
PSO assisted NURB neural network

identification

X. Hong1 and S. Chen2

1 School of Systems Engineering, University of Reading, UK
2 School of Electronics and Computer Science, University of Southampton, UK, and
Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Abstract. A system identification algorithm is introduced for Hammer-
stein systems that are modelled using a non-uniform rational B-spline
(NURB) neural network. The proposed algorithm consists of two suc-
cessive stages. First the shaping parameters in NURB network are esti-
mated using a particle swarm optimization (PSO) procedure. Then the
remaining parameters are estimated by the method of the singular value
decomposition (SVD). Numerical examples including a linear pole assign-
ment controller are utilized to demonstrate the efficacy of the proposed
approach.

Keywords: B-spline, NURB neural networks, De Boor algorithm, Ham-
merstein model, pole assignment controller, particle swarm optimization,
system identification.

1 Introduction

The Hammerstein model, comprising a nonlinear static functional transforma-
tion followed by a linear dynamical model, has been widely researched [3,21,2,12].
The model characterization/representation of the unknown nonlinear static func-
tion is fundamental to the identification of Hammerstein model. Various ap-
proaches have been developed in order to capture the a priori unknown non-
linearity by use of both parametric [22,6] and nonparametric methods [17,11,7].
The special structure of Hammerstein models can be exploited to develop hybrid
parameter estimation algorithms [2,1,6].

Both the uniform/nonrational B-spline curve and the non-uniform/rational
B-spline (NURB) curve have also been widely used in computer graphics and
computer aided geometric design (CAGD) [8]. These curves consist of many
polynomial pieces, offering much more versatility than do Bezier curves while
maintaining the same advantage of the best conditioning property. NURB is
a generalization of the uniform, non-rational B-splines, and offers much more
versatility and powerful approximation capability. The NURB neural network
possesses a much more powerful modeling capability than a conventional non-
rational B-spline neural network because of the extra shaping parameters. This
motivates us to propose the use of NURB neural networks to model the nonlinear
static function in the Hammerstein system.

II

The PSO [15,16] constitutes a population based stochastic optimisation tech-
nique, which was inspired by the social behaviour of bird flocks or fish schools.
It has been successfully applied to wide-ranging optimisation problems [18,20].
This paper introduces a hybrid system identification consisting two successive
stages. We note that the model output can be represented as a linear in the
parameters model once the shaping parameters are fixed. This means that the
mean squares error due to the shaping parameters can be easily obtained using
the least squares method, without explicitly estimating the other parameters.
In the proposed algorithm the shaping parameters in NURB neural networks
are estimated using the particle swarm optimization (PSO) as the first step, in
which the mean square error is used as the cost function.

A popular treatment of the control of the Hammerstein model is to remove
the nonlinearity via an inversion [9,4,19]. In this study, the controller consists of
computing the inverse of the nonlinear static function approximated by NURB,
followed by a linear pole assignment controller. The linearization of the closed
loop system is achieved by inserting the inverse of the identified static nonlin-
earity via the inverse of De Boor algorithm [14] which was introduced for the
control of B-spline based Hammerstein systems.

2 The Hammerstein system

The Hammerstein system consists of a cascade of two subsystems, a nonlinear
memoryless function Ψ(•) as the first subsystem, followed by a linear dynamic
part as the second subsystem. The system can be represented by

y(t) = ŷ(t) + ξ(t)

= −a1y(t− 1)− a2y(t− 2)− ...− ana
y(t− na)

+b1v(t− 1) + ...+ bnb
v(t− nb) + ξ(t) (1)

v(t− j) = Ψ(u(t− j)), j = 1, ..., nb (2)

where y(t) is the system output and u(t) is the system input. ξ(t) is assumed
to be a white noise sequence independent of u(t) with zero mean and variance
of σ2. v(t) is the output of nonlinear subsystem and the input to the linear
subsystem. aj’s, bj ’s are parameters of the linear subsystem. na and nb are
assumed known system output and input lags. Denote a = [a1, ..., ana

]T ∈ ℜna

and b = [b1, ..., bnb
]T ∈ ℜnb . It is assumed that A(q−1) = 1+a1q

−1+...+ana
q−na

and B(q−1) = b1q
−1 + ...+ bnb

q−nb are coprime polynomials of q−1, where q−1

denotes the backward shift operator. The gain of the linear subsystem is given
by

G = lim
q→1

B(q−1)

A(q−1)
=

∑nb

j=1 bj

1 +
∑na

j=1 aj
(3)

The two objectives of the work are that of the system identification and the
subsequent controller design for the identified model. The objective of system
identification for the above Hammerstein model is that, given an observational

III

input/output data set DN = {y(t), u(t)}Nt=1, to identify Ψ(•) and to estimate
the parameters aj , bj in the linear subsystems. Note that the signals between
the two subsystems are unavailable.

Without significantly losing generality the following assumptions are initially
made about the problem.

Assumption 1: Ψ(•) is a one to one mapping, i.e. it is an invertible and
continuous function.

Assumption 2: u(t) is bounded by Umin < u(t) < Umax, where Umin and
Umax are assumed known finite real values.

3 Modelling of Hammerstein system using NURB neural

network

In this work the non-uniform rational B-spline (NURB) neural network is adopted
in order to model Ψ(•). De Boor’s algorithm is a fast and numerically stable al-
gorithm for evaluating B-spline basis functions [5]. Univariate B-spline basis
functions are parameterized by the order of a piecewise polynomial of order k,
and also by a knot vector which is a set of values defined on the real line that
break it up into a number of intervals. Supposing that there are d basis func-
tions, the knot vector is specified by (d+ k) knot values, {U1, U2, · · · , Ud+k}. At
each end there are k knots satisfying the condition of being external to the input
region, and as a result the number of internal knots is (d− k). Specifically

U1 < U2 < Uk = Umin < Uk+1 < Uk+2 < · · · <

Ud < Umax = Ud+1 < · · · < Ud+k. (4)

Given these predetermined knots, a set of d B-spline basis functions can be
formed by using the De Boor recursion [5], given by

B
(0)
j (u) =

{

1 if Uj ≤ u < Uj+1

0 otherwise
(5)

j = 1, · · · , (d+ k)

B
(i)
j (u) =

u−Uj

Ui+j−Uj
B
(i−1)
i (u)

+
Ui+j+1−u

Ui+j+1−Uj+1
B
(i−1)
j+1 (u),

j = 1, · · · , (d+ k − i)











i = 1, · · · , k (6)

We model Ψ(•) as the NURB neural network in the form of

Ψ(u) =

d
∑

j=1

N
(k)
j (u)ωj (7)

with

N
(k)
j (u) =

λjB
(k)
j (u)

∑d

j=1 λjB
(k)
j (u)

(8)

IV

where ωj’s are weights, λj > 0’s the shaping parameters that are to be deter-
mined. Denote ω = [ω1, · · · , ωd]

T ∈ ℜd. λ = [λ1, · · · , λd]
T ∈ ℜd. For uniqueness

we set the constraint
∑d

j=1 λj = 1. Note that due to the piecewise nature of
B-spline functions, there are only (k+1) basis functions with nonzero values for
any point u. Hence the computational cost for the evaluation of Ψ(u) based on
the De-Boor algorithm is determined by the polynomial order k, rather than the
number of knots, and this is in the order of O(k2).

Our algorithm involves estimating the weights and the shaping parameters
in the NURB model. Note that the proposed NURB neural network possesses
a much more powerful modeling capability than a nonrational B-spline network
because of the extra shaping parameters. This is advantageous because all the
parameters are continuous variables that can be solved by nonlinear optimiza-
tion, compared to presetting the knots by trial and error which does not yield
to the optimum.

With specified knots and over the estimation data set DN , λ,ω, a,b may be
jointly estimated via

min
λ,ω,a,b

{J =

N
∑

t=1

(y − ŷ(t,λ,ω, a,b))2} (9)

subject to

λj ≥ 0, ∀j, λT
1 = 1 and G = 1 (10)

in which G = 1 is imposed for unique solution. We point out that this is still a
very difficult nonlinear optimization problem due to the mixed constraints, and
this motivates us to propose the following hybrid procedure. It is proposed that
the shaping parameters λj ’s are found using the PSO, as the first step of system
identification, followed by the estimation of the remaining parameters.

4 The system identification of Hammerstein system

based on NURB using PSO

4.1 The basic idea

Initially consider using NURB approximation with a specified shape parameter
vector λ, the model predicted output ŷ(t) in (1) can be written as

ŷ(t) = −a1y(t− 1)− a2y(t− 2)− ...

−ana
y(t− na) + b1

d
∑

j=1

ωjN
(k)
j (t− 1) + ...

+bnb

d
∑

j=1

ωjN
(k)
j (t− nb) (11)

V

Over the estimation data set DN = {y(t), u(t)}Nt=1, (1) can be rewritten in a
linear regression form

y(t) = [p(x(t))]Tϑ+ ξ(t) (12)

where x(t) = [−y(t − 1), ...,−y(t − na), u(t − 1), ..., u(t − nb)]
T is system in-

put vector of observables with assumed known dimension of (na + nb), ϑ =
[aT , (b1ω1), ..., (b1ωd), ...(bnb

ω1), ..., (bnb
ωnb

)]T ∈ ℜna+d·nb ,

p(x(t)) = [−y(t− 1), ...,−y(t− na),

N
(k)
1 (t− 1), ...,N

(k)
d (t− 1), ...N

(k)
1 (t− nb)

, ...,N
(k)
d (t− nb)]

T (13)

(12) can be rewritten in the matrix form as

y = Pϑ+Ξ (14)

where y = [y(1), · · · , y(N)]T is the output vector. Ξ = [ξ(1), ..., ξ(N)]T , and P

is the regression matrix

P =









p1(x(1)) p2(x(1)) · · · pna+d·nb
(x(1))

p1(x(2)) p2(x(2)) · · · pna+d·nb
(x(2))

. .
p1(x(N)) p2(x(N)) · · · pna+d·nb

(x(N))









(15)

The parameter vector ϑ can be found as the least squares solution of

ϑLS = B−1PTy (16)

provided that B = PTP is of full rank. Alternatively if this condition is violated,
i.e. Rank(B) = r < na + d · nb, then performing the eigenvalue decomposition
BQ = QΣ, where Σ = diag[σ1, ...σr, 0, · · · , 0] with σ1 > σ2 > ... > σr > 0.
Q = [q1, · · · ,qna+d·nb

], followed by truncating the eigenvectors corresponding
to zero eigenvalues, we have

ϑsvd
LS =

r
∑

i=1

yTPqi

σi

qi (17)

Thus the mean square error can be readily computed from

J(λ) = [y −Pϑsvd
LS]T [y −Pϑsvd

LS]/N. (18)

for any specified λ. Note that it is computationally simple to evaluate J(λ)
due to the fact that the model has a linear in the parameter structure for a
given λ. This is an important observation for simplifying the algorithm design.
This suggests that we can optimize λ as the first task. The information of other
models parameters are implicit in ϑsvd

LS and dependent on λ. We point out that
at this stage other models parameters are not estimated which would be much
more computationally involved but unnecessary.

VI

4.2 Particle swarm optimisation for estimating the shaping

parameters λj’s

In the following we propose to apply the PSO algorithm [15,16], and aim to solve

λopt = arg min
λ∈

∏
d
j=1

Λj

J(λ), s.t. λT1 = 1 (19)

where 1 denotes a vector of all ones with appropriate dimension.

d
∏

j=1

Λj =
d
∏

j=1

[0, 1] s.t. λT1 = 1 (20)

defines the search space. A swarm of particles, {λ
(l)
i }

S
i=1, that represent potential

solutions are “flying” in the search space
∏d

j=1 Λj, where S is the swarm size
and index l denotes the iteration step. The algorithm is summarised as follows.

a) Swarm initialisation. Set the iteration index l = 0 and randomly generate

{λ
(l)
i }

S
i=1 in the search space

∏d
j=1 Λj. These are obtained by randomly set each

element of {λ
(l)
i }

S
i=1 as rand() (denoting the uniform random number between

0 and 1), followed normalizing them by

λ
(0)
i = λ

(0)
i /

d
∑

j=1

λ
(0)
i |j (21)

where •|j denotes the jth element of •, so that {λ
(0)
i }

T1 = 1 is valid.

b) Swarm evaluation. The cost of each particle λ
(l)
i is obtained as J(λ

(l)
i). Each

particle λ
(l)
i remembers its best position visited so far, denoted as pb

(l)
i , which

provides the cognitive information. Every particle also knows the best position
visited so far among the entire swarm, denoted as gb(l), which provides the social

information. The cognitive information {pb
(l)
i }

S
i=1 and the social information

gb
(l) are updated at each iteration:

For (i = 1; i ≤ S; i++)

If (J(λ
(l)
i) < J(pb

(l)
i)) pb

(l)
i = λ

(l)
i ;

End for;

i∗ = arg min
1≤i≤S

J(pb
(l)
i);

If (J(pb
(l)
i∗) < J(gb(l))) gb(l) = pb

(l)
i∗ ;

c) Swarm update. Each particle λ
(l)
i has a velocity, denoted as γ

(l)
i , to direct

its “flying”. The velocity and position of the ith particle are updated in each
iteration according to

γ
(l+1)
i = µ0 ∗ γ

(l)
i + rand() ∗ µ1 ∗ (pb

(l)
i − λ

(l)
i)

+rand() ∗ µ2 ∗ (gb
(l) − λ

(l)
i), (22)

λ
(l+1)
i = λ

(l)
i + γ

(l+1)
i , (23)

VII

where µ0 is the inertia weight, µ1 and µ2 are the two acceleration coefficients.
In order to avoid excessive roaming of particles beyond the search space [13], a
velocity space

d
∏

j=2

Υj =
d
∏

j=2

[−Υj,max, Υj,max] (24)

is imposed on γ
(l+1)
i so that

If (γ
(l+1)
i |j > Υj,max) γ

(l+1)
i |j = Υj,max;

If (γ
(l+1)
i |j < −Υj,max) γ

(l+1)
i |j = −Υj,max;

Moreover, if the velocity as given in equation (22) approaches zero, it is reini-
tialised proportional to Υj,max with a small factor ν

If (γ
(l+1)
i |j == 0) γ

(l+1)
i |j = ±rand() ∗ ν ∗ Υj,max; (25)

In order to ensure each element of λ
(l+1)
i that it satisfies the constraint and stays

in the space, we modified constraint check in the PSO as follows;

If (λ
(l+1)
i |j < 0) λ

(l+1)
i |j = 0;

then

λ
(l+1)
i = λ

(l+1)
i /

d
∑

j=1

λ
(l+1)
i |j (26)

Note that the normalization step that we introduced here does not affect the cost
function value, rather it effectively keeps the solution stay inside the bound.

d) Termination condition check. If the maximum number of iterations, Imax,

is reached, terminate the algorithm with the solution gb(Imax); otherwise, set
l = l + 1 and go to Step b).

Ratnaweera and co-authors [20] reported that using a time varying accel-
eration coefficient (TVAC) enhances the performance of PSO. We adopt this
mechanism, in which µ1 is reduced from 2.5 to 0.5 and µ2 varies from 0.5 to 2.5
during the iterative procedure:

µ1 = (0.5− 2.5) ∗ l/Imax + 2.5,

µ2 = (2.5− 0.5) ∗ l/Imax + 0.5.
(27)

The reason for good performance of this TVAC mechanism can be explained
as follows. At the initial stages, a large cognitive component and a small social
component help particles to wander around or better exploit the search space,
avoiding local minima. In the later stages, a small cognitive component and a
large social component help particles to converge quickly to a global minimum.
We use µ0 = rand() at each iteration.

The search space as given in equation (20) is defined by the specific problem
to be solved, and the velocity limit Υj,max is empirically set. An appropriate
value of the small control factor ν in equation (25) for avoiding zero velocity is
empirically found to be ν = 0.1 for our application.

VIII

4.3 Estimating the parameter vectors ω, a, b using ϑsvd
LS

In this section we describe the second stage of Bai’s two stage identification
algorithm [2] which can be used to recover ω, a,b from ϑsvd

LS (λopt) based on
the result of PSO above. Our final estimate of â, which is simply taken as the
subvector of the resultant ϑsvd

LS (λopt), consisting of its first na elements.

Rearrange the (na +1)th to (na +(d+1)×nb)
th elements of ϑsvd

LS (λopt) into
a matrix

M =









b1ω0 b1ω1 · · · b1ωd

b2ω0 b2ω1 · · · b2ωd

. .
bnb

ω0 bnb
ω1 · · · bnb

ωd









= bωT ∈ ℜnb×(d+1) (28)

The matrix M has rank 1 and its singular value decomposition is of the form

M = Γ









δM 0 · · · 0
0 0 · · · 0
.
0 0 · · · 0









∆T

= Γ















δM
0
...
0
0















[

1 0 . . . 0
]

∆T (29)

where Γ = [Γ 1, ...,Γ nb
] ∈ ℜnb×nb and ∆ = [∆1, ...,∆d+1] ∈ ℜ(d+1)×(d+1),

where Γ i (i = 1, .., nb) and Λi (i = 1, ..., (d+1)) are orthonormal vectors. δM is
the sole non-zero singular value of M. b and ω can be obtained using

b̂ = δMΓ1

ω̂ = ∆1 (30)

followed by

b̂←− βb̂

ω̂ ←− ω̂/β (31)

where β = (1 +
∑na

j=1 âj)/(
∑nb

j=1 b̂j).
Note that the standard Bai’s approach as above may suffer a serious numeri-

cal problem that the matrix M turns out to have rank higher than one, resulting
in the parameters estimator far from usable. This issue was discussed in [10], in
which the modified SVD approach was proposed to address the problem. The
more stable modified SVD approach [10] is used in our simulations.

5 An illustrative example

A Hammerstein system is simulated, in which the linear subsystem is A(q−1) =
1 − 1.2q−1 + 0.9q−2, B(q−1) = 1.7q−1 − q−2, and the nonlinear subsystem

IX

Ψ(u) = 2sign(u)
√

|u|. The variance of the additive noise to the system out-
put is set as 0.01. 1000 training data samples y(t) were generated by using (1)
and (2), where u(t) was uniformly distributed random variable u(t) ∈ [−1.5, 1.5].
The polynomial degree of B-spline basis functions was set as k = 2 (piecewise
quadratic). The knots sequence Uj is set as

[−3.2, −2.4, −1.6, −0.8, −0.05, 0, 0.05, 0.8, 1.6, 2.4, 3.2].

Initially the system identification was carried out. In the modified PSO al-
gorithm, we set S = 20, Imax = 20, Υj,max = 0.025. The resultant 8 NURB basis
functions for the two data sets are plotted in Figure 1.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

(a) (b)

Fig. 1. The resultant B-spline (solid line) and NURB (dotted line) basis functions
formed using PSO; (a) σ2 = 0.01 and σ

2 = 0.25

The simulations of the pole assignment controller as shown in Figure 2, was
experimented based on a given closed loop polynomial T (q−1) = 1 − 0.6q−1 +
0.1q−2. Under the assumption that the inverse of De Boor algorithm [14]) can
cancel the nonlinearity in the system which is modeled by the identified NURB
model, the required controller polynomials are estimated. The reference signals
r(t) are generated as a series of sinusoidal wave with its magnitude and frequency
changing every 200 time steps. Figure 3(a) and (b) plot the resultant control
signal and system response to the reference signal, respectively, when the output
noise variance is set at 0.01. It can be concluded that the proposed method
has excellent results in terms of system identification as well as the subsequent
control for the identified systems.

6 Conclusions

This paper introduced a new system identification algorithm for the Hammer-
stein systems based on observational input/output data, using the non-uniform

X

1
−1ψ

B

A

G

F
H

Hammerstein system

v(t)r (t)
u (t)

. ψ()
v(t) y(t)

_

+

Fig. 2. The control of Hammerstein system using pole assignment and the inverse of
De Boor algorithm.

0 100 200 300 400 500 600
−1.5

−1

−0.5

0

0.5

1

1.5

2

A
ct

ua
l a

pp
lie

d
co

nt
ro

l s
ig

na
l u

(t
)

t
100 200 300 400 500 600

−4

−3

−2

−1

0

1

2

3

4

t

sy
st

em
 r

es
po

ns
es

(a) (b)

Fig. 3. The results of the pole assignment controller.

rational B-spline (NURB) neural network. We propose the PSO for the estima-
tion of the shaping parameters in NURB neural networks. In simulation, a model
based controller using inverse of the nonlinear static function approximated by
NURB neural network together with a linear pole assignment controller are
utilised to demonstrate the effectiveness of the proposed approaches.

References

1. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-wiener
nonlinear systems. Automatica 34, 333–338 (1998)

2. Bai, E.W., Fu, M.Y.: A blind approach to Hammerstein model identification. IEEE
Transactions on Signal Processing 50(7), 1610–1619 (2002)

3. Billings, S.A., Fakhouri, S.Y.: Nonlinear system identification using the Hammer-
stein model. International Journal of Systems Science 10, 567–578 (1979)

4. Bloemen, H.H., van den Boom, T.J., Verbruggen, H.B.: Model based predictive
control for Hammerstein systems. In: Proc. of the 39th IEEE Conference on Deci-
sion and Control. pp. 4963–4968. Sydney, Australia (2000)

XI

5. de Boor: A Practical Guide to Splines. New York: Spring Verlag (1978)
6. Chaoui, F.Z., Giri, F., Rochdi, Y., Haloua, M., Naitali, A.: System identification

based Hammerstein model. International Journal of Control 78(6), 430–442 (2005)
7. Chen, H.F.: Pathwise convergence of recursive identification algorithms for Ham-

merstein systems. IEEE Trans. on Automatic Control 49(10), 1873–1896 (2004)
8. Farin, G.: Curves and Surfaces for Comnputer-aided Geometric Design: a Practical

Guide. Academic Press, Boston (1994)
9. Fruzzetti, E., Palazoglu, A., Mcdonald, K.A.: Nonlinear model predictive control

using Hammerstein models. Journal of Process Cotnrol 7(1), 31–41 (1997)
10. Goethals, I., Pelckmans, K., Suykens, J.A.K., Moor, B.D.: Identification of MIMO

Hammerstein models using least squares support vector machines. Automatica 41,
1263–1272 (2005)

11. Greblicki, W.: Stochastic approximation in nonparametric identification of Ham-
merstein systems. IEEE Transactions on Automatic Control 47(11), 1800–1810
(2002)

12. Greblicki, W., Pawlak, M.: Identification of discrete Hammerstein systems using
kernel regression estimate. IEEE Transactions on Automatic Control AC-31(1),
74–77 (1986)

13. Guru, S.M., Halgamuge, S.K., Fernando, S.: Particle swarm optimisers for cluster
formation in wireless sensor networks. In: Proc. 2005 Int. Conf. Intelligent Sensors,
Sensor Networks and Information Processing. pp. 319–324. Melbourne, Australia
(Dec 5-8, 2005)

14. Hong, X., Mitchell, R.J., Chen, S.: Modeling and control of Hammerstein system
using B-spline approximation and the inverse of De Boor algorithm. International
Journal of Systems Science p. In Press (2011)

15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of 1995 IEEE
Int. Conf. Neural Networks. vol. 4, pp. 1942–1948. Perth, Australia (Nov 27-Dec
1, 1995)

16. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)
17. Lang, Z.Q.: A nonparametric polynomial identification algorithm for the Ham-

merstein system. IEEE Transactions on Automatic Control 42, 1435–1441 (Oct
1997)

18. van der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm
optimization. In: Proc. CEC 2003. pp. 215–220. Cabberra, Australia (Dec 8-12,
2003)

19. Patwardhan, R.S., Lakshminarayanan, S., Shah, S.L.: Contrained nonlienar mc
using Hammerstein and Wiener model: PLS framework. AIChE Journal 44(7),
1611–1622 (1998)

20. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical parti-
cle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evo-
lutionary Computation 8, 240–255 (June 2004)

21. Stoica, P., Söderström, T.: Instrumental variable methods for identification of Ham-
merstein systems. International Journal of Control 35, 459–476 (1982)

22. Verhaegen, M., Westwick, D.: Identifying mimo Hammerstein systems in the con-
text of subspace model identification. International Journal of Control 63(2), 331–
349 (1996)

	PSO assisted NURB neural network identification

