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Abstract— Iterative learning control (ILC) is a methodology
applied to systems which repeatedly perform a tracking task
defined over a fixed, finite time duration. In this approach the
output is specified at all points in this interval, however there
exists a broad class of applications in which the output is only
important at a subset of time instants. An ILC update law
is therefore derived which enables tracking at any subset of
time points, with performance shown to increase as time points
are removed from the tracking objective. Experimental results
using a multi-variable test facility confirm that point-to-point
ILC leads to superior performance than can be obtained using
standard ILC and an a priori specified reference.

I. INTRODUCTION

For more than 25 years Iterative Learning Control (ILC)
has attracted significant interest as an approach applicable
to systems which repeatedly track a reference, yd(t), de-
fined over a finite interval 0 ≤ t ≤ T . Resetting occurs
between each repetition, termed a trial, and past experience
is employed to improve the tracking accuracy over the
subsequent trial. Research has focused jointly on theoretical
and application developments, see [1] for a recent review of
the literature. Recently ILC has been applied to the ‘point-to-
point’ motion control problem in which an output reference
is only prescribed at a finite set of time instants. This form of
objective is required in many practical applications, including
satellite positioning, rehabilitation engineering, production
line automation, and robotic ‘pick and place’ tasks.

The point-to-point problem can be addressed by the stan-
dard ILC framework by simply specifying any reference,
yd(t), which passes through the critical output points. Im-
proved results, however, are gained if this is coupled with
approaches such as Input Shaping which suppress vibrations
occurring between the desired points [2]. Alternatively, a
simpler feedback controller can be implemented to track
yd(t) and ILC used to update parameters within the input
shaping filter applied to the reference [3]. Another approach
is to design an ILC algorithm which not only ensures
tracking of yd(t), but also attenuates residual vibrations
occurring after the point-to-point location is reached [4].

The drawback to all these methods is that an a priori
designed yd(t) is not robust to model uncertainty and noise,
and furthermore, they do not capitalize on the freedom
available to satisfy additional performance demands.
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Point-to-point motion control has also been addressed by
approaches that do not employ a static reference defined over
0 ≤ t ≤ T , but these have only considered the case where
a specified position must be reached at time t = T [5], [6],
[7], [8], or the case of a movement between two equilibrium
points [9]. Whilst these dispense with tracking unnecessary
output points, they do not use the resulting freedom to tackle
practical performance objectives, and only consider a single
point-to-point movement, rather than a sequence of actions
needed to construct complex movements.

This paper addresses current drawbacks by providing a
framework that can deal with an arbitrary number of point-
to-point movements, while also addressing a performance ob-
jective of wide practical utility. The action of embedding both
the performance and tracking objective within the framework
of iterative learning yields an algorithm which is capable
of reaching optimal solutions in the presence of model
uncertainty and noise. To achieve this, ILC is employed as
an iterative optimization paradigm which uses experimental
data to tackle a cost function. A similar approach is applied
in [10], but without explicit reference to, or analysis of, the
point-to-point tracking problem.

II. PROBLEM FORMULATION

The n × n identity and zero matrices are denoted by In
and 0n respectively. For vector x ∈ Rn, ‖x‖2 =

√
xTx.

For matrix A ∈ Rn×n, ‖A‖ is the induced norm of the
vector norm, λi(A) denotes the ith eigenvalue of A, ρ(A) =
maxi |λi(A)| is the spectral radius, σ(A) and σ(A) denote
the minimum and maximum singular values respectively.

Consider the following linear time-varying (LTV) system

x(t+ 1) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t), x(0) = x0

(1)

defined over the finite time interval t ∈ [0, 1, 2, . . . , N − 1].
Here x(·) ∈ Rn, u(·) ∈ Rm, y(·) ∈ Rp are the state, input
and output vectors respectively, and the input and output
sequences are given by

u = [u(0)T ,u(1)T , . . . ,u(N − 1)T ]T ∈ RmN

y = [y(1)T ,y(2)T , . . . ,y(N)T ]T ∈ RpN .

The standard ILC framework constructs a series of inputs
which drives the system to track a reference sequence

yd = [yd(1)T ,yd(2)T , . . . ,yd(N)T ]T ∈ RpN .

Let uk and yk be the input and output vectors respectively
on the kth trial. Then it is necessary to find a sequence of
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control inputs satisfying

lim
k→∞

‖ek‖ = 0, lim
k→∞

‖uk − ud‖ = 0 (2)

where ek = yd − yk is the tracking error, and ud is the
unknown desired input sequence corresponding to yd. Over
the kth trial the relationship between the input and output
time-series can be expressed by yk = Guk + y0 where y0

is the response to initial conditions, and G =
C(1)B(0) · · · 0

...
. . .

...

C(N)

N−1∏
i=1

A(i)B(0) · · · C(N)B(N − 1)

 ∈ RpN×mN

(3)
The effect of y0 can be absorbed into the reference trajectory,
so that it is assumed y0 = 0, or equivalently x0 = 0.

A commonly applied ILC update of the form

uk+1 = uk + Lek (4)

can be considered as an iterative numerical method to solve
the tracking problem, and has been the focus of significant
research. It is convergent to a solution if and only if

ρ(IpN −GL) < 1. (5)

The convergence speed is determined by the magnitude of
ρ(·) and is maximum when ρ(·) = 0.

A. Point-to-point ILC formulation

Now suppose that the jth plant output is only required
to track a reference trajectory at a fixed number, Mj ≤ N ,
of sample instants along the trial duration. These sample in-
stants are given by 0 ≤ nj,1 < nj,2 < · · · < nj,Mj

< N . To
define the point-to-point tracking problem it is first necessary
to remove the points that do not need to be tracked from the
original reference yd. This yields a reduced reference vector
yr ∈ RM whose length is given by M =

∑p
j=1Mj . It is then

necessary to define a matrix transformation Φ ∈ RM×pN
such that yr = Φyd. This is achieved by first introducing
a row vector ψ ∈ RpN whose ith element is 1 if the ith

element of yd is required to be tracked, and 0 otherwise.
The formal definition for ψ is

ψi =

{
1 if b(i− 1)/pc ∈ Si−b(i−1)/pcp,
0 otherwise (6)

where Sj = {nj,1, . . . , nj,Mj
} and b·c denotes the ‘floor’

function. The matrix Φ is then produced as follows: 1) set
Φ = ψ, 2) starting at the first element, increment along
the bottom row of Φ, and whenever a non-zero element is
encountered move all subsequent bottom row entries into a
newly created bottom row that is appended to Φ, maintaining
their position along the row and padding the remaining
entries of both rows with zeros. Formally this is defined by

Φi,j =

{
1 if ψj = 1,

∑j
q=1ψq = i

0 otherwise
. (7)

As seen by the relation yr = Φyd, when any output
vector is pre-multiplied by Φ, it extracts the components
that correspond to prescribed point-to-point locations, while
retaining the order in which they appear.

Remark 1: If each output is stipulated at the same set of
point-to-point locations, that is Sj = S1, ∀ j ∈ {2, . . . , p},
then matrix Φ has block-wise components

Φi,j =

{
Ip if j = n1,i, i = 1, 2, . . .M1

0p otherwise. (8)

In addition the reference has the form

yr =
[
yr(1)T ,yr(2)T , · · · ,yr(M1)T

]T ∈ RM (9)

where yr(i) ∈ Rp is the prescribed output vector at sample
n1,i, and M = pM1. �

ILC can be formulated for the point-to-point case by
deriving an iterative numerical solution to the problem of
finding a control input which minimizes the point-to-point
error norm. The control objective is to find a sequence of
control inputs {uk} such that

lim
k→∞

‖yr − ΦGuk‖ = 0 (10)

which replaces the standard requirement (2). The ILC update
(4) now assumes the form

uk+1 = uk + L(yr − Φyk) (11)

so that the convergence condition (5) becomes

ρ(IM − ΦGL) < 1 (12)

In Section III a learning operator L is derived to satisfy (12),
but first further motivation is provided to support the utility
of point-to-point ILC over the standard framework.

B. Point-to-point ILC motivation

Theorem 1: Let d denote the rank deficiency of the plant
matrix G (the number of linearly dependent rows). If d > 0
the standard ILC update (4) cannot force the plant to track an
arbitrary reference trajectory yd. However the point-to-point
update (11) can enforce tracking of an arbitrary reference yr
if and only if the tracked points are chosen such that

M ≤ Np−max {d,N(p−m)} (13)
Proof. A necessary and sufficient condition for an operator
L to exist satisfying (12) is that rank (ΦG) = M . For the
standard ILC case Φ = I , M = N and hence rank (ΦG) =
N − d < M , leading to IM −ΦGL having d eigenvalues at
unity. Now the ith row of ΦG is the (j|Φi,j = 1)

th row of
G, hence if p ≤ m and the point-to-point samples are chosen
to correspond to any subset of linearly independent rows of
G, the convergence condition (12) can be satisfied. If p > m
then the additional condition M ≤ Nm is imposed. �

Remark 2: Suppose system (1) is linear time-invariant,
and written as the discrete transfer-function matrix G(z) =
C(zIn−A)−1B+D with component Gi,j(z) corresponding
to the ith output and jth input. If the relative degree of
Gi,j(z) is 1 + ri,j , then d =

∑
i,j ri,j .

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 51st IEEE Conference on Decision and Control .
Received March 7, 2012.



The ability of point-to-point ILC to employ a modified
standard reference to recover feasibility is extremely impor-
tant, however many tasks are naturally defined only at a small
number of points, and hence additional benefits may also be
expected by not enforcing unnecessary tracking. The next
lemma shows how the space of feasible inputs expands as
the number of tracked points, M , reduces.

Lemma 1: Assuming (13) is satisfied, the feasible in-
put space which forces the system (1) to track yr
is of dimension pN − M , and is given by U ={

(ΦG)
†
yr + x,x ∈ null (ΦG)

}
where A† = (ATA)−1AT

is the pseudoinverse of A. The nullspace of ΦG has an
orthogonal basis given by the rows of ΦGP⊥(ΦG)T , where

ΦG ∈ R(pN−M)×mN is such that the matrix
[
ΦG

T
(ΦG)T

]
is full rank, and P⊥A = I−AA† is the orthogonal projection
onto the nullspace of A. �

The algorithm proposed in Section III exploits this en-
larged feasible input space to achieve desirable performance.

III. GRADIENT DESCENT POINT-TO-POINT ILC

The gradient descent method is one of many numerical
algorithms used to tackle nonlinear optimization problems,
and has previously been applied within the standard ILC
framework [11]. Motivated by (10) and the accompanying
discussion, it is applied to solve

min
u
J(u), J(u) = ‖yr − ΦGu‖2 (14)

leading to the iterative update for the control input

uk+1 = uk −
β

2
∇uJ(uk)

= uk + β (ΦG)
T

(yr − Φyk) (15)

where the experimental plant output, yk has replaced the
nominal value, Guk, so that the optimisation is robustly
achieved within the ILC framework.

Theorem 2: Let Φ comprise point-to-point locations sat-
isfying rank (ΦG) = M . Let Φ̃ equal Φ but with the ith

row removed, and hence correspond to tracking all but the
ith point-to-point location. Let the M eigenvalues of the
matrix A = (ΦG)(ΦG)T be denoted λM ≤ λM−1 · · · ≤
λ2 ≤ λ1, which also equal the singular values since A is
Normal. Similarly, let the M − 1 eigenvalues of the matrix
B = (Φ̃G)(Φ̃G)T be denoted µM ≤ µM−1 · · · ≤ µ3 ≤ µ2,
which also equal the singular values since B is Normal. Then
the following relationship holds

λM ≤ µM ≤ λM−1 ≤ µM−1 · · · ≤ µ3 ≤ λ2 ≤ µ2 ≤ λ1.
(16)

In particular, let y equal the ith column of A with the ith

element removed. Then if the eigenvalues of B are distinct
and no eigenvector of B is orthogonal to y then

λM < µM < λM−1 < µM−1 · · · < µ3 < λ2 < µ2 < λ1.
(17)

Proof. First note that A is a Hermitian matrix of order M ,
and that B is a principal submatrix of A of order M−1. Then
(16) follows as an application of Cauchy’s Interlace Theorem

for eigenvalues of Hermitian matrices [12]. It is further
proven in [12] that (17) holds provided: 1) the eigenvalues
of B satisfy µM < µM−1 · · · < µ3 < µ2, and 2) the vector

UTy = [z2, z3, . . . , zM ]T (18)

has non-zero elements, where U is a unitary matrix of
order M − 1 such that UTBU = D, with D =
diag{µ2, µ3 . . . µM}. To satisfy 2) a suitable choice for U has
columns that are the eigenvectors of B, and hence ∃ zi = 0
only if y is orthogonal to an eigenvector of B. �

A. Practical Implementation

Remark 3: The term (ΦG)
T

(yr − Φyk) in (15) can be
efficiently generated using the co-state representation of
system (1), and is equal to the output ỹ of the system

x̃(t) = AT (t+ 1)x̃(t+ 1) + CT (t+ 1)ũ(t+ 1)

ỹ(t) = BT (t)x̃(t) +DT (t)ũ(t), t = N − 1, . . . , 0

with the input ũ = ΦT (yr − Φyk). This therefore avoids
calculation of the large G matrix appearing in (15).

B. Convergence Speed

Theorem 3: Provided the point-to-point locations are cho-
sen to satisfy (13), the choice of gain in (15)

0 < β <
2

σ(ΦG(ΦG)T )
=

2

‖ΦG(ΦG)T ‖
(19)

guarantees convergence of the plant output to yr. In partic-
ular, the worse case convergence rate is maximised using

β =
2

σ(ΦG(ΦG)T ) + σ(ΦG(ΦG)T )
(20)

The convergence rate using (20) increases as the number of
point locations, M , is reduced.
Proof. The convergence condition for (15) corresponds to

ρ(IM − βΦG(ΦG)T ) < 1 (21)

providing a linear convergence rate to zero error [11]. Since

σi(IM − βΦG(ΦG)T ) = 1− βσi(ΦG(ΦG)T ) < 1 ∀i
v ⇒ 0 < βσi(ΦG(ΦG)T ) < 2 ∀i

(19) follows as σi(ΦG(ΦG)T ) > 0, ∀i since ΦG(ΦG)T

is positive definite. The solution to min
β
ρ(I − βΦG(ΦG)T )

corresponds to the choice (20) and convergent rate

σ(ΦG(ΦG)T ) + σ(ΦG(ΦG)T )

σ(ΦG(ΦG)T )− σ(ΦG(ΦG)T )
= (22)

1 +
2σ(ΦG(ΦG)T )

σ(ΦG(ΦG)T )− σ(ΦG(ΦG)T )

Application of Theorem 2 guarantees that each point
removed from yr increases σ(ΦG(ΦG)T ) and reduces
σ(ΦG(ΦG)T ). Hence the convergence rate increases. �

The convergence can be further analyzed by diagonalizing
the matrix relationship Φek+1 = (I − βΦG(ΦG)T )Φek

Φek+1 = V diag
{

1− βσi(ΦG(ΦG)T )
}
V −1Φek
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where V is the eigenvector matrix of ΦG(ΦG)T . This gives

V −1Φek = diag
{(

1− βσi(ΦG(ΦG)T )
)k}

V −1Φe0.

Since V −1 = V T , the component of Φe0 projected onto
the jth eigenvector of ΦG(ΦG)T hence evolves as (1 −
βσi(ΦG(ΦG)T ))k. If eigenvalues ia and ib correspond to
minimum and maximum values of |1 − βσi(ΦG(ΦG)T )|,
then the point-to-point reference with fastest convergence
rate is a scalar multiple of yr = Via , and similarly the
slowest is a scalar multiple of yr = Vib . For an arbitrary
reference, the error norm sequence lies in the interval

∣∣1− βσib(ΦG(ΦG)T )
∣∣k≤ ‖Φek‖

‖Φe0‖
≤
∣∣1− βσia(ΦG(ΦG)T )

∣∣k
(23)

For a given reference yr the convergence rate can be most
accurately estimated using the weighted sum∑

i

|V Ti yr|/
∑
i

(
|1− βσi(ΦG(ΦG)T )||V Ti yr|

)
(24)

C. Robustness Margins

Theorem 4: Let there exist a multiplicative uncertainty on
each element of the plant model G(z), such that Ǧi,j(z) =
Gi,j(z)Ui(z). Here Ǧ(z) is the actual plant and the model
G(z) corresponds to the matrix G used in the update law
(15). A sufficient condition for monotonic convergence is that
each arg{Ui(ejω)} lies in the open interval (−π/2, π/2),
demonstrating a phase margin of 90◦.
Proof. This is an extension of robustness analysis for the
standard gradient algorithm (Φ = IpN ) in [13] for the SISO
case. Suppose that the uncertainty can be expressed in the
matrix form Ǧ = GU , and that point locations satisfy (13).
Then from (15) the point-to-point error satisfies

‖ẽk+1‖2 − ‖ẽk‖2 =β2ẽTk ΦGǦTΦT (ΦGǦTΦT )T ẽk

− βẽTk ΦGUTGTΦT ẽk

where ẽ = Φe. If U is positive, the first term on the right-
hand side is strictly positive for an arbitrary non-zero ẽk
and β > 0, and of O(β2). Similarly the second term is of
O(β) and strictly negative, and hence there always exists a
β > 0 which ensures monotonic reduction in error norm.
This also holds if the components of ẽTk ΦG are reordered
so that the elements corresponding to the same input are
grouped, resulting in a reordering of the U matrix such
that U(i−1)m+i,(j−1)m+j = Ui,j . The stipulation that the
components of G associated with the same input have the
same uncertainty then results in U having the block diagonal
structure U = {U1, U2 . . . Um} where Ui corresponds to
the ith input. A sufficient condition for U to be positive
definite is that each Ui is positive definite. This is the same
as that arrived in [13] which goes on to show that a sufficient
condition is that each Ui(z) is positive-real. Note that any
gain uncertainty |Ui(ejω)| can be tolerated through use of a
sufficiently small β. �

D. Input Energy

Theorem 5: Consider the system (1) and a point-to-point
reference yr. ILC algorithm (15) converges to the minimum
input energy solution that tracks yr. Furthermore, this solu-
tion is bounded by

‖u‖ ≤ ‖yr‖
σ
(
ΦG(ΦG)T

) (25)

whose right-hand side strictly reduces as the number of
points M is reduced.
Proof. Repeated application of (15), with u0 = 0, yields

uk+1 =

(
k∑
i=0

(
I − (ΦG)TΦG

)i)
(ΦG)Tyr

which has the limit

lim
k→∞

uk =
(
(ΦG)TΦG

)−1
(ΦG)Tyr = (ΦG)

†
yr (26)

This can be shown to equate to the solution to the problem

min
u
‖u‖ subject to ΦGu = yr

and (25) follows from the relationship∥∥∥(ΦG)
†
∥∥∥ = σ

(
(ΦG)†

)
=

1

σ
(
ΦG(ΦG)T

) .
It follows that the input norm is small when point-to-
point locations are selected which maximize the smallest
eigenvalue of ΦG(ΦG)T . Applying Theorem 2 means that
σ
(
ΦG(ΦG)T

)
increases as each point-to-point location is

removed, and hence the right-hand side of (25) reduces. �
Remark 4: For the linear time-invariant case, if only a

single point is specified for each output then (25) becomes

‖u‖ ≤ ‖yr‖

min
j=1,...,p

m∑
q=1

‖Gj,q(z)‖
(27)

This is also achieved if the time between point locations
exceeds the time taken for the impulse response to approxi-
mately go to zero (assuming asymptotic stability). �

Theorem 5 shows the benefit obtained compared with the
bound ‖u‖ = ‖G−1yr‖ corresponding to standard ILC (if
it exists). This benefit increases as the number of tracked
points is reduced, or their temporal spacing is increased.

IV. MULTIVARIABLE TEST FACILITY

The performance advantages established in the previous
section are now confirmed experimentally using a two
input, two output multivariable test facility. This system
employs two interconnected differential gearboxes, together
with spring-mass-damper components and is driven by two
induction motors [14]. A high degree of coupling between
inputs and outputs is possible which can be varied by the
operator. The completed system is shown in Fig. 1 with
component details listed in Table I. In this experiment,
the coupling shaft is clamped, therefore the interaction of
the MIMO system can be considered as zero. Modeling of
the system has been achieved through open-loop frequency
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response tests, in which sinusoids were injected over the
range of interest. The resulting output power spectra were
used to generate Bode plots which have been optimally fitted
by the transfer-functions

HB1 =
130000.39(s+ 2.75)

s(s+ 12.58)(s+ 14.20)(s+ 13.08)(s+ 15.10)
(28)

HC2 =
50000(s+ 1.99)

s(s+ 8.41)(s+ 9.53)(s+ 10.62)(s+ 12.60)
(29)

which appear in the transfer-function matrix[
φ1

φ2

]
=

[
HB1 0

0 HC2

] [
U1

U2

]
(30)

where U1 and U2 are the voltage signals applied to each
inverter. The encoder outputs (rad) from HB1, HC2 are

Fig. 1: Multivariable test facility with principle components
labeled.
φ1 and φ2 respectively and are measured by two encoders.
A proportional feedback loop has been implemented as a
prestabilizer around each transfer-function, using a gain of
0.1. The closed-loop system constitutes the controlled system
and, following discretization, is converted to matrix G using
(3). The standard gradient method has first been applied to
this system with the sinusoid reference components shown
in Fig. 2. Here the period of both sinusoids is 2.5 seconds
and the sampling time is Ts = 1

100 . It is required that each
point is tracked, leading to M = N , Φ = I and yr =
[r1(0) r2(0) ... r1(N − 1) r2(N − 1)]T . The ILC controller
update is given by (15) and an optimal β is calculated using
(20). After 100 iterations the output of the system tracks the
reference accurately. The error norm for this case is shown in
Fig. 3. The initial error is about 110 but after approximately
20 iterations the error reduces significantly and approaches
a final error norm of approximately 7. Using (24) gives
the predicted convergence rate of 2.02 which matches the
experimental result well in the first 6 trials but after this
the effect of model uncertainty and noise then degrades the
performance achieved in practice.
To compare performance against point-to-point ILC,
only a subset of reference points have been se-
lected to track. For output 1 these are given by

Fig. 2: System outputs using standard ILC, standard ILC
with optimal yd and point-to-point ILC.

Fig. 3: Error norm for standard and point-to-point ILC.

yr,1 = [5.07 5.99 3.53 -2.21 -5.89] at the time points
P1 = [0.4 0.6 1 1.4 1.8] and for output 2 yr,2 =
[6.75 7.24 1.00 -6.16 -7.61] at the time points P2 =
[0.4 0.8 1.2 1.6 2 ]. The reference yr is assembled accord-
ing to Section II, together with the 10×N matrix Φ. After
applying algorithm (15) with optimal β (20) the results are
shown in Fig. 2. The outputs of this case clearly differ to
the output of the standard case since it does not need to
track every single point. The starting error for this case is
much smaller also since the error norm is calculated from
the difference between reference points and the output at
the chosen time. The starting error norm is 17.8 and after 5
iterations the error norm reaches 0.5 and continues reducing
as the number of trials increases. After 100 iterations the final
error norm is approximately 0.17. From (24) the predicted
convergence rate for this case is 3.41 which is higher than
the standard case. The eigenvectors of ΦG(ΦG)T are V =

0.72 0 0 0.10 0.26 0 0 0.53 0 −0.35
0 −0.70 0.49 0 0 −0.38−0.31 0 0.19 0

−0.68 0 0 0.01 0.16 0 0 0.55 0 −0.46
0 0.54 −0.07 0 0 −0.35−0.62 0 0.43 0

0.12 0 0 −0.51−0.71 0 0 −0.03 0 −0.48
0 −0.37−0.43 0 0 0.56 −0.25 0 0.52 0
0 0 0 0.76 −0.18 0 0 −0.38 0 −0.50
0 0.27 0.64 0 0 0.31 0.36 0 0.54 0
0 0 0 −0.40 0.61 0 0 −0.53 0 −0.43
0 −0.12−0.41 0 0 −0.53 0.57 0 0.46 0


and have corresponding eigenvalues 0.0018, 0.0025, 0.0033,
0.0036, 0.0044, 0.0045, 0.0062, 0.0069, 0.0124, 0.0131. In-
serting these in |1−βσi(ΦG(ΦG)T )|−1 reveals convergence
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rates of 1.32, 1.51, 1.80, 1.94, 2.46, 2.48, 5.82, 12.79, 1.50,
1.32. From (23) this hence gives a more accurate worst case
convergence rate of 1.32 associated with the modes 1 and
10. The control effort norms are shown in Fig. 4 and confirm
that point-to-point ILC requires a smaller control effort than
standard ILC.
The utility of point-to-point ILC to increase the convergence

Fig. 4: Control input norm for standard ILC, standard ILC
with optimal yd and point-to-point ILC.
speed and reduce control effort has been confirmed but it is
possible that standard ILC with a reference chosen to solve
(14) achieves similar results. To show the benefit of using
experimental data, rather than the nominal plant model, to
achieve tracking tasks, standard ILC is again applied but now
with a reference that achieves the point-to-point task using
the minimum input norm. This is calculated the experimental
test, using the plant model and is given by

yd = G(ΦG)†yr (31)

Fig. 2 compares the final output of standard ILC using this
reference with that of point-to-point ILC. Although they are
similar, they differ since (31) is calculated using the plant
model, whereas point-to-point ILC uses experimental data
to solve (14). Fig. 5 shows the error norms of the two
methods, and predicted convergence rates are also presented.
The convergence rate of point-to-point ILC is again faster
compared to standard ILC with optimal yd. Indeed after
10 trials point-to-point ILC reaches 0.2 while the standard
ILC with optimal yd error norm is 1.7. After 40 trials both
methods reach the minimum error norm of approximately
0.17. The predicted convergence rate (22) approximately
matches the point-to-point ILC results but it is quite different
for the standard ILC with optimal yd since it is clear
that this method needs to track unnecessary points which
causes learning transients which are magnified by noise and
plant model uncertainty. Fig. 4 shows the controller norm
for point-to-point ILC is lower than that of standard ILC
with optimal yd. The point-to-point ILC controller norm
reaches the maximum norm in 3 trials and keeps this value
over remaining trials, whereas standard ILC with optimal
reference (31) takes substantially more trials to attain this
value. The experimental results hence confirm the theoretical
findings that point-to-point ILC yields superior performance
with a smaller controller norm.

Fig. 5: Error norm and rate of convergence.

V. CONCLUSIONS

This paper derives an algorithm to address general point-
to-point motion control tasks in a framework which uses
learning to attain optimal solutions in the presence of model
uncertainty and noise. Experimental results using a MIMO
test facility confirm the practical utility and performance of
the proposed approach and illustrate the benefit gained over
using the standard framework.
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