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Hydrogen silsesquioxane (HSQ) is a high resolution electron beam resist that offers a high etch resistance 

and small line edge roughness [1-3]. In our previous work [4], we showed that by using this resist we can 

fabricate very high density double quantum dot (QD) single electron transistors on silicon-on-insulator 

(SOI) substrates for applications in quantum information processing. We observed that 80% of 144 

fabricated devices had dimensional variations of ±5 nm with a standard deviation of 3.4 nm. Here, we 

report on the functionality of our Si QD devices through electrical measurements and further HSQ process 

optimisations, which improve the effective side gates control on single electron operation. 

Fig. 1 shows a scanning electron micrograph (SEM) of the typical arrangement of a double quantum dot 

(DQD) transistors etched into a 50 nm thick SOI. A low electron concentration for conduction in the SOI is 

induced by the application of a top gate (not shown) bias. The devices are intrinsic silicon islands 

connected to the source (S) and drain (D) leads by narrow constrictions that act as tunnel junctions. A 4% 

HSQ resist (55 nm thick) process optimisation allowed for realisation of reproducible silicon islands of 50 

nm and tunnel junctions of 25 nm. The constrictions along with the capacitively coupled side gates, which 

are ~60 nm away, allowed for formation and control of potential barriers that modulate electron tunnelling 

through the two QDs between the source and the drain. One of the two transistors here acts as an 

electrometer to detect changes in the charge configuration in the other, which is operated as a turnstile for 

electrons. 

Electrical measurements of the drain current, IDS, of the turnstile was performed as a function of varying 

drain voltage, VDS, and top gate voltage, VTG, at a base temperature of 80 mK. A plot (Fig. 2) of the 
absolute drain current |IDS| revealed diamond shaped coulomb blockade regions which indicate single 

electron transfer through the QDs. From this plot a charging energy of 5 meV was extracted signifying QD 

dimensions of 25 nm. This is dimensionally consistent with that expected from the fabrication process 
where a 10 nm thermal oxide was formed to reduce the QD dimensions. In Fig. 3 we present a plot of IDS as 

a function of applied biases on side gates 1 and 3 with side gate 2 grounded and VDS = 1 mV and VTG= 3.87 

V.  An active control of coulomb oscillations was observed, which indicates a strongly coupled DQD 
system. However, due the weak decoupling effect from the bias on side gate 2 on these dots, we were 

unable to obtain the expected honeycomb shaped charge stability diagram [5]. 

 
For effective side gate control of single electrons in the DQD, we further attempted to fabricate devices 

with the side gates closer to the constrictions and QDs. A 2% HSQ resist (25 nm thick) process with 

extensive dose optimisation was performed to realise DQD transistors with side gate to QD separations less 
than 20 nm. Fig.4 shows an SEM of the improved DQD system etched into a 30 nm SOI substrate, where 

the side gates and transistors are as close as ~14 nm. A detailed fabrication process to achieve these 
extremely high density quantum devices along with electrical characteristics will also be presented. 
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Fig. 1. SEM of a DQD device etched into 50 nm thick 
SOI and realised by using a 4% HSQ resist. Here the side 

gates (1-3) are ~60 nm away from the constrictions. 

 
Fig. 2. A plot of a turnstile |IDS| as a function of VDS and 

VTG at a base temperature of 80 mK. All other electrodes 
were grounded. 

 

Fig. 3. A plot of a turnstile IDS at 80 mK as a function of 

applied voltages on side gate 1 and side gate 3 with VDS= 

1 mV, VTG= 3.87 V and all other electrodes grounded. 

 

Fig. 4. SEM of DQD devices etched into 25 nm SOI and 

realised by using a 2% HSQ resist (25 nm thick) process. 
Here the side gates and transistors are as close as ~14 nm. 

 


