = Z(0). This implies that D(0) = K0N(0). Now assume by contradiction that
det(K0) = 0. This implies that there exists a v ∈ R1×l such that vK0 = 0; but
then also vD(0) = 0 which is a contradiction (D(0) is assumed to have full rank).
Consequently K0 = Z(0) is positive definite and so is B.

(2) From (7), it follows that D(0) = K0N(0). Since D(0) and K0 have full rank,
it follows that N(0) also has full rank.

(3) Observe that Z1(ξ) =
∑p

i=1
Ci

ξ2+ω2
i
; this is a partial fraction expansion for Z1

with Ci ≥ 0 for i = 1, . . . , p. From the results in [3, pp. 122–123], it follows that Z ′
1 is

LPR. The other properties of Z1 mentioned in the statement of the theorem can be
verified easily.

Remark 9. Note that in the SISO case, Z being strictly proper implies that
Z(ξ) = Z(−ξ), as J and Ei in (7) are equal to 0 owing to their being scalar and skew
symmetric. Consequently for the SISO case the statement Z(ξ) = Z(−ξ) in Theorem
8 is redundant.

Remark 10. In Theorem 8, Z satisfies Z(ξ) = Z(−ξ) = Z(−ξ)�. A system with
such transfer function is a time-reversible Hamiltonian system. From the proof of
Theorem 8, it follows that the special structure of the Foster expansion (6) is mainly
due to this implicit assumption of time-reversibility.

We conclude this section with the following important result.
Proposition 11. Let Y, I ∈ Rl×l[ξ] be such that I is invertible and Z(ξ) :=

ξY (ξ)I(ξ)−1 is LPR. Assume that for some λ ∈ R+, Y (λ) has rank l1 < l. Assume
that T ∈ Rl×l is invertible and such that TY (λ) = col

(
Y1(λ), 0(l−l1)×l

)
with Y1 ∈

Rl1×l[ξ]. Partition TY (ξ) as TY (ξ) = col
(
Y1(ξ), Y2(ξ)

)
, where Y2 ∈ R(l−l1)×l[ξ].

Then Y2(ξ) = 0(l−l1)×l identically.
Proof. We make use of the following result from [3].
Lemma 12. Let A ∈ Rl×l(ξ) be positive real. Consider a partition of A given by

A(ξ) =

[
A11(ξ) A12(ξ)
A21(ξ) A22(ξ)

]
,

where A11 ∈ Rl1×l1(ξ), A12 ∈ Rl1×(l−l1)(ξ), A21 ∈ R(l−l1)×l1(ξ), and
A22 ∈ R(l−l1)×(l−l1)(ξ). Assume that ∃ λ ∈ R+ such that A21(λ) = 0(l−l1)×l1 and
A22(λ) = 0(l−l1)×(l−l1). Then A21(ξ) = 0(l−l1)×l1 , A22(ξ) = 0(l−l1)×(l−l1), and
A12(ξ) = 0l1×(l−l1).

Proof. Can be deduced from the proof of [3, Theorem 5-11, pp. 128–129].
We now resume the proof of the proposition. Observe that TZ(ξ)T� is positive

real and that TZ(λ)T� has the last (l − l1) rows zero. From Lemma 12, it follows
that TZ(ξ)T� has its last (l − l1) rows identically zero, which in turn implies that
Y2(ξ) = 0(l−l1)×l. This concludes the proof.
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REALIZATION OF LOSSLESS BEHAVIORS 1707

4. Main result. We begin with the definition of lossless negative imaginary
behavior. Hereafter J is defined as

(9) J(ζ, η) :=
1

2

[
0l ζIl
ηIl 0l

]
.

Definition 13 (lossless negative imaginary behavior). B ∈ L2l is lossless

negative imaginary if there exists a QDF QE

B
> 0 such that for every w ∈ B,

QJ(w) = d
dtQE(w). QE(w) is called the principal energy associated with a trajec-

tory w ∈ B.
QJ is to be interpreted as the power entering the system; when considering con-

servative mechanical systems with external variable col(y, u) with y and u having the
same dimension l, the power is the scalar product of the input vector (force or torque)
and the derivative of the output vector (linear or angular displacement).

imaginary (see Appendix for a definition). This is the reason for the the nomen-
clature “lossless negative imaginary” in Definition 13.

The following result shows how to obtain an input-output partition of a lossless
negative imaginary behavior and shows that under suitable conditions the correspond-
ing transfer function is lossless negative imaginary, thus justifying the nomenclature
“lossless negative imaginary” in Definition 13.

Lemma 14. Consider a controllable lossless negative imaginary B ∈ L2l with an
observable image representation

w =

[
w1

w2

]
=

[
N( d

dt)

D( d
dt )

]
�,

where dim(w1)=dim(w2) = l and N,D ∈ Rl×l[ξ]. Then N and D are both invertible
and col(w1, w2) is an output-input partition of B. Further if Z := ND−1 is analytic
in the open right half plane, then it is lossless negative imaginary.

Proof. First, we prove that D and N are both invertible. Define M := col(N,D),

Φ(ζ, η) := M(ζ)�J(ζ, η)M(η) =
ζN(ζ)�D(η) +D(ζ)�N(η)η

2
.

Let E ∈ R2l×2l[ζ, η] be such that QE(w) is the principal energy associated with
w ∈ B. Observe that QJ(w) = QΦ(�) =

d
dtQE(w) =

d
dtQE′(�) for every (w, �) related

as w = M( d
dt )�, with

E′(ζ, η) = M(ζ)�E(ζ, η)M(η) =
ζN(ζ)�D(η) +D(ζ)�N(η)η

2(ζ + η)
.

Note that since QE

B
> 0 and � can be chosen arbitrarily, QE′ > 0. Now assume by

contradiction that D is not invertible. Then there exists a nonzero v ∈ Rl[ξ] for which
D(ξ)v(ξ) = 0. After multiplication of E′(ζ, η) on the left by v(ζ)� and on the right
by v(η), we obtain zero. Since QE′ > 0, from Proposition 3 it follows that there exists
D′ ∈ R•×l[ξ] such that E′(ζ, η) = D′(ζ)�D′(η) with D′(λ) having full column rank
for all λ ∈ C. This implies that v(ζ)�D′(ζ)�D′(η)v(η) = 0, which in turn implies
that D′(ξ) does not have full column rank, a contradiction. This proves that D is
invertible. We can prove that N is invertible by an analogous argument.

Since D is invertible, from the discussion of section 2.1 it follows that w =
col(w1, w2) is an output-input partition of B. Define F (ξ) := ξZ(ξ). It is easy to see
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1708 SHODHAN RAO AND PAOLO RAPISARDA

that all elements of F are analytic in the open right half plane. Since QE′ > 0 and
d
dtQE′ = QΦ, from Theorem 7 it follows that F is LPR. Consequently, by definition,
Z is lossless negative imaginary.

We now show that ifB is a lossless negative imaginary behavior with an observable
image representation w = L( d

dt )� satisfying some additional properties and QE′(�) is

the principal energy associated with a trajectory w = L( d
dt )� ∈ B, then E′ can be

written as

E′(ζ, η) =
1

2
X ′(ζ)�

[
K 0
0 M−1

]
X ′(η) ,

where X ′(ξ) is a state map for B with a special structure, K = K� > 0, and
M = M� > 0 is block-diagonal. From such X ′(ξ), a realization (1) can be readily
obtained.

Theorem 15. Let w = (
N0(

d
dt )

D0(
d
dt )

)� with N0, D0 ∈ Rl×l[ξ] be an observable image

representation of a lossless negative imaginary behavior B. Define L := col(N0, D0),
B :=col(Il, 0(N−l)×l), y := N0(

d
dt )�, u := D0(

d
dt)�, and

By := {y ∈ C∞(R,Rl) | col(y, 0l×1) ∈ B}.

Assume that
1. By does not have zero among its characteristic frequencies;
2. [w ∈ By] =⇒ [w is bounded on [0,∞)];
3. Z := N0D

−1
0 is strictly proper;

4. B is time-reversible, i.e., if w ∈ B, then the time-reversed trajectory w′

defined by w′(t) := w(−t) is also a trajectory of B.
Then there exists N ∈ Z+, a positive definite block-tridiagonal matrix K ∈ RN×N

s , a
positive definite block-diagonal matrix M ∈ RN×N

s , and X ∈ RN×l[ξ] such that the
following hold:

(i) E′(ζ, η) = 1
2 (X(ζ)�KX(η) + ζηX(ζ)�MX(η)) is such that QE′(�) is the

principal energy associated with a trajectory w = L( d
dt )� ∈ B.

(ii) The following is a state space representation of B:

d

dt

[
q
p

]
=

[
0N M−1

−K 0N

] [
q
p

]
+

[
0N×l

B

]
u,

y = B�q,(10)

where q := X( d
dt)� and p := d

dt(MX( d
dt)�). col(X(ξ), ξMX(ξ)) is a state map

for B.
Remark 16. Before giving the proof of the theorem, we discuss assumption 1.

Observe that By = N0(
d
dt ) |ker(D0(

d
dt ))

. Assumption 1 is equivalent to saying that

D0(0) has full rank, or equivalently that there does not exist a trajectory of B in
which zero input corresponds to a nonzero constant output.

Note that we would like to relate lossless negative imaginary behaviors with be-
haviors of mechanical systems whose governing differential equations are given by (10),
where M = M� > 0, K = K� > 0 are the mass and stiffness matrices of the system,
respectively, q and p denote the vectors of positions and momenta, respectively, and
the dimensions of external variables y and u are each equal to l. Now consider a
trajectory col(yc, 0l×1), where yc(t) ∈ Rl is a nonzero constant for all t ∈ R. Let qc
be the corresponding position vector. Since yc = B�qc, it is easy to see that qc �= 0.
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REALIZATION OF LOSSLESS BEHAVIORS 1709

Since M > 0, it follows that Mqc �= 0, which in turn implies that the center of mass of
the system is not at the origin. However, under zero input, we would like the center of
mass of the system to be fixed at the origin. Consequently in order to accommodate
such mechanical systems, we consider lossless negative imaginary behaviors that obey
Assumption 1.

Proof. We give a constructive proof of statement (i), i.e., we illustrate a procedure
for deriving X , M , and K such that E′(ζ, η) = 1

2 (X(ζ)�KX(η) + ζηX(ζ)�MX(η)).

Since By = N0(
d
dt) |ker(D0(

d
dt ))

is bounded on [0,∞), it follows that there is no

characteristic frequency of By in the open right half plane; this implies that every
entry of Z is analytic in the open right half plane. Define

Φ0(ζ, η) := L(ζ)�J(ζ, η)L(η) =
ζN0(ζ)

�D0(η) +D0(ζ)
�N0(η)η

2
.

Let E ∈ R2l×2l[ζ, η] be such that QE(w) is the principal energy associated with
w ∈ B. Observe that QJ(w) = QΦ(�) =

d
dtQE(w) =

d
dtQE′(�) for every (w, �) related

as w = L( d
dt )� with

E′(ζ, η) = L(ζ)�E(ζ, η)L(η) =
ζN0(ζ)

�D0(η) +D0(ζ)
�N0(η)η

2(ζ + η)
.

Note that since QE

B
> 0 and � can be chosen arbitrarily, QE′ > 0. From Theorem 7,

it follows that ξZ(ξ) is LPR. From Lemma 14, it follows that N0 and consequently

Z are invertible. This implies that Z(ξ)−1

ξ is also LPR. Since B is time-reversible, it

follows that Z(ξ) = Z(−ξ). Consequently, from Theorem 8, it follows that we can
write

(11) D0(ξ) = (A0ξ
2 +B0)N0(ξ)−N1(ξ),

where A0, B0 ∈ Rl×l
s are positive definite, N1 ∈ Rl×l[ξ], F1(ξ) := ξN1(ξ)N0(ξ)

−1 is
LPR, N0(0) has full rank, and Z1 := N1N

−1
0 is strictly proper and satisfies Z1(ξ) =

Z1(−ξ). Define

E1(ζ, η) :=
ζN1(ζ)

�N0(η) +N0(ζ)
�N1(η)η

2(ζ + η)

and observe that

E′(ζ, η) =
ζN0(ζ)

�D0(η) +D0(ζ)
�N0(η)η

2(ζ + η)

=
1

2

(
N0(ζ)

�(A0ζη +B0)N0(η)−N0(ζ)
�N1(η)−N1(ζ)

�N0(η)
)
+ E1(ζ, η).

The remainder of the argument pivots on the extraction from E1(ζ, η) of an image
representation of a lower McMillan degree system satisfying the assumptions of the
theorem. The decomposition of the principal energy function can then be applied
recursively, and from such decompositions the matrices M , K, and X can be easily
computed.

To begin with, we prove that col(N1, N0) is observable. By contradiction if there
exists λ ∈ C and v ∈ Cl such that N1(λ)v = 0 and N0(λ)v = 0, then from (11) it
follows that also D0(λ)v = 0, contradicting observability of col(N0, D0).
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1710 SHODHAN RAO AND PAOLO RAPISARDA

Now consider two cases.
Case 1. det(N1) �= 0. This implies that Z1 is invertible. It follows that F1(ξ)

−1 =
Z1(ξ)

−1

ξ is LPR. Since N0(0) has full rank, Z1 is strictly proper and obeys Z1(ξ) =

Z1(−ξ). From Theorem 8 it follows that we can compute N2 ∈ Rl×l[ξ] and positive
definite A1, B1 ∈ Rl×l

s such that F2(ξ) := ξN2(ξ)N1(ξ)
−1 is LPR, Z2 := N2N

−1
1 is

strictly proper and obeys Z2(ξ) = Z2(−ξ). Moreover,

N0(ξ) = (A1ξ
2 +B1)N1(ξ)−N2(ξ).(12)

E1(ζ, η) =
1

2

(
N1(ζ)

�(A1ζη +B1)N1(η)−N1(ζ)
�N2(η)−N2(ζ)

�N1(η)
)

+ E2(ζ, η) ,

where

E2(ζ, η) :=
ζN2(ζ)

�N1(η) +N1(ζ)
�N2(η)η

2(ζ + η)
.

From Theorem 8, it follows that N1(0) has full rank. Since col(N1, N0) is observable,
from (12) it follows that col(N2, N1) is also observable.

Case 2. det(N1) = 0. Then l1 := rank(N1) < l. In the following, the two-variable
polynomial matrix E1 will be transformed to a matrix with all entries equal to zero
except the top left (l1× l1) block. This will be effected by pre- and post-multiplication
by a suitable unimodular matrix V

(13) V (ζ)�E1(ζ, η)V (η) =

[
Ẽ1(ζ, η) 0l1×(l−l1)

0(l−l1)×l1 0(l−l1)×(l−l1)

]
.

Since N1 has rank l1, there exists a unimodular matrix U ∈ Rl×l[ξ] such that UN1 has
its last l − l1 rows filled with zeroes. Define T := U(λ), where λ is any positive real
number. From Proposition 11, it follows that R(ξ) := TN1(ξ) = col(Y1(ξ), 0(l−l1)×l).
Since N1 has rank l1, it follows that Y1 has full row rank. Now consider a partition
of S(ξ) := T−�N0(ξ) given by S(ξ) = col(I1(ξ), I2(ξ)), where I1 ∈ R

l1×l[ξ] and
I2 ∈ R(l−l1)×l[ξ].

We have

[
R(ξ)
S(ξ)

]
=

[
T 0
0 T−�

] [
N1(ξ)
N0(ξ)

]
=

⎡
⎢⎢⎢⎣

Y1(ξ)

0(l−l1)×l

I1(ξ)
I2(ξ)

⎤
⎥⎥⎥⎦ .

Now observe that

E1(ζ, η) =
ζN1(ζ)

�N0(η) +N0(ζ)
�N1(η)η

2(ζ + η)
=

ζY1(ζ)
�I1(η) + I1(ζ)�Y1(η)η

2(ζ + η)
.(14)

We make use of Lemma 17 to prove that there exists a unimodular matrix H ∈
R

l×l[ξ] such that

I1H = [ Ñ0 0l1×(l−l1) ],

Y1H = [ Ñ1 0l1×(l−l1) ]

with Ñ0, Ñ1 ∈ Rl1×l1 [ξ], Ñ0, Ñ0(0) nonsingular, and col(Ñ1, Ñ0) observable. This will
enable us to prove that transformation (13) exists.
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REALIZATION OF LOSSLESS BEHAVIORS 1711

Lemma 17. Let l, l1 ∈ Z+ be such that l1 < l. Consider matrices R,S ∈ Rl×l[ξ],
Y1, I1 ∈ Rl1×l[ξ], I2 ∈ R(l−l1)×l[ξ] related by

[
R(ξ)
S(ξ)

]
=

⎡
⎢⎢⎢⎣

Y1(ξ)

0(l−l1)×l

I1(ξ)
I2(ξ)

⎤
⎥⎥⎥⎦ .

Assume that col(R,S) is observable, S and S(0) are nonsingular, and ξR(ξ)S(ξ)−1 is
LPR. Then there exists a unimodular matrix H ∈ Rl×l[ξ] such that

I1H = [ Ñ0 0l1×(l−l1) ],(15)

Y1H = [ Ñ1 0l1×(l−l1) ](16)

with Ñ0, Ñ1 ∈ Rl1×l1 [ξ], Ñ0, Ñ0(0) nonsingular, and col(Ñ1, Ñ0) observable.
Proof. Since S is nonsingular, it follows that I1 has full row rank l1. This implies

that there exists a unimodular H ∈ Rl×l[ξ] such that (15) holds with Ñ0 nonsingular.
Since S(0) is nonsingular, it follows that I1(0) has row rank equal to l1, which in
turn implies that Ñ0(0) is nonsingular. We now prove that Y1H has its last (l − l1)
columns filled with zeroes as in (16).

Since ξR(ξ)S(ξ)−1 is LPR, for all λ ∈ C with �e(λ) > 0,

λ̄S(λ̄)−�R(λ̄)� + λR(λ)S(λ)−1 ≥ 0.

Pre- and post-multiplying the above inequality by S(λ̄)� and S(λ), respectively, we
obtain for all λ ∈ C with �e(λ) > 0,

λ̄R(λ̄)�S(λ) + λS(λ̄)�R(λ) ≥ 0 =⇒ λ̄Y1(λ̄)
�I1(λ) + λI1(λ̄)�Y1(λ) ≥ 0

Pre- and post-multiplying the above inequality by H(λ̄)� and H(λ), respectively, we
obtain for all λ ∈ C with �e(λ) > 0,

(17) λ̄H(λ̄)�Y1(λ̄)
�I1(λ)H(λ) + λH(λ̄)�I1(λ̄)�Y1(λ)H(λ) ≥ 0.

Consider a partition of Y1H given by

Y1H = [ Ñ1 Y2 ]

with Ñ1 ∈ Rl1×l1 [ξ] and Y2 ∈ Rl1×(l−l1)[ξ]. We now prove that Y2 = 0l1×(l−l1). From
inequality (17), it follows that for all λ ∈ C with �e(λ) > 0,

Ψ(λ) :=

[
λÑ0(λ)

�Ñ1(λ) + λÑ1(λ)
�Ñ0(λ) λÑ0(λ)

�Y2(λ)

λY2(λ)
�Ñ0(λ) 0(l−l1)×(l−l1)

]
≥ 0.

Note that since ξR(ξ)S(ξ)−1 is LPR and col(R,S) is observable, it follows that S has
no singularity in the open right half plane. Consequently, I1(λ) and hence Ñ0(λ) have
full row rank for all λ ∈ C with �e(λ) > 0. The following reasoning is very similar to
the argument used in the proof of [3, Theorem 5-11]. For x ∈ Cl, define

f(x) := x∗Ψ(λ)x .
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1712 SHODHAN RAO AND PAOLO RAPISARDA

Partition x as x = col(x1, x2) such that x1 ∈ Cl1 and x2 ∈ Cl−l1 . Then

f(x) = x∗
1

(
λÑ0(λ)

�Ñ1(λ) + λÑ1(λ)
�Ñ0(λ)

)
x1 + x∗

1

(
λÑ0(λ)

�Y2(λ)
)
x2

+ x∗
2

(
λY2(λ)

�Ñ0(λ)
)
x1 ≥ 0.(18)

By varying x2 and keeping x1 fixed, we can make the sum of the second and third
terms of the left-hand side of the above inequality as negative as desired, if it is
nonzero. Thus, the sum of the second and third terms of the left-hand side of inequal-
ity (18) must be equal to zero for all λ ∈ C with �e(λ) > 0. By choosing x1 and x2

real and then choosing x1 real and x2 imaginary we obtain both λÑ0(λ)
�Y2(λ) and

λY2(λ)
�Ñ0(λ) to be equal to zero for all λ ∈ C with �e(λ) > 0. Since Ñ0(λ) has full

row rank for all λ ∈ C with �e(λ) > 0, it follows that Y2(λ) = 0 for all λ ∈ C with
�e(λ) > 0. Consequently Y2(ξ) = 0 as a polynomial matrix.

We now prove that col(Ñ1, Ñ0) is observable. Assume by contradiction that there
exists a λ ∈ C such that Ñ1(λ)v1 = 0 and Ñ0(λ)v1 = 0 for some v1 ∈ Cl1 . Now define
G := I2H and partition G as G =:

[
G1 G2

]
, where G1 ∈ R(l−l1)×l1 [ξ] and G2 ∈

R(l−l1)×(l−l1)[ξ]. Note that since col(R,S) is observable, col
(
R(λ)H(λ), S(λ)H(λ))

has full column rank. Observe that

[
R(λ)H(λ)
S(λ)H(λ)

]
=

⎡
⎢⎢⎢⎢⎣

Ñ0(λ) 0l1×(l−l1)

0(l−l1)×l1 0(l−l1)×(l−l1)

Ñ1(λ) 0l1×(l−l1)

G1(λ) G2(λ)

⎤
⎥⎥⎥⎥⎦ .

This implies that G2(λ) is nonsingular. Consequently, there exists a v2 ∈ C
(l−l1) such

that G1(λ)v1 = −G2(λ)v2. Define v3 := col(v1, v2) and v := H(λ)v3. It can be easily
verified that S(λ)v = 0 and R(λ)v = 0. This is a contradiction since col(R,S) is
observable. This proves that col(Ñ1, Ñ0) is observable.

Observe that since ξN1(ξ)N0(ξ)
−1 is LPR,

ξR(ξ)S(ξ)−1 = ξTN1(ξ)
(
T−�N0(ξ)

)−1
= T

(
ξN1(ξ)N0(ξ)

−1
)
T� is also LPR.

Also note that since col(N1, N0) is observable, so is col(R,S). This implies the ex-
istence of a unimodular H ∈ Rl×l[ξ] such that (15) and (16) hold with Ñ0, Ñ1 ∈
R

l1×l1 [ξ], Ñ0, Ñ0(0) nonsingular and col(Ñ1, Ñ0) observable.
It is a matter of straightforward verification to check that RS−1 = Ñ1(Ñ0)

−1.

Consequently ξÑ1(ξ)
(
Ñ0(ξ)

)−1
is LPR and strictly proper. Since Y1 has full row

rank l1, det(Ñ1) �= 0.
Define

Ẽ1(ζ, η) :=
ζÑ1(ζ)

�Ñ0(η) + Ñ0(ζ)
�Ñ1(η)η

2(ζ + η)
.

From (14), it now follows that

E1(ζ, η) =
ζY1(ζ)

�I1(η) + I1(ζ)�Y1(η)η

2(ζ + η)

= H(ζ)−�
[

Ẽ1(ζ, η) 0l1×(l−l1)

0(l−l1)×l1 0(l−l1)×(l−l1)

]
H(η)−1.
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REALIZATION OF LOSSLESS BEHAVIORS 1713

Now as explained for Case 1, we can obtain N2 ∈ Rl1×l1 [ξ] and positive definite
Ã1, B̃1 ∈ Rl1×l1

s such that F̃2(ξ) := ξN2(ξ)Ñ1(ξ)
−1 is LPR, Z̃2 := N2Ñ

−1
1 is strictly

proper and obeys Z̃2(ξ) = Z̃2(−ξ), and moreover

(19) Ñ0(ξ) = (Ã1ξ
2 + B̃1)Ñ1(ξ)−N2(ξ),

Ẽ1(ζ, η) =
1

2

(
Ñ1(ζ)

�(Ã1ζη + B̃1)Ñ1(η) − Ñ1(ζ)
�N2(η)−N2(ζ)

�Ñ1(η)
)
+ E2(ζ, η),

where

E2(ζ, η) :=
ζN2(ζ)

�Ñ1(η) + Ñ1(ζ)
�N2(η)η

2(ζ + η)
.

From the argument used in proving Case 1 it follows that Ñ1(0) has full rank.
Since col(Ñ1, Ñ0) is observable, from (19) it follows that col(N2, Ñ1) is also observable.

After having examined Case 1 and Case 2 separately, we can now proceed with
the rest of the proof.

If N2 �= 0, based on whether N2 is invertible or not, we repeat the steps mentioned
under Case 1 or Case 2, respectively, with the new value of N1 assigned as N2 and of
N0 assigned as N1 or Ñ1 depending on whether Case 1 or Case 2 was performed in the
previous step. In this way, we expand the expression for E′. This process continues
until we obtain N2 = 0, as we now prove.

Lemma 18. With the same notation as above, after a finite number of steps
N2 = 0.

Proof. If we go through the steps of Case 1, since N2N
−1
1 and N1N

−1
0 are strictly

proper, every column of N2 has degree less than that of the corresponding column of
N1 which is less than that of the corresponding column of N0. Therefore

deg
(
det(N0)

)− deg
(
det(N1)

) ≥ 1 ,

deg
(
det(N1)

)− deg
(
det(N2)

) ≥ 1 .

If we go through the steps of Case 2, since N2Ñ
−1
1 and Ñ1Ñ

−1
0 are strictly proper, it

is a matter of straightforward verification to check that

deg
(
det(N0)

) ≥ deg
(
det(Ñ0)

)
> deg

(
det(Ñ1)

)
> deg

(
det(N2)

)
.

This implies that

deg
(
det(N0)

)− deg
(
det(Ñ1)

) ≥ 1 ,

deg
(
det(Ñ1)

)− deg
(
det(N2)

) ≥ 1 .

Since Case 1 or Case 2 will be repeated as long as N2 �= 0, at a particular step, we
are bound to get N2 = 0.

To conclude the proof of the theorem, we now organize and complete the argument
given above in a detailed procedure to construct matrices X , M , and K satisfying
statements (i) and (ii).

Algorithm 19. Input: N0, D0 ∈ R
l×l[ξ] defining an observable image repre-

sentation w =col (N0(
d
dt)�,D0(

d
dt )�) of a lossless negative imaginary behavior B with

Assumptions 1, 2, 3, and 4 in the statement of Theorem 15.
Output: A block tridiagonal real matrix K with K = K� > 0, a block-diagonal
matrix M with M = M� > 0, and X ∈ R•×l[ξ] satisfying (i) and (ii) of Theorem 15.
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1714 SHODHAN RAO AND PAOLO RAPISARDA

1: Compute A0, B0, and N1 using the following formulae:

A0 = lim
ξ→∞

Z(ξ)−1

ξ2
; B0 = lim

ξ→∞
(
Z(ξ)−1 −A0ξ

2
)
;

N1(ξ) = (A0ξ
2 +B0)N0(ξ)−D0(ξ)

2: Assign P0 = N0, Q0 = D0, X0 = P0, M0 = A0, K0,0 = B0 and i = 1.
3: While N1 �= 0, do{
4: Assign l = number of rows of N1.
5: If det(N1) �= 0, {
6: Compute A1, B1, and N2 using the following formulae:

A1 = lim
ξ→∞

N0(ξ)N1(ξ)
−1

ξ2
; B1 = lim

ξ→∞
(
N0(ξ)N1(ξ)

−1 −A1ξ
2
)
;

N2(ξ) = (A1ξ
2 +B1)N1(ξ)−N0(ξ)

7: Assign Pi = N1, Qi = N0, Yi = Pi, Mi = A1, Ki,i = B1,
Ki−1,i = Ki,i−1 = −Il.

8: Assign Xi = matrix obtained by replacing Pi−1 in Xi−1 with Yi, and
assign N0 = N1. }

9: Else { as explained under Case 2, compute T , H , Ñ0, and Ñ1.
10: Compute Ã1, B̃1, and N2 using the following formulae:

Ã1 = lim
ξ→∞

Ñ0(ξ)Ñ1(ξ)
−1

ξ2
; B̃1 = lim

ξ→∞
(
Ñ0(ξ)Ñ1(ξ)

−1 − Ã1ξ
2
)
;

N2(ξ) = (Ã1ξ
2 + B̃1)Ñ1(ξ)− Ñ0(ξ)

11: Assign Pi = Ñ1, Qi = Ñ0, Yi =

[
[ Pi 0l1×(l−l1) ]H−1

0(l−l1)×l

]
,

T1 = T−1col(Il1 , 0(l−l1)×l1), Mi = Ã1,

Ki,i = B̃1, Ki,i−1 = −T�
1 , Ki−1,i = −T1.

12: Assign Wi = the matrix obtained by replacing Pi−1 in Xi−1 with Yi.
13: Assign Xi = [ Il1 0l1×(l−l1) ]Wi, N0 = Ñ1. }
14: Assign N1 = N2 and i = i+ 1.}
15: Assign n = i− 1.
16: Assign X = col(X0, X1, . . . , Xn); M = diag(M0,M1, . . . ,Mn).
17: Assign

(20) K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K0,0 K0,1 0 0 · · · 0
K1,0 K1,1 K1,2 0 · · · 0
0 K2,1 K2,2 K2,3 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 Kn−1,n−2 Kn−1,n−1 Kn−1,n

0 · · · · · · 0 Kn,n−1 Kn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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REALIZATION OF LOSSLESS BEHAVIORS 1715

It can be verified that E′(ζ, η) = 1
2

(
X(ζ)TKX(η) + ζηX(ζ)TMX(η)

)
. The fact

that M = M� > 0 follows from Ai and Ãi being positive definite; moreover, observe
that K = K�. We make use of the following lemma to prove that K > 0.

Lemma 20. Let K have a block-tridiagonal structure as in (20). Assume that K
is symmetric and its diagonal elements are positive definite. For i = 0, . . . , n, define

Γi =

{
Kn,n if i = n,

Ki,i −Ki,i+1Γ
−1
i+1K

�
i,i+1 if i < n.

If Γi > 0 for i = 0, . . . , n, then K is positive definite.
Proof. For i = 0, . . . , n, factor Γi = Λ�

i Λi with Λi square and nonsingular,
i = 0, . . . , n. Define Qi := Λ−�

i Ki,i−1 for i = 1, . . . , n and

L :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ0 0 0 0 · · · 0

Q1 Λ1 0 0 · · · 0

0 Q2 Λ2 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 Qn−1 Λn−1 0

0 · · · · · · 0 Qn Λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to verify that K = L�L. Since det(Λi) �= 0 for i = 0, . . . , n, it follows that
det(L) �= 0. This implies that K is positive definite.

We now use this lemma to prove that the matrix K produced by the algorithm is

positive definite. Define Zi := QiP
−1
i and Fi(ξ) :=

Zi(ξ)
ξ for i = 0, . . . , n. Since Fi is

LPR and Qi(0) has full rank, from Theorem 8 it follows that Zi(0) is positive definite
for i = 0, . . . , n. It can be verified that

Zi(ξ) = Miξ
2 +Ki,i −Ki,i+1Z

−1
i+1(ξ)K

�
i,i+1 .

This implies that

Zi(0) = Ki,i −Ki,i+1Z
−1
i+1(0)K

�
i,i+1 ;

moreover since Pn+1(ξ) and hence Z−1
n+1(ξ) are equal to zero, we obtain Zn(0) = Kn,n.

Now apply Lemma 20 with Γi = Zi(0); it follows that K > 0.
Equation (10) can now be verified by following the steps of the algorithm given

just before Lemma 20. Since this equation is of first order in q and p and of zeroth
order in w, it is easy to see that it is a state space representation of B. It follows that
col
(
X(ξ), ξMX(ξ)

)
is a state map for B.

Corollary 21. Consider a lossless negative imaginary behavior B with an

observable image representation w = (
N0(

d
dt )

D0(
d
dt )

)� with N0, D0 ∈ Rl×l[ξ] and define y :=

N0(
d
dt )�, u := D0(

d
dt)�. Under the same assumptions of Theorem 15, there exists

N ∈ Z+ such that B has a state space representation of the form

d

dt
x = Ω−1Qx+B1u,

y = B�
1 Ωx,(21)
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1716 SHODHAN RAO AND PAOLO RAPISARDA

where Ω ∈ R2N×2N is skew symmetric, B1 ∈ R2N×l, and Q ∈ R2N×2N is positive
definite such that x�Qx is the principal energy associated with w ∈ B.

Proof. With reference to Theorem 15, define the following:

Ω :=

[
0N −IN
IN 0N

]
; Q := diag(K,M−1); x := col(q, p); B1 := col(0N×l, B).

Then the state space representation (10) reduces to (21) and it can be verified that
the principal energy associated with w is indeed x�Qx.

Remark 22. Representation (21) is the same as the representation of time-
reversible Hamiltonian systems obtained in [7]. Indeed the transfer function G of
a lossless negative imaginary behavior obeys G(s) = G(−s) = G(−s)�. Incidentally
the results of this section show that since we also haveK = K� > 0 andM = M� > 0
in (10), a lossless negative imaginary behavior B = Im(

N0(
d
dt )

D0(
d
dt )

) with the properties

mentioned in Theorem 15 belongs to the class of Hamiltonian systems for which a
model reduction procedure has been described in [8].

Given below is an example where the method sketched in the proof of Theorem 15
is used to obtain a minimal state map for a given lossless negative imaginary behavior.

Example 23. Consider

D0(ξ) :=

[
5ξ4 + 22ξ2 + 5 ξ4 + 2ξ2 − 7
ξ4 + 2ξ2 − 7 2ξ4 + 11ξ2 + 10

]
and N0(ξ) :=

[
ξ2 + 4 0

0 ξ2 + 4

]
.

It can be verified thatN0 andD0 are both invertible,D0(0) has full rank, Z := N0D
−1
0

is strictly proper, Z(ξ) = Z(−ξ), and the elements of Z have poles at ±2.1754j,
±2.0209j,±1.3176j,±0.0575j, which implies that all elements of Z are analytic in
the open right half plane. It can also be verified that L := col(N0, D0) induces an
observable image representation; consequently there exists F ∈ R2×4[ξ] such that
F (ξ)L(ξ) = I2. This implies that for every trajectory

(22) w = L

(
d

dt

)
�

that belongs to the behavior B := Im(L( d
dt )), we have � = F ( d

dt )w. Note that in (22),
the dimension of the latent variable � is l = 2. It can be verified that

E′(ζ, η) :=
ζN0(ζ)

�D0(η) +D0(ζ)
�N0(η)η

2(ζ + η)

induces a positive QDF. Define E(ζ, η) := F (ζ)�E′(ζ, η)F (η), and observe that
E′(ζ, η) = L(ζ)�E(ζ, η)L(η). This implies that for w given by (22), QE(w) = QE′(�).

This in turn implies that QE(w)
B
> 0. We have

(ζ + η)E′(ζ, η) = L(ζ)�J(ζ, η)L(η) = (ζ + η)L(ζ)�E(ζ, η)L(η) .

This implies that for every trajectory w ∈ B, QJ(w) = d
dtQE(w). It follows that

B is lossless negative imaginary and all other conditions of Theorem 15 are obeyed.
Therefore, we can follow the steps given in the proof of the theorem in order to
obtain matrices M and K and a state map X ′(ξ) that gives rise to a state space

D
ow

nl
oa

de
d 

07
/1

7/
12

 to
 1

52
.7

8.
19

1.
76

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REALIZATION OF LOSSLESS BEHAVIORS 1717

representation (10) for B. This gives

M =

⎡
⎢⎢⎣

5 1 0 0
1 2 0 0
0 0 0.4 0.2
0 0 0.2 0.6

⎤
⎥⎥⎦ ; K =

⎡
⎢⎢⎣

2 −2 −1 0
−2 3 0 −1
−1 0 1.6 0.8
0 −1 0.8 2.4

⎤
⎥⎥⎦ ;

X ′(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ2 + 4 0
0 ξ2 + 4
3 −1
−1 2

5ξ(ξ2 + 4) ξ(ξ2 + 4)
ξ(ξ2 + 4) 2ξ(ξ2 + 4)

ξ 0
0 ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5. SISO lossless negative imaginary behaviors and synthesis of SISO
lossless mechanical systems. Let

(23) B = Im

(
n( d

dt )

d( d
dt)

)

be an observable image representation of an SISO lossless negative imaginary behavior
with deg(d) > deg(n) and external variables y (output) and u (input). In this section,
we show that in the SISO case considerable simplifications occur to the result of
Theorem 15 and that Algorithm 19 can be used to produce in a straightforward way
a mechanical synthesis of a system with transfer function n

d .
We first show that assumption (1) of Theorem 15, i.e., that d has no root at 0,

can be deduced from the fact that the transfer function is SISO and LPR. Assume by
contradiction that d has a root at 0. Since B is lossless negative imaginary, it follows
that dn−1 is of the form given in (6) with B > 0. This implies that n also has a root
at 0, which in turn implies that representation (23) is not observable. This proves
that d(0) �= 0, as required.

Note also that from the expansion (6) and the observability of col(n, d), it follows
that both n and d are even and consequently that the McMillan degree n(B) = deg(d)
is even.

Now consider that since the system is SISO, in the procedure stated in the proof
of Theorem 15, only Case 1 can happen, and consequently considerable simplifications
occur. In step 6 of Algorithm 19, note that N0 and N1 are polynomials and hence
A1 is the leading coefficient of the quotient q of the Euclidean division of N0 by N1.
From (6) and the expression for B1 in step 6 of Algorithm 19, it follows that B1 is
equal to the constant term of q. It is also easy to see that N2 is equal to the negative
of the remainder r of the Euclidean division of N0 by N1. Now from steps 7, 16, and
17 of Algorithm 19, it follows that the matrix M is diagonal and K is tridiagonal with
positive constants along the main diagonal and each element on the two neighboring
subdiagonals being equal to −1.

We now prove that the state map for B that we obtain using Algorithm 19
is minimal. Note that every time we go through steps 6, 7, and 8, the degree of N0

reduces by 2. This implies that the dimension of X obtained in step 16 is N = n(B)/2
and the dimension of the state map obtained by the algorithm is n(B), which in turn
implies that the algorithm leads to a minimal state map for B.
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�

� � �

kN
mN

wN

kN−1

mN−1

wN−1

m1

w1

FkN−2
k1

Wall

Fig. 1. A spring-mass system.

Having concluded the discussion of the simplifications occurring in the SISO case,
we now show how to compute a mechanical realization of B, i.e., a mechanical system
consisting of masses and springs with an external force acting on one of the masses such
that there exists a mass whose displacement from its equilibrium position, together
with the external force, defines a set of trajectories equal to B.

We use the procedure of Algorithm 19, obtaining a diagonal matrix M , a tridi-
agonal matrix K, and a polynomial vector X with dimension N . Let bi denote the
ith diagonal entry of K. Define x1 := X( d

dt)� and x2 := d
dt (MX( d

dt ))�. Let B denote
the column vector of dimension N whose first element is 1 and the rest are equal to
zero. Then we have the following state space representation for B:

d

dt

[
x1

x2

]
=

[
0N M−1

−K 0N

] [
x1

x2

]
+

[
0N×1

B

]
u ,

y = B�x1 .(24)

We now derive from this representation one which leads directly to a mechanical
realization of B. For i = 1, . . . , N − 1, define δi := leading principal ith minor of K
and δ0 := 1, and define the diagonal matrix D := diag(δ0, δ1, . . . , δN−1). Observe that
since K is positive definite, so is D. Define

K := DKD; M := DMD;

[
q
p

]
:=

[
D−1 0
0 D

] [
x1

x2

]
.

We obtain the following state space representation in terms of the new state vector
col(q, p):

d

dt

[
q
p

]
=

[
0N M−1

−K 0N

] [
q
p

]
+

[
0N×1

B

]
u ,

y = B�q .(25)

Now define δ−1 := 0 and δN := 0. Observe thatM is diagonal andK is tridiagonal
with Ki,i=δ2i−1bi, Ki,i+1 = −δi−1δi, and Ki,i−1 = −δi−2δi−1 for i = 1, . . . , N . It can
be verified that

(26) Ki,i = −(Ki,i+1 +Ki,i−1) > 0 for i = 1, . . . , N − 1 .

Now consider a mechanical spring-mass system consisting of N springs with spring
constants k1, k2, . . . , kN and N masses m1, m2, . . . , mN interconnected to each other
and to the wall as shown in Figure 1.

Assume that the springs and masses are constrained to move in a horizontal plane
in a particular direction. In this direction, let wi denote the horizontal displacement
of the ith mass with respect to the wall. Assume that a force F acts on the first mass
as shown in Figure 1.

Define mi := ith diagonal entry of M for 1 = 1, . . . , N ; ki := −Ki,i+1 for i =
1, 2, . . . , N − 1; kN := KN,N +KN,N−1; F := u; and w1 := y. Then, it can be verified
that the equations of motion of the mechanical spring-mass system are given by (25)
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REALIZATION OF LOSSLESS BEHAVIORS 1719

with q = col(w1, w2, . . . , wN ) and (26) will be obeyed for the system. This implies that
the system described in Figure 1 with parameters m1,m2, . . . ,mN and k1, k2, . . . , kN
is a mechanical realization of the given behavior B.

The simplification of Algorithm 19 for the case of SISO behaviors and its applica-
tion for the synthesis of mechanical systems with lossless negative imaginary behaviors
suggests to use Algorithm 24 also to compute a mechanical realization corresponding
to an SISO lossless negative imaginary behavior.

Algorithm 24. Input: An SISO lossless negative imaginary behavior with
an observable image representation B = Im(col(n( d

dt ), d(
d
dt )) with n(B) = 2N =

deg(d) > deg(n).
Output: A tridiagonal K and a diagonal M corresponding to a state representa-
tion of the form (25) of B, a corresponding state map X(ξ), and {mi, ki}i=1,...,N

corresponding to a mechanical realization of B of the form shown in Figure 1.
1: For (i = 1 to N) do {
2: Find the quotient q and the remainder r of the Euclidean division of d by n.
3: Assign ai = the leading coefficient of q.
4: Assign bi = the constant term of q.
5: Assign ni := n, d = n, and n = −r.}
6: Assign M := diag(a1, a2, . . . , aN ).

7: Assign K :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1 −1 0 0 · · · 0
−1 b2 −1 0 · · · 0
0 −1 b3 −1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 bN−1 −1
0 · · · · · · 0 −1 bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

8: Assign δ0 := 1 and for (i = 1 to N−1) assign δi := determinant of the top left-most
(i× i) block of K1.

9: Assign D := diag(δ0, δ1, . . . , δN−1).
10: Assign K := DKD, M := DMD.
11: Assign x1(ξ) := col

(
n1(ξ), n2(ξ), . . . , nN (ξ)).

12: Compute q(ξ) = D−1x1(ξ), X(ξ) = col(q(ξ), ξMq(ξ)).
13: For (i = 1 to N) assign mi = Mi,i.
14: Assign kN := KN,N +KN,N−1 and for (i = 1 to N − 1), assign ki := −Ki,i+1.
15: Output M,K, X(ξ), {mi, ki}i=1,...,N .

We now illustrate Algorithm 24 with an example.
Example 25. Let B = Im(col(n( d

dt ), d(
d
dt ))) with n(ξ) = ξ4 + 4ξ2 + 3 and

d(ξ) = 2ξ6 + 13ξ4 + 22ξ2 + 8. It can be verified that B is lossless negative imag-
inary. Application of Algorithm 24 gives the following output:

K =

⎡
⎣ 5 −5 0

−5 14.0625 −9.0625
0 −9.0625 24.5292

⎤
⎦ ; M =

⎡
⎣ 2 0 0

0 6.25 0
0 0 14.0167

⎤
⎦ ;

X(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ4 + 4ξ2 + 3

0.8ξ2 + 1.4

0.5172

2ξ5 + 8ξ3 + 6ξ

5ξ3 + 8.75ξ

7.2494ξ

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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and the coefficients k1 = 5, k2 = 9.0625, k3 = 15.4667, m1 = 2, m2 = 6.25, m3 =
14.0167.

6. Conclusions. We have presented an algorithm for the realization of a loss-
less negative behavior based on successive divisions of univariate square polynomial
matrices. We have also sketched a method of synthesis of lossless mechanical systems
based on our realization procedure. The algebra of univariate and bivariate polyno-
mial matrices has been used throughout as a tool for proving many of the results of
this paper.

We believe that the realization procedure presented in our paper is not relevant
for the synthesis of LC circuits. The reason for this is that although a capacitor
is an electrical analogue of a spring, an inductor is not an electrical analogue of a
mass. The inductor is an electrical analogue of another mechanical component known
as an inerter and described in the work of Malcolm Smith; see, e.g., [6]. Thus the
standard mechanical-electrical analogies cannot be used in order to synthesize LC
circuits using our realization procedure. Moreover the tridiagonal structure of K and
diagonal structure of M are only suitable for the synthesis of mechanical networks of
the type discussed in section 5.
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