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The purpose of this thesis is to determine and to better inform industry practitioners to the most 

appropriate classification and regression techniques for modelling the three key credit risk 

components of the Basel II minimum capital requirement; probability of default (PD), loss given 

default (LGD), and exposure at default (EAD). The Basel II accord regulates risk and capital 

management requirements to ensure that a bank holds enough capital proportional to the exposed 

risk of its lending practices. Under the advanced internal ratings based (IRB) approach Basel II 

allows banks to develop their own empirical models based on historical data for each of PD, LGD 

and EAD. 

 

In this thesis, first the issue of imbalanced credit scoring data sets, a special case of PD modelling 

where the number of defaulting observations in a data set is much lower than the number of 

observations that do not default, is identified, and the suitability of various classification 

techniques are analysed and presented. As well as using traditional classification techniques this 

thesis also explores the suitability of gradient boosting, least square support vector machines and 

random forests as a form of classification. The second part of this thesis focuses on the prediction 

of LGD, which measures the economic loss, expressed as a percentage of the exposure, in case of 

default. In this thesis, various state-of-the-art regression techniques to model LGD are considered. 

In the final part of this thesis we investigate models for predicting the exposure at default (EAD). 

For off-balance-sheet items (for example credit cards) to calculate the EAD one requires the 

committed but unused loan amount times a credit conversion factor (CCF). Ordinary least squares 

(OLS), logistic and cumulative logistic regression models are analysed, as well as an OLS with 

Beta transformation model, with the main aim of finding the most robust and comprehensible 

model for the prediction of the CCF. Also a direct estimation of EAD, using an OLS model, will 

be analysed. All the models built and presented in this thesis have been applied to real-life data 

sets from major global banking institutions. 
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Chapter 1 

 

1 Introduction 

 

With the recent financial instabilities in the credit markets, the area of credit risk 

modelling has become ever more important, leading to the need for more accurate and 

robust models. Further to this, the introduction of the Basel II Capital Accord (Basel 

Committee on Banking Supervision, 2004) now allows for financial institutions to derive 

their own internal credit risk models under the advanced internal ratings based approach 

(AIRB). The Basel II Capital Accord prescribes the minimum amount of regulatory 

capital an institution must hold so as to provide a safety cushion against unexpected 

losses. From a credit risk perspective, and under the advanced internal ratings based 

approach (AIRB), the accord allows financial institutions to build risk models for three 

key risk parameters: Probability of Default (PD), Loss Given Default (LGD), and 

Exposure at Default (EAD). The Probability of Default (PD) is defined as the likelihood 

that a loan will not be repaid and will therefore fall into default. Loss Given Default 

(LGD) is the estimated economic loss, expressed as a percentage of exposure, which will 

be incurred if an obligor goes into default. Exposure at Default (EAD) is a measure of the 

monetary exposure should an obligor go into default. 

 

In this thesis, we study the use of classification and regression techniques to develop 

models for the prediction of all three components of expected loss, Probability of Default 

(PD), Loss Given Default (LGD) and Exposure At Default (EAD). The reason why these 

particular topics have been chosen is due in part to the increased scrutiny on the financial 

sector and the pressure on them by the financial regulators to move to and advanced 
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internal ratings based approach. The financial sector is therefore looking to the best 

models possible to determine their minimum capital requirements through the estimation 

of PD, LGD and EAD. On the issue of PD estimation a great deal of work has already 

been conducted in both academia and the industry; therefore in Chapter 4 we will tackle a 

special case of PD modelling, i.e. building default prediction models for imbalanced 

credit scoring data sets. In a credit scoring context imbalanced data sets frequently occur 

when the number of defaulting loans in a data set is much lower than the number of 

observations that do not default. Subsequently, in Chapters 5 and 6, we then turn our 

attention to the other two much less researched risk components of LGD and EAD. It is 

our aim to validate novel approaches, evaluate their effectiveness for all three 

components of expected loss and obtain an improved understanding of the risk drivers in 

the prediction of EAD. 

 

This introduction chapter is structured as follows. We will begin by giving a detailed 

background of the Basel II Capital Accord, with emphasis on its implications to credit 

risk modelling. We will then go on to introduce the three extensive projects which tackle 

the issues highlighted in PD, LGD and EAD modelling as well as the motivations for 

choosing these research topics. A list of contributions will also be given after the 

introduction of each of the projects. Finally a brief description of the notations used 

throughout this thesis will be detailed. 

 

1.1 The Basel II Capital Accord 

 

The banking/financial sector is one of the most closely scrutinised and regulated 

industries and as such subject to stringent controls. The reason for this is that banks can 

only lend out money in the form of loans if depositors trust that the bank and the banking 

system is stable enough and their money will be there when they require to withdraw it. 

However, in order for the banking sector to provide the loans and mortgages they must 

leverage depositors‟ savings meaning that only with this trust can they continue to 

function. It is imperative therefore to prevent a loss of confidence and distrust in the 
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banking sector from occurring, as it can have serious implications to the wider economy 

as a whole. 

The job of the regulatory bodies therefore is to contribute to ensuring the necessary trust 

and stability by limiting the level of risk that banks are allowed to take. In order for this 

to effectively work, the maximum risk level banks can take needs to be set in relation to 

the bank‟s own capital. From the banks perspective the high cost of acquiring and 

holding capital makes it prohibitive and unfeasible to have it fully cover all of a bank‟s 

risks. As a compromise, the major regulatory body of the banking industry, the Basel 

Committee on Banking Supervision, proposed guidelines in 1988 whereby a solvability 

coefficient of eight percent was introduced, i.e. the total assets, weighted for their risk, 

must not exceed eight percent of the bank‟s own capital, Basel I (SAS Institute, 2002). 

 

The figure of eight percent assigned by the Basel Committee is somewhat arbitrary and as 

such since the conception of the idea has been subject to much debate. After the 

introduction of the Basel I accord more than one hundred countries worldwide adopted 

the guidelines, becoming a major milestone in the history of global banking regulation. 

However, a number of the accord‟s inadequacies, in particular with regard to the way that 

credit risk was measured, became apparent over time (SAS Institute, 2002). To account 

for these issues a revised accord, Basel II, was conceived. 

 

As defined the Basel II Capital Accord (Basel Committee on Banking Supervision, 

2001a) prescribes the minimum amount of regulatory capital an institution must hold so 

as to provide a safety cushion against unexpected losses. The Accord comprises of three 

pillars: 

 

Pillar 1: Minimum Capital Requirements 

Pillar 2: Supervisory Review Process 

Pillar 3: Market Discipline and Public Disclosure 

 

Pillar 1 aligns the minimum capital requirements to a bank‟s actual risk of economic loss. 

Various approaches to calculating this are prescribed in the accord (including more risk-
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sensitive standardized and internal ratings-based approaches) which will be described in 

more detail. Pillar 2 entails supervisors evaluating the activities and risk profiles of banks 

to determine whether they should hold higher levels of capital than those prescribed by 

Pillar 1 and offers guidelines for the supervisory review process, including the approval 

of internal rating systems. Pillar 3 leverages the ability of market discipline to motivate 

prudent management by enhancing the degree of transparency in banks‟ public 

disclosure. (Basel, 2004).  

The Basel II Capital Accord entitles banks to compute their credit risk capital in either of 

two ways: 

 

1. Standardised Approach 

2. Internal Ratings Based (IRB) Approach 

a. Foundation Approach 

b. Advanced Approach 

 

Under the standardised approach banks are required to use ratings from external credit 

rating agencies to quantify required capital. The main purpose and strategy of the Basel 

committee is to offer capital incentives to banks that move from a supervisory approach 

to a best practice advanced internal ratings based one. The two versions of the internal 

ratings based (IRB) approach permit banks to develop and use their own internal risk 

ratings, to varying degrees. The IRB approach is based on the following four key 

parameters: 

 

1. Probability of Default (PD): the likelihood that a loan will not be repaid and will 

therefore fall into default; 

2. Loss Given Default (LGD): the estimated economic loss, expressed as a 

percentage of exposure, which will be incurred if an obligor goes into default, in 

other words, LGD equals: 1 minus the recovery rate; 

3. Exposure At Default (EAD): a measure of the monetary exposure should an 

obligor go into default; 
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4. Maturity (M): is the length of time to the final payment date of a loan or other 

financial instrument. 

 

From the parameters, PD, LGD and EAD, expected loss (EL) can be derived as follows: 

 

 .EL PD LGD EAD    (1.1) 

 

For example, if 2%, 40%, £10,000PD LGD EAD   , then £80EL  . Expected loss 

can also be measured as a percentage of EAD: 

 

 % .EL PD LGD    (1.2) 

 

In the previous example expected loss as a percentage of EAD would be equal to 

% 0.8%EL  . The internal rating based approach requires financial institutions to 

estimate values for PD, LGD and EAD for their various portfolios. Two IRB options are 

available to financial institutions; a foundation approach and an advanced approach 

(FIGURE 1.1) (Basel Committee on Banking Supervision, 2001a): 

 

 

FIGURE 1.1: Illustration of foundation and advanced Internal Ratings-Based (IRB) approach 

 

The difference between these two approaches is the degree to which the four parameters 

can be measured internally. For the foundation approach, only PD may be calculated 

internally, subject to supervisory review (Pillar 2). The values for LGD and EAD are 
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fixed and based on supervisory values. For the final parameter, M, a single average 

maturity of 2.5 years is assumed for the portfolio. In the advanced IRB approach all four 

parameters are to be calculated by the bank and are subject to supervisory review 

(Schuermann, 2004). 

 

Under the AIRB, financial institutions are also recommended to estimate a „Downturn 

LGD‟, which „cannot be less than the long-run default-weighted average LGD calculated 

based on the average economic loss of all observed defaults with the data source for that 

type of facility‟ (Basel, 2004). 

 

We will now look at and identify some of the problems faced by financial institutions 

wishing to implement the advanced IRB approach. 

 

1.2 The imbalanced credit scoring data set problem (a special 

case of probability of default (PD) modelling) 

 

Commonly the first stage of PD estimation involves building a scoring model that can be 

used to distinguish between different risk classes. In the development of credit scoring 

models several statistical methods are used traditionally such as linear probability 

models, logit models and discriminate analysis models. These statistical techniques can 

be used to estimate the probability of default of a borrower based on factors such as loan 

performance and the borrowers‟ characteristics. Based on this information credit 

scorecards can be built to determine whether to accept or decline a borrower (application 

scoring) or to provide an up-to-date assessment of the credit risk of existing borrowers 

(behavioural scoring). The aim of credit scoring therefore is essentially to classify loan 

applicants into two classes, i.e. good payers (i.e., those who are likely to keep up with 

their repayments) and bad payers (i.e., those who are likely to default on their loans) 

(Thomas, 2000) . In the current financial climate, and with the recent introduction of the 

Basel II Accord, financial institutions have even more incentives to select and implement 

the most appropriate credit scoring techniques for their credit data sets. It is stated in 
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Henley and Hand (1997) that companies could make significant future savings if an 

improvement of only a fraction of a percent could be made in the accuracy of the credit 

scoring techniques implemented. However, in the literature, data sets that can be 

considered as very low risk, or imbalanced data sets, have had relatively little attention 

paid to them in particular with regards to which techniques are most appropriate for 

scoring them (Benjamin et al, 2006). The underlying problem with imbalanced data sets 

is that they contain a much smaller number of observations in the class of defaulters than 

in that of the good payers. A large class imbalance is therefore present which some 

techniques may not be able to successfully handle (Benjamin et al, 2006). In a recent 

FSA publication regarding conservative estimation of imbalanced data sets, regulatory 

concerns were raised about whether firms can adequately asses the risk of imbalanced 

credit scoring data sets (Benjamin et al, 2006). 

A wide range of classification techniques have already been proposed in the credit 

scoring literature, including statistical techniques, such as linear discriminant analysis and 

logistic regression, and non-parametric models, such as k-nearest neighbour and decision 

trees. But it is currently unclear from the literature which technique is the most 

appropriate for improving discrimination for imbalanced credit scoring data sets. TABLE 

1.1 in Section 2.1 provides a selection of techniques currently applied in a credit scoring 

context, not specifically for imbalanced data sets, along with references showing some of 

their reported applications in the literature. 

Hence, the aim of the first project, reported in Chapter 4, is to conduct a study of various 

classification techniques based on five real-life credit scoring data sets. These data sets 

will then have the size of their minority class of defaulters further reduced by decrements 

of 5% (from an original 70/30 good/bad split) to see how the performance of the various 

classification techniques is affected by increasing class imbalance.  

The five real-life credit scoring data sets to be used in this empirical study include two 

data sets from Benelux (Belgium, Netherlands and Luxembourg) institutions, the German 

Credit and Australian Credit data sets which are publicly available at the UCI repository 

(http://kdd.ics.uci.edu/), and the fifth data set is a behavioural scoring data set, which was 

also obtained from a Benelux institution. 

http://kdd.ics.uci.edu/
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The techniques that will be evaluated in this chapter are traditional well reported 

classification techniques (Baesens, et al 2003); logistic regression (LOG), linear and 

quadratic discriminant analysis (LDA, QDA), nearest-neighbour classifiers (k-NN10, k-

NN100), decision trees (C4.5) and more machine learning techniques; least square 

support vector machines (LS-SVM), neural networks (NN), a gradient boosting algorithm 

and random forests. The reason why these machine learning techniques are selected are 

their potential applications in a credit scoring context (Baesens, et al 2003) and the 

interest in whether they can perform better than traditional techniques given a large class 

imbalance. We are especially interested in the power and usefulness of the gradient 

boosting and random forest classifiers which have yet to be thoroughly investigated in a 

credit scoring context.  

All techniques will be evaluated in terms of their Area Under the Receiver Operating 

Characteristic Curve (AUC). This is a measure of the discrimination power of a classifier 

without regard to class distribution or misclassification cost (Baesens, et al 2003).  

To make statistical inferences from the observed differences in AUC, we will follow the 

recommendations given in a recent article, Demšar 2006, which looked at the problem of 

benchmarking classifiers on multiple data sets and recommended a set of simple robust 

non-parametric tests for the statistical comparison of the classifiers. The AUC measures 

will therefore be compared using Friedman's average rank test, and Nemenyi's post-hoc 

test will be used to test the significance of the differences in rank between individual 

classifiers. Finally, a variant of Demšar's significance diagrams will be plotted to 

visualise their results. 

 

Having introduced the topic of research which will be conducted in Chapter 4 we will 

now identify the major motivations for this thesis chapter. 

 

 

Fundamentally from a regulatory perspective the issue is whether firms can adequately 

build loan-level scoring models on imbalanced data sets as not all techniques may be able 

to cope well with class imbalances; as a result, discrimination performance may suffer. 

Without an adequate scoring model, it becomes difficult to segment exposures into 
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different rating grades or pools. So the key question becomes not whether we can assess 

the risk but can we still build a decent model that distinguishes between different levels 

of (low) risk. Thus the topic in this research thesis has been chosen so as to assess the 

capabilities of credit scoring techniques when a large class imbalance is present. The 

motivation behind this particular research topic is to identify the capabilities of traditional 

techniques such as logistic regression and linear discriminant analysis when a class 

imbalance is present and compare these to techniques yet to be analysed in this field i.e. 

gradient boosting and random forests. If for example logistic regression can perform 

comparatively well to the more advanced techniques, when a large class imbalance is 

present, this will provide confidence to practitioners wishing to implement such a 

technique. 

The experimental design has been chosen so that a variety of available datasets can be 

compared at varying levels of class imbalance (through under sampling the bad 

observations). A process of 10-fold cross validation is applied to retain statistical and 

empirical inference where small numbers of bad observations are present in the 

imbalanced samples. Further motivations behind the experimental design of this 

particular research area are identified and assessed in the literature review section of this 

thesis. 

 

 

1.3 The estimation of Loss Given Default (LGD) 

 

The LGD parameter measures the economic loss, expressed as percentage of the 

exposure, in case of default. This parameter is a crucial input to the Basel II capital 

calculation as it enters the capital requirement formula in a linear way (unlike PD, which 

comparatively has a smaller effect on minimal capital requirements). Hence, changes in 

LGD directly affect the capital of a financial institution and as such also its long-term 

strategy. It is thus of crucial importance to have models that estimate LGD as accurately 

as possible. This is however not straightforward, as industry models typically show low 

2R  values. Such models are often built using ordinary least squares regression or 
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regression trees, even though prior research has shown that LGD typically displays a non-

linear bi-modal distribution with spikes around 0 and 1 (Bellotti & Crook 2007). In the 

literature the majority of work to date has focused on the issues related to PD estimation 

whereas only more recently, academic work has been conducted into the estimation of 

LGD (e.g. Bellotti and Crook, 2009, Loterman et al, 2009, Thomas et al, 2010). 

In Chapter 5, a large set of state-of-the-art regression algorithms will be applied to 6 real-

life LGD data sets with the aim of achieving a better understanding of which techniques 

perform the best in the prediction of LGD. The regression models employed will include 

one-stage models, such as those built by ordinary least squares, beta regression, artificial 

neural networks, support vector machines and regression trees, as well as two-stage 

models which attempt to combine the benefits of multiple techniques. Their performances 

will be determined through the calculation of several performance metrics which will in 

turn be meta-ranked to determine the most predictive regression algorithm. The 

performance metrics will again be compared using Friedman's average rank test and 

Nemenyi's post-hoc test will be employed to test the significance of the differences in 

rank between individual regression algorithms. Finally, a variant of Demšar's significance 

diagrams will be plotted for each performance metric to visualise their results. 

This first large scale LGD benchmarking study in terms of techniques and data sets, 

investigates whether other approaches can improve the predictive performance which, 

given the impact of LGD on capital requirements, can yield large benefits. 

 

Having introduced the topic of research which will be conducted in Chapter 5 we will 

now identify the major motivations for this thesis chapter. 

 

There has been much industry debate as to the best techniques to apply in the estimation 

of LGD, given its bi-modal distribution. The motivations for this particular research topic 

are to determine the predictive power of commonly used techniques such as linear 

regression with transformations and compare them to more advanced machine learning 

techniques such as neural networks and support vector machines. The aim in doing this is 

to better inform industry practitioners as to the comparable ability of potential techniques  
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and to add to the current literature on both the topics of loss given default and 

applications of domain specific regression algorithms. 

 

1.4 Model development for Exposure At Default (EAD) 

 

Over the last few decades, credit risk research has largely been focused on the estimation 

and validation of probability of default (PD) models in credit scoring. However, to date 

very little model development and validation has been reported on the estimation of 

EAD, particularly for retail lending (credit cards). As with LGD, EAD enters the capital 

requirement formulas in a linear way and therefore changes to EAD estimations have a 

crucial impact on regulatory capital. Hence, as with LGD, it is important to develop 

robust models that estimate EAD as accurately as possible.  

In defining EAD for on-balance sheet items, EAD is typically taken to be the nominal 

outstanding balance net of any specific provisions (Financial Supervision Authority, UK 

2004a, 2004b). For off-balance sheet items (for example, credit cards), EAD is estimated 

as the current drawn amount, ( )rE t , plus the current undrawn amount (i.e. credit limit 

minus drawn amount), ( ) ( )r rL t E t , multiplied by a credit conversion factor, CCF  or 

loan equivalency factor (LEQ):  

 

  ( ) . ( ) ( ) .r r rEAD E t CCF L t E t     (1.3) 

 

The credit conversion factor can be defined as the percentage rate of undrawn credit lines 

(UCL) that have yet to be paid out but will be utilised by the borrower by the time the 

default occurs (Gruber and Parchert, 2006). The calculation of the CCF is very important 

for off-balance sheet items as the current exposure is generally not a good indication of 

the final EAD, the reason being that, as an exposure moves towards default, the 

likelihood is that more will be drawn down on the account. In other words, the source of 

variability of the exposure is the possibility of additional withdrawals when the limit 

allows this (Moral, 2006). 
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The purpose of this chapter will therefore be to look at the estimation and validation of 

this CCF in order to correctly estimate the off-balance sheet EAD. A real-life data set 

with monthly balance amounts for clients over the period 2001-2004 will be used in the 

building and testing of the regression models. We also aim to gain a better understanding 

of the variables that drive the prediction of the CCF for consumer credit. To achieve this, 

predictive variables that have previously been suggested in the literature (Moral, 2006) 

will be constructed, along with a combination of new and potentially significant 

variables. We also aim to identify whether an improvement in predictive power can be 

achieved over ordinary least squares regression (OLS) by the use of binary logit and 

cumulative logit regression models and an OLS with Beta transformation model. The 

reason why we propose these models is that recent studies (e.g. Jacobs, 2008) have 

shown that the CCF exhibits a bi-modal distribution with two peaks around 0 and 1, and a 

relatively flat distribution between those peaks. This non-normal distribution is therefore 

less suitable for modelling with traditional ordinary least squares (OLS) regression. The 

motivation for using an OLS with Beta transformation model is that it accounts for a 

range of distributions including a U-shaped distribution. We will also trial a direct OLS 

estimation of the EAD and use it as a comparison to estimating a CCF and applying it to 

the EAD formulation. 

 

Having introduced the topic of research which will be conducted in Chapter 6 we will 

now identify the major motivations for this thesis chapter. 

 

The correct calculation of credit conversion factors for off-balance sheet items is of 

pertinent interest and importance to the financial sector. The main motivation for 

choosing this research topic therefore is to provide insight to the industry as to the 

potential techniques at their disposal for calculation their CCFs. The estimation of CCF is 

also a similar problem to that of estimating LGD, given that it displays a bi-modal 

distribution.  
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The experimental design was chosen to assess a variety of techniques on a revolving 

credit data set and compare their predictive power as well as their ability to provide 

robust results for the actual exposure at default estimation.  

 

 

1.5 Contributions 

 

Having identified the need for a greater understanding of the appropriate credit risk 

modelling techniques available to practitioners, we will now identify the major research 

topics and contributions of this thesis chapter. 

 

1.5.1 Building default prediction models for imbalanced credit scoring 

data sets 

 

The contributions of the research set out in Chapter 4 of this thesis are as follows. 

In Chapter 4 of this thesis, we will address this issue of estimating probability of default 

for imbalanced data sets. Whereas other studies have benchmarked several scoring 

techniques, in our study, we have explicitly looked at the problem of having to build 

models on potentially highly imbalanced data sets.  Two techniques that have yet to be 

fully researched in the context of credit scoring, i.e. Gradient Boosting and Random 

Forests, will be chosen, alongside traditional credit scoring techniques, to give a broader 

review of the techniques available.  

The results of these experiments will show that the Gradient Boosting and Random 

Forest classifiers perform well in dealing with samples where a large class imbalance is 

present. The findings will also suggest that the use of a linear kernel LS-SVM is not 

beneficial in the scoring of data sets where a very large class imbalance exists.  
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1.5.2 Estimation of Loss Given Default (LGD) 

 

In Chapter 5, a large scale Loss Given Default (LGD) benchmarking study will be 

undertaken, with the aim of comparing various state-of-the-art regression techniques to 

model and predict LGD. The findings displayed in Chapter 5 will indicate that the 

average predictive performance of the models in terms of 2R  ranges from 4 % to 43 %, 

indicating that most resulting models have limited explanatory power. Nonetheless, a 

clear trend will be displayed showing that non-linear techniques and artificial neural 

networks and support vector machines in particular give higher performances than more 

traditional linear techniques. This indicates the presence of non-linear interactions 

between the independent variables and the LGD, contrary to some studies in PD 

modelling where the difference between linear and non-linear techniques is not that 

explicit. Given the fact that LGD has a bigger impact on the minimal capital requirements 

than PD, we will demonstrate the potential importance of applying non-linear techniques, 

preferably in a two-stage context to obtain comprehensibility as well, for LGD modelling. 

To the best of our knowledge, such an LGD study has not yet been conducted before in 

the literature. 

 

1.5.3 Regression model development for Credit Card Exposure At 

Default (EAD) 

 

In Chapter 6, we will propose several models for predicting the Exposure At Default 

(EAD) and estimating the credit conversion factor (CCF). Ordinary least squares, binary 

logit and cumulative logit regression models will be estimated and compared for the 

prediction of the CCF, which to date have not been thoroughly evaluated before. A 

variety of new variables of interest will also be calculated and used in the prediction of 

the CCF. An in-depth analysis of the predictive variables used in the modelling of the 

CCF will be given, and will show that previously acknowledged variables are significant. 

The results from this chapter will also show that a marginal improvement in the 

coefficient of determination can be achieved with the use of a binary logit model over a 



C h a p t e r  1 :  I n t r o d u c t i o n  | 15 

 

 

 

traditional OLS model. Interestingly the use of a cumulative logit model is shown to 

perform worse than both the binary logit and OLS models. 

With regards to the additional variables proposed in the prediction of the CCF, only one, 

i.e. average number of days delinquent in the last 6 months, gives an adequate p-value 

when a stepwise procedure was used.  
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1.6 Notation 

 

In this thesis, the following mathematical notations are used. A scalar x  is denoted in 

normal script. A vector x  is represented in boldface and is assumed to be a column 

vector,

1

2
.

n

x

x

x

 
 
 
 
 
 

x  The corresponding row vector T
x  is obtained using the transpose T , 

 

1

2

1 2 .

T

n

n

x

x
x x x

x

 
 
  
 
 
 

T
x  Bold capital notation is used for a matrix, X . The 

number of independent variables is given by n  and the number of observations is given 

by l . The observation i  is denoted as ix  whereas variable j  is indicated as jx . The 

value of variable j  for observation i  is represented as  ix j  and the dependent variable 

y  for observation i  is represented as iy . P  is used to denote a probability. p  is used to 

denote a proportion. 
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Chapter 2 

 

2 Literature Review 

 

 

In this section a review of the literature topics related to this PhD thesis will be given. 

This section is formulated as follows. We begin by looking at the current applications of 

data mining techniques in credit risk modelling and go on to look at the current work and 

issues in the modelling of the three parameters of the minimum capital requirements 

(probability of default, loss given default and exposure at default). To date a considerable 

amount of work has been done on the estimation of the probability of default. To further 

this, the issue of imbalanced credit scoring data sets, which has been highlighted by the 

Basel Committee on Banking Supervision (2005) as a potential problem for probability of 

default modelling, is also looked at and reviewed. Finally, a summary of the literature 

review chapter will be given. 
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2.1 Current applications of data mining techniques in credit risk 

modelling 

 

In this section, a review of the current applications of data mining techniques in a credit 

risk modelling environment will be given. The ideas already present in the literature will 

be explored with the aim to highlight potential gaps with which further research could 

fill. TABLE 1.1 provides a selection of techniques currently applied in a credit scoring 

context, not specifically for imbalanced data sets, along with references showing some of 

their reported applications in the literature. 

 

Classification Techniques Application in a credit scoring 

context 

Logistic Regression (LOG) Arminger, et al (1997), Baesens, et al 

(2003), Desai, et al (1996), 

Steenackers & Goovaerts (1989), 

West (2000), Wiginton (1980)  

Decision Trees (C4.5, CART, etc.) Arminger, et al (1997), Baesens, et al 

(2003), West (2000), Yobas, et al 

(2000)  

Neural Networks (NN) Altman (1994), Arminger, et al 

(1997), Baesens, et al (2003), Desai, 

et al (1996), West (2000), Yobas, et 

al (2000)  

Linear Discriminant Analysis (LDA) Altman (1968), Baesens, et al (2003), 

Desai, et al (1996), West (2000), 

Yobas, et al (2000)  

Quadratic Discriminant Analysis (QDA) Altman (1968), Baesens, et al (2003)  

k-Nearest Neighbours (k-NN) Baesens, et al (2003), Chatterjee & 

Barcun (1970), West (2000)  
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Support Vector Machines (SVM, LS-SVM, 

etc.) 

Baesens, et al (2003), Huang (2007), 

Yang (2007)  

TABLE 1.1: Credit scoring techniques and their applications 

 

In the development of credit risk modelling and scorecard building, discriminant analysis 

and linear or logistic regression have traditionally been the most widely applied 

techniques (Hand & Henley, 1997). This is partly due to their ability to be easily 

understood and ease of application. The first major work in the application of machine-

learning algorithms in a credit risk modelling context was conducted by Davis et al 

(1992). In this paper a number of algorithms, including Bayesian inference and neural 

networks, are applied to credit-card assessment data from the Bank of Scotland. Their 

findings suggest that overall all the algorithms analysed perform at the same level of 

accuracy, with the neural network algorithms taking the longest to train. Their research 

was limited however by the number of data observations in both the training and test sets, 

and by the computational power of the period. Further research has since been conducted 

into the applications of data mining techniques over a larger selection of data sets 

however, and the findings from these studies will be discussed before conclusions to 

potential gaps are made. 

 

To date, a variety of data mining models have been used in the estimation of default for 

both consumer and commercial credit. In Rosenberg and Gleit (1994), a survey of the use 

of discriminant analysis, decision trees, expert systems for static decisions, dynamic and 

linear programming and Markov chains is undertaken for credit management. They 

surmised that although, up until that period, sophisticated techniques such as linear or 

dynamic programming were unused in practice, there was a potential future use for them 

in this context. This signified the potential for other practitioners to further their study 

and apply techniques such as linear programming in the estimation of credit risk.   

Hand and Henley (1997) examined the problems that have arisen in the credit scoring 

context as well as giving a detailed review of the statistical methods used. They state that 

although the main focus of statistical methods for credit scoring has so far been to simply 

discriminate between good and bad risk classes, there is a much larger scope for the 

application of these techniques. This leads to the application of data mining techniques in 
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a credit risk modelling environment, such as modelling risk parameters for Basel. Further 

discussion of the implications and practicalities of applying these methods in a credit risk 

modelling domain will follow the discussion of additional credit scoring techniques and 

research. Similarly to Hand and Henley (1997) in Lee et al (2002) widely used techniques 

(such as logistic regression and linear discriminant analysis) are compared as well as 

exploring the integration of back-propagation neural networks are with traditional 

discriminant analysis with the aim of improving credit scoring performance. Their 

findings indicate that not only can convergence be achieved quicker than with neural 

networks on their own, but in terms of accuracy an improvement over logistic regression 

and discriminant analysis can be made.  

Expanding on the work conducted by Davis et al (1992), Giudici (2001) identifies the use 

of, Bayesian methods, coupled with Markov Chain Monte Carlo (MCMC) computational 

techniques are shown to be successfully employed in the analysis of highly dimensional 

complex data sets, as are common in data mining. This study shows the potential of 

MCMC for credit scoring. Through the use of a reversible jump MCMC and graphical 

models, one can extract valuable information from data sets, in the form of conditional 

dependence relationships. Applications of MCMC in the specific context of modelling 

LGD (discussed in section 2.2.2) can also be found in Luo & Shevchenko (2010). 

 

In Baesens et al (2003), the performance of various state-of-the-art classification 

algorithms are applied to eight real-life credit scoring data sets. Their findings suggest 

that while simple classifiers such as logistic regression and linear discriminant analysis 

yield reasonable results in a credit scoring context, more novel techniques such as LS-

SVMs and neural networks can yield improved results. Their findings also indicate that 

as the traditional linear techniques provided reasonable performance, credit scoring data 

sets are only weakly non-linear. The work presented in thesis attempts to build upon the 

findings shown in this paper, but for the case where class imbalances are present. This 

will test the hypotheses put forward in Baesens et al (2003) when similar classification 

techniques are applied over varying levels of class imbalance. There is a clear possibility 

for future research, shown in this paper, over a wider range of credit data sets and through 

using a wider breath of machine learning techniques. 
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An extension of Baesens et al (2003) can be seen in Van Gestel et al (2005) where a 

combination approach to credit scoring is adopted through the implementation of both 

linear (logistic regression) and non-linear (support vector machines) techniques. It is 

shown that through a gradual approach of combining the readability of logistic regression 

and the complexity of support vector machines improved accuracy of performance is 

observed. The use of SVM‟s allows the combined model to capture multivariate non-

linear relations. This study will form the basis of the extended work in Chapter 5 of this 

thesis where we look to expand on this potential modelling process through the use of 

other non-linear techniques in combination with linear ones. 

 

More recently a comparison of a variety of data mining techniques is given in Yeh and 

Lien (2009). In their paper the predictive accuracy of six data mining methods are 

compared (K-nearest neighbours, Logistic Regression, Discriminant Analysis, Naïve 

Bayesian classifiers, Artificial Neural Networks and Classification Trees) on customers‟ 

default payments in Taiwan. For this paper the predictive accuracy of the estimated 

probability of default is analysed as opposed to a traditional classification analysis. The 

findings indicate that the forecasting model produced by artificial neural networks has the 

highest coefficient of determination (R-Square) in estimating the real probability of 

default. This goes someway in agreeing with the findings shown in Baesens et al. (2003) 

and hence strengths the need to identify how well these techniques can still perform give 

varying levels of class imbalance in a credit scoring context. 

 

It must be noted that this literature overview for current data mining techniques applied in 

a credit risk modelling context is by no means exhaustive. Other techniques used for 

credit scoring and risk modelling include for example, genetic algorithms (Bedingfield 

and Smith, 2001, Fogarty et al. 1992) and mathematical programming (Freed and Glover, 

1981, Hand and Jacka, 1981, Kolesar and Showers, 1985). 

 

The majority of the studies reviewed here display the same limitations in numbers of real-

world credit data sets used and number/variety of techniques compared. Another 

consideration is the fact that the area under the receiver operator curve (AUC) statistic is 
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not widely reported in these studies, whereas in industry practice this is a well understood 

and well used statistical measure. This thesis therefore will attempt to incorporate a wide 

variety of techniques and real world credit data sets and provide performance metrics that 

are of use within industry practice (i.e. R-square for regression models, AUC for 

classification models and correlation metrics). 

For a more detailed review paper of the statistical classification methods used in 

consumer credit scoring please see Hand and Henley (1997). 
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2.2 Components 

 

This section details the literature studies on the three contributing components to the 

calculation of the minimum capital requirements. The current understanding and 

implementations of these in the literature will be discussed. 

 

2.2.1 Probability of Default (PD) 

 

Over the last few decades, the main focus of credit risk modelling literature has focused 

on the estimation of the probability of default on individual loans or pools of transactions 

(PD); with less literature available on the estimation of the loss given default (LGD) and 

the correlation between defaults (Crouhy et al, 2000; Duffie & Singleton, 2003). Work 

has also been developed on exposure at default modelling, but to a far lesser extent (cf. 

section 2.2.3).  

Probability of default (PD) can be defined as the likelihood that a loan will not be repaid 

and will therefore fall into default. A default is considered to have occurred with regard 

to a particular obligor (i.e. customer) when either or both of the two following events 

have taken place: 

1. The bank considers that the obligor is unlikely to pay its credit obligations to the 

banking group in full (e.g. if an obligor declares bankruptcy), without recourse by 

the bank to actions such as realising security (if held) (i.e. taking ownership of the 

obligors house, if they were to default on a mortgage). 

2. The obligor is past due, i.e. missed payments, for more than 90 days on any 

material credit obligation to the banking group. (Basel, 2004) 

 

This section gives a non-extensive overview of the key literature to date in the field of PD 

modelling. A clear distinction can be made between those models developed for retail 

credit and corporate credit facilities in the estimation of PD. As such this section has been 

sub-divided into three categories distinguishing the literature for retail credit (cf. 2.2.1.a), 

corporate credit (cf. 2.2.1.b) and calibration (cf. 2.2.1.c). 
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2.2.1.a PD models for retail credit 

Credit scoring analysis is the most well known and widely used model to measure default 

risk in consumer lending. Historically most credit scoring models are based on the use of 

historical loan and borrower data to identify which characteristics are able to distinguish 

between defaulted and non-defaulted loans (Giambona & Iancono, 2008). Other detailed 

references of the credit scoring literature can be found in Mays (1998), Hand and Henley 

(1997), Mester (1997), Viganò (1993), and Lewis (1990). These papers provide a variety 

of applications in modelling PD and are mentioned here as a pointer to a further review of 

the current literature. Hand and Henley (1997) is discussed in more detail in a prior 

section 2.1. In terms of the credit scoring models used in practice, the following list 

highlights the five main traditional forms:  

 

(1) Linear probability models (Altman, 1968);  

(2) Logit models (Martin, 1977);  

(3) Probit models (Ohlson, 1980);  

(4) Multiple discriminant analysis models and, 

(5) Decision trees.  

(Giambona & Iancono, 2008) 

 

The main benefits of credit scoring models are their relative ease of implementation and 

the fact that they do not suffer from the opaqueness of some of the other proposed “black-

box” techniques such as Neural Networks and Least Square Support Vector Machines 

proposed in Baesens et al (2003). 

 

Since the advent of the new capital accord (Basel Committee on Banking Supervision, 

2004), a renewed interest has been seen in credit risk modelling. With the allowance 

under the internal ratings based approach of the capital accord for organisations to create 

their own internal ratings models, the use of appropriate modelling techniques is ever 

more prevalent. Banks must now weigh up the issue of holding enough capital to limit 
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insolvency risks and not holding excessive capital due to its cost and limits to efficiency 

(Bonfim, 2009).  

Further recent work on the discussion of PD estimation from a regulatory perspective for 

retail credit can be found in Chatterjee et al (2007), where the consequences of changes in 

regulation of bankruptcy are analysed and advisory pointers given.  

 

 

2.2.1.b PD models for corporate credit 

With regards to corporate PD models, Crouhy et al. (2000) identify the more recent 

contributions to the field of PD modelling identifying the concepts behind the KMV 

RiskCalc and CreditPortfolioView models. The KMV RiskCalc model adopts a 

microeconomic approach relating the probability of default of any obligor to the market 

value of its assets. CreditPortfolioView however takes into account macroeconomic 

factors to default and migration probabilities. Similarly, Gordy (2000) offers a 

comparative anatomy of credit risk models, including RiskMetrics Group‟s CreditMetrics 

and Credit Suisse Financial Product‟s CreditRisk+. It is shown that although these are 

comparatively different packages the underlying mathematical structures are very similar. 

Simulation exercises are also run to evaluate the effects of each of the differences in the 

packages. Further to this Murphy et al (2002) provide an application of a RiskCalc model 

on private Portugese firms.  

With regards to benchmarking classification techniques on corporate credit data, West 

(2000) provides a comprehensive study of the credit scoring accuracy of five neural 

network models on two corporate credit data sets. The neural network models are then 

benchmarked against traditional techniques such as linear discriminant analysis, logistic 

regression and k-nearest neighbours. The findings demonstrate that although the neural 

network models perform well more simplistic, logistic regression is a good alternative 

with benefit of being much more readable and understandable. A limiting factor of this 

study is it only focuses on the application of additional neural network techniques on two 

relatively small data sets, and doesn‟t take into account larger data sets or other machine 

learning approaches. The topic of research presented in this thesis aims to extend the 

work conducted by West (2000) into the arena of additional machine learning techniques 
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and to also test the capabilities of these techniques when class imbalances are present. 

Other recent work on PD estimation for corporate credit can be found in Fernandes 

(2005), Carling et al (2007), Tarashev (2008), Miyake and Inoue (2009) and Kiefer 

(2010).  

 

2.2.1.c PD calibration 

The purpose of PD calibration is the assignment of a default probability to each possible 

score or rating grade values. The important information required for calibrating PD 

models include: 

 

- The PD forecasts over a rating class and the credit portfolio for a specific forecasting 

period. 

- The number of obligors assigned to the respective rating class by the model. 

- The default status of the debtors at the end of the forecasting period. 

(Guettler and Liedtke, 2007) 

 

It has been found (Guettler and Liedtke, 2007) that realised default rates are actually 

subject to relatively large fluctuations making it necessary to develop indicators to show 

how well a rating model estimates the PDs. It is recommended in Tasche (2003), that 

traffic light indicators could be used to show whether there is any significance in the 

deviations of the realised and forecasted default rates. The three traffic light indicators, 

green, yellow and red identify the following potential issues. A green traffic light 

indicates that the true default rate is equal to, or lower than, the upper bound default rate 

at a low confidence level. A yellow traffic light indicates the true default rate is higher 

than the upper bound default rate at a low confidence level and equal to, or lower than, 

the upper bound default rate at a high confidence level. Finally a red traffic light indicates 

the true default rate is higher than the upper bound default rate at a high confidence level. 

(Tasche, 2003 via Guettler and Liedtke, 2007) 

 

Although a non-exhaustive list, substantial work has previously been conducted in the 

estimation of probability of default. This section of literature is included to inform the 
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reader of the current modelling research to date with regards to PD, which will form a 

precursor to the analysis of credit scoring for imbalanced data sets. As the topic of 

research of this thesis is focused towards estimating PD in imbalanced datasets a more 

exhaustive review of the current literature on Probability of Default modelling can be 

found in the following review papers; Altman and Sironi (2004), Erdem C (2008). 

However, as we will see in the next section, an interesting finding is that little work has 

been conducted on the area of imbalanced data sets, where there are a much smaller 

number of observations in the class of defaulters than in that of the class of payers, where 

a PD estimate must also be achieved. Therefore in the following section, the issue of 

imbalanced credit scoring data sets will be looked at with the aim to identify the current 

approaches in the literature and identify any potential gaps. 

 

2.2.1.1 Imbalanced credit scoring data sets 

 

In 2005, The Basel Committee on Banking Supervision (2005) highlighted the fact that 

calculations based on historical data made for very safe assets may “not be sufficiently 

reliable” for estimating the probability of default. The reason for this is that as there are 

so few defaulted observations, the resulting estimations are likely to be inaccurate. 

Therefore a need is present for a better understanding of the appropriate modelling 

techniques for data sets which display a limited number of defaulted observations.  

 

This section has been further sub-divided into problems imbalanced credit scoring data 

sets pose to modelling (cf. 2.2.1.1.a) and the issue of calibration (cf. 2.2.1.1.b), i.e. how a 

long-run average that is statistically conservative can be achieved.  

 

2.2.1.1.a PD modelling for imbalanced credit scoring data sets 

A wide range of different classification techniques for scoring credit data sets has been 

proposed in the literature, a non-exhaustive list of which was provided earlier (cf. 

Chapter 1). In addition, some benchmarking studies have been undertaken to empirically 

compare the performance of these various techniques (e.g. Baesens et al., 2003), but they 
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did not focus specifically on how these techniques compare on heavily imbalanced 

samples, or to what extent any such comparison is affected by the issue of class 

imbalance. For example, in Baesens et al. (2003), seventeen techniques including both 

well known techniques such as logistic regression and discriminant analysis and more 

advanced techniques such as least square support vector machines were compared on 

eight real-life credit scoring data sets. Although more complicated techniques such as 

radial basis function least square support vector machines (RBF LS-SVM) and neural 

networks (NN) yielded good performances in terms of AUC, simpler linear classifiers 

such as linear discriminant analysis (LDA) and logistic regression (LOG) also gave very 

good performances. However, there are often conflicting opinions when comparing the 

conclusions of studies promoting differing techniques. For example, in Yobas et al, 

(2000), the authors found that linear discriminant analysis (LDA) outperformed neural 

networks in the prediction of loan default, whereas in Desai et al, (1996), neural networks 

were reported to actually perform significantly better than LDA. Furthermore, many 

empirical studies only evaluate a small number of classification techniques on a single 

credit scoring data set. The data sets used in these empirical studies are also often far 

smaller and less imbalanced than those data sets used in practice. Hence, the issue of 

which classification technique to use for credit scoring, particularly with a small number 

of bad observations, remains a challenging problem (Baesens et al., 2003). In more recent 

work on the effects of class distribution on the prediction of PD, Crone and Finlay (2011) 

found that under sampled data sets are inferior to unbalanced and oversampled data sets. 

However it was also found that the larger the sample size used, the less significant the 

differences between the methods of balancing were. Their study also incorporated the use 

of a variety of data mining techniques, including logistic regression, classification and 

regression trees, linear discriminate analysis and neural networks. From the application of 

these techniques over a variety of class balances it was found that logistic regression was 

the least sensitive to balancing. This piece of work is thorough in its empirical design; 

however it does not assess more novel machine learning techniques in the estimation of 

default. In the study presented in this thesis, additional techniques such as Gradient 

Boosting and Random Forests will be adopted to contribute additional value to the 

literature. 
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In Yao, (2009) hybrid SVM-based credit scoring models are constructed to evaluate 

applicant‟s scoring from an applicant‟s input features. This paper shows the implications 

of using machine learning based techniques (SVMs) in a credit scoring context on two 

widely used credit scoring datasets (Australian credit and German credit) and compares 

the accuracy of this model against other techniques (LDA, logistic regression and NN). 

Their findings suggest that the SVM hybrid classifier has the best scoring capability 

when compared to traditional techniques. Although this is a non-exhaustive study with a 

bias towards the use of RBF-SVMs it gives a clear basis for the hypothetical use of 

SVMs in a credit scoring context. The use of the Australian and German credit datasets is 

also of interest as the same datasets will be utilised in Chapter 4 of this study. A lot can 

be learned from the empirical setup of this work and will be built upon in this thesis. 

In Kennedy, (2011) the suitability of one-class and supervised two-class classification 

algorithms as a solution to the low-default portfolio problem are evaluated. This study 

compares a variety of well established credit scoring techniques (e.g. LDA, LOG and k-

NN) against the use of a linear kernel SVM. Nine banking datasets are utilised and class 

imbalance is artificially created by removing 10% of the defaulting observations from the 

training set after each run. The only issue with this process is that the datasets are 

comparatively small in size (ranging from 125 - 5,397) which leads this author to believe 

a process of k-fold cross validation would have been more applicable considering the size 

of the datasets after a training, validation and test set split are made. However, some 

merit to this paper are that the findings shown, at least at the 70:30 class split, are 

comparative to other studies in the area (e.g. Baesens et al. 2003) with no statistical 

difference in the techniques at this level. As more class imbalance is induced it is shown 

that logistic regression performs significantly better than Lin-SVM, QDC (Quadratic 

Bayes Normal) and k-NN. It is also shown that oversampling produces no overall 

improvement to the best performing two-class classifiers. The findings in this paper lead 

into the work that will be conducted in this thesis, as several similar techniques and 

datasets will be employed, alongside the determination of classifier performance on 

imbalanced data sets. 
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The topic of which good/bad distribution is the most appropriate in classifying a data set 

has been discussed in some detail in the machine learning and data mining literature. In 

Weiss & Provost (2003) it was found that the naturally occurring class distributions in the 

twenty-five data sets looked at, often did not produce the best-performing classifiers. 

More specifically, based on the AUC measure (which was preferred over the use of the 

error rate), it was shown that the optimal class distribution should contain between 50% 

and 90% minority class examples within the training set. Alternatively, a progressive 

adaptive sampling strategy for selecting the optimal class distribution is proposed in 

Provost et al (1999). Whilst this method of class adjustment can be very effective for 

large data sets, with an adequate number of observations in the minority class of 

defaulters, in some imbalanced data sets there are only a very small number of loan 

defaults to begin with.  

 

Various kinds of techniques have been compared in the literature to try and ascertain the 

most effective way of overcoming a large class imbalance. Chawla et al (2002) proposed 

a Synthetic Minority Over-sampling technique (SMOTE) which was applied to example 

data sets in fraud, telecommunications management, and detection of oil spills in satellite 

images. In Japkowicz (2000) over-sampling and downsizing were compared to the 

author's own method of “learning by recognition” in order to determine the most effective 

technique. The findings, however, were inconclusive but demonstrated that both over-

sampling the minority class and downsizing the majority class can be very effective. 

Subsequently Batista (2004) identified ten alternative techniques to deal with class 

imbalances and trialled them on thirteen data sets. The techniques chosen included a 

variety of under-sampling and over-sampling methods. Findings suggested that generally 

oversampling methods provide more accurate results than under-sampling methods. Also, 

a combination of either SMOTE (Chawla et al, 2002) and Tomek links or SMOTE and 

ENN (a nearest-neighbour cleaning rule), were proposed.  

 

2.2.1.1.b Imbalanced credit scoring data sets calibration 

The purpose of calibration is the assignment of a default probability to each possible 

score or rating grade values (FMA/OeNB, 2004). With regards to calibration, a 
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confidence interval-based approach methodology was proposed by Pluto and Tasche 

(2005) to derive non-zero probabilities of default for credit portfolios with none to very 

few observed defaults. Their method for estimating imbalanced credit scoring data sets is 

based on the use of confidence intervals through “the most prudent estimation principle” 

and incorporating all available quantitative information. Although a variety of confidence 

levels are discussed the authors suggest that the most intuitively appropriate intervals 

should be less than 95%. Further to this, a likelihood approach, with a similar 

methodology to that found in Pluto and Tasche (2005), is applied by Forrest (2005) in the 

conservative estimation of probabilities of default for imbalanced credit scoring data sets. 

In this paper, multiple dimensions are used with each dimension representing a different 

rating grade and each point representing a choice of grade-level PD. A subset of points in 

this multidimensional space is then identified, conditional on the observed data.  

 

From a regulatory perspective, Benjamin et al (2006) provide a quantitative approach to 

produce conservative PD estimates when a scarcity of data is present. Centralised PD 

values are obtained based on the size of the portfolio, the number of observed defaults, 

and the level of confidence that is placed on the empirical evidence. A comparison can 

then be made by a financial institution between the values of PD presented (look-up PD) 

against the weighted average PD of the financial institution‟s own portfolio. The financial 

institution then adjusts their PD until their weighted average PD is greater or equal to the 

presented look-up PDs in the paper. 

 

In Wilde and Jackson (2006), it is shown that probability of default for low-default 

portfolios can be calculated based on a re-calibration of the CreditRisk+ (cf. Chapter 

2.2.1) model to a model of default behaviour similar to that of a Merton model. The 

challenge of data issues, such as scarcity of defaults, in probability default models is 

further explored by Dwyer (2006) through the use of Bayesian model validation. A 

posterior distribution is derived for PD, providing a framework for finding the upper 

bound for a PD in relation to imbalanced credit scoring data sets. The proposed method 

allows the determination of when a calibration needs to be recomputed even when a 

default rate is within the 95% confidence level. Burgt M (2007) looks at the issue of back 
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testing probability of default rating models in the absence of a sufficient amount of 

defaults. A method of calibrating these imbalanced credit scoring data sets is presented 

based on modelling the observed power curve (i.e. Lorenz curve) and deriving the 

calibration from this curve. This power curve is fitted to a concave function, and the 

derivative of the concave function and the average default rate are used to perform the 

calibration. 

In Kiefer (2009) the issue of low-default portfolios is looked at with the aim of applying a 

probability (Bayesian) approach to solving the problem. It is argued that default 

probability should be represented in a probability distribution in the same way 

uncertainty is modelled. Hypothetical portfolios of loans with sample sizes ranging from 

100-500 are used in the study of the posterior distributions. The results produced in this 

paper in turn raise issues about how banks should treat estimated default probabilities and 

how they should be supervised. 

 

In summary, although work has been conducted into the area of imbalanced credit 

scoring data sets there is still potential for more detailed work to be conducted as gaps 

still exist e.g. on the modelling level. There is also scope for techniques and 

methodologies to be used from the Machine Learning literature and applied in a credit 

scoring context where imbalances in data are present. 

 

2.2.2 Loss Given Default (LGD) 

 

Loss given default (LGD) is the estimated economic loss, expressed as a percentage of 

exposure, which will be incurred if an obligor goes into default (in other words, 1 – 

recovery rate in the literature). Producing robust and accurate estimates of potential 

losses are essential for the efficient allocation of capital within financial organisations for 

the pricing of credit derivatives and debt instruments (Jankowitsch et al., 2008). Banks 

are also in the position to gain a competitive advantage if an improvement can be made to 

their internally made loss-given default forecasts.  
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Whilst the modelling of probability of default (PD) (cf. Chapter 2.2.1) has been the 

subject of many studies during the past few decades, literature detailing recovery rates 

has only emerged more recently. This increase in literature on recovery rates is due to the 

advent of the new Basel Capital Accord. A detailed review of how credit risk models 

have developed over the last thirty years on corporate bonds can be found in Altman 

(2006). 

 

A clear distinction can be made between those models developed for retail credit and 

corporate credit facilities. As such this section has been sub-divided into four categories 

distinguishing the literature for retail credit (cf. 2.2.2.a), corporate credit (cf. 2.2.2.b), 

economic variables (cf. 2.2.2.c) and Downturn LGD (cf. 2.2.2.d). 

 

2.2.2.a LGD models for retail credit 

In Bellotti and Crook (2007) alternative regression methods for modelling LGD for credit 

card loans are evaluated. This work was conducted on a large sample of credit card loans 

in default and a cross-validation framework using several alternative performance 

measures are also given. Their findings show that fractional logit regression gives the 

highest predictive accuracy in terms of mean absolute error (MAE). Another interesting 

finding is that simple OLS is as good, if not better, than estimating LGD with a Tobit or 

decision tree approach. 

In Somers and Whittaker (2007) quantile regression is applied in two credit risk 

assessment exercises, including the prediction of LGD for retail mortgages. Their 

findings suggest that although quantile regression may be usefully applied to solve 

problems such as forecasting distributions, in estimating LGD however, in terms of R-

square the model results are quite poor ranging from 0.05 to a maximum of 0.2. 

Grunert J and Weber M (2008) conduct analyses on the distribution of recovery rates and 

the impact of the quota of collateral, the creditworthiness of the borrower, the size of the 

company and the intensity of the client relationship on the recovery rate. Their findings 

show that a high quota of collateral leads to a higher recovery rate. 
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In Matuszyk et al (2010), a decision tree approach is proposed for modelling the 

collection process with the use of real data from a UK financial institution. Their findings 

suggest that a two-stage approach can be used to estimate the class a debtor is in and to 

estimate the LGD value in each class. A variety of regression models are provided with a 

weight of evidence (WOE) approach providing the highest coefficient of determination 

value.  

 

In Hlawatsch and Reichling (2010), two models, a proportional and a marginal 

decomposition model, for validating relative LGD and absolute losses are developed and 

presented. Real data from a bank is used in the testing of the models and in-sample and 

out-of-sample tests are used to test for robustness. Their findings suggest that both their 

models are applicable without the requirement for first calculating LGD ratings. This is 

beneficial as LGD ratings are difficult to develop for retail portfolios because of their 

similar characteristics.  

 

2.2.2.b LGD models for corporate credit 

Although few studies have been conducted with the focus on forecasting recoveries, an 

important study by Moody‟s KMV gives a dynamic prediction model for LGD modelling 

called LossCalc (Gupton and Stein, 2005). In this model, over 3000 defaulted loans, 

bonds and preferred stock observations occurring between the period of 1981 and 2004 

are used. The LossCalc model presented is shown to do better than alternative models 

such as overall historical averages of LGD, and performs well in both out-of-sample and 

out-of-time predictions. This model allows practitioners to estimate corporate credit 

losses to a better degree of accuracy than was previously possible. 

 

In the more recent literature on corporate credit, Acharya et al (2007) use an extended set 

of data on U.S. defaulted firms between 1982 and 1999 to show that creditors of 

defaulted firms recover significantly lower amounts, in present-value terms, when their 

particular industry is in distress. They find that not only an economic-downturn effect is 

present but also a fire-sales effect, also identified by Shleifer and Vsihny (1992). This 

fire-sales effect means that creditors recover less if the surviving firms are illiquid. The 
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main finding of this study is that industry conditions at the time of default are robust and 

economically important determinants of creditor recoveries.  

 

An interesting study by Qi and Zhao (2011) shows the comparison of six statistical 

approaches to estimation LGD (including regression trees, neural networks and OLS with 

and without transformations). There findings suggest that non-parametric methods such 

as neural networks outperform parametric methods such as OLS in terms of model fit and 

predictive accuracy. It is also shown that the observed values for LGD in the corporate 

default data set display a bi-modal distribution with focal points around 0 and 1. This 

paper is limited however by the use of a single corporate defaults data set of a relatively 

small size (3,751 observations). An extension of this study over multiple data sets and 

including a variety of additional techniques would therefore add to the validity of the 

results. 

 

 

2.2.2.c Economic variables for LGD estimation 

It is found in Altman et al. (2005) that when the recovery rates are regressed on the 

aggregate default rate as an indicator of the aggregate supply of defaulted bonds, a 

negative relationship is given. However, when macroeconomic variables such as GDP 

growth, for example, are added as additional explanatory variables, they exhibit low 

explanatory power for the recovery rates. This indicates that in the prediction of the LGD 

(recovery rate) at account level, macroeconomic variables do not add anything to the 

models which only incorporate individual loan-related variables derived from the data.  

 

In Hu and Perraudin (2002), evidence that aggregate quarterly default rates and recovery 

rates are negatively correlated is presented. This is achieved through the use of Moody‟s 

historical bond market data in the period 1971-2000. Their conclusions suggest that 

recoveries tend to be low when default rates are high. It is also concluded that typical 

correlations for post 1982 quarters are -22%. Whereas, with respect to the full time period 

1971-2000, correlations are typically lower, i.e. -19%.  
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Caselli et al (2008) verify the existence of a relation between the loss given default rate 

(LGDR) and macroeconomic variables. Using a sizeable number of bank loans (11,649) 

concerning the Italian market several models are tested in which LGD is expressed as a 

linear combination of the explanatory variables. They find that for households, LGDR is 

more sensitive to the default-to-loan-ratio, the unemployment rate and household 

consumption. For small to medium enterprises (SMEs) however, LGDR is influenced to a 

great extent by the GDP growth rate and total number of people employed. The 

estimation of the model coefficients in this analysis, was achieved by using a simple OLS 

regression model. 

In an extension to their prior work, Bellotti and Crook (2009), add macroeconomic 

variables to their regression analysis for retail credit cards. The conclusions drawn 

indicate that although the data used has limitations in terms of the business cycle, adding 

bank interest rates and unemployment levels as macroeconomic variables into an LGD 

model yields a better model fit and that these variables are statistically significant 

explanatory variables. 

 

2.2.2.d Downturn LGD 

In terms of estimating Downturn LGD several studies have approached this problem from 

varying perspectives. For example, in Hartmann-Wendels & Honal (2006) a linear 

regression model is implemented with the use of a dummy variable to represent 

Downturn LGD. The findings from this study show that downturn LGD exceeds default-

weighted average LGD by eight percent. In Rosch and Scheule (2008), alternative 

concepts for the calculation of downturn LGD are given on Hong Kong mortgage loan 

portfolios. Their findings show that the empirical calibration of the downturn LGD agrees 

with regulatory capital adequacy. Their empirical analysis also highlights that the asset 

correlations given by the Basel Committee on Banking Supervision (2006) exceed the 

values empirically estimated and therefore could lead to banks to overprovision for 

capital. 

 

Further to the papers discussed in this section, the following additional papers provide 

information on other areas of loss given default modelling; Benzschawel et al. (2011); 
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Jacobs and Karagozoglu (2011); Sigrist and Stahel (2010); Luo and Shevchenko (2010); 

Bastos (2010); Hlawatsch and Ostrowski (2010); Li (2010); Chalupka and Kopecsni 

(2009). 

 

2.2.3 Exposure at Default (EAD) 

 

In this section, a literature review of the current work conducted in the area of EAD is 

given. To date the main focus of the literature has been conducted on corporate lending as 

opposed to retail lending (i.e. consumer credit, e.g. through credit cards), with only more 

recent studies taking into account the implications for retail lending. We will begin by 

identifying these corporate lending studies and go on to look at the current retail lending 

literature. Note that, in this thesis, the term Loan Equivalency Factor (LEQ) is used 

interchangeably with the term credit conversion factor (CCF) as CCF is referred to as 

LEQ in U.S. publications. 

 

2.2.3.a EAD models for corporate credit 

To our knowledge, the earliest reported work on EAD modelling for corporate lending 

was on data from Chase Manhattan Bank in 1994 (Araten and Keisman, 1994, via Jacobs, 

2008), which was later updated in 2003. In this study, 104 revolving credit facilities were 

analysed and LEQs were directly estimated for facilities with rating grades of BB or 

below. The conclusions drawn from this study identify a correlation where the greater the 

risk rating and tenor, the larger the LEQ factor would be. In a similar vein, Asarnow and 

Marker (1995) looked at utilisation patterns for revolving commitments at Citibank over 

a 5 year period (1988 - 1993). In this study, the importance of credit ratings in the 

estimation of the LEQs, in particular commitments with speculative ratings, is shown. 

 

More recently, Araten and Jacobs (2001) used six years of data between 1994 and 2000 

from Chase bank to calculate values for the LEQ factor. It was found that the estimated 

LEQs calculated increased the closer the period of time to default and with better risk 
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categories. It was also found that the distribution of the LEQ value had significant 

concentrations around the 0 and 1 values, giving a two-peaked distribution.  

In the most recent work on corporate lending, Cespedes et al (2010) look at the issue of 

modelling wrong way risk in the estimation of an alpha multiplier (the definition of a 

portfolio‟s alpha is: total economic capital divided by the economic capital when 

counterparty exposures are equal to expected positive exposure (EPE)). The alpha value 

typically ranges from 1.1 for large global portfolios to over 2.5 for new users with 

concentrated exposures. Wrong way risk is defined here as the correlation between 

exposures and defaults in a given credit portfolio. Their paper gives a computationally 

efficient and robust approach to the modelling of the alpha multiplier and stress-testing 

wrong way risk. This is achieved through leveraging underlying counterparty potential 

future exposure (PFE) simulations that are also used for credit limits and risk 

management. An application of the methodology is provided on a realistic bank trading 

portfolio with the results indicating that the alpha remains at or below 1.2 for 

conservative correlation assumptions. Prior to this, Sufi (2009) looked at the use of credit 

lines to corporations. The conclusions drawn show that the flexibility given to firms by 

the use of unfunded commitments leads to a moral hazard problem. To tackle this, banks 

tend to impose strict agreements, and only lend to borrowers with historically high 

profitability. 

 

2.2.3.b EAD models for retail credit 

With regards to retail lending, Taplin et al (2007) focus on the treatment of exposure at 

default (EAD) for undrawn lines of credit through the use of data from defaulted credit 

cards at BankWest. Although the main focus of this article is in the context of retail lines 

of credit the concepts developed and points made can be generalised and applied to the 

treatment of all lines of credit. The findings show that in the context of EAD modelling 

the prescribed formulation of CCF in Basel II can be inappropriate whereas modelling 

EAD directly is more statistically logical. There conclusions also indicate that a more 

appropriate single parameter model for EAD is EAD L  where L is defined as the 

limit amount and   is defined as an „uplift factor‟. The use of   estimates the amount 

EAD is expected to exceed L, and can be varied dependent on account characteristics. 
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They do however warn that in general a single parameter model, be it the use of a CCF or 

an uplift factor is too simplistic. Strong arguments are given throughout this study 

indicating that practitioners should take care and apply common sense to their models for 

estimating EAD and take advantage of the flexibility offered by the Basel II Accord. 

 

In Qi (2009) borrower and account information for unsecured credit card defaults from a 

large US lender are used to calculate and model CCF (referred to as LEQ in the US). The 

findings suggest that borrowers‟ attributes such as credit score, aggregate bankcard 

balance, aggregate bankcard credit line utilization rate, number of recent credit inquiries, 

and number of open retail accounts are significant drivers of CCF for accounts current 

one year prior to default. It is also found that borrowers are more likely to draw down 

additional funds as they approach default.  

In Valvonis (2008) the issues related to the estimation of EAD and CCF are discussed in 

detail as well as the EAD risk drivers (EADRDs). The findings suggest that many issues 

pertaining to EAD modelling remain unanswered such as the issue of the stringent 

supervisory requirements banks are under in their calculations of EAD. It is also shown 

that point densities for the majority of realised CCFs occur around 0 and 1, and it is 

suggested that logit or probit regression models could indeed be appropriate here. 

 

In the academic and regulatory literature, on the other hand, there has been little work 

done on the estimation of EAD and the appropriate models required. The majority of 

work to date has been done on modelling exposure at default (EAD) for defaulted firms. 

Most notably, in Jacobs (2008), a variety of explanatory variables are investigated with 

various measures of EAD risk derived and compared. Also, a multiple regression model 

in the generalised linear class is built. The findings suggest that there is weak evidence 

for counter-cyclicality in EAD and utilization has a strong inverse relationship to EAD. 

As with Asarnow and Marker (1995), the risk rating is found to have some explanatory 

power in the estimation of the EAD. Similarly to Jacobs (2008), other academic work that 

has been conducted in this area has also focused on corporate lending as opposed to retail 

lending. In Jiménez et al (2009), LEQ factors for revolving commitments in the Spanish 

credit register are studied over the period of the last two decades for corporate lending. 
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The conclusions drawn from this work are that the firms that go into default have much 

higher credit line usage rates and EAD values up to five years prior to their default than 

non-defaulting facilities. Variations in EAD are also identified due to collateralisation, 

maturity and credit line size. 

 

In the regulatory paper by Moral (2006), a variety of suggested regulatory guidelines 

relating to the CCF and its estimation are given. Several approaches are detailed for the 

calculation of the CCF based on the period of time used as the reference date. The 

potential approaches given for the selection of the time period are the fixed and variable 

time horizon approaches and the cohort approach. The guidelines given also identify a 

selection of quantitative risk drivers for the estimation of the EAD, which include the 

commitment size of the exposure, the drawn and undrawn amounts, the credit percentage, 

time to default, rating class and status of the facility. The risk drivers suggested in Moral 

(2006) will be analysed and further built upon in our study. A report by Gruber and 

Parchert (2006) also discusses the estimation of the EAD for both balance-sheet and off-

balance sheet financial products. Several internal approaches for the estimation of EAD 

for derivative products are identified. These techniques are the variance-covariance 

approach for calculating the potential future exposure (PFE) and Monte-Carlo one and 

multi-step approaches. It is proposed that to avoid the shortcomings of the regulatory 

methods, more elaborate techniques such as Monte-Carlo techniques can be applied for 

estimating the EAD for derivative products. 

 

In summary, although more recent studies on EAD modelling have become available for 

retail lending, there is a clear need to further develop our understanding of the risk drivers 

and appropriate EAD modelling techniques for consumer credit. Hence, in this paper, we 

will investigate both using a real-world data set of credit card defaults. 
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2.3 Summary of Literature Review 

 

In summary, as shown in this chapter a wide range of modelling work has been 

conducted in the field of credit risk modelling, with particular attention paid to that of 

probability of default (PD) modelling. Since the advent of the Basel II capital Accord 

however there has become an even greater need for the development of suitable and 

robust estimation techniques for loss given default (LGD) and exposure at default (EAD), 

as well as a more comprehensive review of the appropriate techniques to use when a 

scarcity of defaults is present (imbalanced data sets). It is therefore the focus of this thesis 

to provide a better understanding of the classification and regression techniques required 

for the prediction of imbalanced credit scoring data sets, LGD and EAD as well as 

providing robust statistical results. 

 

In the next chapter, a detailed explanation of each of the techniques applied in this thesis 

will be presented. 
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Chapter 3 

 

3 Classification and Regression Techniques 

 

 

This thesis analyses a variety of established and novel classification and regression 

techniques in the estimation of the three components of the minimum capital 

requirement, PD, LGD and EAD.  

 

Classification is defined as the process of assigning a given piece of input data into one of 

a given number of categories. In terms of Probability of Default (PD) modelling, 

classification techniques are applied as the purpose of PD modelling is to estimate the 

likelihood that a loan will not be repaid and will fall into default, this requires the 

classification of loan applicants into two classes, i.e. good payers (i.e., those who are 

likely to keep up with their repayments) and bad payers (i.e., those who are likely to 

default on their loans). Regression analysis estimates the conditional expectation of a 

dependent variable given a linear or non-linear combination of a set of independent 

variables. This is therefore appropriate for use in the estimation of Loss Given Default 

(LGD) and Exposure at Default (EAD) where the goal is to determine their conditional 

expectations given a set of independent variables. 

The literature review section of this thesis (cf. Chapter 2.1) identified current and 

potentially applicable classification and regression techniques to the field of credit risk 

modelling. Therefore, this thesis aims to apply the most prevalent techniques identified 

with the aim of finding the most appropriate techniques in the estimation of PD, LGD and 

EAD. 
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In this chapter a brief explanation of each of the techniques applied in this thesis is 

presented with citations given to their full derivation. (N.B. some of the techniques 

described have applications in both classification and regression analysis. Where this is 

the case the technique is only described in the classification section.) 
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3.1 Overview of Classification Techniques 

 

In Chapter 4, of this thesis we aim to compare the performance of a wide range of 

classification techniques within a credit scoring context, thereby assessing to what extent 

they are affected by increasing class imbalance. For the purpose of this thesis, ten 

classifiers have been selected which provide a balance between well-established credit 

scoring techniques such as logistic regression, decision trees and neural networks, and 

newly developed machine learning techniques such as least square support vector 

machines, gradient boosting and random forests. A brief explanation of each of the 

classification techniques applied in this thesis is presented below. This section details the 

basic concepts and functioning of a selection of well used classification methods. 

Although other classification techniques have been identified in the literature prior (c.f. 

Chapter 2) we believe the selection made here discusses the most prevalent and pertinent 

to the research topics presented in this thesis.  

 

3.1.1 Logistic Regression (LOGIT & CLOGIT) 

 

In Chapter 4 of this thesis, we will be focusing on the binary response of whether a 

creditor turns out to be a good or bad payer (i.e. non-defaulter vs. defaulter). For this 

binary response model, the response variable, y , can take on one of two possible values; 

i.e., 0y   if the customer is a bad payer, 1y   if he/she is a good payer. Let us assume x  

is a column vector of M  explanatory variables and P( 1| )y  x  is the response 

probability to be modelled. The logistic regression model then takes the form: 

 logit( ) log
1

T
  



 
   

 
x  (3.1) 

 

where  is the intercept parameter and T  contains the variable coefficients (Hosmer 

and Stanley, 2000).  
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The cumulative logit model (see e.g. Walker and Duncan, 1967) is simply an extension of 

the binary two-class logit model which allows for an ordered discrete outcome with more 

than 2 levels  2k  : 

 
 1 1 2 2 ...

1
(class )

1 j n nd b x b x b x
P j

e
    

 


, (3.2) 

1,2, , 1j k  . 

The cumulative probability, denoted by  classP j , refers to the sum of the 

probabilities for the occurrence of response levels up to and including the j th level of y . 

The main advantage of logistic regression is the fact that it is a non-parametric 

classification technique as no prior assumptions are made with regard to the probability 

distribution of the given attributes. 

3.1.2 Linear and Quadratic Discriminant Analysis (LDA & QDA) 

 

Discriminant analysis assigns an observation to the response, y ( {0,1}y ), with the 

largest posterior probability; i.e., classify into class 0 if    0 | 1|p px x , or class 1 if 

the reverse is true. According to Bayes' theorem, these posterior probabilities are given 

by: 

 
( | ) ( )

( | )
( )

p y p y
p y

p


x
x

x
. (3.3) 

 

Assuming now that the class-conditional distributions  | 0p y x ,  | 1p y x  are 

multivariate normal distributions with mean vector 0 , 1 , and covariance matrix 0 , 

1 , respectively, the classification rule becomes: classify as 0y   if the following is 

satisfied: 
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1 0

  

2 log 0 log 1 log log

T T

P y P y

 
    

     

 x x x x   

 
. (3.4) 

 

Linear discriminant analysis is then obtained if the simplifying assumption is made that 

both covariance matrices are equal, i.e. 
0 1     , which has the effect of cancelling 

out the quadratic terms in the expression above. 

 

3.1.3 Neural Networks (NN) 

 

Neural networks (NN) are mathematical representations modelled on the functionality of 

the human brain (Bishop, 1995). The added benefit of a NN is its flexibility in modelling 

virtually any non-linear association between input variables and target variable. Although 

various architectures have been proposed, this thesis focuses on probably the most widely 

used type of NN, i.e. the Multilayer Perceptron (MLP). A MLP is typically composed of 

an input layer (consisting of neurons for all input variables), a hidden layer (consisting of 

any number of hidden neurons), and an output layer (in our case, one neuron). Each 

neuron processes its inputs and transmits its output value to the neurons in the subsequent 

layer. Each such connection between neurons is assigned a weight during training. The 

output of hidden neuron i  is computed by applying an activation function (1)f  (for 

example the logistic function) to the weighted inputs and its bias term (1)

ib : 

 

 
   1 1

1

n

i i ij j

j

h f b x


 
  

 
W , (3.5) 

 

where W represents a weight matrix in which ijW  denotes the weight connecting input j  

to hidden neuron i . For the analysis conducted in this thesis, a binary prediction will be 

made; hence, for the activation function in the output layer, we will be using the logistic 

(sigmoid) activation function, 
   2 1

1 x
f x

e



 to obtain a response probability: 



50 | B a s e l  I I  C o m p l i a n t  C r e d i t  R i s k  M o d e l l i n g  

 

 

 

 
   2 2

1

hn

j j

j

f b h


 
  

 
v , (3.6) 

 

with 
hn  the number of hidden neurons and v  the weight vector where 

jv  represents the 

weight connecting hidden neuron j  to the output neuron. Examples of other transfer 

functions that are commonly used are the hyperbolic tangent  
x x

x x

e e
f x

e e









 and the 

linear transfer function  f x x . 

During model estimation, the weights of the network are first randomly initialised and 

then iteratively adjusted so as to minimise an objective function, e.g. the sum of squared 

errors (possibly accompanied by a regularisation term to prevent over-fitting). This 

iterative procedure can be based on simple gradient descent learning or more 

sophisticated optimisation methods such as Levenberg-Marquardt or Quasi-Newton. The 

number of hidden neurons can be determined through a grid search based on validation 

set performance. 

 

3.1.4 Least Square Support Vector Machines (LS-SVM) 

 

Support vector machines (SVMs) are a set of powerful supervised learning techniques 

used for classification and regression. Their basic principle, when applied as a classifier, 

is to construct a maximum-margin separating hyperplane in some transformed feature 

space. Rather than requiring one to specify the exact transformation though, they use the 

principle of kernel substitution to turn them into a general (non-linear) model. The least 

square support vector machine (LS-SVM) proposed by Suykens, et al (2002) is a further 

adaptation of Vapnik's original SVM formulation which leads to solving linear KKT 

(Karush-Kuhn-Tucker) systems (rather than a more complex quadratic programming 

problem). The optimisation problem for the LS-SVM is defined as: 

 2

, ,
1

1 1
min ( , , )

2 2

N

i
b

i

J b e


  T

w e
w e w w  , (3.7) 
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subject to the following equality constraints: 

 ( ) 1 ,i i iy b e    
T

w x  1, , .i l  (3.8) 

 

Where w  is the weight vector in primal space,   is the regularisation parameter, and 

1 or 1iy     for good (bad) payers, respectively (Suykens, et al 2002). A solution can 

then be obtained after constructing the Lagrangian, and choosing a particular kernel 

function  , iK x x  that computes inner products in the transformed space, based on which 

a classifier of the following form is obtained: 

  
1

sign α ,
l

i i i

i

y y K b


 
  

 
 x x , (3.9) 

 

whereby      ,
T

i iK x x x x   is taken to be a positive definite kernel satisfying the 

Mercer theorem. The hyper parameter   for the LS-SVM classification technique could, 

for example, be tuned using 10-fold cross validation. 

 

3.1.5 Decision Trees (C4.5) 

 

Classification and regression trees are decision tree models, for a categorical or 

continuous dependent variable, respectively, that recursively partition the original 

learning sample into smaller subsamples, so that some impurity criterion ()i  for the 

resulting node segments is reduced (Breiman, et al (1984). To grow the tree, one 

typically uses a greedy algorithm that, at each node t , evaluates a large set of candidate 

variable splits so as to find the ‟best‟ split, i.e. the split s  that maximises the weighted 

decrease in impurity: 

        , L L R Ri s t i t p i t p i t    . (3.10) 
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Where 
Lp  and 

Rp  denote the proportions of observations associated with node t  that are 

sent to the left child node 
Lt  or right child node 

Rt , respectively. A decision tree consists 

of internal nodes that specify tests on individual input variables or attributes that split the 

data into smaller subsets, and a series of leaf nodes assigning a class to each of the 

observations in the resulting segments. For Chapter 4, we chose the popular decision tree 

classifier C4.5, which builds decision trees using the concept of information entropy 

(Quinlan, 1993). The entropy of a sample S of classified observations is given by: 

 

 1 2 1 0 2 0( ) log ( ) log ( ),Entropy S p p p p    (3.11) 

 

where 1 0 and p p  are the proportions of the class values 1 and 0 in the sample S, 

respectively. C4.5 examines the normalised information gain (entropy difference) that 

results from choosing an attribute for splitting the data. The attribute with the highest 

normalised information gain is the one used to make the decision. The algorithm then 

recurs on the smaller subsets. 

 

3.1.6 Memory Based Reasoning (k-NN) 

 

The k-nearest neighbours algorithm (k-NN) classifies a data point by taking a majority 

vote of its k most similar data points (Hastie, et al 2001). The similarity measure used in 

this thesis is the Euclidean distance between the two points: 

    
1/ 2

( , ) .
T

i j i j i j i jd      
  

x x x x x x x x  (3.12) 

 

One of the major disadvantages of the k-nearest neighbour classifier is the large 

requirement on computing power as for classifying an object, the distance between it and 

all the objects in the training set has to be calculated. Furthermore, when many irrelevant 

attributes are present, the classification performance may degrade when observations 

have distant values for these attributes (Baesens B, 2003a). 
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3.1.7 Random Forests 

 

Random forests are defined as a group of un-pruned classification or regression trees, 

trained on bootstrap samples of the training data using random feature selection in the 

process of tree generation. After a large number of trees have been generated, each tree 

votes for the most popular class. These tree voting procedures are collectively defined as 

random forests. A more detailed explanation of how to train a random forest can be found 

in Breiman (2001). For the Random Forests classification technique two parameters 

require tuning. These are the number of trees and the number of attributes used to grow 

each tree. 

The two meta-parameters that can be set for the Random Forests classification technique 

are: the number of trees in the forest and the number of attributes (features) used to grow 

each tree. In the typical construction of a tree, the training set is randomly sampled, then 

a random number of attributes is chosen with the attribute with the most information gain 

comprising each node. The tree is then grown until no more nodes can be created due to 

information loss  

 

3.1.8 Gradient Boosting 

 

Gradient boosting (Friedman, 2001, 2002) is an ensemble algorithm that improves the 

accuracy of a predictive function through incremental minimisation of the error term. 

After the initial base learner (most commonly a tree) is grown, each tree in the series is fit 

to the so-called “pseudo residuals” of the prediction from the earlier trees with the 

purpose of reducing the error. The estimated probabilities are adjusted by weight 

estimates, and the weight estimates are increased when the previous model misclassified 

a response. This leads to the following model: 

 

   0 1 1 2 2( ) ( ) ( )u uF G T T T      x x x x ,   (3.13) 
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where 
0G  equals the first value for the series, 

1, , uT T  are the trees fitted to the pseudo-

residuals, and 
i  are coefficients for the respective tree nodes computed by the Gradient 

Boosting algorithm. A more detailed explanation of gradient boosting can be found in 

Friedman (2001) and Friedman (2002). The meta-parameters which require tuning for a 

Gradient Boosting classifier are the number of iterations and the maximum branch used 

in the splitting rule. The number of iterations specifies the number of terms in the 

boosting series, for a binary target the number of iterations determines the number of 

trees. The maximum branch parameter determines the maximum number of branches that 

the splitting rule produces from one node, a suitable number for this parameter is 2, a 

binary split. 
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3.2 Overview of Regression Techniques 

 

Whereas in the previous section we looked at the proposed classification techniques for 

PD modelling, in this section we will detail the proposed regression techniques to be 

implemented in the modelling of LGD and EAD. The experiments comprise a selection 

of one-stage and two-stage techniques. One-stage techniques can be divided into linear 

and non-linear techniques. The linear techniques included in Chapter 5 and 6, model the 

(original or transformed) dependent variable as a linear function of the independent 

variables whereas non-linear techniques fit a non-linear model to the data set. Two-stage 

models are a combination of the aforementioned one-stage models. These either combine 

the comprehensibility of an OLS model with the added predictive power of a non-linear 

technique, or they use one model to first discriminate between zero- and higher LGDs 

and a second model to estimate LGD for the subpopulation of non-zero LGDs. 

A regression technique fits a model  y f e x  onto a data set, where y  is the 

dependent variable, x  are the independent variables and e  is the residual. 

The following Table (TABLE 3.1) details the regression techniques used in Chapter 5 for 

LGD estimation and Chapter 6 for EAD estimation. 

 

Regression Techniques 

LGD 

Linear 

Ordinary Least Squares (OLS) 

Ordinary Least Squares with Beta Transformation (B-OLS) 

Beta Regression (BR) 

Ordinary Least Squares with Box-Cox Transformation (BC-OLS) 

Non-linear 

Regression Trees (RT) 

Least Square Support Vector Machines (LS-SVM) 

Neural Networks (NN) 
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Log+(non-)linear 

Logistic regression + OLS, B-OLS, BR, BC-OLS, RT, LS-SVM or NN 

Linear+non-linear 

Ordinary Least Squares  + Regression Trees (OLS+RT) 

Ordinary Least Squares  + Least Square Support Vector Machines 

(OLS+LSSVM) 

Ordinary Least Squares  + Neural Networks (OLS+NN) 

EAD 

Ordinary Least Squares (OLS) 

Ordinary Least Squares with Beta Transformation (B-OLS) 

Binary Logistic Regression (LOGIT) 

Cumulative Logistic Regression (CLOGIT) 

TABLE 3.1: Regression techniques used for LGD and EAD modelling 

 

3.2.1 Ordinary Least Squares (OLS) 

 

Ordinary least squares regression (Draper & Smith, 1998) is the most common technique 

to find optimal parameters  0 1 2, , , ,T

nb b b bb  to fit a linear model to a data set: 

 Ty  b x , (3.14) 

 

where  1 21, , , ,T

nx x xx . OLS approaches this problem by minimising the sum of 

squared residuals: 

    
22

1 1

l l
T

i i i

i i

e y
 

   b x . (3.15) 

 

By taking the derivative of this expression and subsequently setting the derivative equal 

to zero: 

  
1

0
l

T T

i i i

i

y


  b x x ,  (3.16) 
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the model parameters b  can be retrieved as: 

  
1

T T


b X X X y , (3.17) 

 

with  1 2, , ,T

lX x x x  and  1 2, , ,
T

ly y yy . 

 

3.2.2 Ordinary Least Squares with Beta transformation (B-OLS) 

 

Whereas OLS regression tests generally assume normality of the dependent variable y , 

the empirical distribution of LGD can often be approximated more accurately by a Beta 

distribution (Gupton & Stein, 2002). Assuming that y  is constrained to the open interval 

 0,1 , the cumulative distribution function (CDF) of a Beta distribution is given by: 

  
 

   
 

11

0
; , 1

y ba
a b

y a b v v dv
a b




 
 
   , (3.18) 

 

where () denotes the well-known Gamma function, and a  and b  are two shape 

parameters, which can be estimated from the sample mean   and variance 2  using the 

method of the moments, i.e.: 

 
 2

2

1
a

 





  ; 

1
1b a



 
  

 
. (3.19) 

 

A potential solution to improve model fit therefore is to estimate an OLS model for a 

transformed dependent variable   * 1 ; ,i iy N y a b   1, ,i l , in which 1()N   

denotes the inverse of the standard normal CDF. The predictions by the OLS model are 

then transformed back through the standard normal CDF and the inverse of the fitted Beta 

CDF to get the actual LGD estimates. 
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3.2.3 Beta Regression (BR) 

 

Instead of performing a Beta transformation prior to fitting an OLS model, an alternative 

Beta regression approach is outlined in Smithson & Verkuilen, (2006). Their preferred 

model for estimating a dependent variable bounded between 0 and 1 is closely related to 

the class of generalised linear models and allows for a dependent variable that is Beta-

distributed conditional on the covariates. Instead of the usual parameterisation though of 

the Beta distribution, with shape parameters a  and b , they propose an alternative 

parameterisation involving a location parameter   and a precision parameter  , by 

letting: 

 
a

a b
 


; a b   . (3.20) 

 

It can be easily shown that the first parameter is indeed the mean of a  ,a b -distributed 

variable, whereas 
 

 
2

1

1

 








, so for fixed  , the variance (dispersion) increases with 

smaller  . 

 

Two link functions mapping the unbounded input space of the linear predictor into the 

required value range for both parameters are then chosen, viz. the logit link function for 

the location parameter (as its value must be squeezed into the open unit interval) and a 

log function for the precision parameter (which must be strictly positive), resulting in the 

following sub models: 

  |
1

T
i

T
i

i i i

e
E y

e
  



b x

b x
x . (3.21) 

T
i

i e 


d x
 

 

This particular parameterisation offers the advantage of producing more intuitive variable 

coefficients (as the two rows of coefficients, T
b and T

d , provide an indication of the 

effect on the estimate itself and its precision, respectively). By further selecting which 
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variables to include in (or exclude from) the second sub model, one can explicitly model 

heteroskedasticity. The resulting log-likelihood function is then used to compute 

maximum-likelihood estimators for all model parameters. 

 

3.2.4 Ordinary Least Squares with Box-Cox transformation (BC-OLS) 

 

The aim of the family of Box-Cox transformations (Box & Cox, 1964) is to make the 

residuals of the regression model more homoskedastic and closer to a normal distribution. 

The Box-Cox transformation on the dependent variable 
iy  takes the form 

 

  

 

1

log

i

i

y c

y c





  






 

if  0

if  0









, (3.22) 

 

with power parameter   and parameter c . If needed, the value of c  can be set to a non-

zero value to rescale y  so that it becomes strictly positive. After a model is built on the 

transformed dependent variable using OLS, the predicted values can be transformed back 

to their original value range. 

 

3.2.5 Regression trees (RT) 

 

In Section 3.1.5 we looked at the application of decision trees for classification problems. 

Decision trees can also be used for regression analysis where they are designed to 

approximate real-valued functions as apposed to a classification task. A commonly 

applied impurity measure  i t  for regression trees is the mean squared error or variance 

for the subset of observations falling into node t . Alternatively, a split may be chosen 

based on the p-value of an ANOVA F-test comparing between-sample variances against 

within-sample variances for the subsamples associated with its respective child nodes 

(ProbF criterion). 
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3.2.6 Artificial Neural Networks (ANN) 

 

Section 3.1.3 details the implementation of Neural Networks for classification problems. 

In terms of regression, Neural Networks produce an output value by feeding inputs 

through a network whose subsequent nodes apply some chosen activation function to a 

weighted sum of incoming values. The type of NN used in Chapter 5 of this thesis is the 

popular multilayer perceptron (MLP). 

 

3.2.7 Least Square Support Vector Machines (LS-SVM) 

 

Section 3.1.4 details the implementation of Least Square Support Vector Machines for 

classification problems. In terms of regression, Least Square Support Vector Machines 

implicitly map the input space to a kernel-induced high-dimensional feature space in 

which a linear relationship is fitted.  

 

3.2.8 Linear regression + non-linear regression 

 

Techniques such as Neural Networks and Support Vector Machines are often seen as 

“black box” techniques meaning that the model obtained is not understandable in terms 

of physical parameters. This is an obvious issue when applying these techniques to a 

credit risk modelling scenario where physical parameters are required. To solve this issue 

we propose the use of a two-stage approach to combine the good comprehensibility of 

OLS with the predictive power of a non-linear regression technique (Van Gestel, et al 

2005). In the first stage, an ordinary least squares regression model is built: 

 Ty e b x . (3.23) 

 

In the second stage, the residuals e  of this linear model: 

 

   *e f e x , (3.24) 
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are estimated with a non-linear regression model  f x  in order to further improve the 

predictive ability of the model. Doing so, the model takes the following form: 

 

   *Ty f e  b x x . (3.25) 

 

Where *e  are the new residuals of estimating e . A combination of OLS with RT, 

LSSVM and NN is assessed in this thesis. 

 

3.2.9 Logistic regression + (non)linear regression 

 

The LGD distribution is often characterised by a large peak around 0LGD  . This non-

normal distribution can lead to inaccurate regression models. This proposed two-stage 

technique attempts to resolve this issue by modelling the peak separately from the rest. 

Therefore, the first stage of this two-stage model consists of a logistic regression to 

estimate whether 0LGD   or 0LGD  . 

In a second stage the mean of the observed values of the peak is used as prediction in the 

first case and a one-stage (non)linear regression model is used to provide a prediction in 

the second case. The latter is trained on part of the data set, i.e. those observations that 

have an 0LGD  . More specifically, a logistic regression results in an estimate of the 

probability P  of being in the peak: 

 

 
 

1

1
T

P

e





b x

,  (3.26) 

 

with  1 P  as the probability of not being in the peak. An estimate for LGD is then 

obtained by: 

 

    . 1 .peaky P y P f e   x , (3.27) 
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where 
peaky  is the mean of the values of 0y  , which is equitable to 0, and  f x  is a 

one-stage (non)linear regression model, built on those observations only that are not in 

the peak. A combination of logistic regression with all aforementioned one-stage 

techniques as described above, is assessed is this thesis (Matuszyk et al 2010). 
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Chapter 4 

 

4 Building default prediction models for 

imbalanced credit scoring data sets 

 

In this chapter, we set out to compare several techniques that can be used in the analysis 

of imbalanced credit scoring data sets. In a credit scoring context, imbalanced data sets 

occur as the number of defaulting loans in a data set is usually much lower than the 

number of observations that do not default.   

However, some techniques may not be able to adequately cope with these imbalanced 

data sets therefore, the objective is to compare a variety of techniques performances‟ over 

differing sizes of class distribution. As well as evaluating traditional classification 

techniques such as logistic regression, neural networks and decision trees, this chapter 

will also explore the suitability of gradient boosting, least square support vector machines 

and random forests for loan default prediction. These particular techniques have been 

selected due to either their proven ability within the credit scoring domain (c.f. 

TABLE1.1) or their similar applications in other fields which can be transferred to a 

credit scoring context (c.f. Literature Review). The purpose of this study is to compare 

widely used credit scoring techniques against novel machine learning techniques to 

identify whether any improvement can be made over traditional techniques when a class 

imbalance is present. 

Five real-world credit scoring data sets have been adapted to mimic imbalanced data sets 

and are used to build classifiers and test their performance. In our experiments, we 
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progressively increase class imbalance in each of these data sets by randomly under-

sampling the minority class of defaulters, so as to identify to what extent the predictive 

power of the respective techniques is adversely affected.  

The performance criterion chosen to measure this effect is the area under the receiver 

operating characteristic curve (AUC); Friedman's statistic and Nemenyi post-hoc tests are 

used to test for significance of AUC differences between techniques. 

The results from this empirical study indicate that the Random Forest and Gradient 

Boosting classifiers perform very well in a credit scoring context and are able to cope 

comparatively well with pronounced class imbalances in these data sets. We also find 

that, when faced with a large class imbalance, the support vector machines and quadratic 

discriminant analysis perform significantly worse than the best performing classifiers. 

 

The remainder of this chapter is organised as follows. Section 4.2 gives a list overview of 

the examined classification techniques (a more detailed explanation of each of the 

techniques used in this chapter can be found in Chapter 3). Section 4.3 details the 

empirical set up, data sets used and the criteria used for comparing the classification 

performance. Section 4.4 the results of our experiments are presented and discussed. 

Finally section 4.5 gives the conclusions that can be drawn from the study and 

recommendations for further research work will be outlined. 
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4.1 Introduction 

 

A detailed background and introduction to the topic of estimating Probability of Default 

(PD) for imbalanced credit scoring data sets along with motivations for the work can be 

found in Chapter 1 of this thesis. 

 

. 
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4.2 Overview of classification techniques 

 

This chapter aims to compare the performance of a wide range of classification 

techniques within a credit scoring context, thereby assessing to what extent they are 

affected by increasing class imbalance. For the purpose of this chapter, ten classifiers 

have been selected which provide a comparison between well-established credit scoring 

techniques such as logistic regression, decision trees and neural networks, and newly 

developed machine learning techniques such as least square support vector machines, 

gradient boosting and random forests. An explanation of each of the techniques applied in 

this chapter can be found in Chapter 3. 

 

The techniques used in this chapter are as follows: 

Classification Technique  

1. Logistic Regression 

2. Linear Discriminant Analysis 

3. Quadratic Discriminant Analysis 

4. Neural Networks (Multi-layer Perceptron) 

5. Least Square Support Vector Machines (LS-SVMs) 

6. C4.5 – Decision Trees 

7. k-NN10 (Memory Based Reasoning) 

8. k-NN100 (Memory Based Reasoning) 

9. Random Forests 

10. Gradient Boosting 

TABLE 4.1: List of classification techniques 
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4.3 Experimental set-up and data sets 

 

4.3.1 Data set characteristics 

 

The characteristics of the data sets used in evaluating the performance of the 

aforementioned classification techniques are given below in TABLE 4.2. (The 

independent variables available in each data set are presented in APPENDIX A1 at the 

end of this thesis). The Bene1 and Bene2 data sets were obtained from two major 

financial institutions in the Benelux region. For these two data sets, a bad customer was 

defined as someone who had missed three consecutive months of payments. The German 

credit data set and the Australian Credit data set are publicly available at the UCI 

repository (http://kdd.ics.uci.edu/). The Behav data set was also acquired from a Benelux 

institution. As the data sets used vary in size, from 547 to 7,190, and the data sets will be 

further reduced, with the under sampling of the bad observations to create larger class 

imbalances, a process of 10-fold cross validation will be applied on the full data set. 

 

 Inputs Data set size Goods/Bads 

Bene1 27 2974 70/30* 

Bene2 27 7190 70/30 

Austr 14 547 70/30* 

Behav 60 1197 70/30* 

Germ 20 1000 70/30 

TABLE 4.2: Characteristics of credit scoring data sets 
 

 

* Altered data set class distribution, Bene1 original distribution was 66.6% good observations, 33.3% bad 

observations, Austr original distribution was 55.5% good observations, 44.5% bad observations and the 

Behav original distribution was 80% good observations, 20% bad observations. 

 

 

http://kdd.ics.uci.edu/
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4.3.2 Re-sampling setup and performance metrics 

 

In order for the percentage reduction in the bad observations, in each data set, to be 

relatively compared, the Bene1 set, Australian credit and the Behavioural Scoring set 

have first been altered to give a 70/30 class distribution. This was done by either under-

sampling the bad observations (from a total of 1041 bad observations in the Bene1 data 

set, only 892 observations have been used; and from a total of 307 bad observations in 

the Australian credit data set, only 164 observations have been used) or under-sampling 

the good observations in the behavioural scoring data set, (from a total of 1436 good 

observations, only 838 observations have been used). 

 

For this empirical study, the class of defaulters in each of the data sets was artificially 

reduced, by a factor of 5% up to 95%, so as to create a larger difference in class 

distribution. As a result of this reduction, six data sets were created from each of the five 

original data sets. For this empirical study our focus is on the performance of 

classification techniques on data sets with a large class imbalance. Therefore detailed 

results will only be presented for the data set with the original 70/30 split, as a 

benchmark, and data sets with 85%, 90% and 95% splits. By doing so, it is possible to 

identify whether techniques are adversely affected in the prediction of the target variable 

when there is a substantially lower number of observations in one of the classes. The 

performance criterion chosen to measure this effect is the area under the receiver operator 

characteristic curve (AUC) statistic as proposed by Baesens et al., (2003). 

 

The receiver operating characteristic curve (ROC) is a two-dimensional graphical 

illustration of the trade-off between the true positive rate (sensitivity) and false positive 

rate (1-specificity). The ROC curve illustrates the behaviour of a classifier without 

having to take into consideration the class distribution or misclassification cost. In order 

to compare the ROC curves of different classifiers, the area under the receiver operating 

characteristic curve (AUC) must be computed. The AUC statistic is similar to the Gini 

coefficient which is equal to 2 ( 0.5)AUC  . An example of an ROC curve is depicted 

in FIGURE 4.1: 
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FIGURE 4.1: Example ROC Curve 

 

The diagonal line represents the trade-off between the sensitivity and (1-specificity) for a 

random model, and has an AUC of 0.5. For a well performing classifier the ROC curve 

needs to be as far to the top left-hand corner as possible. In the example shown in 

FIGURE 4.1, the classifier that performs the best is that corresponding to the 1ROC  

curve. 

 

4.3.3 k-fold cross validation 

 

For each of the techniques applied in this study a 10-fold cross validation (CV) method 

was applied during the modelling stage to add validity to the techniques built on the 

imbalanced data sets. The number of folds was selected as 10 due to the computational 

time for each of the different techniques over each of the data set splits. Although we 

would prefer a larger number of folds to reduce the bias of the true error rate estimator 10 

was deemed sufficiently large for this empirical study. For the following techniques: 

 Linear Discriminant Analysis (LDA)  

 Quadratic Discriminant Analysis (QDA) 
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 Logistic Regression (LOG) 

 Neural Networks (NN) 

 K-nearest neighbours (k-NN) 

 Gradient Boosting 

this was achieved through the implementation of the group processing facility and the 

data transformation node in SAS Enterprise Miner. An example of the setup is presented 

in FIGURE 4.2: 

 

 

FIGURE 4.2: Example setup of k-fold cross validation 

 

The data transformation node is required to create a random segmentation ID for the data 

for the k-fold groups to be used as cross validation indicators in the group processing 

loop. The formulation used to compute this is displayed in FIGURE 4.3: 

 

 

FIGURE 4.3: Transformation node in EM 

 

(For the Random Forests and C4.5 techniques a 10-fold cross validation approach was 

also applied using the cross-validation option in Weka. A 10-fold cross validation 
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approach was also applied in the LS-SVMlab Matlab toolbox in Matlab for the LS-SVM 

classifier.) 

 

Each classifier is then trained k times (k=10) using nine folds for training purposes and 

the reaming fold for evaluation (validation). A performance estimate for the classifier can 

then be determined by averaging the 10-validation estimates determined through the 10 

runs of the cross validation. As mentioned in Kohavi R, (1995) common values used for 

k are 5 and 10 (we select 10 here in this study). Cross validation is often used to assess 

the performance of classification techniques on small data sets, due to the loss of 

potential data in the modelling process with a training/test set split. Hence why cross 

validation has been chosen in this instance. (Baesens, B 2003a). 

 

4.3.4 Parameter tuning and input selection 

 

The linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and 

logistic regression (LOG) classification techniques require no parameter tuning. The 

LOG model was built in SAS using proc logistic and using a stepwise variable selection 

method. Both the LDA and QDA techniques were run in SAS using proc discrim. Before 

all the techniques were run, dummy variables were created for the categorical variables. 

The AUC statistic was computed using the ROC macro by De Long et al (1988), which is 

available from the SAS website (http://support.sas.com/kb/25/017.html).  

For the LS-SVM classifier, a linear kernel was chosen and a grid search mechanism was 

used to tune the hyper-parameters. For the LS-SVM, the LS-SVMlab Matlab toolbox 

developed by Suykens et al (2002) was used.  

The NN classifiers were trained after selecting the best performing number of hidden 

neurons based on a validation set. The neural networks were trained in SAS Enterprise 

Miner using a logistic hidden and target layer activation function with the remaining EM 

default architecture in place (i.e. Weight Decay equal to 0, Normal randomisation 

distribution for random initial weights and perturbations). 

http://support.sas.com/kb/25/017.html


74 | B a s e l  I I  C o m p l i a n t  C r e d i t  R i s k  M o d e l l i n g  

 

 

The confidence level for the pruning strategy of C4.5 was varied from 0.01 to 0.5, and the 

most appropriate value was selected for each data set based on validation set 

performance. The tree was built using the Weka (Witten & Frank, 2005) package.  

Two parameters have to be set for the Random Forests technique: these are the number of 

trees and the number of attributes used to grow each tree. A range of [10, 50, 100, 250, 

500, 1000] trees has been assessed, as well as three different settings for the number of 

randomly selected attributes per tree  [0.5,1,2]. n , whereby n denotes the number of 

attributes within the respective data set (Breiman, 2001). As with the C4.5 algorithm, 

Random Forests were also trained in Weka (Witten & Frank, 2005), using 10-fold cross-

validation for tuning the parameters. 

The k-Nearest Neighbours technique was applied for both k=10 and k=100, using the 

Weka (Witten & Frank, 2005) IBk classifier. These values of k have been selected due to 

their previous use in the literature (e.g. Baesens et al 2003, Chatterjee & Barcun, 1970, 

West, 2000). For the Gradient Boosting classifier a partitioning algorithm was used as 

proposed by Friedman (2001). The number of iterations was varied in the range [10, 50, 

100, 250, 500, 1000], with a maximum branch size of two selected for the splitting rule 

(Friedman, 2001). The gradient boosting node in SAS Enterprise Miner was used to run 

this technique. 

 

4.3.5 Statistical comparison of classifiers 

 

We used Friedman's test (Friedman, 1940) to compare the AUCs of the different 

classifiers. The Friedman test statistic is based on the average ranked (AR) performances 

of the classification techniques on each data set, and is calculated as follows: 
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In (4.1), D denotes the number of data sets used in the study, K is the total number of 

classifiers and j

ir  is the rank of classifier j on data set i. 2

F  is distributed according to 

the Chi-square distribution with 1K   degrees of freedom. If the value of 2

F  is large 

enough, then the null hypothesis that there is no difference between the techniques can be 

rejected. The Friedman statistic is well suited for this type of data analysis as it is less 

susceptible to outliers (Friedman, 1940). 

 

The post-hoc Nemenyi test (Nemenyi, 1963) is applied to report any significant 

differences between individual classifiers. The Nemenyi post-hoc test states that the 

performances of two or more classifiers are significantly different if their average ranks 

differ by at least the critical difference (CD), given by: 

 

 , ,

( 1)

12
K

K K
CD q

D



   (4.2) 

 

In this formula, the value , ,Kq  is based on the studentized range statistic (Nemenyi, 

1963). 

 

Finally, the results from Friedman's statistic and the Nemenyi post-hoc tests are displayed 

using a modified version of Demšar's (Demšar, 2006) significance diagrams (Lessmann 

et al., 2008). These diagrams display the ranked performances of the classification 

techniques along with the critical difference to clearly show any techniques which are 

significantly different to the best performing classifiers. 
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4.4 Results and discussion 

 

The table on the following page (TABLE 4.3) reports the AUCs of all ten classifiers on 

the five credit scoring data sets at varying degrees of class imbalance (calculated by 

averaging the 10-validation estimates determined through the 10 runs of the cross 

validation for each classifier). For each level of imbalance, the Friedman test statistic and 

corresponding p-value is shown. As these were all significant (p<0.005), the post-hoc 

Nemenyi test procedure was then applied to each class distribution. The technique 

achieving the highest AUC on each data set is underlined as well as the overall highest 

ranked technique. TABLE 4.3 shows that the gradient boosting algorithm has the highest 

Friedman score (average rank (AR)) on two of the five different percentage class splits. 

However at the extreme class split (95% good, 5% bad) Random Forests provides the 

best average ranking across the five data sets. (N.B. example residual plots for the 

Gradient Boosting and Random Forest classifiers are located in Appendix A2 of this 

thesis). 

In the majority of the class splits, the AR of the QDA and Lin LS-SVM classifiers are 

statistically worse than the AR of the Random Forests classifier at the 5% critical 

difference level ( 0.05)  , as shown in the significance diagrams included next. Note 

that, even though the differences between the classifiers are small, it is important to note 

that in a credit scoring context, an increase in the discrimination ability of even a fraction 

of a percent may translate into significant future savings (Henley & Hand, 1997).  
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 30% bad 15% bad 10% bad 

 Friedman test statistic = 32.36 

(p<0.005) 

Friedman test statistic = 30.54 

(p<0.005) 

Friedman test statistic = 27.56  

 (p<0.005) 

 Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR Bene1 Bene2 Germ Aus Behav AR 

LOG 80.1 77.2 76.5 91.0 65.0 5.6 79.2 77.8 75.3 91.9 67.9 5.1 78.3 79.2 76.7 85.3 65.6 4 

C4.5 72.5 72.1 71.5 91.5 61.8 9 69.8 61.2 66.3 92.8 62.3 7.6 65.2 65.2 66.3 92.1 51.2 8.1 

NN 79.4 77.9 73.2 91.9 72.3 5.4 76.2 78.0 69.5 91.9 70.2 5.9 76.3 77.6 72.4 90.1 69.1 5.3 

Gradient 

Boosting 

78.0 82.1 77.1 94.2 72.3 3.7 79.6 81.2 75.9 95.1 70.3 2.2 77.9 79.3 75.2 94.1 64.0 3.4 

LDA 77.2 77.9 80.0 95.1 74.9 3.6 78.9 77.9 77.0 93.7 76.6 3.2 78.2 78.0 75.0 94.2 69.3 2.9 

QDA 74.2 74.2 72.1 89.6 64.0 8.4 68.5 73.2 61.2 71.0 58.5 9.2 66.3 72.0 54.3 85.2 53.2 8.6 

Random 

Forests 

78.7 78.2 79.1 93.5 76.3 3.2 77.5 79.3 77.2 93.9 77.2 2.4 78.4 77.6 78.2 94.2 75.2 2 

k-NN10 77.2 72.0 76.3 92.6 61.6 7.5 76.3 67.2 72.1 90.6 60.2 7.6 70.6 65.3 69.1 91.3 57.2 7.2 

k-NN100 74.6 73.0 78.2 92.0 57.1 7.2 74.0 73.5 78.3 92.7 62.8 5.2 74.9 73.2 78.3 92.1 62.1 4.7 

Lin LS-

SVM 

79.8 81.0 81.2 96.1 81.9 1.4 52.0 57.8 74.6 92.0 85.2 6.6 52.0 53.2 74.3 90.0 0.5 8.8 

 5% bad   

 Friedman test statistic = 28.32  

(p<0.005) 

  

 Bene1 Bene2 Germ Aus Behav AR             

LOG 74.8 76.2 76.1 62.3 53.2 5.1             

C4.5 59.3 65.0 57.8 75.4 55.3 7.6             

NN 69.3 70.8 68.3 90.2 64.3 4.9             

Gradient 

Boosting 

72.1 79.0 76.2 93.2 53.4 3.2             

LDA 73.8 77.2 74.2 92.6 63.2 3.2             

QDA 65.3 70.2 52.3 60.1 50.6 9             

Random 

Forests 

73.5 76.3 76.3 93.3 63.0 2.4             

k-NN10 66.2 63.2 68.3 88.9 53.2 7.2             

k-NN100 76.0 74.2 74.9 93.1 60.2 3.4             

Lin LS- 

SVM 

52.3 53.2 53.6 86.3 51.0 9             

TABLE 4.3: AUC results on test set data sets 
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The following significance diagrams display the AUC performance ranks of the 

classifiers, along with Nemenyi's critical difference (CD) tail. The CD value for all the 

following diagrams is equal to 6.06. Each diagram shows the classification techniques 

listed in ascending order of ranked performance on the y-axis, and the classifier‟s mean 

rank across all five data sets displayed on the x-axis. Two vertical dashed lines have been 

inserted to clearly identify the end of the best performing classifier‟s tail and the start of 

the next significantly different classifier.  

The first significance diagram (see FIGURE 4.4) displays the average rank of the 

classifiers at the original class distribution of a 70% good, 30% bad split:  

 

0 2 4 6 8 10 12 14 16

Lin LS-SVM

Random Forests

LDA

Gradient Boosting

NN

LOG

k-NN100

k-NN10

QDA

C4.5

Classifiers' mean ranks across five datasets

 

FIGURE 4.4: AR comparison at a 70/30 percentage split of good/bad observations 

 

At this original 70/30 percentage split, the Linear LS-SVM is the best performing 

classification technique with an AR value of 1.4. This diagram clearly shows that the k-

NN10, QDA and C4.5 techniques perform significantly worse than the best performing 

classifier with values of 7.5, 8.4 and 9.0 respectively. 

 

The following significance diagram displays the average rank of the classifiers at an 85% 

good, 15% bad class split: 
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Gradient Boosting

Random Forests

LDA

LOG

k-NN100

NN

Lin LS-SVM

C4.5

k-NN10

QDA

Classifiers' mean ranks across five datasets

 

FIGURE 4.5: AR comparison at an 85/15 percentage split of good/bad observations 

 

At the level where only 15% of the data sets are bad observations, it is shown in the 

significance diagram that Gradient Boosting becomes the best performing classifier (see 

FIGURE 4.5). The Gradient Boosting classifier performs significantly better than the 

quadratic discriminant analysis (QDA) classifier. From these findings we can make a 

preliminary assumption that when a larger class imbalance is present, the QDA classifier 

remains significantly different to the Gradient Boosting classifier. All the other 

techniques used are not significantly different. 

 

0 2 4 6 8 10 12 14 16

Random Forests

LDA

Gradient Boosting

LOG

k-NN100
NN

k-NN10

C4.5

QDA

Lin LS-SVM

Classifiers' mean ranks across five datasets

 

FIGURE 4.6: AR comparison at a 90/10 percentage split of good/bad observations 

 

At a 90% good, 10% bad class split the significance diagram shown in FIGURE 4.6 

indicates that the Lin LS-SVM and QDA algorithms are significantly worse than the 

Random Forests classifier. It can be noted that the Linear LS-SVM classifier is 

progressively becoming less powerful as a large class imbalance is present. 
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FIGURE 4.7: AR comparison at a 95/5 percentage split of good/bad observations 

 

At a 95% good, 5% bad class split the significance diagram shown in FIGURE 4.7 

indicates that the Linear LS-SVM and QDA classifiers now becomes significantly worse 

than the random forests classifier. This indicates that, as with the previous class split 

(FIGURE 4.6), the Linear LS-SVM classifier progressively becomes less powerful as a 

large class imbalance is present. 

 

In summary, when considering the AUC performance measures, it can be concluded that 

the gradient boosting and random forest classifiers yield a very good performance at 

extreme levels of class imbalance, whereas the Lin LS-SVM sees a reduction in 

performance as a larger class imbalance is introduced. However, the simpler, linear 

classification techniques such as LDA and LOG also give a relatively good performance, 

which is not significantly different from that of the gradient boosting and random forest 

classifiers. This finding seems to confirm the suggestion made in (Baesens et al., 2003) 

that most credit scoring data sets are only weakly non-linear. The findings presented in 

this study show that, whereas in Yao, (2009) SVM‟s were shown to be the best 

performing classifier, at large class imbalances SVM‟s lose their predictive capabilities. 

Therefore the findings presented in this chapter agree with past analysis (Baesens et al., 

2003, Yao, 2009 and Kennedy et al., 2011), but with the caveat that as a larger class 

imbalance is present some techniques, in particular SVM‟s do not perform as well. It is 



C h a p t e r  4 :  B u i l d i n g  d e f a u l t  p r e d i c t i o n  m o d e l s  f o r  i m b a l a n c e d  

c r e d i t  s c o r i n g  d a t a  s e t s  | 81 

 

 

also shown here that techniques such as QDA, C4.5 and k-NN10 perform significantly 

worse than the best performing classifiers at varying percentage reductions. The majority 

of classification techniques yielded classification performances that are quite competitive 

with each other.  
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4.5 Conclusions and recommendations for further work 

 

In this comparative study we have looked at a number of credit scoring techniques, and 

studied their performance over various class distributions in five real-life credit data sets. 

Two techniques that have yet to be fully researched in the context of credit scoring, i.e. 

Gradient Boosting and Random Forests, were also chosen to give a broader review of the 

techniques available. The classification power of these techniques was assessed based on 

the area under the receiver operating characteristic curve (AUC). Friedman's test and 

Nemenyi's post-hoc tests were then applied to determine whether the differences between 

the average ranked performances of the AUCs were statistically significant. Finally, these 

significance results were visualised using significance diagrams for each of the various 

class distributions analysed. 

The results of these experiments show that the Gradient Boosting and Random Forest 

classifiers performed well in dealing with samples where a large class imbalance was 

present. It does appear that in extreme cases the ability of random forests and gradient 

boosting to concentrate on „local‟ features in the imbalanced data is useful. The most 

commonly used credit scoring techniques, linear discriminant analysis (LDA) and logistic 

regression (LOG), gave results that were reasonably competitive with the more complex 

techniques and this competitive performance continued even when the samples became 

much more imbalanced. This would suggest that the currently most popular approaches 

are fairly robust to imbalanced class sizes. On the other hand, techniques such as QDA 

and C4.5 were significantly worse than the best performing classifiers. It can also be 

concluded that the use of a linear kernel LS-SVM would not be beneficial in the scoring 

of data sets where a very large class imbalance exists.  

Further work that could be conducted, as a result of these findings, would be to firstly 

consider a stacking approach to classification through the combination of multiple 

techniques. Such an approach would allow a meta-learner to pick the best model to 

classify an observation. Secondly, another interesting extension to the research would be 

to apply these techniques on much larger data sets which display a wider variety of class 
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distributions. It would also be of interest to look into the effect of not only the percentage 

class distribution but also the effect of the actual number of observations in a data set. 

Finally, as stated in the literature review chapter (cf. Chapter 2) of this thesis, there have 

been several approaches already researched in the area of oversampling techniques to 

deal with large class imbalances. Further research into this and their effect on credit 

scoring model performance would be beneficial.  
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Chapter 5 

 

5 Estimation of Loss Given Default (LGD)  

 

As stated in Chapter 1, the recent introduction of the Basel II framework has had a huge 

impact on financial institutions, allowing them to build credit risk models for three key 

risk parameters: PD (Probability of Default), LGD (Loss Given Default) and EAD 

(Exposure at Default). To date current credit risk research has largely focused on the 

estimation and validation of the PD parameter. However, changes in LGD directly affect 

the capital of a financial institution in a linear way, unlike PD, which therefore has less of 

an effect on minimal capital requirements. The use of models that estimate LGD as 

accurately as possible are thus of crucial importance as these can translate into significant 

future savings. 

 

In this chapter the estimation of LGD is analysed through the implementation of various 

state-of-the-art regression techniques to model and predict LGD. These include one-stage 

models, such as those built by ordinary least squares, beta regression, artificial neural 

networks, support vector machines and regression trees, as well as two-stage models 

which attempt to combine the benefits of multiple techniques. In total 17 regression 

techniques are evaluated and compared using 6 real-life retail lending data sets from 

major international banking institutions. These particular techniques have been selected 

due to either their proven ability to model LGD (e.g. OLS) or their similar applications in 

other fields which can be transferred to a credit risk modelling context (c.f. Literature 

Review). The purpose of this study is to compare the widely used OLS model (with 
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transformations) against novel machine learning techniques to identify whether any 

improvement can be made in the estimation of LGD. 

 

It is found that much of the variance of LGD remains unexplained as the average 

predictive performance of the models in terms of 2R  range from 4% to 43%. 

Nonetheless, a trend can be observed that, non-linear techniques and in particular 

artificial neural networks and support vector machines yield consistently higher 

predictive performances over all data sets than more traditional linear techniques. Also, 

two-stage models built by a combination of linear and non-linear techniques are shown to 

have similarly good predictive power, while they offer the added advantage of having a 

comprehensible linear model component.
1
 

 

The remainder of this chapter is organised as follows. Section 5.2 gives a list overview of 

the examined regression techniques (a more detailed explanation of each of the 

techniques used in this chapter can be found in Chapter 3). Section 5.3 details several 

performance metrics for the evaluation and comparison of the regression models listed in 

the previous section. Section 5.4 details the data sets used and the experimental set-up 

implemented in this study. The penultimate section 5.5 displays the experimental results 

from this study, and finally section 5.6 concludes this chapter. 

 

 

                                                 
1 Nota bene: A larger version of this study was conducted as a collaborative study with the University 

College Ghent. Only the work contributed by the author of this thesis is presented in this chapter, 

except for the LS-SVM calculations which were conducted by my colleague Gert Loterman. 
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5.1 Introduction 

 

A detailed background and introduction to the topic of Loss Given Default (LGD) along 

with motivations for the work can be found in Chapter 1 of this thesis. 
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5.2 Overview of regression techniques 

 

This study comprises both one-stage and two-stage techniques. One stage techniques can 

be divided into linear and non-linear techniques. Linear techniques model the dependent 

variable as a linear function of the independent variables while non-linear techniques fit a 

non-linear model to a data set. Two stage models are a combination of the 

aforementioned one-stage models. 

 

The regression techniques used in this chapter comprise of both linear and non-linear 

techniques, and combinations of the two. A full description of these techniques can be 

found in Chapter 3. 

 

Regression Techniques  

Linear  

Ordinary Least Squares (OLS) 

Ordinary least squares regression (Draper & Smith, 1998) is the most common technique 

to find optimal parameters to fit a linear model to a data set. OLS estimation produces a 

linear regression model that minimises the sum of squared residuals for the data set. 

 

Ordinary Least Squares with Beta transformation (B-OLS) 

Before estimating an OLS model, Beta transformation/OLS (Gupton & Stein, 2002) fits a 

Beta distribution to the dependent variable (LGD) based on which that variable is 

transformed to better meet the OLS normality assumption. 

 

Ordinary Least Squares with Box-Cox transformation (BC-OLS)  

Box-Cox transformation/OLS (Box & Cox, 1964) selects an instance of a family of 

power transformations to improve the normality of the dependent variable. 

 

Beta Regression (BR) 

Beta Regression (Smithson & Verkuilen, 2006) uses maximum likelihood estimation to 
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produce a generalised linear model variant that allows for a dependent variable that is 

beta-distributed conditional on the input variables. 

  

Non-linear  

Regression trees (RT) 

Regression Tree, sometimes referred to as classification and regression trees (CART), 

(Breiman, et al. 1984) algorithms produce a decision tree for the dependent variable by 

recursively partitioning the input space based on a splitting criterion, e.g. weighted 

reduction in within-node variance. 

 

Least Squares Support Vector Machines (LSSVM) 

Least Squares Support Vector Machine (Suykens, et al. 2002, Vapnik, 1995, Wang & Hu, 

2005) regression implicitly maps the input space to a kernel-induced high-dimensional 

feature space in which a linear relationship is fitted. 

 

Artificial Neural Networks (ANN) 

Artificial Neural Networks (Bi & Bennet, 2003) produce an output value by feeding 

inputs through a network whose subsequent nodes apply some chosen activation function 

to a weighted sum of incoming values. The type of ANN considered in this study is the 

popular multilayer perceptron (MLP). 

  

Log + (non-)linear  

LOG+OLS, B-OLS, BC-OLS & BR  

This class of two-stage (mixture) modelling approaches (Matuszyk, et al. 2010) uses 

logistic regression (see e.g. Hosmer & Stanley, 2000) to first estimate the probability of 

LGD ending up in the peak at 0 (i.e. 0LGD  ) or to the right of it (i.e. 0LGD  ). A 

second-stage (non-)linear regression model is built using only the observations for which 

0LGD  . An LGD estimate is then produced by weighting the average LGD in the peak 

and the estimate produced by the second-stage model by their respective probabilities. 
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Linear + non-linear  

OLS+RT, LSSVM & ANN 

The purpose of this two-stage technique (Van Gestel, et al. 2005) is to combine the good 

comprehensibility of OLS with the predictive power of a non-linear regression technique. 

In a first stage, a linear model is built using OLS. In a second stage, the residuals of this 

linear model estimated with a non-linear regression model. This estimate for the residual 

is then added to the OLS estimate to obtain a more accurate prediction for LGD. 

Although the concept of a two stage approach has been used before (Van Gestel, et al. 

2005) it was only applied for an SVM model. This study therefore contributes the 

findings of an RT and ANN two-stage application as well. 

TABLE 5.1: List of regression techniques 
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5.3 Performance metrics 

 

Performance metrics evaluate to which degree the predictions  if x  differ from the 

observations 
iy  of the dependent variable, LGD. Each of the following metrics, listed in 

TABLE 5.2, has its own method to express the predictive performance of a model as a 

quantitative value. The second and third columns of the table show the metric values for 

respectively the worst and best possible prediction performance
2
. The final column shows 

whether the metric measures calibration or discrimination (Van Gestel & Baesens, 2009). 

Calibration indicates how close the predictive values are with the observed values 

whereas discrimination refers to the ability to provide an ordinal ranking of the dependent 

variable considered. A good ranking does not necessarily imply a good calibration. 

 

Metric Worst Best Measure 

RMSE   0 Calibration 

MAE   0 Calibration 

AUC 0.5 1 Discrimination 

AOC   0 Calibration 

2R  0 1 Calibration 

r  0 1 Discrimination 

  0 1 Discrimination 

  0 1 Discrimination 

TABLE 5.2: Performance Metrics 

 

 

                                                 
2
 Note that the 

2R  measure defined here could possibly lie outside the [0,1] interval when applied to non-

OLS models. Although alternative generalised goodness-of-fit measures have been put forward for 

evaluating various non-linear models (see e.g. Nagelkerke, 1991), the measure defined in TABLE 5.2 has 

the advantage that it is widely used and can be calculated for all techniques. 
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5.3.1 Root Mean Squared Error (RMSE) 

 

RMSE (see for example, Draper & Smith, 1998) is defined as the square root of the 

average of the squared difference between predictions and observations: 

   
2

1

1 l

i i

i

RMSE f y
l 

  x   (5.1) 

RMSE has the same units as the independent variable being predicted. Since residuals are 

squared, this metric heavily weights outliers. The smaller the value of RMSE the better 

the prediction, with 0 being a perfect prediction.  

 

5.3.2 Mean Absolute Error (MAE) 

 

MAE (see for example, Draper & Smith, 1998) is given by the averaged absolute 

differences of predicted and observed values: 

  
1

1 l

i i

i

MAE f y
l 

  x   (5.2) 

Just like RMSE, MAE has the same unit scale as the dependent variable being predicted. 

Unlike RMSE, MAE is not that sensitive to outliers. The metric is bound between the 

maximum absolute error and 0 (perfect prediction). 

 

5.3.3 Area under the Receiver Operating Curve (AUC) 

 

ROC curves are normally used for the assessment of binary classification techniques (see 

for example, Fawcett, 2006). It is however used in this context to measure how good the 

regression technique is in distinguishing high values from low values of the dependent 

variable. To build the ROC curve, the observed values are first classified into high and 

low classes using the mean y  of the training set as reference.  
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5.3.4 Area over the Regression Error Characteristic curves (AOC) 

 

REC curves (Bi & Bennet, 2003) generalise ROC curves for regression. The AOC curve 

plots the error tolerance on the x-axis versus the percentage of points predicted within the 

tolerance (or accuracy) on the y-axis (FIGURE 5.1). The resulting curve estimates the 

cumulative distribution function of the squared error. The area over the REC curve 

(AOC) is an estimate of the predictive power of the technique. The metric is bound 

between 0 (perfect prediction) and the maximum squared error. 

 

 

FIGURE 5.1: Example REC Curve 
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5.3.5 Coefficient of Determination ( 2R ) 

 

The Coefficient of Determination 2R  (see for example, Draper & Smith, 1998) can be 

defined as 1 minus the fraction of the residual sum of squares to the total sum of squares: 

 2 1 err

tot

SS
R

SS
   (5.3) 

Where   
2

1

l

err i i

i

SS y f


  x ,  
2

1

l

tot i

i

SS y y


   and y  is the mean of the observed 

values. Since the second term in the formula can be seen as the fraction of unexplained 

variance, the 2R  can be interpreted as the fraction of explained variance. Although 2R  is 

usually expressed as a number on a scale from 0 to 1, 2R  can yield negative values when 

the model predictions are worse than using the mean y  from the training set as 

prediction. Although alternative generalised goodness-of-fit measures have been put 

forward for evaluating various non-linear models (see e.g. Nagelkerke, 1991), 2R  has the 

advantage that it is widely used and can be calculated for all techniques. 

 

5.3.6 Pearson’s Correlation Coefficient ( r ) 

 

Pearson‟s r (see e.g. Cohen, et al. 2002) is defined as the sum of the products of the 

standard scores of the observed and predicted values divided by the degrees of freedom: 
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 (5.4) 

with y  and f  the mean and ys  and fs  the standard deviation of respectively the 

observations and predictions. Pearson‟s r can take values between -1 (perfect negative 

correlation) and +1 (perfect positive correlation) with 0 meaning no correlation at all. 
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5.3.7 Spearman’s Correlation Coefficient (  ) 

 

Spearman‟s   (see e.g. Cohen, et al. 2002) is defined as Pearson‟s r applied to the 

rankings of predicted and observed values. If there are no (or very few) tied ranks 

however, it is common to use the equivalent formula: 
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 (5.5) 

where id  is the difference between the ranks of observed and predicted values. 

Spearman‟s   can take values between -1 (perfect negative correlation) and +1 (perfect 

positive correlation) with 0 meaning no correlation at all. 

 

5.3.8 Kendall’s Correlation Coefficient ( ) 

 

Kendall‟s   (see e.g. Cohen, et al. 2002) measures the degree of correspondence between 

observed and predicted values. In other words, it measures the association of cross 

tabulations: 

 

 
1

1
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c dn n

l l








 (5.6) 

where cn  is the number of concordant pairs and dn  is the number of discordant pairs. A 

pair of observations  ,i k  is said to be concordant when there is no tie in either observed 

or predicted LGD (i.e. i ky y ,    i kf fx x ), and if 

      sgn sgnk i k if f y y  x x , where  , 1, ,i k l i k  . Similarly, it is said to be 

discordant if there is no tie and if       sgn sgnk i k if f y y   x x . Kendall‟s   can 

take values between -1 (perfect negative correlation) and +1 (perfect positive correlation) 

with 0 meaning no correlation is present. 
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5.4 Experimental set-up and data sets 

 

In this section the characteristics of the data sets are described as well as the experimental 

benchmarking framework to assess the predictive performance of the regression 

techniques. Further, a description of a technique‟s parameter setting and tuning is given 

where required. 

 

5.4.1 Data set characteristics 

 

TABLE 5.3 displays the characteristics of 6 real-life lending LGD data sets from a series 

of financial institutions, each of which contains loan-level data about defaulted loans and 

their resulting losses. The number of data set entries varies from a few thousands to just 

under 120,000 observations. The number of available input variables ranges from 12 to 

44. The types of loan data set included are personal loans, corporate loans, revolving 

credit and mortgage loans. The empirical distribution of LGD values observed in each of 

the data sets is displayed in FIGURE 5.2. Note that the LGD distribution in consumer 

lending often contains one or two spikes around 0LGD   (in which case there was a full 

recovery) and/or 1LGD   (no recovery). Also, a number of data sets include some LGD 

values that are negative (e.g., because of penalties paid, gains in collateral sales, etc.) or 

larger than 1 (e.g., due to additional collection costs incurred); in other data sets, values 

outside the unit interval were truncated to 0 or 1 by the banks themselves. Importantly 

LGD does not display a normal distribution in any of these data sets. 
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Data set Type Inputs Data set 

size 

Training 

set size 

Test set 

size 

BANK 1 Personal loans 44 47,853 31,905 15,948 

BANK 2 Mortgage loans 18 119,211 79,479 39,732 

BANK 3 Mortgage loans 14 3,351 2,232 1,119 

BANK 4 Revolving credit 12 7,889 5,260 2,629 

BANK 5 Mortgage loans 35 4,097 2,733 1,364 

BANK 6 Corporate loans 21 4,276 2,851 1,425 

TABLE 5.3: Data set characteristics of real-life LGD data 
 

 

FIGURE 5.2: LGD distributions of real-life LGD data sets 
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5.4.2 Experimental set-up 

 

First, each data set is randomly shuffled and divided into two thirds training set and one 

third test set. The training set is used to build the models while the test set is solely used 

to assess the predictive performance of these models. Where required, continuous 

independent variables are standardised with the sample mean and standard deviation of 

the training set, nominal independent variables are encoded with dummy variables and 

ordinal independent variables are encoded with thermo variables. 

 

An input selection method is used to remove irrelevant and redundant variables from the 

data set, with the aim of improving the performance of regression techniques. For this, a 

stepwise selection method is applied for building the linear models (APPENDIX A3). For 

computational efficiency reasons, an 2R  based filter method (Freund & Littell, 2000) is 

applied prior to building the non-linear models (APPENDIX A4). 

 

After building the models, the predictive performance of each data set is measured on the 

test set by comparing the predictions and observations according to several performance 

metrics. Next, an average ranking of techniques over all data sets is generated per 

performance metric as well as a meta-ranking of techniques over all data sets and all 

performance metrics. 

 

Finally, the regression techniques are statistically compared with each other (Demsar, 

2006). A Friedman test (Friedman, 1940) is performed to test the null hypothesis that all 

regression techniques perform alike according to a specific performance metric, i.e., 

performance differences would just be due to random chance. A more detailed summary 

and the applied formulas can be found in the previous chapter (cf. Chapter 4.3.4).  
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5.4.3 Parameter settings and tuning 

 

During model building, several techniques require parameters to be set or tuned. This 

section describes how these are set or tuned where appropriate. 

 

5.4.3.1 Ordinary Least Squares (OLS) 

For the OLS technique no extra parameter tuning is required. 

 

5.4.3.2 Ordinary Least Squares with Beta transformation (B-OLS) 

For the B-OLS technique no extra parameter tuning is required. 

 

5.4.3.3 Ordinary Least Squares with Box-Cox transformation (BC-

OLS) 

The value of parameter c is set to zero. The value of the power parameter   is varied 

over a chosen range (e.g. from -3 to 3 in 0.25 increments) and an optimal value is chosen 

based on a maximum likelihood criterion. 

 

5.4.3.4 Beta Regression (BR) 

For the BR technique no extra parameter tuning is required. 

 

5.4.3.5 Regression Trees (RT) 

For the regression tree model, the training set is further split into a training and validation 

set. The validation set is used to select the criterion for evaluating candidate splitting 

rules (i.e. variance reduction or ProbF), the depth of the tree, and the threshold p-value 

for the ProbF criterion. The choice of tree depth, the threshold p-value for the ProbF 
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criterion and criterion method was selected based on the mean squared error on the 

validation set. 

 

5.4.3.6 Least Squares Support Vector Machines (LSSVM) 

Although several kernels can be used, the radial basis function (RBF) kernel: 

 

  

2

22,
i

iK e 






x x

x x  (5.7) 

 

with kernel parameter   is used here because of its good overall performance for 

LSSVM classifiers (Baesens, et al. 2000). The hyper parameters   and   for LSSVM 

regression are tuned with 10-fold cross validation on the training data set. A grid search 

evaluates all possible combinations of parameters within the search space in order to find 

a possible optimal combination that minimises the mean squared error. The limits of the 

grid for the kernel parameter   are set to 0.5 ,500l l  
 

and the limits of the grid for 

the regularisation parameter   are set to 
0.01 1000

,
n n

 
 
 

 (Van Gestel, et al. 2003). 

Estimating the LSSVM hyper parameters this way can be a computational burden. To 

tune the hyper parameters, a sample from the complete training data set is chosen as 

follows. First, 100 random subsets of 4000 observations are chosen. Next, the LGD 

distribution histogram of each subset is compared with the LGD distribution histogram of 

the complete training set, and the subset that best approximates the original set based on 

the mean squared error, is chosen. 

 

5.4.3.7 Artificial Neural Networks (ANN) 

For the ANN model, the training set is further split into a training and validation set. The 

validation is used to evaluate the target layer activation functions (logistic, linear, 

exponential, reciprocal, square, sine, cosine, tanh and arcTan) and number of hidden 

neurons (1-20) used in the model. The weights of the network are first randomly 
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initialised and then iteratively adjusted so as to minimise the mean squared error. The 

choice of activation function and number of hidden neurons is selected based on the mean 

squared error on the validation set. The hidden layer activation function is set as logistic. 
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5.5 Results and discussion 

 

TABLES 5.4 to 5.9 contain the performance results obtained for all techniques on the 6 

respective data sets. The best performing model according to each metric is underlined. 

FIGURE 5.3 displays a series of box plots for the observed distributions of performance 

values for the metrics AUC, 2R , r,   and  . Similar trends can be observed across all 

metrics. Note that differences in type of data set, number of observations and available 

independent variables are the likely causes of the observed variability of actual 

performance levels between the 6 different data sets. 

 

Although all performance metrics listed above are useful measures in their own right, it is 

common to use the coefficient of determination 2R  to compare model performance, since 

2R  measures calibration and can be compared meaningfully across different data sets. As 

shown in FIGURE 5.3, the average 2R  of the models varies from about 4 % to 43 %. In 

other words, the variance in LGD that can be explained by the independent variables is 

consistently below 50 %, implying that most of the variance cannot be explained even 

with the best models. Note that although 2R  usually is a number on a scale from 0 to 1, 

2R  can yield negative values for non-OLS models when the model predictions are worse 

than always using the mean from the training set as prediction. 
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Technique MAE RMSE AUC AOC 2R  r      

OLS 0.3257 0.3716 0.6570 0.138 0.0972 0.3112 0.3084 0.2145 

B-OLS 0.3474 0.4294 0.6580 0.1843 - 0.2060 0.2954 0.2991 0.2071 

BC-OLS 0.3835 0.4579 0.5180 0.2096 - 0.3747 0.2403 0.2312 0.1602 

BR 0.3356 0.3693 0.5690 0.1363 0.0546 0.2601 0.2641 0.1844 

RT 0.3228 0.3732 0.5990 0.1392 0.0892 0.2997 0.2913 0.2095 

LSSVM 0.3184 0.3669 0.6723 0.1346 0.1194 0.3466 0.3442 0.2444 

ANN 0.3118 0.3648 0.6840 0.1331 0.1295 0.3603 0.3559 0.2524 

LOG+OLS 0.3202 0.3700 0.6210 0.1366 0.1063 0.3262 0.3143 0.2214 

LOG+B-OLS 0.3163 0.3750 0.6020 0.1406 0.1002 0.3166 0.3103 0.2185 

LOG+BC-OLS 0.4308 0.5090 0.5040 0.2590 - 0.6946 0.2125 0.2440 0.1731 

LOG+BR 0.3560 0.4142 0.5270 0.1715 0.0782 0.2797 0.2591 0.1794 

LOG+RT 0.3219 0.3693 0.6160 0.1363 0.1081 0.3301 0.3212 0.2263 

LOG+LSSVM 0.3191 0.3679 0.6664 0.1353 0.1150 0.3401 0.3336 0.2371 

LOG+ANN 0.3174 0.3664 0.6320 0.1342 0.1221 0.3502 0.3406 0.2395 

OLS+RT 0.3170 0.3681 0.6730 0.1354 0.1137 0.3382 0.3342 0.2348 

OLS+LSSVM 0.3115 0.3631 0.6929 0.1317 0.1379 0.3714 0.3666 0.2596 

OLS+ANN 0.3079 0.3633 0.6960 0.1318 0.1367 0.3716 0.3638 0.2581 

TABLE 5.4: BANK 1 performance results 
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Technique MAE RMSE AUC AOC 2R  r      

OLS 0.1187 0.1613 0.8100 0.0259 0.2353 0.4851 0.4890 0.3823 

B-OLS 0.1058 0.1621 0.8000 0.0262 0.2273 0.4768 0.4967 0.3881 

BC-OLS 0.1056 0.1623 0.7450 0.0262 0.2226 0.4718 0.4990 0.3900 

BR 0.1020 0.1661 0.7300 0.0275 0.2120 0.4635 0.4857 0.3861 

RT 0.0978 0.1499 0.7710 0.0224 0.3390 0.5823 0.5452 0.4357 

LSSVM 0.1047 0.1518 0.8365 0.0230 0.3229 0.5690 0.5301 0.4160 

ANN 0.0956 0.1472 0.8530 0.0216 0.3632 0.6029 0.5549 0.4366 

LOG+OLS 0.1060 0.1622 0.7590 0.0255 0.2268 0.4838 0.5206 0.4084 

LOG+B-OLS 0.1040 0.1567 0.8320 0.0245 0.2779 0.5286 0.5202 0.4083 

LOG+BC-OLS 0.1034 0.1655 0.7320 0.0273 0.2124 0.4628 0.4870 0.3820 

LOG+BR 0.1015 0.1688 0.7250 0.0285 0.2024 0.4529 0.4732 0.3876 

LOG+RT 0.1041 0.1538 0.8360 0.0236 0.3049 0.5545 0.5254 0.4126 

LOG+LSSVM 0.1031 0.1530 0.8334 0.0234 0.3121 0.5587 0.5243 0.4128 

LOG+ANN 0.1011 0.1531 0.8430 0.0234 0.3109 0.5585 0.5380 0.4240 

OLS+RT 0.1015 0.1506 0.8410 0.0227 0.3331 0.5786 0.5344 0.4188 

OLS+LSSVM 0.1029 0.1520 0.8428 0.0230 0.3208 0.5665 0.5398 0.4241 

OLS+ANN 0.0999 0.1474 0.8560 0.0217 0.3612 0.6010 0.5585 0.4398 

TABLE 5.5: BANK 2 performance results 
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Technique MAE RMSE AUC AOC 2R  r      

OLS 0.0549 0.1411 0.6460 0.0178 0.0124 0.1168 0.0965 0.0718 

B-OLS 0.0348 0.1449 0.6610 0.0188 -0.0419 0.0767 0.1754 0.1361 

BC-OLS 0.0340 0.1456 0.6380 0.0190 -0.0529 0.1373 0.2312 0.1765 

BR 0.0883 0.1315 0.6530 0.0169 -0.1128 0.1567 0.1719 0.1323 

RT 0.0482 0.1311 0.6990 0.0154 0.1477 0.3869 0.2007 0.1673 

LSSVM 0.0473 0.1270 0.7441 0.0140 0.1998 0.4526 0.2085 0.1520 

ANN 0.0458 0.1318 0.6000 0.0152 0.1386 0.3776 0.1482 0.1105 

LOG+OLS 0.0553 0.1417 0.6010 0.0179 0.0043 0.0759 0.0701 0.0510 

LOG+B-OLS 0.0392 0.1429 0.6330 0.0182 -0.0127 0.1214 0.1252 0.0923 

LOG+BC-OLS 0.0349 0.1448 0.6330 0.0188 -0.0395 0.1665 0.1918 0.1426 

LOG+BR 0.0569 0.1417 0.5790 0.0180 0.0043 0.0742 0.1710 0.1265 

LOG+RT 0.0434 0.1297 0.7210 0.0146 0.1663 0.4553 0.1571 0.1170 

LOG+LSSVM 0.0460 0.1312 0.7485 0.0151 0.1471 0.4152 0.2272 0.1676 

LOG+ANN 0.0452 0.1219 0.6190 0.0133 0.2634 0.5381 0.1671 0.1242 

OLS+RT 0.0540 0.1372 0.7050 0.0168 0.0660 0.2578 0.1748 0.1285 

OLS+LSSVM 0.0483 0.1258 0.7416 0.0137 0.2148 0.4648 0.1869 0.1354 

OLS+ANN 0.0570 0.1388 0.6730 0.0171 0.0442 0.2605 0.1369 0.1005 

TABLE 5.6: BANK 3 performance results 
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Technique MAE RMSE AUC AOC 2R  r      

OLS 0.2712 0.3479 0.8520 0.1208 0.4412 0.6643 0.5835 0.4331 

B-OLS 0.2214 0.3743 0.8500 0.1396 0.3530 0.6510 0.5822 0.4321 

BC-OLS 0.3185 0.4292 0.6750 0.1839 0.1478 0.5726 0.5820 0.4316 

BR 0.3208 0.3777 0.8480 0.1425 0.3405 0.6527 0.5908 0.4452 

RT 0.2476 0.3362 0.8480 0.1128 0.4782 0.6916 0.5919 0.4762 

LSSVM 0.2428 0.3315 0.8655 0.1097 0.4924 0.7017 0.6203 0.4692 

ANN 0.2393 0.3299 0.8670 0.1086 0.4974 0.7053 0.6109 0.4555 

LOG+OLS 0.2577 0.3465 0.8520 0.1199 0.4455 0.6678 0.5840 0.4338 

LOG+B-OLS 0.2399 0.3551 0.8500 0.1259 0.4176 0.6651 0.5801 0.4301 

LOG+BC-OLS 0.2502 0.3489 0.8510 0.1215 0.4379 0.6659 0.5819 0.4322 

LOG+BR 0.2738 0.3560 0.8520 0.1265 0.4147 0.6680 0.5868 0.4342 

LOG+RT 0.2679 0.3621 0.8570 0.1309 0.3945 0.6656 0.5899 0.4364 

LOG+LSSVM 0.2534 0.3425 0.8590 0.1172 0.4581 0.6771 0.6024 0.4541 

LOG+ANN 0.2558 0.3457 0.8540 0.1184 0.4480 0.6698 0.5852 0.4348 

OLS+RT 0.2628 0.3425 0.8590 0.1171 0.4582 0.6776 0.6017 0.4498 

OLS+LSSVM 0.2439 0.3322 0.8656 0.1102 0.4904 0.7003 0.6211 0.4698 

OLS+ANN 0.2404 0.3300 0.8710 0.1087 0.4971 0.7053 0.6195 0.4635 

TABLE 5.7: BANK 4 performance results 
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Technique MAE RMSE AUC AOC 2R  r      

OLS 0.1875 0.2375 0.7480 0.0555 0.2218 0.474 0.5192 0.3651 

B-OLS 0.1861 0.2368 0.7410 0.0561 0.2263 0.5073 0.5168 0.3636 

BC-OLS 0.1848 0.2373 0.7390 0.0560 0.2228 0.5014 0.5155 0.3632 

BR 0.1957 0.2402 0.7240 0.0575 0.2038 0.4557 0.4811 0.3359 

RT 0.1851 0.2324 0.7370 0.0538 0.2546 0.5056 0.4957 0.3888 

LSSVM 0.1707 0.2198 0.7847 0.0479 0.3331 0.5794 0.5801 0.4167 

ANN 0.1678 0.2173 0.7830 0.0470 0.3486 0.5964 0.5765 0.4148 

LOG+OLS 0.1851 0.2336 0.7500 0.0542 0.2468 0.4975 0.5246 0.3704 

LOG+B-OLS 0.1852 0.2347 0.7480 0.0548 0.2397 0.5117 0.5192 0.3658 

LOG+BC-OLS 0.1833 0.2349 0.7470 0.0549 0.2388 0.5099 0.5238 0.3699 

LOG+BR 0.1939 0.2395 0.7250 0.0572 0.2083 0.4568 0.4820 0.3364 

LOG+RT 0.1846 0.2344 0.7380 0.0547 0.2420 0.5000 0.4903 0.3445 

LOG+LSSVM 0.1708 0.2197 0.7835 0.0479 0.3340 0.5797 0.5795 0.4163 

LOG+ANN 0.1689 0.2188 0.7810 0.0476 0.3396 0.5845 0.5737 0.4135 

OLS+RT 0.1779 0.2320 0.7660 0.0530 0.2572 0.5357 0.5554 0.3963 

OLS+LSSVM 0.1695 0.2216 0.7882 0.0485 0.3223 0.5755 0.5933 0.4279 

OLS+ANN 0.1747 0.2277 0.7730 0.0510 0.2844 0.5567 0.5706 0.4086 

TABLE 5.8: BANK 5 performance results 
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Technique  MAE RMSE AUC AOC 2R  r      

OLS  0.2085 0.2874 0.7180 0.0822 0.1197 0.3502 0.3032 0.2071 

B-OLS  0.1783 0.3055 0.7120 0.0933 0.0933 0.3054 0.3112 0.2138 

BC-OLS  0.1824 0.3149 0.7100 0.0988 0.0815 0.2855 0.3139 0.2172 

BR  0.2612 0.3019 0.7090 0.0909 0.1029 0.3209 0.3138 0.2151 

RT  0.2061 0.2885 0.7040 0.0829 0.1129 0.3390 0.3180 0.2482 

LSSVM  0.2031 0.2812 0.7360 0.0787 0.1570 0.3964 0.3207 0.2190 

ANN  0.2004 0.2860 0.7210 0.0815 0.1281 0.3619 0.2893 0.2000 

LOG+OLS  0.2086 0.2876 0.7180 0.0824 0.1182 0.3479 0.3012 0.2060 

LOG+B-OLS  0.1899 0.2964 0.7070 0.0875 0.0635 0.3225 0.2913 0.2000 

LOG+BC-OLS  0.1863 0.3055 0.7120 0.0930 0.0963 0.3103 0.3050 0.2118 

LOG+BR  0.2875 0.3204 0.7070 0.1024 -0.0946 0.3346 0.2806 0.1918 

LOG+RT  0.2052 0.2890 0.6880 0.0832 0.1100 0.3348 0.3179 0.2219 

LOG+LSSVM  0.2024 0.2887 0.7191 0.0829 0.1116 0.3652 0.3159 0.2190 

LOG+ANN  0.2038 0.2854 0.7290 0.0811 0.1319 0.3689 0.3243 0.2216 

OLS+RT  0.2066 0.2866 0.7190 0.0817 0.1244 0.3623 0.3067 0.2100 

OLS+LSSVM  0.2087 0.2875 0.7180 0.0822 0.1189 0.3493 0.3030 0.2070 

OLS+ANN  0.2085 0.2874 0.7190 0.0822 0.1200 0.3498 0.3049 0.2086 

TABLE 5.9: BANK 6 performance results 
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FIGURE 5.3: Comparison of predictive performances across 6 real-life retail lending data sets 

 

The linear models that incorporate some form of transformation to the dependent variable 

(i.e. B-OLS, BR, BC-OLS) are shown to perform consistently worse than OLS, despite 

the fact that these approaches are specifically designed to cope with the violation of the 

OLS normality assumption. This suggest that they too have difficulties dealing with the 

pronounced point densities observed in LGD data sets, while they may be less efficient 

than OLS or they could introduce model bias if a transformation is performed prior to 

OLS estimation (as is the case for B-OLS and BC-OLS). 
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Perhaps the most striking result is that, in contrast with prior benchmarking studies on 

classification models for PD (Baesens, et al. 2003), non-linear models such as LSSVM 

and ANN significantly outperform most linear models in the prediction of LGD. This 

implies that the relation between LGD and the independent variables in the data sets is 

non-linear (as is most apparent on data set BANK3, see TABLE 5.6). Also, LSSVM and 

ANN generally perform better than RT. However, LSSVM and ANN result in black-box 

models while RT have the ability to produce comprehensible white-box models. To 

circumvent this disadvantage, one could try to obtain an interpretation for a well-

performing black-box model by applying rule extraction techniques (Martens, et al. 2007, 

Martens, et al. 2009). 

 

The performance evaluation of the class of two-stage models in which a logistic 

regression model is combined with a second-stage (linear or non-linear) model ( LOG ), 

is less straightforward. Although a weak trend is noticeable that logistic regression 

combined with a linear model tends to increase the performance of the latter, it appears 

that logistic regression combined with a non-linear model slightly reduces the strong 

performance of the latter. Because the LGD distributions from BANK4, BANK5 and 

BANK6 also show a peak at 1LGD  , the performance of these models could possibly 

be increased by slightly altering the technique. Replacing the (binary) logistic regression 

component by an ordinal logistic regression model distinguishing between 3 classes 

( 0,0 1, 1LGD LGD LGD    ) and then using a second-stage model for 0 1LGD   

could perhaps better account for the presence of both peaks. 

 

In contrast with the previous two-stage model, a clear trend can be observed for the 

combination of a linear and a non-linear model ( OLS  ). By estimating the error residual 

of an OLS model using a non-linear technique, the prediction performance tends to 

increase to somewhere very near the level of the corresponding one-stage non-linear 

technique. What makes these two-stage models attractive is that they have the advantage 

of combing the high prediction performance of non-linear regression with the 

comprehensibility of a linear regression component. Note that this modelling method has 
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also been successfully applied in a PD modelling context Van Gestel, et al. 2005, Van 

Gestel, et al. 2006, Van Gestel, et al. 2007). 

 

The average ranking over all data sets according to each performance metric is listed in 

columns 2 to 9 of TABLE 5.10. The best performing technique for each metric is 

underlined and techniques that significantly perform worse than the best performing 

technique for that metric according to the Nemenyi‟s post-hoc test  0.5   are in italic. 

The last column illustrates the meta-ranking (MR) as the average ranking (AR) over all 

data sets and over all metrics. The techniques in the table are sorted according to their 

meta-ranking. Additionally, columns 10 and 11 cover the meta-ranking only including 

respectively calibration and discrimination metrics. The best performing techniques are 

consistently ranked in the top according to each metric, no matter whether they measure 

calibration or discrimination. 

 

The results of the Friedman test and subsequent Nemenyi‟s post-hoc test with 

significance level 0.05   can be intuitively visualised using Demsar‟s significance 

diagram (Demsar, 2006). FIGURES 5.4-5.11 display the Demsar significance diagrams 

for all metric ranks across all 6 data sets. The diagrams display the performance rank of 

each technique along with a line segment representing its corresponding critical 

difference (CD = 10.08).  

A detailed description of the diagrammatic setup can be found in the previous chapter (cf. 

Chapter 4.5). 
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Rank Technique MAE RMSE AUC AOC 2R  r      
calMR  

disMR  MR  

1 LSSVM 7.5 3.5 3.3 3.5 3.5 3.7 3.3 4.1 4.5 3.6 4.1 

2 ANN 3.2 2.8 5.0 2.5 2.7 3.1 7.0 7.1 2.8 5.5 4.2 

3 OLS+LS-SVM 7.5 4.2 3.5 3.9 4.2 4.5 4.3 4.7 4.9 4.3 4.6 

4 LOG+ANN 6.0 4.2 6.8 4.1 4.2 4.2 6.3 6.5 4.6 6.0 5.3 

5 OLS+ANN 9.0 6.5 3.6 4.7 4.3 4.3 6.2 6.3 6.1 5.1 5.6 

6 LOG+LS-SVM 7.5 6.4 4.6 6.4 6.5 5.2 5.2 4.9 6.7 5.0 5.8 

7 OLS+RT 6.8 4.3 5.3 6.0 6.0 6.2 7.0 7.7 5.8 6.5 6.2 

8 RT 8.6 7.0 12.9 7.4 7.0 7.8 7.3 4.7 7.5 8.2 7.8 

9 LOG+RT 9.7 9.4 10.0 9.4 9.3 9.3 9.3 9.2 9.5 9.5 9.5 

10 LOG+OLS 12.6 10.3 10.7 9.8 9.9 11.7 11.7 11.8 10.6 11.5 11.1 

11 LOG+B-OLS 6.5 12.0 11.8 12.0 12.0 11.2 13.1 13.3 10.6 12.3 11.5 

12 OLS 13.9 10.6 9.3 10.5 10.5 11.8 12.8 13.3 11.4 11.8 11.6 

13 B-OLS 7.8 14.3 10.3 14.8 14.0 13.8 11.0 11.3 12.7 11.6 12.2 

14 LOG+BC-OLS 8.2 14.1 13.0 14.1 13.7 13.0 11.8 11.8 12.5 12.4 12.5 

15 BC-OLS 9.8 15.7 13.8 15.6 15.3 14.7 10.7 11.0 14.1 12.5 13.3 

16 BR 14.5 12.9 14.1 13.3 15.3 14.5 11.8 11.5 14.0 13.0 13.5 

17 LOG+BR 13.9 14.9 14.9 15.0 14.6 14.2 14.2 13.8 14.6 14.3 14.4 

             

TABLE 5.10: Average rankings (AR) and meta-rankings (MR) across all metrics and data sets 
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Despite clear and consistent differences between regression techniques in terms of 2R , 

most techniques do not differ significantly according to the Nemenyi test. Nonetheless, 

failing to reject the null hypothesis that two techniques have equal performances does not 

guarantee that it is true. For example, Nemenyi‟s test is unable to reject the null 

hypothesis that ANN and OLS have equal performances although ANN consistently 

performs better than OLS. This can mean that the performance differences between these 

two are just due to chance. But the result could also be a Type II error. Possibly the 

Nemenyi test does not have sufficient power to detect a significant difference, given a 

significance level of 0.05  , 6 data sets and 17 techniques. The insufficient power of 

the test can be explained by the use of a large number of techniques in contrast with a 

relatively small number of data sets. (Normal probability plots for the OLS models across 

each of the data sets can be found in APPENDIX A5 at the end of this thesis).  
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FIGURE 5.4: Demsar's significance diagram for MAE based ranks across 6 data sets 
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FIGURE 5.5: Demsar's significance diagram for RMSE based ranks across 6 data sets 
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FIGURE 5.6: Demsar's significance diagram for AUC based ranks across 6 data sets 
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FIGURE 5.7: Demsar's significance diagram for AOC based ranks across 6 data sets 
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FIGURE 5.8: Demsar's significance diagram for 

2R  based ranks across 6 data sets 
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FIGURE 5.9: Demsar's significance diagram for r  based ranks across 6 data sets 
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FIGURE 5.10: Demsar's significance diagram for   based ranks across 6 data sets 
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FIGURE 5.11: Demsar's significance diagram for   based ranks across 6 data sets 
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5.6 Conclusions and recommendations for further work 

 

This chapter evaluates the estimation of LGD through the use of 17 regression techniques 

on 6 real life retail lending data sets from major international banking institutions. The 

average predictive performance of the models in terms of 2R  ranges from 4 % to 43 %, 

which indicates that most resulting models do not have satisfactory explanatory power. 

Nonetheless, a clear trend can be seen that non-linear techniques such as artificial neural 

networks and support vector machines in particular give higher performances than more 

traditional linear techniques. This indicates the presence of non-linear interactions 

between the independent variables and the LGD, contrary to some studies in PD 

modelling (Baesens, et al. 2003) where the difference between linear and non-linear 

techniques is not that explicit. Given the fact that LGD has a bigger impact on the 

minimal capital requirements than PD, we demonstrated the potential and importance of 

applying non-linear techniques, preferably in a two-stage context to obtain 

comprehensibility as well, for LGD modelling. The findings presented in this chapter also 

go some way in agreeing with the findings presented in Qi and Zhao (2011), where it was 

shown that non-parametric techniques such as regression trees and neural networks gave 

improved model fit and predictive accuracy over parametric methods. 

 

There is considerable evidence that the macro-economy affects the client‟s credit risk 

behaviour so it might be an interesting topic of further research to examine the influence 

of macro-economic variables (Bellotti & Crook, 2009), both in the context of improving 

LGD models as for stress testing. Finally, one could also try to add comprehensibility to 

well-performing black box models with rule extraction techniques to gain more insight 

(Martens, et al. 2007, Martens, et al. 2009). 
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Chapter 6 

 

6 Regression Model Development for Credit 

Card Exposure At Default (EAD) 

 

Under the Basel II requirements for the advanced internal ratings based approach (AIRB) 

banks must estimate and empirically validate their own models for Probability of Default 

(PD), Loss Given Default (LGD) and Exposure at Default (EAD). However, to date, the 

majority of academic literature has focused on the estimation and validation of PD and 

LGD models, with little work conducted on EAD modelling. In this chapter, we develop 

and compute a series of models for predicting Exposure At Default (EAD). For off-

balance-sheet items, for example credit cards, to calculate the EAD one requires the 

committed but unused loan amount times a credit conversion factor (CCF). Ordinary least 

squares (OLS), binary logit and cumulative logit regression models, as well as an OLS 

with Beta transformation model, are estimated and compared with the main aim of 

finding the most robust and comprehensible model for the prediction of the CCF. Finally 

a direct estimation of EAD, using an OLS model, will be analysed. 

A real-life data set with monthly balance amounts for clients over the period 2001-2004 

will be used in the building and testing of the regression models. Parameter estimates and 

comparative statistics will be given to determine the best overall model. The findings 

from this study indicate that a marginal improvement in the coefficient of determination 

can be achieved with the use of a binary logit model over a traditional OLS model in the 

estimation of the CCF. It is also concluded that although the predictive power of the CCF 

is relatively weak across all of the models employed, when this predicted value is applied 
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to the EAD formulation to predict the actual EAD value, the predictive power is fairly 

strong. Interestingly the use of a direct estimation of EAD shows an increase in predictive 

power over first estimating a CCF and applying the CCF to the formulation. 
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6.1 Introduction 

 

A detailed background and introduction to the topic of Exposure at Default (EAD) along 

with motivations for the work can be found in Chapter 1 of this thesis. 

 

The purpose of this chapter will be to look at the estimation and validation of this credit 

conversion factor (CCF) in order to correctly estimate the off-balance sheet EAD. We 

also aim to gain a better understanding of the variables that drive the prediction of the 

CCF for consumer credit. To achieve this, predictive variables that have previously been 

suggested in the literature (Moral, 2006) will be constructed, along with a combination of 

new and potentially significant variables. We also aim to identify whether an 

improvement in predictive power can be achieved over ordinary least squares regression 

by the use of binary logit and cumulative logit regression models, as well as an OLS with 

Beta transformation model. The reason why we propose these two logit models is that 

recent studies (e.g. Jacobs, 2008) have shown that the CCF exhibits a bi-modal 

distribution with two peaks around 0 and 1, and a relatively flat distribution between 

those peaks. This non-normal distribution is therefore less suitable for modelling with 

traditional ordinary least squares (OLS) regression. The motivation for using an OLS 

with Beta transformation model is that it accounts for a range of distributions including a 

U-shaped distribution. We will also trial a direct OLS estimation of the EAD and use it as 

a comparison to estimating a CCF and applying it to the EAD formulation. 

The purpose of this experimental setup is to extend the current literature and to better 

inform practitioners as to the potential techniques that can be applied in the estimation of 

CCF and the resulting EAD. It also aims to explore the practicalities of using OLS 

models for estimating the bi-modal distribution displayed by CCF and the potential of 

binning this distribution for the use of logistic and cumulative logistic regression models. 

 

The remainder of this chapter is organised as follows. Section 6.2 outlines the proposed 

regression techniques that will be used in the estimation of the CCF. Section 6.3 details 

the empirical set up and data set used. Section 6.4 highlights the results of the regression 
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techniques in the estimation of the CCF. Finally, section 6.5 details the conclusions and 

recommendations that can be drawn from the results of the empirical study. 
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6.2 Overview of techniques 

 

For the detailing of the techniques implemented in the estimation of the CCF value, the 

dependent variable y  (i.e. the value of the CCF) for observation i  is represented as 
iy .  

 

6.2.1 Ordinary Least Squares (OLS) 

See Chapter 3 for a detailed overview of Ordinary Least Squares (OLS) regression. 

 

6.2.2 Binary and Cumulative Logit models (LOGIT & CLOGIT) 

The CCF distribution is often characterised by a peak around CCF = 0 and a further peak 

around CCF = 1 (cf. Infra, FIGURES 6.1 and 6.2). This non-normal distribution can lead 

to inaccurate linear regression models. Therefore, we propose the use of binary and 

cumulative logit models in an attempt to resolve this issue by grouping the observations 

for the CCF into two categories for the binary logit model and three categories for the 

cumulative logit model. For the binary response variable, two different splits will be 

tried: the first is made according to the mean of the CCF distribution 

(Class 0:CCF CCF ; Class1:CCF CCF ) and the second is made based on whether 

the CCF is less than 1 (Class 0: 1CCF  , Class1: 1CCF  ). For the cumulative logit 

model, the CCF is split into three levels, i.e. Class 0: 0CCF  , Class1:0 1CCF   and 

Class 2: 1CCF  . 

Binary logistic and cumulative logistic regression are derived in Chapter 3 of this thesis.  

 

6.2.3 Ordinary Least Squares with Beta Transformation (B-OLS) 

See Chapter 3 for a detailed overview of the Ordinary Least Squares with Beta 

Transformation (B-OLS) model. 
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6.3 Empirical set-up and data sets 

 

The data set used was obtained from a major financial institution in the UK and contains 

monthly data on credit card usage for a three-year period (January 2001 – December 

2004). Here, we define a default to have occurred on a credit card when a charge off has 

been made on that account (a charge off in this case is defined as the declaration by the 

creditor that an amount of debt is unlikely to be collected, declared at the point of 180 

days or 6 months without payment). In order to calculate the CCF value, the original data 

set has been split into two twelve-month cohorts, with the first cohort running from 

November 2002 to October 2003 and the second cohort from November 2003 to October 

2004. The cohort approach groups defaulted facilities into discrete calendar periods, in 

this case 12-month periods, according to the date of default. Information is then collected 

regarding risk factors and drawn/undrawn amounts at the beginning of the calendar 

period and drawn amount at the date of default. We have chosen the cohorts to begin in 

November and end in October as we wanted to reduce the effects of any seasonality on 

the calculation of the CCF. 

The characteristics of the cohorts used in evaluating the performance of the regression 

models are given below in TABLE 6.1: 

 

 Data set size  

(number of 

defaults) 

Mean CCF 

(before 

winsorisation) 

Standard 

Deviation 

(before 

winsorisation) 

Mean CCF 

(after 

winsorisation) 

Standard 

Deviation (after 

winsorisation) 

COHORT1  

(November 2002 –  

October 2003) 

4,039 0.4055 2.7512 0.4901 0.4651 

COHORT2 

(November 2003 –  

October 2004) 

6,232 0.5849 2.8124 0.5313 0.4626 

TABLE 6.1: Characteristics of Cohorts for EAD data set 
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COHORT1 will be used to train the regression models, while COHORT2 will be used to 

test the performance of the model (out-of-time testing). 

Both data sets contain variables detailing the type of defaulted credit card product and the 

following monthly variables: advised credit limit, current balance, the number of days 

delinquent and the behavioural score.  

 

The following variables suggested in Moral (2006) were then computed based on the 

monthly data found in each of the cohorts, where 
dt  is the default date and 

rt  is the 

reference date (i.e. the start of the cohort): 

 

 Committed amount, ( )rL t : the advised credit limit at the start of the cohort; 

 Drawn amount, ( )rE t : the exposure at the start of the cohort; 

 Undrawn amount, ( ) ( )r rL t E t : the advised limit minus the exposure at the start 

of cohort; 

 Credit percentage usage, 
( )

( )

r

r

E t

L t
: the exposure at the start of the cohort divided by 

the advised credit limit at the start of the cohort; 

 Time to default, ( )d rt t : the default date minus the reference date (in months); 

 Rating class, ( )rR t : the behavioural score at the start of the cohort,  binned into 

four discrete categories 1: AAA-A; 2: BBB-B; 3: C; 4: UR (unrated). 

 

The target variable was computed as follows: 

 

 Credit conversion factor, iCCF : calculated as the actual EAD minus the drawn 

amount at the start of the cohort divided by the advised credit limit at the start of 

the cohort minus the drawn amount at the start of the cohort, i.e. : 

 
( ) ( )

( ) ( )

d r
i

r r

E t E t
CCF

L t E t





. (6.1) 
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In addition to the aforementioned variables, we constructed a set of additional variables 

that could potentially increase the predictive power of the regression models 

implemented. These extra variables created are: 

 

 Average number of days delinquent in the previous 3 months, 6 months, 9 months 

and 12 months. We expect the higher the number of days delinquent closer to 

default date, the higher the CCF value will be; 

 Increase in committed amount: binary variable indicating whether there has been 

an increase in the committed amount since 12 months prior to the start of the 

cohort. We expect an increase in the committed amount to increase the value of 

the CCF; 

 Undrawn percentage, 
( ) ( )

( )

r r

r

L t E t

L t


: the undrawn amount at the start of the cohort 

divided by the advised credit limit at the start of the cohort. We expect higher 

ratios to result in a decrease in the value of the CCF; 

 Absolute change in drawn, undrawn and committed amount: variable amount at rt  

minus the variable amount 3 months, 6 months or 12 months prior to rt ; 

 Relative change in drawn, undrawn and committed amount: variable amount at rt  

minus the variable amount 3 months, 6 months or 12 months prior to rt , divided 

by the variable amount 3 months, 6 months or 12 months prior to rt , respectively. 

 

The potential predictiveness of all the variables proposed in this chapter will be evaluated 

by calculating the information value (IV) based on their ability to separate the CCF value 

into either of two classes, 0:CCF CCF  (non-event), and 1:CCF CCF  (event). 

After binning input variables using an entropy-based procedure, implemented in SAS 

Enterprise Miner, the information value of a variable with k  bins is given by: 

 

 
     

 
1 0 1 1

1 1 0 0 0

/
ln

/

k

i

n i n i n i N
IV

N N n i N

   
      

     
 , (6.2) 
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where    0 1,n i n i  denote the number of non-events and events in bin i , and 
0 1,N N  are 

the total number of non-events and events in the data set, respectively.  

This measure allows us to do a preliminary screening of the relative potential 

contribution of each variable in the prediction of the CCF. 

 

The distribution of the raw CCF for the first Cohort (COHORT1) is shown below in 

FIGURE 6.1:  
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FIGURE 6.1: Raw CCF distribution (x-axis displays a snapshot of the CCF values from the period of 

-9 to 10) 

 

The raw CCF displays a substantial peak around 0 and a slight peak at 1 with substantial 

tails either side of these points. (FIGURE 6.1 displays a snapshot of CCF values in the 

period -9 to 10. This snapshot boundary has been selected to allow for the visualisation of 

the CCF distribution.) Values of 1CCF   can occur when the actual EAD is greater than 

the advised credit limit, whereas values of 0CCF   can occur when both the drawn 

amount and the EAD exceed the advised credit limit or where the EAD is smaller than 

the drawn amount. In practice this occurs as the advised credit limit and drawn amount 

are measured at a time period, ( )rt , prior to default and therefore at ( )dt  the advised 

credit limit maybe higher or lower than at  ( )rt . Extremely large positive and negative 
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values of CCF can also occur if the drawn amount is slightly above or below the advised 

credit limit, e.g.: 

 

 
( ) ( ) 3300 3099.9

2001
( ) ( ) 3100 3099.9

d r
i

r r

E t E t
CCF

L t E t

 
  

 
 (6.3) 

 
( ) ( ) 3000 3500

1
( ) ( ) 4000 3500

d r
i

r r

E t E t
CCF

L t E t

 
   

 
 (6.4) 

 

 As in Jacobs, (2008) and Qi, (2009) it therefore seems reasonable to winsorise the data 

so that the CCF can only fall between values of 0 and 1. FIGURE 6.2 displays the same 

CCF value winsorised at 0 and 1: 
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FIGURE 6.2: CCF distribution winsorised (between 0 and 1) 

 

The winsorised CCF (FIGURE 6.2) yields a bimodal distribution with peaks at 0 and 1, 

and a relatively flat distribution between the two peaks. This bears a strong resemblance 

to the distributions identified in loss given default modelling (LGD) (Thomas et al, 

2010). In our estimation of the CCF we will be using this limited CCF between 0 and 1, 

similarly to Jacobs (2008). 
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The OLS, B-OLS, LOGIT and CLOGIT models were estimated using SAS. Each model 

was built on the first Cohort data set (COHORT1) and then tested on the second Cohort 

data set (COHORT2). 

A stepwise variable selection method was used in the construction of all three regression 

models with the aim of selecting only the most predictive input variables for the 

estimation of the CCF. The threshold level for the variables to enter and remain in the 

model using the stepwise procedure was a p-value of 0.01. For the LOGIT and CLOGIT 

models the resulting predicted probabilities were taken as the values for the CCF. 

 

The following performance metrics were used to compare the regression techniques: 

 

6.3.1 Coefficient of Determination ( 2R ) 

The coefficient of determination ( 2R ) (Draper and Smith, 1998) can be defined as 1 

minus the fraction of unexplained variance, i.e.: 

 2 1 err

tot

SS
R

SS
  , (6.5) 

where   
2

1

l

err i i

i

SS y f


  x ,  
2

1

l

tot i

i

SS y y


  , and y  is the mean of the observed 

CCF value. Although 2R  is usually a number from 0 to 1, 2R  could also yield negative 

values when the model prediction is worse than using the mean y  from the training set as 

a prediction. 

 

In order to calculate the performance metrics on the categorical predictions made by the 

LOGIT and CLOGIT models, first a continuous prediction value must be obtained. This 

is achieved by multiplying the probability of being in each of the bins by the average 

CCF value for each of those respective bins and summing the result, thus obtaining an 

expected value of CCF. After this value has been computed, the resulting value is then 

used in the calculation of the performance metrics. 
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6.3.2 Pearson’s Correlation Coefficient ( r ) 

Pearson‟s correlation coefficient (see e.g. Cohen et al, 2002) is defined as the sum of the 

products of the standard scores of the observed and predicted values divided by the 

degrees of freedom. 

 

6.3.3 Spearman’s Correlation Coefficient (  ) 

Spearman‟s   (see e.g. Cohen et al, 2002) is defined as the Pearson‟s r  applied to the 

rankings of predicted and observed values.  

 

6.3.4 Root Mean Squared Error (RMSE) 

The Root Mean Squared Error (RMSE) is defined as the square root of the average of the 

squared difference between predictions and obtained values: 

 

   
2

1

1 l

i i

i

RMSE f y
l 

  x  (6.6) 
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6.4 Results and discussion 

 

In this section we will begin by analysing the input variables and their relationship to the 

dichotomised CCF value ( 0:CCF CCF ; 1:CCF CCF ). The following table displays 

the resulting information value for each variable, ranked from most to least predictive: 

 

Variable Information Value 

Credit percentage usage 1.825 

Undrawn percentage 1.825 

Undrawn 1.581 

Relative change in undrawn amount (12 months) 0.696 

Relative change in undrawn amount (6 months) 0.425 

Relative change in undrawn amount (3 months) 0.343 

Rating Class 0.233 

Time-to-Default 0.226 

Drawn 0.181 

Absolute change in drawn amount (3 months) 0.114 

Absolute change in undrawn amount (3 months) 0.089 

Absolute change in undrawn amount (12 months) 0.083 

Absolute change in undrawn amount (6 months) 0.072 

Absolute change in drawn amount (6 months) 0.063 

Relative change in drawn amount (3 months) 0.058 

Absolute change in drawn amount (12 months) 0.054 

Relative change in drawn amount (6 months) 0.049 

Average number of days delinquent (9 months) 0.041 

Average number of days delinquent (3 months) 0.040 

Average number of days delinquent (6 months) 0.040 

Relative change in drawn amount (12 months) 0.040 

Average number of days delinquent (12 months) 0.032 

Relative change in committed amount (12 months) 0.026 
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Absolute change in committed amount (12 months) 0.023 

Absolute change in committed amount (3 months) 0.023 

Relative change in committed amount (3 months) 0.022 

Relative change in committed amount (6 months) 0.021 

Absolute change in committed amount (6 months) 0.021 

Increase in committed amount 0.018 

Committed amount 0.017 

TABLE 6.2: Information Values of constructed variables 

 

Typically, input variables which display an information value greater than 0.1 are deemed 

to have a significant contribution in the prediction of the target variable. From this 

analysis, we can see that the majority of the relative and absolute changes in drawn, 

undrawn and committed amounts do not possess the same ability to discriminate between 

low and high CCFs as the original variable measures at reference time only. It is also 

clear from the results that the undrawn amount could be an important variable in the 

discrimination of the CCF value. It must be taken into consideration however that 

although the variables may display a good ability to discriminate between the low and 

high CCFs, the variables themselves are highly correlated with each other (see Table A6 

in the APPENDIX). 

 

Subsequently, we examine the performance of the models themselves in the prediction of 

the CCF. The following table (TABLE 6.3) reports the parameter estimates and p-values 

for the variables used by each of the regression techniques implemented. The parameter 

signs found in Jacobs, (2008) are also shown for comparative purposes. The five 

regression models detailed are: an OLS model implementing only the suggested 

predictive variables in Moral, (2006); an OLS model incorporating the additional 

variables after stepwise selection; an OLS with Beta transformation model; a binary logit 

model and a cumulative logit model. For the binary logit model the best class split found 

was to select 0: 1CCF   and 1: 1CCF  . It is however important to note that little 

difference was found between the choices of class split for the binary model. 
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From TABLE 6.3, we can see that the best performing regression algorithm for all three 

performance measures is the binary logit model with an 2R  value of 0.1028. Although 

this 2R  value is low, it is comparable to the range of performance results previously 

reported in other work on LGD modelling (cf. Chapter 5).  This result also re-affirms the 

proposed usefulness of a logit model for estimating CCFs in Valvonis (2008). It can also 

be seen that all five models are quite similar in terms of variable significance levels and 

positive/negative signs. There does however seem to be some discrepancy for the Rating 

class variable, where the medium-range behavioural score band appears to be associated 

with the highest CCF‟s. 
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Variables Coefficient 

sign 

reported in 

Jacobs, 

(2008) 

OLS model (using only 

suggested variables in 

Moral, (2006)) 

OLS model (OLS) 

(additional variables) 

OLS with Beta 

transformation (B-

OLS) 

Binary logit model 

(LOGIT) 

Cumulative logit 

model 

(CLOGIT) 

  Parameter 

Estimate 

P-value  Parameter 

Estimate  

P-value Parameter 

Estimate 

P-value Parameter 

Estimate 

P-value Parameter 

Estimate 

P-value 

Intercept 1  0.1830 <.0001 0.1365 <.001 -0.5573 <.0001 -1.5701 <.0001 0.6493 <.0001 

Intercept 2          -0.5491 <.001 

Credit percentage usage – -0.1220 <.001 -0.1260 <.001   -0.5737 <.001 -1.3220 <.0001 

Committed amount + 1.73E-05 <.0001 1.76E-05 <.0001 2.2E-05 <.0001 9.0E-05 <.0001 8.8E-05 <.0001 

Undrawn + -8.68E-05 <.0001 -8.88E-05 <.0001 -1.1E-04 <.0001 -4.7E-04 <.0001 -3.6E-04 <.0001 

Time-to-Default + 0.0334 <.0001 0.0326 <.0001 0.0358 <.0001 0.1538 <.0001 0.1009 <.0001 

Rating class –           

Rating 1 (AAA-A) vs. 4 (UR)  0.1735 <.0001 0.2304 <.0001 0.2223 <.0001 0.4000 0.0069 -0.0772 0.5472 

Rating 2 (BBB-B) vs. 4 (UR)  0.2483 <.0001 0.2977 <.0001 0.3894 <.0001 0.5885 <.0001 0.6922 <.0001 

Rating 3 (C) vs. 4 (UR)  0.0944 <.0001 0.1201 <.0001 0.1664 <.0001 -0.2121 0.0043 -0.0157 0.8098 

Average number of days 

delinquent in the last 6 

months 

N/A   0.0048 <.0001 0.0062 <.0001 0.0216 <.0001 0.0218 <.0001 

Undrawn percentage N/A     0.2784 <.0001     

            

Coefficient of Determination 

(R
2
) 

 0.0982 0.0960 -0.0830 0.1028 0.0822 

Pearson‟s Correlation 

Coefficient ( r ) 

 0.3170 0.3144 0.3125 0.3244 0.2897 

Spearman‟s Correlation 

Coefficient (  ) 

 0.2932 0.2943 0.3000 0.3283 0.2943 

Root Mean Squared Error 

(RMSE) 

 0.4393 0.4398 0.4833 0.4704 0.4432 

TABLE 6.3: Parameter estimates and P-values for CCF estimation on the COHORT2 data set 
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Of the additional variables we tested (e.g. absolute or relative change in the drawn 

amount, credit limit and undrawn amount), only „Average number of days delinquent in 

the last 6 months‟ and „Undrawn percentage‟ were retained by the stepwise selection 

procedures. This is most likely due to the fact that their relation to the CCF is already 

largely accounted for by the base model variables. Further to this, Table A6 in the 

APPENDIX details a correlation matrix for the inputs, indicating that for example the 

Drawn amount has a high positive correlation with the Committed Amount (0.782). It is 

also of interest to note that although one additional variable is selected in the stepwise 

procedure for the second OLS model, there is no increase in predictive power over the 

original OLS model.  

A direct estimation of the un-winsorised CCF with the use of an OLS model was also 

undertaken. The results from this experimentation indicate that it is even harder to predict 

the un-winsorised CCF than the CCF winsorised between 0 and 1 with a predictive 

performance far weaker than the winsorised model. (When these results are applied to the 

estimation of the actual EAD an inferior result is also achieved). 

 

With the predicted values for the CCF obtained from the five models, it is then possible 

to estimate the actual EAD value for each observation i  in the COHORT2 data set, as 

follows:  

  ( ) . ( ) ( )i r i r rEAD E t CCF L t E t   . (6.7) 

 

This gives us an estimated “monetary EAD” value which can be compared to the actual 

EAD value found in the data set. For comparison purposes, a conservative estimate for 

the EAD  assuming 1CCF   is also calculated, as well as an estimate for EAD where 

the mean of the CCF in the first cohort is used (TABLE 6.4). The following table 

(TABLE 6.5) displays the predictive performance of this estimated EAD amount against 

the actual EAD amount: 
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Variables Conservative 

estimate of EAD 

(CCF=1) 

Estimate of EAD where 

CCF equals the mean 

CCF in first cohort  

Coefficient of 

Determination (R
2
) 

0.5178 0.6486 

Pearson‟s Correlation 

Coefficient ( r ) 

0.7588 0.8062 

Spearman‟s Correlation 

Coefficient (  ) 

0.6867 0.7354 

TABLE 6.4: EAD estimates based on conservative and mean estimate for CCF 

 

Variables OLS model 

(using only 

previously 

suggested 

variables) 

OLS model 

(including 

average 

number of 

days 

delinquent in 

the last 6 

months) 

OLS with 

Beta 

transformatio

n (B-OLS) 

Binary logit 

model 

(LOGIT) 

Cumulative 

logit model 

(CLOGIT) 

Coefficient of 

Determination (R
2
) 

0.6450 0.6431 0.8365 0.6344 0.6498 

Pearson‟s 

Correlation 

Coefficient ( r ) 

0.8049 0.8038 0.8000 0.8016 0.8068 

Spearman‟s 

Correlation 

Coefficient (  ) 

0.7421 0.7405 0.7270 0.7387 0.7381 

TABLE 6.5: EAD estimates based on CCF predictions against actual EAD amounts 

 

It is quite clear from these results that although the predicted CCF value gave a relatively 

weak performance, when this value is applied to the calculation of the estimated EAD 

formulation a significant improvement over the conservative model can be made. It can 

also be noted that the application of the OLS with Beta transformation model gives a 

significantly higher value for the coefficient of determination (0.8365), although the 

correlation values are comparative to the other models. A possible reason for this is that 

even though the CCF has been winsorised prior to estimation, the B-OLS model‟s 

predictions are much closer to the real CCF values before winsorisation. Thus the B-OLS 

model produces a better actual estimate of the EAD. However, by simply applying the 

mean of the CCF, a similar result to the other predicted models can be achieved. 

The direct estimation of the EAD, through the use of an OLS model, has also been taken 

into consideration, without the first estimation and application of a CCF. The results from 

this direct estimation of EAD are shown in TABLE 6.6, with the distribution for the 

direct estimation of EAD given in FIGURE 6.3: (The legend for FIGURES 6.3-6.7 
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details the frequency of values along the y-axis and the estimated EAD value along the x-

axis) 

 

Variables OLS model (direct 

estimation of EAD) 

Coefficient of Determination (R
2
) 

 

0.6608 

Pearson‟s Correlation Coefficient ( r ) 

 

0.8130 

Spearman‟s Correlation Coefficient (  ) 

 

0.7493 

TABLE 6.6: Direct Estimation of EAD 

 

 

FIGURE 6.3: Distribution of direct estimation of EAD (the actual EAD amount present is indicated 

by the overlaid black line) 

 

It is self-evident from the performance metrics and the produced distribution that a direct 

estimation of EAD without firstly estimating and applying a CCF can indeed produce 

reasonable estimations for the actual EAD. This goes someway in ratifying the findings 

show by Taplin et al (2007). 

 

The following figures (FIGURES 6.4-6.7) display the distribution for the actual EAD 

amount present in COHORT2 and the estimated EAD values for the regression models. It 

is apparent from the predicted distributions that all five models approximate the actual 

EAD distribution very well. All three models do however somewhat underestimate the 
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number of observations at both ends of the distribution, corresponding to an EAD value 

of zero and values of EAD greater than 10,400. This is further evidence that although the 

regression models struggle to predict the actual CCF value, when this factor is applied to 

the EAD calculation a relatively good correlation can be achieved.  

 

 

FIGURE 6.4: OLS base model predicted Exposure at Default (EAD) distribution (the actual EAD 

amount present is indicated by the overlaid black line) 

 

 

FIGURE 6.5: Binary LOGIT model predicted Exposure at Default (EAD) distribution (the actual 

EAD amount present is indicated by the overlaid black line) 
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FIGURE 6.6: Cumulative LOGIT model predicted Exposure at Default (EAD) distribution (the 

actual EAD amount present is indicated by the overlaid black line) 

  

 

FIGURE 6.7: OLS with Beta Transformation model predicted Exposure at Default (EAD) 

distribution (the actual EAD amount present is indicated by the overlaid black line) 
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FIGURE 6.8: OLS base model plot for the Actual Mean EAD against Predicted Mean EAD across 

ten bins (R
2
=0.9968) 
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FIGURE 6.9: Binary LOGIT model plot for the Actual Mean EAD against the Predicted Mean EAD 

across ten bins (R
2
=0.9944) 
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FIGURE 6.10: Cumulative LOGIT model plot for the Actual Mean EAD against the Predicted Mean 

EAD across ten bins (R
2
=0.9954) 

 

 

FIGURE 6.11: OLS with Beta Transformation model plot for the Actual Mean EAD against the 

Predicted Mean EAD across ten bins (R
2
=0.9957) 
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FIGURES 6.8-6.11 display plots for the actual mean of the EAD against the predicted 

mean of the EAD across ten bins. (The legend for FIGURES 6.8-6.11 details the mean 

actual EAD along the y-axis and the mean predicted EAD along the x-axis across the 10 

bins). The bins are created by splitting the distribution of the predicted EAD into ten bins 

of equal size. The plots show that the means for the actual and predicted EAD in bins one 

to ten are close to the diagonal for all three models, indicating that the predictions for the 

EAD well approximate actual EAD. The points that deviate slightly from the diagonal 

again occur at the left and right ends of the EAD. 

Similarly to FIGUREs 6.8-6.11, FIGURES 6.12-6.15 display plots for the actual mean of 

the CCF against the predicted mean of the CCF across ten bins. (The legend for 

FIGURES 6.12-6.15 details the mean actual CCF along the y-axis and the mean predicted 

CCF along the x-axis across the 10 bins). From these plots it is clear that the regression 

models struggle to closely predict the values for CCF.  

 

 

FIGURE 6.12: OLS base model plot for the Actual Mean CCF against the Predicted Mean CCF 

across ten bins (R
2
=0.7061) 
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FIGURE 6.13: Binary LOGIT model plot for the Actual Mean CCF against the Predicted Mean CCF 

across ten bins (R
2
=0.2867) 

 

 

FIGURE 6.14: Cumulative LOGIT base model plot for the Actual Mean CCF against the Predicted 

Mean CCF across ten bins (R
2
=0.9063) 
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FIGURE 6.15: OLS with Beta Transformation model plot for the Actual Mean CCF against the 

Predicted Mean CCF across ten bins (R
2
=0.9154) 
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6.5 Conclusions and recommendations for further work 

 

In summary, this chapter has set out to develop comprehensible and robust regression 

models for the estimation of Exposure at Default (EAD) for consumer credit through 

the prediction of the credit conversion factor (CCF). An in-depth analysis of the 

predictive variables used in the modelling of the CCF has also been given, showing 

that previously acknowledged variables are significant and identifying a series of 

additional variables. 

As the results show, a marginal improvement in the coefficient of determination can 

be achieved with the use of a binary logit model over a traditional OLS model. 

Interestingly the use of a cumulative logit model performs worse than both the binary 

logit and OLS models. The probable cause of this are the size of the peaks around 0 

and 1 compared to the number of observations found in the interval between the two 

peaks. This therefore allows for more error in the prediction of the CCF via a 

cumulative three-class model.  

Another interesting finding is that although the predictive power of the CCF is weak, 

when this predicted value is applied to the EAD formulation to predict the actual EAD 

value, the predictive power is fairly strong. In particular when the predictive values 

obtained through the application of the OLS with Beta transformation model were 

applied to the EAD formulation an improvement in the coefficient of determination 

was seen. Nonetheless, similar performance, in terms of correlations, could be 

achieved by a simple model that takes the average CCF of the previous cohort, 

showing that much of the explanatory power of EAD modelling derives from the 

current exposure. 

With regards to the additional variables proposed in the prediction of the CCF only 

one, i.e. average number of days delinquent in the last 6 months, gave an adequate p-

value, whilst undrawn percentage, potentially an alternative to credit percentage, was 

significant for the OLS with Beta transformation model. Even though the relative 

changes in the undrawn amount give reasonable information value scores, these 

variables do not prove to be significant in the regression models, probably due to their 

high correlation with the undrawn variable. This shows that the actual values at the 

start of the cohort already give a significant representation of previous activity in 

order to predict the CCF. 
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The contributions to the literature therefore are a greater understanding of the 

practicalities of applying OLS (with transformation) based models in the estimation of 

CCF, and the ability of these models compared to bucketing the CCF and using a 

logistic or cumulative logistic model. This chapter also goes someone to answering 

the question as to whether a direct estimation of EAD is appropriate instead of first 

estimating CCF and then using those values for calculating EAD. It is evident from 

the results presented here that a direct estimation of EAD without firstly estimating 

and applying a CCF can indeed produce reasonable estimations for the actual EAD. 

With regards to the issues highlighted in the literature review section of this thesis 

reinforces the findings by Taplin et al (2007) that a direct estimation of EAD could 

feasibly be more appropriate than first estimating CCF. The findings from this study 

not only agree with the findings by Moral (2006) but also contributes a new 

potentially significant variable in the estimation of CCF, which is average number of 

days delinquent in the last 6 months. 

 

There is an obvious need for further research into the prediction of the exposure at 

default (EAD) value as this chapter can only go so far in its estimations. A more 

extensive study with multiple data sets over a longer timescale would be able to give 

more reliable results in the prediction of the EAD. A variation of the time period used 

prior to default other than the cohort method would also be an interesting extension. 

Also, previous work stated in the literature review section has already looked at some 

alternative techniques, such as a generalised beta link model. A benchmarking study 

including this and the techniques mentioned in this chapter may give a better 

understanding of any improvements that could be made over an ordinary least squares 

regression model or the logistic regression models suggested in this chapter. The 

availability of application data in the modelling process may also provide some 

additional predictive variables in the modelling of the CCF. 
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Chapter 7 

 

7 Conclusions 

 

In this PhD thesis, we addressed three issues relating to the implementation of the 

advanced internal ratings based approach (AIRB) by financial institutions. The issues 

raised in this thesis included that of building classification models for the estimation 

of probability of default (PD) for imbalanced credit scoring data sets; the accurate 

prediction of loss given default (LGD); and the construction of a robust and 

comprehensible model for exposure at default (EAD).  

 

In this chapter we display the conclusions that can be drawn from the research 

undertaken in this thesis. After highlighting the conclusions from each project, issues 

for further research will also be given. 

 

7.1 Thesis Summary and Conclusions 

 

In the literature review of this thesis (cf. Chapter 2), we identified issues pertaining to 

the estimation of probability of default (PD) in imbalanced credit scoring data sets. 

Although to date a lot of work has been undertaken in the field of PD estimation, the 

issue of imbalanced data sets has as of yet not been fully addressed.  

In Chapter 4 of this thesis, we addressed this issue of estimating probability of default 

for imbalanced data sets. We achieved this by looking at a number of credit scoring 

techniques, and studying their performance over various class distributions on five 

real-life credit data sets. Two techniques that have yet to be fully researched in the 

context of credit scoring, i.e. Gradient Boosting and Random Forests, were also 

chosen to give a broader review of the techniques available. The classification power 

of these techniques was assessed based on the area under the receiver operating 
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characteristic curve (AUC). Friedman's test and Nemenyi's post-hoc tests were then 

applied to determine whether the differences between the average ranked 

performances of the AUCs were statistically significant. Finally, these significance 

results were visualised using significance diagrams for each of the various class 

distributions analysed. 

The results of these experiments showed that the Gradient Boosting and Random 

Forest classifiers performed well in dealing with samples where a large class 

imbalance was present. It does appear that in extreme cases the ability of random 

forests and gradient boosting to concentrate on „local‟ features in the imbalanced data 

is useful. The most commonly used credit scoring techniques, linear discriminant 

analysis (LDA) and logistic regression (LOG), gave results that were reasonably 

competitive with the more complex techniques and this competitive performance 

continued even when the samples became much more imbalanced. This would 

suggest that the currently most popular approaches are fairly robust to imbalanced 

class sizes. On the other hand, techniques such as QDA and C4.5 were significantly 

worse than the best performing classifiers. It can also be concluded that the use of a 

linear kernel LS-SVM would not be beneficial in the scoring of data sets where a very 

large class imbalance exists.  

 

The second major issue identified in the implementation of an advanced internal 

ratings based approach is the estimation of loss given default (LGD). To address this 

issue, in Chapter 5, a large scale LGD study evaluating 17 regression techniques on 6 

real life lending data sets from major international banking institutions was 

undertaken. The average predictive performance of the models in terms of 2R  ranges 

from 4 % to 43 %, which indicates that most resulting models have limited 

explanatory power. Nonetheless, a clear trend can be seen that non-linear techniques 

and artificial neural networks and support vector machines in particular give higher 

performances than more traditional linear techniques. This indicates the presence of 

non-linear interactions between the independent variables and the LGD, contrary to 

some studies in PD modelling where the difference between linear and non-linear 

techniques is not that explicit. Given the fact that LGD has a bigger impact on the 

minimal capital requirements than PD, we demonstrated the potential and importance 
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of applying non-linear techniques, preferably in a two-stage context to obtain 

comprehensibility as well, for LGD modelling. 

 

Finally the issue of regression model development for credit card exposure at default 

(EAD) is dealt with in Chapter 6 of this thesis. This chapter sets out with the aim of 

developing a comprehensible and robust regression model for the estimation of 

Exposure at Default (EAD) for consumer credit cards through the prediction of the 

credit conversion factor (CCF). An in-depth analysis of the predictive variables used 

in the modelling of the CCF is also given, showing that previously acknowledged 

variables are significant and identifying a series of additional variables. 

The results from this chapter show that a marginal improvement in the coefficient of 

determination can be achieved with the use of a binary logit model over a traditional 

OLS model. Interestingly the use of a cumulative logit model performs worse than 

both the binary logit and OLS models. The probable cause of this are the size of the 

peaks around 0 and 1 compared to the number of observations found in the interval 

between the two peaks. This therefore allows for more error in the prediction of the 

CCF via a cumulative three-class model.  

Another interesting finding is that although the predictive power of the CCF is weak, 

when this predicted value is applied to the EAD formulation to predict the actual EAD 

value, the predictive power is fairly strong. In particular when the predictive values 

obtained through the application of the OLS with Beta transformation model were 

applied to the EAD formulation an improvement in the coefficient of determination 

was seen. Nonetheless, similar performance, in terms of correlations, could be 

achieved by a simple model that takes the average CCF of the previous cohort, 

showing that much of the explanatory power of EAD modelling derives from the 

current exposure. 

With regards to the additional variables proposed in the prediction of the CCF only 

one, i.e. average number of days delinquent in the last 6 months, gave an adequate p-

value, whilst undrawn percentage, potentially an alternative to credit percentage, was 

significant for the OLS with Beta transformation model. Even though the relative 

changes in the undrawn amount give reasonable information value scores, these 

variables do not prove to be significant in the regression models, probably due to their 

high correlation with the undrawn variable. This shows that the actual values at the 
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start of the cohort already give a significant representation of previous activity in 

order to predict the CCF. 

 

In summary, this thesis has identified and presented detailed results and findings for 

three main issues facing financial institutions wishing to implement an AIRB 

approach. An extensive review of the current literature and findings has also been 

presented and extrapolated upon with the aim of presenting a better understanding for 

financial institutions considering appropriate techniques and methodologies in the 

modelling process. 

 

7.2 Issues for further research 

 

Further to the conclusions presented in this thesis, there still remain many challenging 

issues for further research. This section will highlight the issues for further research 

identified by each of the major works conducted in this thesis. 

 

7.2.1 The imbalanced data set problem 

 

With regards to probability of default (PD) modelling for imbalanced data sets further 

work that could be conducted, as a result of the findings presented in this thesis, 

would be to firstly consider a stacking approach to classification through the 

combination of multiple techniques. Such an approach would allow a meta-learner to 

pick the best model to classify an observation. Secondly, another interesting extension 

to the research would be to apply these techniques on much larger data sets which 

display a wider variety of class distributions. It would also be of interest to look into 

the effect of not only the percentage class distribution but also the effect of the actual 

number of observations in a data set. 

Finally, as stated in the literature review chapter of this thesis, there have been several 

approaches already researched in the area of oversampling techniques to deal with 

large class imbalances, in the area of machine learning. Further research into this and 

their effect on credit scoring model performance would be beneficial. 
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7.2.2 Loss Given Default 

 

In the literature to date there has been considerable evidence that macroeconomic 

factors affect a client‟s credit risk behaviour. To further the research presented in this 

thesis it maybe a worthwhile endeavour to investigate the influence of macro-

economic variables, both in the context of improving LGD models and for stress 

testing.  

A variety of LGD data sets have been analysed and reported in Chapter 5 of this 

thesis. To further this work separate studies on corporate and retail credit LGD data 

sets could be made, to determine whether separate risk drivers are present in the 

prediction of each. Finally, one could also try to add comprehensibility to well-

performing black box models with rule extraction techniques to gain more insight. 

 

7.2.3 Exposure at Default 

 

There is an obvious need for further research into the prediction of the exposure at 

default (EAD) value as this thesis can only go so far in its estimations. A more 

extensive study with multiple data sets over a longer timescale would be able to give 

more reliable results in the prediction of the EAD. A variation of the time period used 

prior to default other than the cohort method would also be an interesting extension. 

Also, previous work stated in the literature review section has already looked at some 

alternative techniques, such as a generalised beta link model. A benchmarking study 

including this and the techniques mentioned in this thesis may give a better 

understanding of any improvements that could be made over an ordinary least squares 

regression model or the logistic regression models suggested in this thesis. The 

availability of application data in the modelling process may also provide some 

additional predictive variables in the modelling of the CCF. 
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Appendices 

A1: Data sets used in Chapter 4 

 

A1.1 Australian Credit 

THIS CREDIT DATA ORIGINATES FROM QUINLAN (see below).    

 

1. Title: Australian Credit Approval 

2. Sources: quinlan@cs.su.oz.au 

3. This file concerns credit card applications.  All attribute names and values have been changed to meaningless symbols to protect confidentiality of the data. 

4. Number of Attributes: 14 + class attribute 

5. Class Distribution: 

      +: 307 (44.5%)    CLASS 2 

      -: 383 (55.5%)    CLASS 1 

 

Variable name Type 

A1 Nominal 

A2 Continuous 

A3 Continuous 

A4 Nominal 

A5 Nominal 

A6 Nominal 

A7 Continuous 

mailto:quinlan@cs.su.oz.au
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A8 Nominal 

A9 Nominal 

A10 Continuous 

A11 Nominal 

A12 Nominal 

A13 Continuous 

A14 Continuous 

A15 Binary Target 

 

A1.2 Bene1 

Variable name Type 

 Identification number  continuous 

 Amount of loan  continuous 

 Amount on purchase invoice  continuous 

 Percentage of financial burden  continuous 

 Term  continuous 

 Personal loan  nominal 

 Purpose  nominal 

 Private or professional loan  nominal 

 Monthly payment  continuous 

 Savings account  continuous 

 Other loan expenses  continuous 

 Income  continuous 

 Profession  nominal 
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 Number of years employed  continuous 

 Number of years in Belgium  continuous 

 Age  continuous 

 Applicant Type  nominal 

 Nationality  nominal 

 Marital status  nominal 

 Number of years since last house move  continuous 

 Code of regular saver  nominal 

 Property  nominal 

 Existing credit info  nominal 

 Number of years client  continuous 

 Number of years since last loan  continuous 

 Number of checking accounts  continuous 

 

A1.3 Bene2 

The variable names for the Bene2 dataset cannot be displayed for confidentiality purposes. The dataset includes: 

28 input variables: 

 Continuos variables: 18  

 Nominal variables: 10 

1 Binary class variable 
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A1.4 Behav 

The variable names for the Behav dataset cannot be displayed for confidentiality purposes. The dataset includes: 

1 ID variable 

60 Input variables: 

 Nominal variables: 10 

 Ordinal variables: 1 

 Continuous variables: 49 

1 Binary class variable (0 = “good account”; 1 = “bad account”) 

 

 

A1.5 German Credit 

Vaiable name Type 

Checking Status Nominal 

Duration Continuous 

Credit History Nominal 

Purpose Nominal 

Credit_Amount Continuous 

Savings Status Nominal 

Employment Nominal 

Installment_commitment Continuous 

Personal Status Nominal 

Other_Parties Nominal 

Residence_Since Continuous 

Property Nominal 
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Age  Continuous 

Other_Payment_Plans Nominal 

Housing Nominal 

Existing Credits Continuous 

Job Nominal 

Number of Dependents Continuous 

Own_Telephone Nominal 

Foreign_worker Nominal 

 

A2: Residual plots for Chapter 4 

A2.1 Australian Credit: Gradient Boosting 

The following plots show the residual values of the Gradient Boosting classifier over varying class imbalances of the Australian Credit dataset 

against the A2 variable. It can be seen that as the class imbalance increases the larger the concentration of negative residuals are present. 
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A2.2 Bene2: Gradient Boosting 

The following plots show the residual values of the Gradient Boosting classifier over varying class imbalances of the Bene2 dataset against the 

Income variable. It can be seen that as the class imbalance increases the larger the concentration of negative one residuals are present. 
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A3: Stepwise variable selection for Linear models used in Chapter 5 

A3.1 BANK1 

Summary of Stepwise Selection 

Step 

Variable 

Entered 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) 

F 

Value Pr > F 

1 AGE_OF_EXP 1 0.0191 0.0191 2702.63 620.14 <.0001 

2 MTHS_ARRS_ADV 2 0.0133 0.0324 2235.62 438.33 <.0001 

3 no_mths_arrs_0_12m 3 0.0182 0.0506 1594.58 612.50 <.0001 

4 LOAN_AMT_LAST 4 0.0078 0.0583 1322.97 262.76 <.0001 

5 APP_SCORE_FIRST 5 0.0072 0.0656 1070.33 246.42 <.0001 

6 Worst_arrs_12m 6 0.0073 0.0729 813.798 252.15 <.0001 

7 JOINT_APP 7 0.0032 0.0761 701.308 112.05 <.0001 

8 no_mths_arrs_0_ever 8 0.0029 0.0790 602.210 99.25 <.0001 

9 TERM_LAST 9 0.0035 0.0825 479.866 122.54 <.0001 

10 TADD 10 0.0020 0.0845 412.281 68.72 <.0001 

11 TIME_AT_BANK 11 0.0011 0.0856 376.712 37.14 <.0001 

12 RESID_STATUS_FIRST2 12 0.0011 0.0867 339.973 38.35 <.0001 

13 EMPL_STATUS_C1_FIRST4 13 0.0012 0.0879 299.319 42.28 <.0001 

14 Worst_arrs_6m 14 0.0007 0.0886 275.080 26.03 <.0001 

15 HBS_MORT_HELD_FIRST 15 0.0007 0.0893 253.908 23.00 <.0001 

16 EMPL_STATUS_C1_FIRST8 16 0.0006 0.0899 234.427 21.34 <.0001 

17 PL_HELD_FIRST 17 0.0006 0.0905 216.190 20.11 <.0001 
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Summary of Stepwise Selection 

Step 

Variable 

Entered 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) 

F 

Value Pr > F 

18 no_mths_arrs_2_ever 18 0.0005 0.0909 201.539 16.56 <.0001 

20 no_mths_arrs_2_12m 18 0.0011 0.0918 170.520 37.40 <.0001 

21 Worst_arrs_ever 19 0.0005 0.0923 154.726 17.72 <.0001 

22 Max_con_mths_arrs_1 20 0.0005 0.0928 139.693 16.97 <.0001 

23 EMPL_STATUS_C1_FIRST3 21 0.0004 0.0932 126.855 14.79 0.0001 

24 no_mths_arrs_0_3m 22 0.0004 0.0936 115.057 13.76 0.0002 

25 no_mths_arrs_2_6m 23 0.0005 0.0941 100.934 16.08 <.0001 

26 PURP2 24 0.0003 0.0944 92.4117 10.50 0.0012 

27 MAXIM_HELD_FIRST 25 0.0004 0.0947 81.7724 12.62 0.0004 

28 EMPL_STATUS_C1_FIRST10 26 0.0003 0.0950 73.5318 10.23 0.0014 

29 EMPL_STATUS_C1_FIRST6 27 0.0003 0.0953 65.6508 9.87 0.0017 

30 Worst_arrs_3m 28 0.0002 0.0955 60.7246 6.92 0.0085 
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A3.2 BANK2 

Summary of Stepwise Selection 

Step 

Variable 

Entered 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) F Value Pr > F 

1 arr_perc_UOS 1 0.1575 0.1575 8616.94 14859.5 <.0001 

2 security5 2 0.0295 0.1870 5538.31 2880.03 <.0001 

3 ltv 3 0.0182 0.2052 3639.08 1818.08 <.0001 

4 TOB_UOS 4 0.0140 0.2191 2180.01 1422.15 <.0001 

5 propage2 5 0.0069 0.2261 1457.78 711.24 <.0001 

6 region12 6 0.0027 0.2288 1177.53 278.15 <.0001 

7 arrmths_def 7 0.0018 0.2306 987.637 189.56 <.0001 

8 security3 8 0.0016 0.2322 819.708 168.21 <.0001 

9 region10 9 0.0018 0.2340 630.777 189.45 <.0001 

10 bal_def 10 0.0012 0.2353 505.006 126.98 <.0001 

11 orig_loan 11 0.0016 0.2369 340.993 165.33 <.0001 

12 term 12 0.0009 0.2378 246.414 96.30 <.0001 

13 propage4 13 0.0006 0.2384 184.566 63.71 <.0001 

14 endowment 14 0.0004 0.2388 145.235 41.26 <.0001 

15 region5 15 0.0003 0.2391 119.039 28.16 <.0001 

16 region8 16 0.0003 0.2393 92.8840 28.13 <.0001 

17 security1 17 0.0002 0.2396 70.9766 23.89 <.0001 

18 region2 18 0.0002 0.2398 50.4508 22.52 <.0001 

19 region6 19 0.0001 0.2399 37.2918 15.16 <.0001 

20 region11 20 0.0001 0.2400 25.7214 13.57 0.0002 

21 region4 21 0.0001 0.2401 20.8574 6.86 0.0088 
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A3.3 BANK3 

Summary of Stepwise Selection 

Step 

Variable 

Entered 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) F Value Pr > F 

1 QUOTITEIT1 1 0.0110 0.0110 40.9197 24.78 <.0001 

2 EAD 2 0.0082 0.0192 24.1071 18.64 <.0001 

3 LTV_RAT 3 0.0063 0.0255 11.6560 14.40 0.0002 

4 PROVINCIE_PAND4 4 0.0041 0.0296 4.1513 9.51 0.0021 

 

A3.4 BANK4 

Summary of Stepwise Selection 

Step 

Variable 

Entered 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) F Value Pr > F 

1 Utilization 1 0.3589 0.3589 990.479 2943.60 <.0001 

2 PD_Rnd 2 0.0752 0.4341 259.828 698.53 <.0001 

3 LTV 3 0.0198 0.4539 69.2096 190.26 <.0001 

4 Age 4 0.0029 0.4567 43.1425 27.86 <.0001 

5 PrinBal 5 0.0039 0.4606 7.2950 37.84 <.0001 
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A3.5 BANK5 

Summary of Stepwise Selection 

Step 

Variable 

Entered 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square C(p) F Value Pr > F 

1 amount_funded 1 0.1068 0.1068 691.938 326.41 <.0001 

2 Total_Debt 2 0.0283 0.1350 585.683 89.21 <.0001 

3 occupancy_code_description1 3 0.0242 0.1593 494.881 78.65 <.0001 

4 product_family_name1 4 0.0283 0.1876 388.438 95.08 <.0001 

5 amortization_type3 5 0.0176 0.2051 323.198 60.23 <.0001 

6 Original_Appraised_Value 6 0.0154 0.2205 266.220 53.86 <.0001 

7 jumbo_indicator 7 0.0119 0.2324 222.573 42.32 <.0001 

8 State4 8 0.0105 0.2430 184.196 37.94 <.0001 

9 business_line_crm_new3 9 0.0073 0.2503 158.381 26.38 <.0001 

10 loan_purpose_type2 10 0.0069 0.2572 133.945 25.29 <.0001 

11 Loan_Category2 11 0.0043 0.2615 119.370 15.95 <.0001 

12 State3 12 0.0040 0.2655 106.120 14.75 0.0001 

13 total_debt_ratio 13 0.0041 0.2696 92.3181 15.36 <.0001 

14 property_type_description2 14 0.0022 0.2718 85.9808 8.13 0.0044 

 

 

A3.6 BANK6 

 

The variable names for the BANK6 dataset cannot be displayed for confidentiality purposes. 
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A4: R-square based variable selection for Non-linear used in Chapter 5 

The R-Square selection process implements a forward stepwise least squares regression that maximizes the model R-square value. 

 

A4.1 BANK1  

 

A4.2 BANK2  
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A4.3 BANK3  

 

A4.4 BANK4  
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A4.5 BANK5  

 
 

 

A4.6 BANK6  

The variable names for the BANK6 dataset cannot be displayed for confidentiality purposes. 

 

 

A5: Normal probability plots for techniques used in Chapter 5 

The following plots detail the normal cumulative distribution vs. the cumulative distribution of residuals for the OLS regression model over the 

six data sets analysed in this thesis. All the data sets (BANK1, BANK2, BANK3, BANK4 and BANK6) apart from potentially BANK5 do not 
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display diagonal normal probability. It therefore seems that the normality assumption is not satisfied for these data sets, leading to the 

summation that the OLS model fit is relatively poor. 

 

A5.1 BANK1 OLS model normal probability plots  
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A5.2 BANK2 OLS model normal probability plots 
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A5.3 BANK3 OLS model normal probability plots 
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A5.4 BANK4 OLS model normal probability plots 
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A5.5 BANK5 OLS model normal probability plots 
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A5.6 BANK6 OLS model normal probability plots 
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A6: Pearson’s correlation coefficients matrix for input variables used in Chapter 6 

                 

 CCF EAD Commit_

Amt 

Drawn

_Amt 

Undrawn_

Amt 

Credit

% 

Time_d

efault 

Rating

_grade
_1 

Rating

_grade
_2 

Rating

_grade
_3 

Rating

_grade
_4 

Av_No_d

ays_del_3 

Av_No_d

ays_del_6 

Av_No_d

ays_del_9 

Av_No_d

ays_del_1
2 

Incr_com

mit_Amt 

EAD 0.323 1.000               

Commit_Amt 0.030 0.712 1.000              

Drawn_Amt 0.089 0.755 0.782 1.000             

Undrawn_Amt -0.083 0.012 0.421 -0.236 1.000            

Credit% 0.039 0.212 -0.067 0.458 -0.771 1.000           
Time_default 0.229 0.078 0.046 -0.021 0.102 -0.111 1.000          

Rating_grade_1 -0.041 -0.050 0.077 -0.136 0.318 -0.319 -0.004 1.000         

Rating_grade_2 0.231 0.121 0.177 0.095 0.138 -0.114 0.280 -0.214 1.000        
Rating_grade_3 -0.093 -0.038 -0.106 0.007 -0.176 0.185 -0.106 -0.118 -0.654 1.000       

Rating_grade_4 -0.184 -0.094 -0.154 -0.068 -0.141 0.098 -0.253 -0.084 -0.466 -0.258 1.000      

Av_No_days_del_3 -0.067 -0.072 -0.099 -0.038 -0.099 0.112 -0.134 -0.097 -0.404 0.132 0.447 1.000     
Av_No_days_del_6 -0.053 -0.072 -0.096 -0.039 -0.093 0.103 -0.103 -0.107 -0.397 0.160 0.407 0.844 1.000    

Av_No_days_del_9 -0.056 -0.084 -0.105 -0.054 -0.085 0.087 -0.089 -0.111 -0.391 0.175 0.382 0.757 0.925 1.000   

Av_No_days_del_12 -0.050 -0.085 -0.109 -0.060 -0.083 0.080 -0.076 -0.113 -0.386 0.178 0.373 0.719 0.874 0.961 1.000  
Incr_commit_Amt 0.070 0.293 0.349 0.286 0.128 -0.021 0.080 -0.020 0.223 -0.089 -0.188 -0.127 -0.160 -0.195 -0.211 1.000 

Undrawn% -0.039 -0.212 0.067 -0.458 0.771 -1.000 0.111 0.319 0.114 -0.185 -0.098 -0.112 -0.103 -0.087 -0.080 0.021 

Abs_change_drawn_3 0.036 0.260 0.222 0.414 -0.256 0.263 -0.072 -0.055 0.013 0.020 -0.014 -0.090 -0.086 -0.084 -0.077 0.142 
Abs_change_drawn_6 0.019 0.326 0.277 0.482 -0.270 0.308 -0.078 -0.071 0.023 0.015 -0.013 -0.060 -0.099 -0.106 -0.105 0.239 

Abs_change_drawn_12 0.053 0.439 0.374 0.595 -0.281 0.359 -0.068 -0.105 0.031 0.022 -0.014 -0.051 -0.074 -0.094 -0.105 0.297 

Abs_change_undrawn_3 -0.008 -0.167 -0.082 -0.328 0.349 -0.308 0.117 0.056 0.075 -0.076 -0.040 0.033 0.030 0.027 0.020 -0.001 
Abs_change_undrawn_6 0.008 -0.183 -0.078 -0.357 0.398 -0.368 0.119 0.075 0.097 -0.087 -0.066 -0.022 0.012 0.017 0.018 0.029 

Abs_change_undrawn_12 -0.017 -0.236 -0.091 -0.411 0.456 -0.430 0.124 0.113 0.110 -0.100 -0.088 -0.028 -0.016 -0.009 -0.002 0.128 

Abs_change_commit_3 0.061 0.202 0.302 0.185 0.202 -0.095 0.097 0.001 0.190 -0.120 -0.115 -0.125 -0.122 -0.125 -0.123 0.305 
Abs_change_commit_6 0.051 0.291 0.390 0.269 0.216 -0.086 0.070 0.002 0.223 -0.131 -0.148 -0.156 -0.168 -0.173 -0.170 0.515 

Abs_change_commit_12 0.061 0.364 0.486 0.345 0.255 -0.083 0.084 0.003 0.228 -0.125 -0.163 -0.130 -0.151 -0.174 -0.182 0.706 

Rel_change_drawn_3 0.013 -0.038 -0.035 -0.049 0.016 -0.022 0.015 0.006 -0.018 0.009 0.011 0.007 0.008 0.009 -0.005 -0.020 
Rel_change_drawn_6 -0.024 -0.026 -0.035 -0.048 0.015 -0.056 0.015 0.014 -0.016 0.016 -0.004 -0.012 -0.009 -0.002 0.002 -0.028 

Rel_change_drawn_12 -0.002 0.007 0.010 0.014 -0.004 -0.010 -0.027 0.004 -0.038 -0.007 0.059 0.015 0.006 0.009 0.005 0.001 

Rel_change_undrawn_3 -0.013 -0.002 -0.005 0.003 -0.012 0.025 -0.001 0.002 0.019 -0.038 0.019 0.013 0.008 0.008 0.009 -0.016 
Rel_change_undrawn_6 -0.004 -0.008 0.005 -0.013 0.026 -0.013 -0.009 0.000 0.008 -0.007 -0.002 0.002 -0.001 0.007 0.006 0.000 

Rel_change_undrawn_12 -0.006 -0.015 -0.014 -0.030 0.022 -0.026 -0.010 0.028 0.012 -0.025 -0.001 0.008 -0.002 -0.002 0.000 0.012 

Rel_change_commit_3 0.074 0.007 0.021 -0.028 0.073 -0.104 0.096 -0.020 0.144 -0.064 -0.109 -0.119 -0.117 -0.115 -0.115 0.257 
Rel_change_commit_6 0.061 0.017 0.007 -0.030 0.055 -0.088 0.080 -0.018 0.166 -0.079 -0.122 -0.138 -0.157 -0.155 -0.153 0.448 

Rel_change_commit_12 0.062 0.029 0.013 -0.018 0.047 -0.076 0.075 -0.017 0.172 -0.077 -0.134 -0.112 -0.140 -0.156 -0.163 0.600 

 
               

 Undrawn

% 

Abs_cha

nge_dra
wn_3 

Abs_cha

nge_dra
wn_6 

Abs_cha

nge_dra
wn_12 

Abs_chan

ge_undra
wn_3 

Abs_chan

ge_undra
wn_6 

Abs_chan

ge_undra
wn_12 

Abs_chan

ge_commi
t_3 

Abs_chan

ge_commi
t_6 

Abs_chan

ge_commi
t_12 

Rel_chan

ge_drawn
_3 

Rel_chan

ge_drawn
_6 

Rel_chan

ge_drawn
_12 

Rel_chan

ge_undra
wn_3 

Undrawn% 1.000              
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Abs_change_drawn_3 -0.263 1.000             

Abs_change_drawn_6 -0.308 0.667 1.000            
Abs_change_drawn_12 -0.359 0.546 0.718 1.000           

Abs_change_undrawn_3 0.308 -0.893 -0.568 -0.455 1.000          

Abs_change_undrawn_6 0.368 -0.564 -0.861 -0.581 0.630 1.000         
Abs_change_undrawn_12 0.430 -0.440 -0.564 -0.817 0.521 0.682 1.000        

Abs_change_commit_3 0.095 0.234 0.216 0.200 0.229 0.141 0.174 1.000       

Abs_change_commit_6 0.086 0.243 0.336 0.311 0.071 0.191 0.174 0.678 1.000      
Abs_change_commit_12 0.083 0.218 0.309 0.380 0.067 0.112 0.224 0.616 0.803 1.000     

Rel_change_drawn_3 0.022 -0.118 -0.074 -0.085 0.119 0.069 0.083 0.003 -0.016 -0.010 1.000    

Rel_change_drawn_6 0.056 -0.078 -0.068 -0.058 0.063 0.054 0.043 -0.032 -0.032 -0.030 0.065 1.000   

Rel_change_drawn_12 0.010 0.032 0.077 0.066 -0.038 -0.084 -0.080 -0.014 -0.007 -0.018 0.010 0.083 1.000  

Rel_change_undrawn_3 -0.025 0.021 0.012 -0.009 -0.029 -0.020 0.005 -0.018 -0.013 -0.007 0.000 -0.001 -0.001 1.000 

Rel_change_undrawn_6 0.013 -0.039 -0.029 0.004 0.037 0.032 -0.004 -0.003 0.004 -0.001 0.000 0.000 -0.002 0.010 
Rel_change_undrawn_12 0.026 -0.010 -0.002 -0.014 0.010 0.003 0.019 -0.001 0.002 0.008 0.001 0.003 0.000 -0.003 

Rel_change_commit_3 0.104 0.144 0.100 0.075 0.173 0.140 0.148 0.687 0.451 0.363 0.004 -0.009 -0.005 -0.010 

Rel_change_commit_6 0.088 0.137 0.171 0.122 0.067 0.186 0.172 0.442 0.674 0.482 0.001 -0.010 -0.006 -0.007 
Rel_change_commit_12 0.076 0.125 0.159 0.182 0.068 0.120 0.214 0.417 0.527 0.651 0.003 -0.009 -0.020 -0.001 

 
      

 Rel_change_undrawn_6 Rel_change_undrawn_12 Rel_change_commit_3 Rel_change_commit_6 Rel_change_commit_12 
Abs_change_drawn_12      

Abs_change_undrawn_3      

Abs_change_undrawn_6      
Abs_change_undrawn_12      

Abs_change_commit_3      

Abs_change_commit_6      
Abs_change_commit_12      

Rel_change_drawn_3      

Rel_change_drawn_6      
Rel_change_drawn_12      

Rel_change_undrawn_3      

Rel_change_undrawn_6 1.000     
Rel_change_undrawn_12 -0.004 1.000    

Rel_change_commit_3 0.003 0.000 1.000   

Rel_change_commit_6 0.006 0.007 0.684 1.000  
Rel_change_commit_12 0.005 0.012 0.546 0.714 1.000 
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