The University of Southampton
University of Southampton Institutional Repository

Controlling light-with-light without nonlinearity

Controlling light-with-light without nonlinearity
Controlling light-with-light without nonlinearity
According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorption of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators.
1-5
Zhang, Jianfa
7ce15288-2016-4b9c-8244-7aed073363ca
MacDonald, Kevin F.
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6
Zhang, Jianfa
7ce15288-2016-4b9c-8244-7aed073363ca
MacDonald, Kevin F.
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6

Zhang, Jianfa, MacDonald, Kevin F. and Zheludev, Nikolay I. (2012) Controlling light-with-light without nonlinearity. Light: Science & Applications, 1, 1-5. (doi:10.1038/lsa.2012.18).

Record type: Article

Abstract

According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorption of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators.

Text
lsa201218 - Version of Record
Download (1MB)

More information

Published date: 6 July 2012
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 341317
URI: https://eprints.soton.ac.uk/id/eprint/341317
PURE UUID: ae8b9b15-06ed-4ef9-941f-24c1379a2102
ORCID for Kevin F. MacDonald: ORCID iD orcid.org/0000-0002-3877-2976
ORCID for Nikolay I. Zheludev: ORCID iD orcid.org/0000-0002-1013-6636

Catalogue record

Date deposited: 19 Jul 2012 10:13
Last modified: 03 Dec 2019 02:03

Export record

Altmetrics

Contributors

Author: Jianfa Zhang

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×