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Abstract. A new PID tuning and controller approach is introduced for
Hammerstein systems based on input/output data. A B-spline neural
network is used to model the nonlinear static function in the Hammer-
stein system. The control signal is composed of a PID controller together
with a correction term. In order to update the control signal, the multi-
step ahead predictions of the Hammerstein system based on the B-spline
neural networks and the associated Jacobians matrix are calculated us-
ing the De Boor algorithms including both the functional and derivative
recursions. A numerical example is utilized to demonstrate the efficacy
of the proposed approaches.
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1 Introduction

The proportional-integral-derivative (PID) controllers have been the most pop-
ular controller structures. Neural networks have been widely applied to model
unknown dynamical processes and then used for PID parameter tuning [13,6,16].
Recently a novel predictive model-based PID tuning and control approach has
been proposed for unknown nonlinear systems that are modelled using neural
networks and support vector machines (SVMs) [11]. The work introduces a use-
ful technique both for PID parameter tuning and for the correction of the PID
output during control, which yields superior tracking and parameter convergence
performance.

The Hammerstein model, comprising a nonlinear static functional trans-
formation followed by a linear dynamical model, has been applied to nonlin-
ear plant/process modelling in a wide range of biological/engineering prob-
lems [10,4,14,2]. Model based control for the Hammerstein system has been well
studied [1,3,4]. The implementation of model based control for an a priori un-
known Hammerstein model requires system identification including modelling
and identification of the nonlinear static function. In [8], the closed loop system
is linearized by inserting the inverse of the identified static nonlinearity, and the
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nonlinear subsystems’ inverse is calculated using the inverse of de Casteljau’s
algorithm.

Computationally efficient and numerically stable algorithms are in general
desirable in nonlinear system identification and control. In this work a new PID
controller is introduced for Hammerstein systems that are identified based on
observational input/output data, in which the nonlinear static function in the
Hammerstein system is modelled using a B-spline neural network. For system
identification we used the Gauss-Newton algorithm subject to constraints as pro-
posed in [9]. The predictive model-based PID tuning and controller approach in
[11] was combined with the B-spline neural network based Hammerstein model.
For this purpose, multistep ahead predictions of the B-spline neural networks
based Hammerstein model are generated as well as the essential Jacobian matrix
for updating the control signal, based on the De Boor recursion including both
the functional and derivative recursions. The proposed model based on B-spline
neural networks has a significant advantage over many other modeling paradigms
in that this enables stable and efficient evaluations of functional and derivative
values based on De Boor recursion, which is used for updating the PID control
signals.

2 DModelling of the Hammerstein system based on
B-spline functions

2.1 The Hammerstein system

The Hammerstein system consists of a cascade of two subsystems, a nonlinear
memoryless function ¥(e) as the first subsystem, followed by a linear dynamic
part as the second subsystem. The system can be represented by

y(t) = —ary(t — 1) —agy(t —2) — ... — an, y(t —na)
+oiv(t — 1) + ... + b, v(t — np) +£(2) (1)
o(t—j) =P(ult—7)), Jj=1.,m (2)

where y(t) is the system output and w(t) is the system input. {(¢) is assumed
to be a white noise sequence independent of u(t) with zero mean and variance
of o%. v(t) is the output of nonlinear subsystem and the input to the linear
subsystem. a;’s, b;’s are parameters of the linear subsystem. n, and n; are
assumed known system output and input lags. Denote a = [ay, ..., a,,|T € R"e
and b = [by, ..., b,,]T € R™. It is assumed that A(¢™1) = 1+a1¢  +...+an, ¢ "
and B(¢~') = big~ ! + ... + by,q~ ™ are coprime polynomials of ¢~1, where ¢ *
denotes the backward shift operator.

Without significantly loss of generality the following assumptions are initially
made about the problem.

Assumption 1: The persistence excitation condition is given by

u(ng +np) -+ ulng +1) y(ng +np) -+ ylnpg+1)
rank : : : : : : =n,+mn, (3)
u(N—=1) - u(N—mnp) y(N—=1) -+ y(N —ng)
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Assumption 2: The gain of the linear subsystem is given by

—1 b b
G = lim Bla) = Zj:r} S | (4)
AT T Ty a

Assumption 3: W(e) is a one to one mapping, i.e. it is an invertible and
continuous function.

Assumption 4: u(t) is bounded by Upin < u(t) < Upmaz, where Uy, and
Unaz are assumed known finite real values.

The objective of the work is controller design for the system based on ob-
servational data. The objective of system identification for the above Ham-
merstein model is that, given an observational input/output data set Dy =
{y(®),u(t)},, to identify W(e) and to estimate the parameters a;, b; in the
linear subsystems. Note that the signals between the two subsystems are un-
available. In this work B-spline basis functions are adopted in order to model
U (e). Specifically, the B-spline basis functions are initially formed by using the
De-Boor algorithm [5] for the input data sets.

2.2 Modelling of ¥(e) using B-spline function approximation

Univariate B-spline basis functions are parameterized using a piecewise poly-
nomial of order k£, and also by a knot vector which is a set of values defined
on the real line that break it up into a number of intervals. Supposing that
there are d basis functions, the knot vector is specified by (d + k) knot values,
{U1,Usz,-+ ,Ugyr}. At each end there are k knots satisfying the condition of
being external to the input region, and as a result the number of internal knots
is (d — k). Specifically

U1<U2<Uk:Umm<Uk+1<Uk+2<"'<Ud<Umax:Ud+1<"'<Ud+k.

(5)
Given these predetermined knots, a set of d B-spline basis functions can be
formed by using the De Boor recursion [5], given by

(0) - 1if Uj §u<Uj+1
B; (u) = {0 otherwise (6)
j=1,,(d+ k)
(1) __u=U; p@i-1) Uipjri—u_ p(i—1)
B () = 555 B () + e B (), }

=1,---,k (7
j=1, (d+k—1i) (7)

The first order derivatives of the B-spline function have a similar recursion

k k—1 k—1 .
%B§ )(u) - Uk+f*Uj BJ< )(u) B Uk+j+f*Uj+1B;+1 )(u), j=1d ()

We model ¥(e) as a B-spline neural network [7], in the form of

d

w(u) = B (w)w; 9)

j=1
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where w;’s are weights to be determined. Denote w = [w1, -+ ,wy]? € R<. Note
that due to the piecewise nature of B-spline functions, there are only (k + 1)
basis functions with nonzero values for any point u. Hence the computational
cost for the evaluation of ¥(u) based on the De-Boor algorithm is determined
by the polynomial order k, rather than the number of knots, and this is in the
order of O(k?). The evaluation of the first order derivatives can be regarded as
a byproduct, with the additional computational cost in the order of O(k).

2.3 The system identification algorithm

With the B-spline approximation, the model predicted output ¢(¢) in (1) can be
written as

?j(t) = _aly(t - 1) - a2y(t - 2) e anay(t - na) +
d d
b1 > wiB (= 1)+ ot b, D wiB (). (10)
j=1 j=1

Let the modelling error be e(t) = y(t) — y(t). Over the estimation data set
Dy = {y(t),u(t)}¥,, (1) can be rewritten in a linear regression form

y(t) = [p(x(t)]" 0 +<(t) (11)

where x(t) = [~y(t — 1),...,—y(t — ng),u(t — 1), ...,u(t — ny)]? is system in-
put vector of observables with assumed known dimension of (n, + np), ¥ =
[aT, (blwl), veey (blwd), ...(bnbwl), ceny (bnbwnb)]T S §Rna+d.nb,

p(x(t)) = [=y(t — 1), .., —y(t —na), B (t = 1), ..
o BE = 1), B (¢ —ny), .., BE (£ —mp))T (12)
(11) can be rewritten in the matrix form as
y=Pd+e (13)

where y = [y(1),---,y(N)]T is the output vector. € = [¢(1),...,e(N)]*, and P
is the regression matrix

(1) pa(x(1)  pasan, (x(1))
p_ | P2) p2(x(2) - Puoan (x(2)) 14

The parameter vector 1 can be found as the least squares solution of
95 =B 'Ply (15)

provided that B = PTP is of full rank. Alternatively if this condition is vi-
olated, i.e. Rank(B) = r < n, + d - np, then performing the singular value
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decomposition (SVD) BQ = QX, where ¥ = diag[oy,...0.-,0,---,0]. Q =
[d1, -, 41, Qn, +d-n, ], followed by truncating the eigenvectors corresponding
to zero eigenvalues, we have

-

T
sV y Pqi
19Lsd = Z pu i (16)

4

i=1

This procedure produces our final estimate of a, which is simply taken as the
subvector of the resultant ‘std , consisting of its first n, elements. The parameter
estimation for b and w can be obtained using our previous work [9].

3 The model based PID controller

| Multistep ahead predictions

B-Spline NN
based
Hammerstein

| corrector block | model
T

\ néu(t) System idé:ntiﬁcation Et+1)
r(t e(t © + )
(l“’®£‘ PID controller |—*— *@ u(®) plant y(t+1)

Fig. 1. Diagram of the model based PID controller

Figure 1 illustrates the proposed model based PID controller for Hammer-
stein systems using B-spline neural networks where r(t) is the desired reference
trajectory to be followed by the plant output y(t), and e(t) is the error be-
tween the desired and measured output at time index ¢. Both the PID controller
parameters and the control signal are derived using the concept of predictive
control, explained as follows. At each sampling time, consider that the con-
trol signal wu(t) is repeatedly applied to the plant exactly for consecutive K
time steps and the resultant predictive output trajectory vector is denoted as
[g(t+11t), g(t +2]t),...,9(t + K|t)]. The optimal u(¢) is then derived such that
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the sum of the squared K-step ahead prediction errors are minimized with mini-
mum deviation in the control action. In other words, it is obtained by minimizing
the objective function J given by

1K

2, 1 2
J(u(t)) = 2;[6(t+'flt)] + A () —ult - 1))7, (17)
where e(t + k[t) = r(t + k) — §(t + k|t) is the k-step ahead prediction error,
k =1,---, K, K is the predetermined prediction horizon and A > 0 is a pre-
determined penalty term. The control signal u(t) is designed to be composed
of the PID output u(% (¢) plus a correction term ndu(t), with 1 as an optimum
step-length, given by

u(t) = ul(t) + nou(t), (18)

which is obtained by a two step procedure; (i) the PID controller parameters
are initially optimized based on minimizing (17) without the correction term
(n = 0), followed by (ii) obtaining ndu(t) minimizing (17) subject to the PID
controller as derived in (i).

3.1 PID controller parameter optimization using predictive control

Initially consider that the output of the PID controller (%) (t) in response to
error e(t) according to the formula given below:

uO(t) = u(t—1)+Kple(t)—e(t—1)]|+Kre(t)+Kple(t)—2e(t—1)+e(t—2)], (19)

is applied to the Hammerstein system, where Kp, K; and Kp are the PID
parameters to be optimized based on the objective function J (u(o) (t)) At the
beginning of the control sequence, the PID parameters are set to zero. In the
proposed scheme, we adopt the Levenberg-Marquardt (LM) rule (20) as the
minimization algorithm, such that the PID parameters are updated at every
time step according to

K}'r;ew K%ld
Knew| = K;’ij —a(ITT + uD)~ 1376, (20)
ngw K%

where « is a small predetermined positive number. @ > 0 is a parameter that
yields a compromise between the steepest descent and the Gauss-Newton algo-
rithms, I is the 3 x 3 identity matrix, J is the (K + 1) x 3 Jacobian matrix given
by,

OP(tH1lt)  Dg(t+1[t)  Dg(t+1[)

8Kp 6KI 6KD
09(t+2]t) Dg(t+2lt) Dy(t+al)
OKp OK OKp

J=-

Y(t+K|t) Oy(t+K|t) Oy(t+K]|t)
I o

ORI ORI
u u u
\/X 8Kp \/X 8KI \/X 6KD

Ju(t)=u(®) (1)
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and € is the vector of prediction errors and input slew given by,

e(t +1Jt) r(t+ 1)) — j(t + 1]t)

o>
I

e(t+ K|t) r(t+ K|t) — g(t + &|t)
V) = ult = D)) uory L VA =t =1) oo
(22)
It can be seen that the Jacobian matrix (21) can be decomposed as the product
of two different matrices by using the chain rule as follows:
[ 09(t+1]t) ]
Oul(t)
2y (t+2[t)
oul(t)

_ . Ou(t) Ou(t) du(t)
I=1|- : X | oRs ok 81;@}

BQ(t-';-Klt)
ou(t)

VA

Ju(t)=u© (¢)
= Jm']ca

where
3. — _ [oats1 opt+2i) Ot K| T
m = u(t) ou) .t ou(d)

, 24
u(t)=u® (1) (24)
and J. is a matrix of partial derivatives of u(?)(t) with respect to the PID
parameters and can be written by using only the tracking errors as,

e(t) —e(t — 1) ’

J. = e(t) (25)
e(t)—2e(t—1)+e(t—2)

However, mostly in the transient-state and to some extent in the steady-state,
the obtained PID parameters may not be good enough to produce an acceptable
control action, which leadd to the necessity of a correction term ndu(t) to be
added to the control action.

3.2 The optimal control signal using corrector block

The aim of the corrector block is to produce a suboptimal correction term du(t)
used in (18) by minimizing the objective function J(u(t)) given by (17). More
specifically, the corrector block tries to minimize the objective function J with
respect to du(t) based on the second-order Taylor approximation of the objective
function J as follows:

J@@»:J@NKQ+M@0
~ Ju@ ) + ag(uu((tt))) lu(t)zu(o)(t)éu(t)
102 J(u(t))

u 2.
2 Ou(t)? |u(t):u(0)(t)(6 ") 20)
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Since we wish to find the du(t) that minimizes the objective function, if we take
the derivative of the approximate J with respect to du(t) and equate it to zero,
we obtain,

0.(1) R0 o e
Oult) up=uory  Ou)? ju=uo ()
SO a7
ou =0
Su(t) = — 6]2(‘t]) lu(t)=u() (t) ’ (28)

Out)” |u(t)=u(® (1)

which corresponds to the Newton direction that provides a quadratic conver-
gence to the local minimum if the scalar second-order term (Hessian) in the
Taylor expansion is positive and the higher-order terms are negligible [12]. In
order to avoid calculating the time-consuming second-order derivatives, we can
employ the well-known Jacobian approximation that suggests that the (K+1)x1
Jacobian matrix J,, can represent the gradient vector exactly and the Hessian
matrix approximately as,

OJ(u(t 0% J(u(t
9J(u(t)) — 2376 ana ZJWD) ~2373,..  (29)
Oult) Ju(ty=uo) (1 Ou(t)? Ju(ty—u (t)
The correction term is computed by
su(t)=-J"¢&/30J,,. (30)

Finally, once du(t) is determined, a line search is used to search for the opti-
mum step-length n to further minimize the objective function. This is a typical
one-dimensional optimization problem and can be solved by the golden section
algorithm [15]. This algorithm directly evaluates J (u(")(t)) for a sequence of
control signals u(™(¢), n = 1,2,---, until this converges to the optimal wu(t)
which is associated with the optimum step-length 7.

Note that the PID controller parameter updating formula (20) requires the
calculation of multistep ahead predictions and the Jacobian J,,. Moreover the
subsequent control signal correction term given by (18)&(30) via the golden
section algorithm not only requires the Jacobian J,,, but also the iterative cal-
culation of multistep ahead predictions for the objective functional evaluations.
Note also that the calculation of multistep ahead predictions and the Jacobian
J.n are model specific. In [11], this controller scheme has been applied to un-
known nonlinear systems that are modelled using neural networks and support
vector machines (SVMs) respectively. In the following, the calculation of multi-
step ahead predictions and Jacobian J,, for the B-spline neural network based
Hammerstein model are introduced.

3.3 The calculation of multistep ahead predictions and Jacobian J,,

If a control signal u(t) is repeatedly applied to the plant exactly K time steps,
then the s-step ahead predictions (k = 1,---,K) using the B-spline neural
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network based Hammerstein model are given by

gt + klt) = —arg(t + k — 1|t) — a2g(t + £k — 2|t) — ... — an, G(t + K — nglt)
+oo(t+k—1)+ ... + by, 0t + Kk —np) (31)

in which each term in the right hand side of (31) is computed by

gt +rk—ift)if (k—14) >0
y(t+ kK —1i) otherwise
=1, ng, k=1,--- K (32)

g)(t+ni|t){

and

S BP (ult)w; i (ki) >0

Z;l:l B](-k) (u(t+k—1))w; otherwise

U(t+ﬁ—i):{

=1, ny, k=1, K (33)
Similarly the elements in J,,, 6175325“), k=1,---, K are also computed recur-
sively from
oyt + klt) . oy(t + k — 1)t) . AY(t + k — 2|t) . AY(t + k — nalt)
outy Y ou(t) 2T oult) v e du(t)
ov(t+ k — 1t) Ov(t+ Kk — nplt)

bj—————= bpy————————— 34
Ly R (34)

in which each term in the right hand side of (34) is computed by

Ayt +r —1|t) 99t ir 1Y) 3¢ (5 — ) > 0
0 otherwise

Ou(t)
Du(t)
i=1,ne, K=1,---,K (35

and

Quit +r—ilt) [ 30wzt B (u(t)) if (k—i) >0
ou(t) 0 otherwise

i=1,--,ny, k=1, K  (36)

Note that in calculating (31)-(37), the De Boor algorithm (6)-(8) is applied in

evaluating the associated entries. In particular we point out the term dud( o) B§k) (u(t))
in (37) is evaluated using (8) and gives exact derivative values at minimum extra
computational cost, and this is an advantage specific to our proposed Hammer-
stein model using B-spline neural network with De Boor recursion. Specifically at
each time step the proposed algorithm requires (31) to be evaluated (1,4, + 1)
times, based on u(”)(t), n =1, Nmaz, Where n,q; is the maximum num-

ber of iterations set in the golden section algorithm. Equation (34) is however
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only evaluated once for the calculation of J,,. Hence the two main parts of the
computational cost are firstly due to the PID parameter updates in the order of
O(9x (K+1)+3%), and secondly due to the iterative multistep ahead predictions
mainly in the golden section algorithm, and this is of order O(k?+ (n,+k-np) K),
which is further scaled by n.,q.. Effectively the proposed algorithm enables sta-
ble and efficient evaluations of the multistep ahead predictions and functional
derivatives to be possible, which could be problematic for many other nonlinear
representations including some spline functions based nonlinear models.

The optimal values for A and K are mostly problem-dependent and thus
there is no general analytical way of finding them. Still, it will be helpful to take
some general facts given below into consideration while attempting to find their
proper values by trial-and-error.

4 An illustrative example

An illustrative Hammerstein system is simulated, in which the linear subsystem
is given by A(¢7') =1-1.2¢7'+0.9¢72, B(¢~') = 1.7¢"* — ¢~ 2. The nonlinear
subsystem, ¥(e) is given by

¥(u) = —2sign(u)u? (37)

The variances of the additive noise to the system output are set as o2 = 0.0001.
1000 training data samples y(t) were generated by using (1) and (2), where u(t)
was a uniformly distributed random variable u(t) € [—1.5,1.5]. The polynomial
degree of B-spline basis functions was set as k = 2 (piecewise quadratic). The
knots sequence U; was set as

[-3, =25, =2, —1, —0.3, 0, 0.3, 1, 2, 2.5, 3].

Initially system identification was carried out. The parameters were empirically
set at @« = 0.2, p = 1073, K = 15, A = 10 for illustration only because it
was found that the proposed approach is robust for a wide range of parameters.
The reference signal r(t) was generated as a series of square waves resembling a
staircase. Figure 2(a) plot the applied computed control signal. Figure 2(b) plot
the system output y(t) together with the corresponding reference signal r(t) with
a small noise ( 02 =9 x 1079 ). It is shown that the proposed method exhibits
excellent result.

5 Conclusions

This paper has introduced a new effective PID control method for Hammerstein
systems based on observational input/output data. Modeling of the nonlinear
static function in the Hammerstein system is based on B-spline function approx-
imation. By minimizing the multistep ahead prediction errors the PID controller
parameters are updated and then corrected to generate the control signal. The
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Fig. 2. Results of the proposed PID controller.

multistep ahead predictions of the B-spline neural networks based Hammer-
stein system and the associated Jacobians matrix are very efficiently computed
based on the De Boor algorithms including both the functional and derivative
recursions. The efficacy of the proposed approach has been demonstrated via an
illustrative example.
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