Pulse shaping-assisted nonlinear spectral broadening
Pulse shaping-assisted nonlinear spectral broadening
Recent developments in optical fibre technology have allowed significant advances in the nonlinear generation and tailoring of broadband spectra. Much work in this direction has focused on the optimisation of the properties of the optical fibres used for the nonlinear pulse propagation. In this work, we combine the nonlinear element (a highly nonlinear fibre - HNLF) with a programmable phase and amplitude filter, which we use as a pulse shaper. This architecture allows power-efficient and flexible sculpturing of the output spectrum, which is no longer tied directly to the characteristics of the pulse source used at the input. The pulse shaping function is obtained by application of the inverse split-step Fourier method (ISSFM) [1], which uses the desired output spectrum and the HNLF characteristics as its input parameters [2]. As an example of the application of this technique, we study the generation of broadband flat (third-order super-Gaussian) spectra starting from a 10GHz mode-locked pulsed laser (MLL). Here we present our design procedure and a first experimental validation of the technique.
Yang, Xin
163ae9ea-be21-408b-867d-de3859e34993
Richardson, David J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Petropoulos, Periklis
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Yang, Xin
163ae9ea-be21-408b-867d-de3859e34993
Richardson, David J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Petropoulos, Periklis
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Yang, Xin, Richardson, David J. and Petropoulos, Periklis
(2011)
Pulse shaping-assisted nonlinear spectral broadening.
European Conference on Lasers and Electro-Optics, , Munich, Germany.
22 - 26 May 2011.
Record type:
Conference or Workshop Item
(Paper)
Abstract
Recent developments in optical fibre technology have allowed significant advances in the nonlinear generation and tailoring of broadband spectra. Much work in this direction has focused on the optimisation of the properties of the optical fibres used for the nonlinear pulse propagation. In this work, we combine the nonlinear element (a highly nonlinear fibre - HNLF) with a programmable phase and amplitude filter, which we use as a pulse shaper. This architecture allows power-efficient and flexible sculpturing of the output spectrum, which is no longer tied directly to the characteristics of the pulse source used at the input. The pulse shaping function is obtained by application of the inverse split-step Fourier method (ISSFM) [1], which uses the desired output spectrum and the HNLF characteristics as its input parameters [2]. As an example of the application of this technique, we study the generation of broadband flat (third-order super-Gaussian) spectra starting from a 10GHz mode-locked pulsed laser (MLL). Here we present our design procedure and a first experimental validation of the technique.
More information
e-pub ahead of print date: 2011
Venue - Dates:
European Conference on Lasers and Electro-Optics, , Munich, Germany, 2011-05-22 - 2011-05-26
Organisations:
Optoelectronics Research Centre
Identifiers
Local EPrints ID: 341512
URI: http://eprints.soton.ac.uk/id/eprint/341512
PURE UUID: 595489e0-b706-4788-88e3-bad0df56f588
Catalogue record
Date deposited: 26 Jul 2012 10:28
Last modified: 15 Mar 2024 02:57
Export record
Contributors
Author:
Xin Yang
Author:
Periklis Petropoulos
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics