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Abstract. We define a switched behavioral system as a finite bank of linear differential behav-
iors, together with some “gluing conditions” relating the system variables and their derivatives before
and after each switching instant. The behaviors of the switched system do not necessarily share the
same state space, differently from the classical state-space setting. We present a sufficient condition
for the existence of a switched Lyapunov function for two scalar switched behavioral systems, and
formulas to compute it. Instrumental in our results is the notion of positive-realness of a rational
function associated with the polynomials describing the system.
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1. Introduction. In [4] we defined a switched behavioral system as a finite
bank of linear differential behaviors, together with some “gluing conditions” relating
the system variables and their derivatives before and after each switching instant.
The behaviors of the switched system do not necessarily share the same state space,
differently from the classical state-space setting. We also proved that the existence of a
common Lyapunov function guarantees stability, and we gave a sufficient condition for
the existence of such a functional for two behaviors with equal state-space dimension.
Instrumental in our results was the notion of positive-realness (see [7]), which is also
used, albeit only implicitly, in some classical work on switched systems, see [5].

In this paper we extend the results of [4] to scalar switched behaviors of different
order. After a brief review of [4], in section 3 we present a sufficient condition for the
existence of a switched Lyapunov function for two scalar switched behavioral systems.
The conclusions are gathered in section 4. The notation and some basic notions of
behavioral system theory are summarized in an Appendix at the end of the paper.

2. Background material. A switched behavior is a set of trajectories produced
by a switching structure.

Definition 2.1. A switching structure Σ is a quadruple Σ = {P,F ,S,G} where:
• P = {1, . . . , N} ⊂ N is the set of indices;
• F = (B1, . . . ,BN ), with Bj ∈ Lw for j ∈ P, is the bank of behaviors;
• S = {s : R→ P : s is piecewise constant and right-continuous} is the set of

admissible switching signals; and
• G = {((k, `), G+

k,`(ξ), G
−
k,`(ξ)) | (G+

k,`(ξ), G
−
k,`(ξ)) ∈ (R[ξ]gk,`×w)2 and (k, `) ∈

P × P, k 6= `} is the set of gluing conditions.
For a given s ∈ S, the set of switching instants with respect to s is Ts := {t ∈
R | limτ↗t s(τ) 6= s(t)} = {t1, t2, . . . } where ti < ti+1. In the following, we define
f(t−) := limτ↗t f(τ) and f(t+) := limτ↘t f(τ).

Definition 2.2. Let Σ = (P,F ,S,G) be a switching structure. For a given
s ∈ S, the s-switched behavior Bs with respect to Σ is the set of trajectories satisfying
the following conditions:
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1. for all ti, ti+1 ∈ Ts, there exists Bk, k ∈ P such that w|[ti,ti+1)
∈ Bk|[ti,ti+1)

;

2. w satisfies the gluing conditions G at the switching instants:

(G+
s(ti−1),s(ti)

(
d

dt
))w(t+i ) = (G−s(ti−1),s(ti)

(
d

dt
))w(t−i ) for each ti ∈ Ts.

The switched behavior BΣ of Σ is defined by BΣ :=
⋃
s∈S Bs. A switching structure

Σ is stable if limt→∞ w(t) = 0 for all w ∈ BΣ. In [4] we carried out a Lyapunov
stability analysis of switched structures using the calculus of quadratic differential
forms (QDFs, see [6]), which we now introduce.

Let Rw×w
s [ζ, η] := {Φ(ζ, η) ∈ Rw×w[ζ, η] : Φ(ζ, η) = Φ(η, ζ)>} denote the set

of symmetric real two-variable w × w polynomial matrices. Φ ∈ Rw×w
s [ζ, η] has order

L if Φ(ζ, η) =
∑L
k,`=0 Φk,`ζ

kη` where Φk,L = ΦL,k 6= 0 for some k. The QDF QΦ

associated with Φ ∈ Rw×w
s [ζ, η] is defined as

QΦ : C∞(R,Rw) −→ C∞(R,R)

w 7→ QΦ(w) =
∑
k,`

(
dk

dtk
w)>Φk,`

d`

dt`
w .

The order of a quadratic differential form QΦ is the order of the associated matrix
Φ(ζ, η). Note that Φ(ζ, η) can be written as Φ(ζ, η) = Sw

L(ζ)>Φ̃ Sw
L(η), where L is

the order of Φ(ζ, η), Sw
L(ξ)> :=

[
Iw ζIw · · · ξLIw

]
, and Φ̃ ∈ RLw×Lw is the coefficient

matrix of Φ.

We say that a QDF QΦ is nonnegative along B, denoted QΦ

B
≥ 0, if (QΦ(w))(t) ≥

0 for all w ∈ B and t ∈ R. If a QDF QΦ is nonnegative for every trajectory in
C∞(R,Rw) we write QΦ ≥ 0 and say that Φ (or QΦ) is nonnegative definite. Note

that Φ is nonnegative definite if and only if Φ̃ ≥ 0. We say that QΦ is positive along

B, denoted by QΦ

B
> 0, if QΦ

B
≥ 0 and QΦ(w) ≡ 0 with w ∈ B implies that w ≡ 0. A

QDF is positive definite if it is positive along C∞(R,Rw); this happens if and only if

Φ̃ > 0. We define QΦ

B
< 0, Φ < 0, etc. accordingly.

A Lyapunov function for a behavior B ∈ Lw is defined as a QDF QΦ such that

QΦ

B
≥ 0 and d

dtQΦ

B
< 0, where d

dtQΦ denotes the QDF that maps w ∈ C∞(R,Rw)

to d
dt (QΦw). We call QΦ a common Lyapunov function for F = (B1,B2, . . . ,BN ) if

it is a Lyapunov function for every Bj , j = 1, . . . , N . The main result of [4] is the
following (see Theorems 9 and 10, and Corollary 12 therein).

Theorem 2.3. Let Σ =
(
{1, 2},

(
ker p1( ddt ), ker p2( ddt )

)
,S,G

)
be a switching

structure where p1, p2 are Hurwitz polynomials of degree n and

G =


(k, `),

 1
...

ξn−1

 ,
 1

...
ξn−1


 , k 6= ` ∈ P

 . (2.1)

If p2p1 is strictly positive real, then there exists a common Lyapunov function for F , and

consequently Σ is stable. If p2
p1

is strictly positive real, a common Lyapunov function

can be computed as follows. Define Φ(ζ, η) := p1(ζ)p2(η) + p1(η)p2(ζ); then there
exists f ∈ R[ξ] anti-Hurwitz such that f(ξ)f(−ξ) := p1(ξ)p2(−ξ) +p1(−ξ)p2(ξ). Let

V (ζ, η) :=
Φ(ζ, η)− f(ζ)f(η)

ζ + η
; (2.2)

then V ∈ Rs[ζ, η], and QV is a common Lyapunov function of order n− 1 for Σ.
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3. Main result. It is a standard result in the theory of positive-real functions
(see Th. 5.10 p. 92 of [7]) that if p2

p1
is positive real and deg(p1) 6= deg(p2), then

deg(p2) = deg(p1) − 1. We assume that this is the case, and moreover we assume

that p1 and p2 are monic, and we set p2(ξ) =:
∑n−1
j=0 p2,jξ

j . Given Bi := ker p( ddt ),
i = 1, 2, we define a switched behavior as in Def. 2.2, with gluing conditions:

(
G+

2,1(ξ), G−2,1(ξ)
)

:=




1
...

ξn−2

ξn−1

 ,


1
...

ξn−2

−p2,0 − . . .− p2,n−2ξ
n−2




(
G+

1,2(ξ), G−1,2(ξ)
)

:=


 1

...
ξn−2

 ,
 1

...
ξn−2


 . (3.1)

For a switch from B2 to B1, in order to obtain the “initial conditions” uniquely by
specifying w ∈ B1, the (n−1)-th derivative of w after the switching instant needs to be
defined; the gluing conditions specify that this is done compatibly with the fact that

since w ∈ B2 before the switch, dn−1

dtn−1w = −p2,0w − . . .− p2,n−2
dn−2

dtn−2w. For a switch
from B1 to B2, we project the vector of derivatives characteristic of a trajectory w ∈ B1

down onto the smaller vector of derivatives characteristic of a trajectory w ∈ B2. Note
that these gluing conditions guarantee that the corresponding trajectory is as smooth
as possible.

In the following we consider the two-variable polynomial V (ζ, η) defined by (2.2)
together with the associated polynomial

V ′(ζ, η) := V (ζ, η) mod p2 , (3.2)

the canonical representative of V (ζ, η) modulo ker p2

(
d
dt

)
, see p. 1716 of [6]. Note

that since deg(p1) = n and deg(p2) = n− 1, the highest power of ζ and η in V (ζ, η)
is n− 1, and in V ′(ζ, η) it is n− 2. We now define a functional QΛ by

QΛ :=

{
QV if B1 is active;
QV ′ if B2 is active .

(3.3)

In the following we show that QΛ is a switched Lyapunov function (see section III.B of
[2]), i.e. QV and QV ′ are Lyapunov functions for B and B′, respectively, and moreover
QΛ does not increase along the trajectories of BΣ; we begin with the following result.

Lemma 3.1. Define V, V ′ by (2.2), (3.2); then QV , QV ′ ≥ 0 and d
dtQV

B1

< 0,

d
dtQV ′

B2

< 0.
Proof. The first part of the claim follows from the same argument used in the

proof of Theorem 10 of [4]. To prove the second part, use the calculus of QDFs to
verify that the derivative of QΨ′ along B2 is induced by the two-variable polynomial
−f ′(ζ)f ′(η), with f ′ := f mod p2, the remainder in the Euclidean division of f by
p2. Note that GCD(f ′, p2) = 1, since if f ′ and p2 would have a common root, then
also f and p2 would have the same root, and since one is anti-Hurwitz and the other
Hurwitz, this is impossible. This yields the claim.

We now show that in a switch from B1 to B2 the value of QΛ does not increase.
Lemma 3.2. Let w ∈ BΣ, with w|[ti−1,ti)

∈ B1|[ti−1,ti)
, and w|[ti,ti+1)

∈ B2|[ti,ti+1)
.

Then QV (w)(t−i ) ≥ QV ′(w)(ti).
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Proof. Define v :=

[
v1

v2

]
, where v>1 :=

[
w d

dtw . . . dn−2

dtn−2w
]>

and v2 :=

dn−1

dtn−1w. If w ∈ B1, then QV (w)(t) = v(t)>Ṽ v(t). Moreover, from the gluing condi-

tions it follows that if w ∈ B2, QV ′(w)(t) = v1(t)>
[
In−1 p>2

]
Ṽ

[
In−1

p2

]
v1(t), where

p2 :=
[
−p2,0 −p2,1 · · · −p2,n−2

]
∈ R1×(n−1) . (3.4)

Now partition Ṽ accordingly with the partition of v; since QV is continuous, it holds
that limt↗ti QV (w)(ti)−QV ′(w)(ti) = QV (w)(ti)−QV ′(w)(ti) equals

[
v1(ti)

> v2(ti)
>] [−p>2 Ṽ22p2 − p>2 Ṽ

>
12 − Ṽ12p2 Ṽ12

Ṽ >12 Ṽ22

]
︸ ︷︷ ︸

=:∆̃V

[
v1(ti)
v2(ti)

]
.

Since

[
v1(ti)
v2(ti)

]
is arbitrary, we need to prove that ∆̃V ≥ 0. Note that

[
In−1 p>2

0 1

]
∆̃V

[
In−1 0
p2 1

]
=

[
0(n−1)×(n−1) Ṽ12 + p>2 Ṽ22

Ṽ >12 + Ṽ22p2 Ṽ22

]
. (3.5)

It follows from (2.2) that Ṽ22 = 1 > 0; taking the Schur complement of Ṽ22 in

(3.5) yields

[
−
(
Ṽ12 + p>2 Ṽ22

)
Ṽ −1

22

(
Ṽ >12 + Ṽ22p2

)
0(n−1)×1

01×(n−1) Ṽ22

]
. To conclude the proof,

multiply both sides of (2.2) by ζ + η, and equate the highest powers of ζ and η on

the left- and on the right-hand side. It follows that the last row of Ṽ equals p2, and
consequently Ṽ >12 = p2; consequently Ṽ >12 + Ṽ22p2 = 0. The claim is proved.

Finally, we prove that in a switch from B2 to B1 the value of QΛ remains the
same.

Lemma 3.3. Let w ∈ BΣ, with w|[ti−1,ti)
∈ B2|[ti−1,ti)

, and w|[ti,ti+1)
∈ B1|[ti,ti+1)

.

Then QV ′(w)(t+i ) = QV (w)(ti).
Proof. Since QV ′ is continuous, limt↗ti QV ′(w)(ti) = QV ′(w)(ti). Moreover,

QV ′(w)(ti) = v1(ti)
>Ṽ ′v1(ti) = v1(ti)

> [In−1 p>2
]
Ṽ

[
In−1

p2

]
v1(ti), with p2 defined

by (3.4). Due to the definition of gluing conditions, the last expression equals the
value of QV after the switch. This concludes the proof.

We can now prove the main result of this section.
Theorem 3.4. Let Σ =

(
{1, 2},

(
ker p1( ddt ), ker p2( ddt )

)
,S,G

)
be a switching

structure where p1, p2 are Hurwitz polynomials with deg(p1) =: n, deg(p2) = n − 1,
and the gluing conditions are as in (3.1). If p2

p1
is strictly positive real, then the

functional QΛ defined as in (3.3) is a switched Lyapunov function for the switched
system BΣ, and consequently BΣ is asymptotically stable.

Proof. It is easy to see that QΛ is continuous everywhere except (possibly) at the
switching times, and non-increasing from one switching time to the next (Lemmas
3.1, 3.2 and 3.3). Moreover, the value of QΛ in an interval [ti, ti+1) is bounded from
above by its value at ti. We can now apply Th. 4.1 of [8] to conclude the validity of
the claim of the Theorem.
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4. Conclusions. Together with [4], the results presented in this paper show
that for behavioral switched systems consisting of two behaviors ker p1

(
d
dt

)
and

ker p1

(
d
dt

)
with gluing conditions such as those considered in Theorems 2.3 and 3.4,

the positive-realness of p2
p1

is a sufficient condition for the stability of the switched
behavior. Moreover, in this paper we have also shown how a switched Lyapunov
function can be constructed from p1 and p2.

Notation and review of behavioral system theory. The space of real vectors
with n components is denoted by Rn, and the space of n × m real matrices by Rm×n.
The ring of polynomials with real coefficients in the indeterminate ξ is denoted by
R[ξ]; the ring of two-variable polynomials with real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. Rn×m[ξ] is the space of n× m polynomial matrices in ξ,
and the space of n× m polynomial matrices in ζ and η is denoted by Rn×m[ζ, η].
C∞(R,Rw) is the set of infinitely-differentiable (smooth) functions from R to Rw.

We call B ⊆ C∞(R,Rw) a linear time-invariant differential behavior if B is the set of
solutions of a finite system of constant-coefficient differential equations, i.e., if there
exists a polynomial matrix R ∈ Rg×w[ξ] such that B = {w ∈ C∞(R,Rw) | R( ddt )w =

0} = ker R( ddt ). If B is represented by R( ddt )w = 0, then we call R a kernel
representation of B. We denote with Lw the set of all linear time-invariant differential
behaviors with w variables.

A polynomial p ∈ R[ξ] is Hurwitz if its roots are all in the open left half-plane.
A rational function g is strictly positive real if: g has no poles s with <(s) ≥ 0;
<(g(jω)) > 0 for all ω ≥ 0; and g(∞) > 0, or limω→∞ ω2<(g(jω)) > 0.
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