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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

SCHOOL OF MATHEMATICS

Doctor of Philosophy

MATHEMATICAL STUDIES OF CONSERVATION AND EXTINCTION IN

INHOMOGENEOUS ENVIRONMENTS

by Vasthi Alonso Chávez

Supervised by

T. J. Sluckin, G. Richardson and C. P. Doncaster

A fragmented ecosystem contains communities of organisms that live in fragmented habi-
tats. Understanding the way biological processes such as reproduction and dispersal over
the fragmented habitats take place constitutes a major challenge in spatial ecology. In
this thesis we discuss a number of mathematical models of density-dependent popula-
tions in inhomogeneous environments presenting growth, decay and diffusion amongst
woodland patches of variable potential for reproductive success. These models include
one- and two-dimensional analyses of single population systems in fragmented environ-
ments. We investigate and compute effective properties for single patch systems in one
dimension, linking ecological features with landscape structure and size. A mathemat-
ical analysis of potential impacts on spread rates due to the behaviour of individuals
in the population is then developed. For the analysis of the population dispersal be-
tween areas of plentiful resources and areas of scarce resources, we introduce a novel
development that models individuals hazard sensitivity when outside plentiful regions.
This sensitivity is modelled by introducing a term called dendrotaxis that generates a
dispersal gradient, resulting in realistically low migration between regions of plentiful
resources. Numerical methods and semi-analytic results yield maximum patch separa-
tions for one and two dimensional systems and show that the velocity of spread depends
on inter-patch distances and patch geometries. By introducing Allee effects (i.e., inverse
density-dependent responses to the difficulty of finding mates at low density) over the
population growth function, we find that dispersal is slowed down when combined with
hazard sensitivity. In the final Chapter we sumarise the results of the previous chapters,
concluding that the work performed in this thesis complements and enriches the current
mathematical models of movement behaviour.

http://www.soton.ac.uk
http://www.southampton.ac.uk/about/academicschools/esm.shtml
http://www.southampton.ac.uk/maths/
mailto:va1w07@soton.ac.uk




Contents

DECLARATION OF AUTHORSHIP xiii

Acknowledgements xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Biological context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Ecology and ecosystems . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Fragmented ecosystems . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Ecological concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Metapopulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Standard continuous population models 15

2.1 Constant population growth . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Logistic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Reaction-diffusion equations . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Spatially structured models . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Interface conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Taxis and dendrotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Problem analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Transient analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.2 Stationary state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.3 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.1 General review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.1.1 Biological models . . . . . . . . . . . . . . . . . . . . . . 25

2.8.1.2 Theoretical models . . . . . . . . . . . . . . . . . . . . . . 27

2.8.2 Continuum models using pde’s . . . . . . . . . . . . . . . . . . . . 29

2.8.2.1 A non-diffusive model . . . . . . . . . . . . . . . . . . . . 29

2.8.2.2 Early models . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.2.3 Single patch models with logistic growth and diffusion . . 31

2.8.3 Travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.3.1 Periodic environments with travelling waves . . . . . . . 33

2.8.4 Models with Allee effect . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.5 Models with generalised flux terms . . . . . . . . . . . . . . . . . . 36

v



vi CONTENTS

2.8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.7 Other reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 One-dimensional population models 41

3.1 Semi-infinite domain with absorbing boundaries . . . . . . . . . . . . . . . 42

3.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Model non-dimensionalisation . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Analytic solution for the stationary state . . . . . . . . . . . . . . 46

3.1.3.1 Stationary state analysis . . . . . . . . . . . . . . . . . . 47

3.1.4 Approximate analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4.2 Solution matching . . . . . . . . . . . . . . . . . . . . . . 52

3.1.5 Comparison between exact and approximate solutions . . . . . . . 54

3.1.5.1 Approximations for x close to zero . . . . . . . . . . . . 54

3.1.5.2 Approximations for x >> 1 . . . . . . . . . . . . . . . . 56

3.1.6 Organism current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.7 Different matching points . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.8 Individual loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 A single finite patch with absorbing boundaries . . . . . . . . . . . . . . . 62

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Early time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3 Critical patch size . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.4 Stationary state analyses for a patch with absorbing boundaries . 70

3.2.4.1 Patch limit close to the CPS . . . . . . . . . . . . . . . . 71

3.2.5 Limit for patches much larger than the CPS . . . . . . . . . . . . . 74

3.2.5.1 Solution for region A . . . . . . . . . . . . . . . . . . . . 74

3.2.5.2 Solution for region B . . . . . . . . . . . . . . . . . . . . 75

3.2.5.3 Solution Matching . . . . . . . . . . . . . . . . . . . . . . 75

3.2.6 Carrying Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.6.1 Carrying capacity for L ≈ Lc . . . . . . . . . . . . . . . . 78

3.2.6.2 Carrying capacity for L >> Lc . . . . . . . . . . . . . . . 79

3.2.6.3 Total carrying capacity . . . . . . . . . . . . . . . . . . . 80

3.2.7 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.7.1 Current for a patch of size L ≈ Lc . . . . . . . . . . . . . 81

3.2.7.2 Current for a patch with L >> Lc . . . . . . . . . . . . . 82

3.2.8 Current comparison for differently sized patches . . . . . . . . . . 82

3.3 A single finite patch with permeable boundaries . . . . . . . . . . . . . . 84

3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.3 Eigenvalue problem solution . . . . . . . . . . . . . . . . . . . . . . 89

3.3.4 Stationary state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.4.1 Propagation velocities rates . . . . . . . . . . . . . . . . 91

3.3.4.2 Critical patch size . . . . . . . . . . . . . . . . . . . . . . 92

3.3.5 patch of CPS with permeable boundaries . . . . . . . . . . . . . . 93

3.3.6 Large patch with permeable boundaries . . . . . . . . . . . . . . . 95



CONTENTS vii

3.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 One-dimensional population models with dendrotaxis 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Biological discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Logistic growth model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Dendrotaxis function . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.3 Parameters analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.1 Gap crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.2 Time delay dependent on gap length . . . . . . . . . . . . . . . . . 120

4.5 Asymptotic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5.1 Population dynamics after crossing a gap . . . . . . . . . . . . . . 131

4.5.2 Gap crossing time analysis . . . . . . . . . . . . . . . . . . . . . . 134

4.5.3 Allee effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5.3.1 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . 139

4.5.3.2 Steady state analysis . . . . . . . . . . . . . . . . . . . . 140

4.5.3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . 145

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Two-dimensional population models with dendrotaxis 151

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Corridor habitats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Travelling waves in one- and two-dimensional homogeneous environments 154

5.3.1 Analytic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4 Numerical solution for travelling waves in corridors . . . . . . . . . . . . . 158

5.4.1 Mathematical problem . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4.2 Corridors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.4.3 Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Gap crossing numerical analysis in 2D . . . . . . . . . . . . . . . . . . . . 166

5.5.1 Gap crossing time . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6 Allee effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.7 Networks of corridors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.7.1 Short corridors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6 Discussion, Conclusions and Further Work 181

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A Semi-analytic analysis of corridors and gap crossing 189

A.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.2 Boundary integral method analysis . . . . . . . . . . . . . . . . . . . . . . 193

A.2.1 Problem context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.2.2 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 197



viii CONTENTS

A.2.3 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.2.4 Tikhonov regularisation . . . . . . . . . . . . . . . . . . . . . . . . 200

A.2.5 Solution for a line in one dimension . . . . . . . . . . . . . . . . . 201

A.3 Two-dimensional analysis of the solution . . . . . . . . . . . . . . . . . . 203

Bibliography 207



List of Figures

1.1 Ecological hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Fragmented ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Patch size, shape and distribution . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Carrying capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Metapopulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Homogeneous environment versus diffusing environment. . . . . . . . . . . 43

3.2 Semi-infinite domain of population n∗. . . . . . . . . . . . . . . . . . . . . 46

3.3 Analytic solution of semi-infinite domain. . . . . . . . . . . . . . . . . . . 50

3.4 Patching method for a semi-infinite system . . . . . . . . . . . . . . . . . 51

3.5 A patching solution for n(x) in a semi-infinite domain. . . . . . . . . . . . 54

3.6 Comparison of exact and patching solutions. . . . . . . . . . . . . . . . . . 55

3.7 Flux J(r) = −dn/dx for the matching and exact methods. . . . . . . . . . 58

3.8 Comparison of exact and different patching solutions. . . . . . . . . . . . 59

3.9 Comparison of exact and different patching fluxes. . . . . . . . . . . . . . 59

3.10 One-dimensional patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Population density solution for a patch . . . . . . . . . . . . . . . . . . . . 67

3.12 Effective growth rate for absorbing boundaries . . . . . . . . . . . . . . . 70

3.13 Population stationary state for L ≈ Lc . . . . . . . . . . . . . . . . . . . . 73

3.14 A large one-dimensional patch with absorbing boundaries . . . . . . . . . 74

3.15 Patching method solution for a single patch of size L >> π . . . . . . . . 78

3.16 Carrying capacity dependent on patch length . . . . . . . . . . . . . . . . 80

3.17 Carrying capacity and effective growth rate . . . . . . . . . . . . . . . . . 81

3.18 Population and current for an absorbing patch with L ≈ Lc . . . . . . . . 82

3.19 Population and current for an absorbing patch with L >> Lc . . . . . . . 83

3.20 Current comparison for patches of domain lengths L > Lc . . . . . . . . . 84

3.21 One-dimensional permeable patch . . . . . . . . . . . . . . . . . . . . . . . 87

3.22 Critical patch size for a leaky patch . . . . . . . . . . . . . . . . . . . . . 92

3.23 Patch of size close to π with permeable boundaries . . . . . . . . . . . . . 95

3.24 Population and current for a leaky patch . . . . . . . . . . . . . . . . . . . 98

3.25 Population dependent on the velocities rate . . . . . . . . . . . . . . . . . 99

3.26 Current dependent on the the velocities rate . . . . . . . . . . . . . . . . . 99

4.1 Summarised geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Diffusive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Dendrotaxis function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Dendrotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 A single patch with jump boundary conditions . . . . . . . . . . . . . . . 114

ix



x LIST OF FIGURES

4.6 General geometry for a one-dimensional system . . . . . . . . . . . . . . . 118

4.7 One-dimensional of two patches and a gap . . . . . . . . . . . . . . . . . . 118

4.8 One-dimensional two patches system with gap . . . . . . . . . . . . . . . . 119

4.9 Gap length variation on one-dimensional systems . . . . . . . . . . . . . . 120

4.10 Population dependent on gap length . . . . . . . . . . . . . . . . . . . . . 121

4.11 Elapsing time for gap crossing . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.12 Linear function fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.13 One-dimensional gap crossing . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.14 Population for x < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.15 Second patch dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.16 Linear function fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.17 Analytic results for gap crossing time . . . . . . . . . . . . . . . . . . . . . 137

4.18 Analytic vs. numeric results for gap crossing time . . . . . . . . . . . . . . 138

4.19 Allee effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.20 Stationary state solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.21 Steady state solution with Allee effect . . . . . . . . . . . . . . . . . . . . 143

4.22 Dependence of Lcrit on ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.23 One-dimensional system with Allee effect above the critical value . . . . . 146

4.24 One-dimensional system with weak Allee effect . . . . . . . . . . . . . . . 147

5.1 Diffusive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Travelling wavefront in 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Dispersion relationship for c(a) . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Two-dimensional system with corridor networks . . . . . . . . . . . . . . . 159

5.5 Two-dimensional geometry for a single tree corridor . . . . . . . . . . . . 160

5.6 Wave of advance in a corridor . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.7 Velocity vs. Corridor width . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8 Population dependent on corridor width . . . . . . . . . . . . . . . . . . . 165

5.9 Population dispersal on a junction . . . . . . . . . . . . . . . . . . . . . . 166

5.10 Population dependent on junction presence . . . . . . . . . . . . . . . . . 167

5.11 Two-dimensional geometry for two tree corridors . . . . . . . . . . . . . . 167

5.12 Two-dimensional patches system with a gap of size L = 10 . . . . . . . . . 169

5.13 Elapsing time for gap crossing . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.14 Linear function curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.15 Population density cross section . . . . . . . . . . . . . . . . . . . . . . . . 174

5.16 Population density solution with strong Allee effect . . . . . . . . . . . . . 175

5.17 Population density with a stationary state . . . . . . . . . . . . . . . . . . 176

5.18 Corridor dispersal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.1 Thin corridors geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.2 Summarised geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.3 Source Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.4 Numerical search of the function A(x0, t) . . . . . . . . . . . . . . . . . . . 197

A.5 Solution of the non-regularised A(x0) . . . . . . . . . . . . . . . . . . . . . 199

A.6 Solution of regularised A(x0) . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.7 Error of A(x0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.8 Two-dimensional domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



LIST OF FIGURES xi

A.9 Solution of regularised A(x0) . . . . . . . . . . . . . . . . . . . . . . . . . 205





DECLARATION OF AUTHORSHIP
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Chapter 1

Introduction

1.1 Motivation

An ecosystem can be defined as a spatial region which includes all the organisms which

interact with the physical environment. In these systems the flow of energy leads to the

exchange of materials between living structures and non-living factors such as water,

soil and air [1].

The study of how ecosystem dynamics change with their environment has become more

important in recent years. Many branches of science such as mathematics, biology,

statistics, engineering and physics have been used to investigate this area. The rele-

vance of studying ecosystems interactions with their environment becomes greater with

the increase and spread of environmental changes such as fragmentation of ecosystems.

However, accurate measurements of the factors determining the impact of environmental

changes on ecosystem dynamics, are difficult to obtain due to the number of elements

involved in these measurements. Mathematical models can provide a general panorama

of the dynamics of a particular system.

Studies of ecosystems usually focus on the fluxes of individuals, energy and matter inside

the ecosystem. The understanding and measurement of biological parameters, through

mathematical techniques, are the principal objectives of this thesis, concentrating in

particular on single population systems where individuals interact with each other and

1
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with their environment, which we take to be fragmented. In order to illustrate such

systems we consider the Asiatic red-bellied beautiful squirrel Callosciurus erythraeus as

our biological system of reference along this thesis. This is a species introduced into the

Argentinian pampas in 1974 that lives and disperses over a very fragmented habitat,

where patches of woodland constitute their habitat, while grassland areas are hazardous

regions for the species.

The basis for modelling ecosystems in this thesis are reaction-diffusion population mod-

els, a standard continuum approach to study population ecology. These types of models

are later extended to include some terms that aim to explain characteristics of frag-

mented ecosystems and populations not widely considered in population models.

Some of the ecosystem dynamic features in which we would like to focus throughout

this thesis are essential to understand populations behaviour and have been studied by

different authors throughout the years [2–15]. In this thesis we recreate some of these

results including methods and solutions which are developed in literature alike to gather

deeper understanding of these type of systems and their constraints. The study of the

constraints of these types of systems leads us to develop alternative and novel models

for animals moving through heterogeneous landscapes. These reveal new results and

provide new interpretations, analyses and methodologies to the standard results found in

literature. Finally, alternative, novel models and results needed to explain the dynamics

and constraints of these types of systems are investigated. These models and results

provide a novel insight to some properties found in individual populations constrained

to ecosystems presenting fragmentation, i.e., ecosystems that due to different factors

have been broken in two or more patches starting from a single homogeneous region

initially, increasing the alternatives to approach and understand these type of systems.

The results found in this thesis involve an extensive study of individual fluxes in one

and two-dimensional systems, and the study of individuals diffusing in fragmented or

broken environments. We analyse the population individuals movement between regions

of plentiful resources and regions with scarce-resources, as well as intrinsic biological

factors for populations inhabiting one and two-dimensional regions. We develop our

models on the basis of biological examples. For example, the analysis in Chapters 4
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and 5 is carried out with reference to the behaviour of the Asiatic red-bellied beautiful

squirrel Callosciurus erythraeus introduced in the Argentinian pampas.

1.2 Objectives

The objectives of this thesis are: a) To give a short introduction to population ecology,

explaining the basic conceptual ideas related to different types of ecosystems and in par-

ticular, of fragmented ecosystems from both, a biological perspective and a mathematical

one. b) To describe a set of concepts and quantities associated with populations living in

this type of habitat. c) To study one and two-dimensional models for fragmented ecosys-

tems. In doing so we find expressions that explain relevant biological quantities such

as carrying capacity, diffusion rates and gap crossing time, in one and two-dimensional

fragmented ecosystems. d) To provide a summary of the research achieved in this thesis

and analysed in related literature, determining the emerging problems and limitations

of the methods used to investigate the dynamics of these systems.

1.3 Biological context

1.3.1 Ecology and ecosystems

The word ecology originates from the Greek words oικoς, (oikos=household), and λoγoς

(logos=study) and is usually seen as a branch of biology. The term ecology was coined

in 1866 by the biologist Ernst Haeckel who defined it as the science that studies the

relationship of living organisms to the environment. In this context relationships include

interactions with the physical world as well as with members of the same and other

species [16]. The environment of an organism is everything that affects the organism

during its lifetime. The habitat of an organism is the space that the organism lives in

[17].

Individuals interact with the environment in the context of the ecosystem: eco- refers

to the environment, whilst -system refers to the interactions among all the parts of the
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ecosystem. Therefore, the region including all of the organisms which interact with the

physical environment, such that a flow of energy leads to the exchange of materials

between biotic or living and abiotic or non-living factors, is an ecosystem [1].

The different types of organisms that inhabit an ecosystem constitute the populations. A

population is a group of individuals of the same species that occupy a given area. Gener-

ally speaking, the populations of an ecosystem interact with each other in diverse ways.

The set of populations of different species living and interacting within an ecosystem

can be referred as a community [16].

Ecosystems, consisting of the biotic or pertaining to life, and abiotic or characterized by

the absence of life factors have many levels. These levels are shown schematically in figure

1.1. At the most basic level individuals interact with the environment. These individuals

form populations. Populations start interacting with each other to form communities.

Communities can be seen in a larger perspective which is called a landscape. A landscape

is an area of land or water composed of a patchwork of communities and ecosystems.

Figure 1.1: The hierarchy of ecological systems. Ecosystems show different levels ac-
cording to their structure. Sources: bywynyrardd.net, webshot.com, mintytrips.co.uk,

hebig.org and dailymail.co.uk

Beyond landscapes, biomes are encountered. A biome is a region dominated by the same

kind of ecosystems and climatic conditions (e.g. tundra, taiga, rainforest) [16].

A realm is the largest scale of biogeographic division of the earth’s surface. It represents

large areas where plants and animals develop in relative isolation. Over long periods of

time, they are then separated from one another by geological features, such as oceans,
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broad deserts, or high mountain ranges [18].

Finally, the largest and only complete ecosystem is the biosphere, which can be defined as

the layer about the Earth that sustains all of life. The interdependence of all ecosystems

makes it the largest ecosystem on Earth.

1.3.2 Fragmented ecosystems

A patchy or fragmented ecosystem is an ecological community constituted by those or-

ganisms who have a fragmented living habitat. By fragmentation we mean that a ho-

mogeneous habitat breaks up into several patches of habitat. This fragmentation is

exemplified in figure 1.2 where the original ecosystem established by the Pampas was

re-shaped into a fragmented arboreous area constituted by grassland areas and forested

regions.

There are a number of reasons why an ecosystem might be fragmented. Possible reasons

include: habitat invasion due to intrusion of foreign species, natural fragmentation due

to limited food, resources or geological processes and human activity such as land conver-

sion. Fragmented ecosystems differ from continuous ecosystems, given that population

Figure 1.2: Satellite image of Argentinian pampas at 34,43’S 59,10’W. The image
shows ecosystem fragmentation by land conversion (roads and forestation). Source:

Google Earth, February 7, 2011

dynamics change, due to the amount of available resources. In a fragmented ecosystem
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each patch has, more or less, independent dynamics depending on the amount of inter-

action between populations. This kind of dynamics leads to different behaviours, which

can have a positive or negative impact on the ecosystem.

In principle, fragmentation can be a natural phenomenon to which species have adapted.

However, in practice, human population growth and the ability of humans to change their

environment are the main causes of habitat fragmentation. This can affect biodiversity

in many ways. For example, it reduces the amount of available resources within a habitat

for plants and animals. As a consequence, the anhilation of some species and the retreat

of others into the habitat patches is generated. This process leads to an increase in

competition for the remaining resources. Fragmentation can also partition out problems.

For example, it can slow the spread of a disease inside an ecosystem. However, it can also

accommodate local extinction. In this case, whenever any fluctuation in the population

size is introduced, the population becomes more prone to extinction than it would be in

a homogeneous ecosystem.

1.3.3 Ecological concepts

Here we introduce a series of ecological concepts related to fragmented ecosystems, that

we take into account for the modelling interpretation and explanation of population

dynamics in the following chapters.

Patches are relatively homogeneous areas which have different structure and species

composition from their surroundings. Their variance in terms of size, composition, shape

and type can also affect the population dynamics. Shape, geometry and orientation

can determine the movement of the species inside the patch and level of connectivity

between them as shown in figure 1.3. They are usually confined to a lager complex

system of patches, which are generally separated by distinct boundaries. These varying

features affect patch dynamics and determine patch suitability as a habitat for plants

and animals. They also influence many ecological properties such as, wind flow, dispersal

and movement of animals [16].

Sensitivity to fragmentation changes from species to species, leaving the open question
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Distribution

Size

Shape

Figure 1.3: Patches vary in distribution, shape and size. These features determine
patch dynamics.

of species conservation: “How small a fragment can each species occupy successfully?”.

This question leads us to the definition of another concept: the critical patch size [19].

The critical patch size (CPS) is the minimum habitat size required for population per-

sistence. A population inhabiting a patch with size larger than that of the CPS will

persist and expand into the unoccupied habitat. However, if the fragment size is smaller

than the CPS, the population will die out [20]. This concept applies for all the species

within a patch. The CPS is influenced by many factors. For example, the CPS needed to

conserve populations of a species increases with isolation. This is because immigration

is restrained to the patch. Populations in more isolated areas must be larger to prevent

extinction before migration from these isolated areas to other patches can rescue the

population [18].

The carrying capacity of an ecosystem is the maximum population size of the species

of a population that an ecosystem can support as a sustainable community with the

available resources inside it, such as food, water and other necessities. As an example,

figure 1.4 shows how the environmental factors limit the population size inside it, and

this determines its carrying capacity [17].

When the population size is smaller than the carrying capacity, the population growth
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Figure 1.4: A number of environmental factors such as predation, availability of
space and food determine the number of organisms that can survive in a given space.

This is known as the carrying capacity of that area.

rate is positive. Conversely, if the population size is larger than the carrying capacity,

the population declines and the population growth rate, becomes negative. When the

population size reaches the carrying capacity the population growth stops and a stable

equilibrium of the population size is achieved. At the same time, if the population of

a species depends on its size, it is expected that this population will grow to reach its

carrying capacity.

When the size of the population increases, the per capita birth rate may decline to

maintain an equilibrium with the available resources. Equally, as the population size

increases, the per capita death rate may also increase due to competition for available

resources. The carrying capacity of an ecosystem is reached when the per capita growth

rate is equal to the per capita death rate implying that the effective population growth

rate is equal to zero. This indicates a close relation between the critical patch size and

the carrying capacity of the ecosystem given that, if the carrying capacity of a system

goes to zero as a function of the system size, the system attains its critical patch size.

As noted by Zollner [21], “real mice aren’t blind”, and real animals do perceive and

interact with their environment developing different behaviour in different type of habi-

tats. The behaviour of animals towards their environment may become very complex

since it can include overlapped features such as: learning mechanisms, memory, sexual

behaviour, orientation and perception. In this thesis, we do not want to leave this im-

portant feature of population dynamics on the side. Therefore, a term representing the
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individuals hazard sensitivity to inhospitable regions that we call dendrotaxis is studied

here.

1.3.4 Metapopulations

The term metapopulation has its origin in 1979 when Levins [22] proposed a model of

local populations distributed in an inhomogeneous environment. He proposed a model

with a number of habitat patches connected to each other via migration [23]. According

to Hanski [23], a leading ecologist in metapopulation studies, there are four conditions

to define a set of local populations as a metapopulation. These are,

1. The suitable habitat must occur in discrete patches and be occupied by local

reproducing populations.

2. Even the largest populations must have a considerable risk of extinction.

3. The separation between habitat patches should be sufficiently small, in order to

admit recolonisation.

4. The individual dynamics of the local populations are not synchronized [16].

However this definition is very restrictive. Some modifications have been performed

since its appearance. In the following paragraphs we present a less restrictive definition

of metapopulation.

A fragmented ecosystem is constituted by a set of discrete suitable habitat patches and a

set of patches unsuitable for population persistence in the same geographical area. The

habitat patches occupied by populations of the same species will be called resources-

rich patches. The regions between suitable habitat, where population persistence is not

possible, will be called scarce-resource patches. The populations inhabiting the high-

quality patches, are either isolated from each other, or can be connected by a limited

exchange of individuals through migration, dispersal or human-mediated movement.

Such a collection of relatively isolated, but locally interacting populations of the same

species is called a metapopulation. This definition is based on work by Akçakaya et. al.,

and Smith et. al. [16, 24]). Figure 1.5 shows how metapopulations interact.
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In this sense, the systems we study along Chapters 4 and 5 constitute examples of

metapopulation systems.

Metapopulations operate on two different scales. On the local scale individuals move and

interact with each other. On the global scale the dynamics is driven by the interactions

of the local populations. These interactions occur when colonisation and dispersal take

place. Dispersal arises when a certain number of individuals move from a patch, across

habitat types, and settle in another suitable habitat patch. Colonisation on the other

hand, is the process where the individuals move from occupied patches, to unoccupied

ones, to form new local populations. As all the local populations have a probability

of extinction, the long-term persistence of the metapopulation depends on the recoloni-

sation. Dispersal and colonisation of single population species are extensively studied

concepts in this thesis and will be used subsequently.

One example of a natural metapopulation is a species inhabiting a confined fresh water

ecosystem; such as a pond or a lake. One may think that these types of habitat are

isolated. However, plant and invertebrate populations belonging to these ecosystem may

be extensively interconnected. Birds that travel from a confined freshwater ecosystem

to another may transport invertebrates and/or plants which may flourish in the new

habitat [24]. Examples of induced metapopulation includes large neo-tropical cats such

as the jaguar (Panthera onca) and puma (Puma concolor). These species live in areas

of tropical rainforest which are frequently transformed into farm land. This results in

the fragmentation of the ecosystem and the creation of discrete patches of habitat. The

areas converted into farm land transform into scarce-resources patches. Nevertheless

connectivity between the high quality patches is kept.

Another example of metapopulation is the recently introduced Asiatic red-bellied beau-

tiful squirrel Callosciurus erythraeus into the Argentinian Pampas. This species will

be our reference species along the thesis and therefore is investigated in more detail in

further chapters.

The general focus in this thesis is based on the population of a single species. Therefore

the concepts of a patch, critical patch size, carrying capacity, directed movement and

metapopulation will be applied to single species populations. The aim is to discover
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Figure 1.5: A schematic of a metapopulation where populations of each patch are
connected by migration from patch to patch is shown. The filled ellipses indicate
occupied patches and the empty ellipses indicate unoccupied patches. The arrows show

the migration from one patch to another.

expressions to measure and quantify some of the parameters defined above. These

parameters will be used to model local extinction, dispersal and colonisation of habitat

fragments and global extinction in fragmented ecosystems.

1.4 Summary

This thesis focuses on population dynamics in fragmented ecosystem. It contains an

introduction to fragmented population ecology and one and two-dimensional systems

are investigated through analytic and numerical analyses.

We divide this report into 6 chapters as follows: Chapter 1 provides an introduction

with a summary of the contents of the thesis and explains the objectives and moti-

vation. It also contains a biological background explaining important concepts about

ecosystems and fragmented ecosystems. Concepts such as critical patch size, carrying

capacity, metapopulation, population growth rate, population death rate, diffusion coef-

ficients and dendrotaxis are defined. In Chapter 2 relevant population models studied in

the literature are discussed and analysed. We focus on the logistic model and modified

versions of it which are used throughout this thesis to explain the basic characteristics of

fragmented ecosystems. A relevant literature review that summarizes different models

developed for various subjects such as population models in inhomogeneous environ-
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ments, reaction-diffusion population models, and the spread of invading organisms is

treated in this chapter. A comparison between the research presented in the literature

and our findings is included.

Chapter 3 deals with the analysis and solutions of one-dimensional problems. Among

them a semi-infinite problem for an almost homogeneous ecosystem with specific bound-

ary conditions is solved. Single one-dimensional patch systems with specific boundary

conditions are also solved in this chapter. In chapter 4 we discuss a modified logistic

model with diffusion and dendrotaxis in one dimension. The model is analysed both

numerically and analytically. The results of this model are compared with experimen-

tal models analysed by Guichón et. al. [15]. In chapter 5 the modified logistic model

with diffusion and dendrotaxis discussed in Chapter 4 is analysed in two dimensions.

The model is mainly analysed numerically and analytical solutions for the system are

outlined.

The key results of the thesis are contained in Chapters 3, 4 and 5. In Chapter 3 the study

of carrying capacities and currents in single one-dimensional patches is an important

contribution for these type of systems because its study is fundamental for the study of

more complex system constituted by two or more patches. Once the carrying capacity

and individual flux in the length scale of a single patch are obtained, methods such

as homogenisation [10, 25] can be used to find the effective dynamics of more complex

systems; however, these methods and calculations are not discussed in this thesis. In

Chapters 4 and 5 the main contribution is the development of a new model for the study

of certain type of populations. In this model a term that accounts for the individual

sensitivity to hazardous areas is considered. The analysis of these systems provide a

different type of dynamics of the population that is examined in different situations,

giving very interesting results on velocities, diffusion and growth population rates that

depend on the spatial structure of the systems. These results suggest generic control

strategies for the spread of these type of populations.

Chapter 6 provides a summary of the work accomplished in this thesis, and presents

challenges for the future. In this chapter we discuss the results obtained and outline the

conclusions of this research. Finally, in Appendix I we provide the outline of a model for
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analytical studies and solutions for two-dimensional systems of corridors, which presents

alternative mathematical methods of solutions in these type of systems.





Chapter 2

Standard continuous population

models

In this chapter I introduce key concepts regarding the formulation, analysis and interpre-

tation of mathematical population modelling. A number of models used throughout the

years to mathematically explain the growth and dispersal of populations are considered

here. Firstly a model with constant growth rate introduced by Malthus is considered

[26]. We then add density dependence to the population growth to obtain and describe

the so called logistic model [27]. Thereafter, the logistic model is enhanced by intro-

ducing spatial diffusion yielding a reaction-diffusion model widely used in population

ecology literature [5, 8, 28, 29]. Characteristics such as the attraction or repulsion to

some areas of the system, generally called taxis, are also introduced [5, 29]. Finally, we

non-dimensionalise.

2.1 Constant population growth

The simplest population dynamics model to be considered is a model with constant net

per capita growth rate r. Let b be the per capita reproduction rate and d the per capita

mortality rate, then

r = b− d. (2.1.1)

15
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Considering linear growth, the population variation with time can be expressed by

dn

dt
= rn. (2.1.2)

In equation (2.1.2) n represents the population and t the time. No density-dependent

effects are considered. Therefore, b, d and r are constant. The solution for this equation

is

n(t) = n0e
rt, (2.1.3)

where n0 is the population at t = 0. This solution implies that, if r > 0, the population

grows exponentially without limit. Conversely, if r < 0, the population shrinks until it

disappears.

This type of population growth is called Malthusian growth, and (2.1.2) is called the

Malthusian equation in continuous time [26, 30], constituting the simplest minimal re-

producing population model. This model is fundamental to all population ecology. Un-

fortunately, this model ignores the fact that resources cannot keep pace with population

growth. Therefore, a better description of the population dynamics is required.

2.2 Logistic equation

In 1845 Verhulst modelled a self-limiting process now generally known as the continuous

logistic model [27, 31]. This model operates when a population becomes limited by its

environmental resources. It is the simplest model for population growth with density

dependence and it is written as follows;

dn

dt
= αn

(

1 − n

χ

)

, (2.2.1)

n represent the population per unit area, t is the time and χ the carrying capacity per

unit area (if the problem is solved for one-dimensional systems the carrying capacity
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and the population are measured in units of length instead of area). The modelling

assumption is that the per capita birth rate b(n) depends on the density of the popu-

lation (due to competition for resources), and becomes negative above some population

threshold, but there is no specific time dependence. If the net per capita reproduction

rate depends only on the population then

r(n) = b(n) − d(n). (2.2.2)

In this framework the birth rate b(n) and the death rate d(n) are functions of the pop-

ulation number. It is expected that as the population increase, the density population

will decrease. This means that the birth rate decrease because of a lack of resources.

Equally, it is expected that the death rate increases because of competition for these

resources. The simplest way to find the function r(n) is to expand b(n) and d(n) in a

Taylor expansion around zero. Therefore,

b(n) = b0 − kbn, (2.2.3)

and

d(n) = d0 + kdn. (2.2.4)

As the birth rate cannot go negative, the threshold χ at which the net birth rate becomes

negative is defined as the carrying capacity of the environment in question [32].

Using the expressions for the functions b(n) and d(n), the complete expression for the

growth rate of the logistic population model can be written,

dn

dt
= r(n)n = (b(n) − d(n))n = [(b0 − kbn) − (d0 + kdn)]n, (2.2.5)

which simplified gives

dn

dt
= (b0 − d0)n− (kb + kd)n2. (2.2.6)
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Defining

α = b0 − d0, (2.2.7)

where b0 ≥ d0, and

χ =
b0 − d0
kb + kd

, (2.2.8)

the resulting equation for the population dynamics is written:

dn

dt
= αn

(

1 − n

χ

)

. (2.2.9)

This is the continuous logistic equation that describes the dynamics where, if the popu-

lation density increases, the death rate increases until the threshold χ is reached. Here

χ represents the carrying capacity of the system, α is the net rate of increase per capita

(i. e., before competition), so αn is the rate of population increase before competition.

This term governs the dynamics of the system at early times. The second term
αn2

χ
rep-

resents the rate of population growth proportional to the amount of available resources

in the presence of intra-species interference. It models the exploitation and competition

of the individuals of population n for limited resources. This term becomes important at

later time, when the population has grown enough for the individuals to start interfering

with each other.

2.3 Reaction-diffusion equations

Reaction-diffusion equations arise in many fields of physics, engineering, chemistry, bi-

ology and ecology. These equations can be used to model a series of different types of

phenomena. For example, in the case of dispersive behaviour of populations it is simple

to think of the distribution of a population in terms of density functions.

Let us consider diffusion in space. If we have any surface S enclosing a volume V , the

general conservation equation says that the rate of change of mass or amount of material

in the volume V is equal to the mass or individual flux c through the surface S that
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encloses the volume V , plus the generated mass inside the volume [31],

∂

∂t

∫

V
n(x, t)dv = −

∫

S
J · ds +

∫

V
fdv. (2.3.1)

Here, J is the flux of mass and f is the source of mass. Applying the divergence theorem

to equation (2.3.1),
∫

V

[

∂n

∂t
+ ∇ · J− f(n,x, t)

]

dv = 0. (2.3.2)

Since V is an arbitrary volume, the integrand in equation (2.3.2) must be zero. This

results in the continuity equation

∂n

∂t
+ ∇ · J = f(n,x, t). (2.3.3)

For a given model we must specify f(n,x, t) and J. The form we choose for the terms

f and J , dictates the dynamics of the system.

The way a source function f is represented mathematically depends on the intrinsic

characteristics of each population. In particular in this thesis, we explore a couple of

mass source functions f , representing population growth or decay functions depending

on the reproduction and death rate of the population itself, as well as on environmental

factors.

The mass flux given by J in equation (2.3.3), is also investigated in the form of the

population individual flux in a given domain.

According to Fick’s law of diffusion, the amount of transport of matter n, or in this

thesis individuals of a population, in the x direction, perpendicular to a unit normal

area of the volume V , in a unit time, (i. e., the flux J) is proportional to the gradient

of the density of matter. Hence, J = −D∇n. The minus sign indicates that the matter

is transported from high to low densities [33]. In general, the diffusion coefficients may

depend on the spatial coordinates and the density of matter. Therefore,

D = D(n,x) (2.3.4)
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and the flux is given by,

J = −D(n, r)∇n(x, t) (2.3.5)

However, if D is taken to be a constant, independent of matter density and space then,

the term ∇ · (D∇n) = D∇2n and equation 2.3.3 is rewritten as,

∂n

∂t
= f + ∇ · (D∇n) = f + D∇2n. (2.3.6)

This type of diffusion is commonly referred as Fickian diffusion. If f represent for exam-

ple, the birth-death process given by a logistic growth and n represents the population

density we obtain the Fisher-Kolmogorov equation,

∂n

∂t
= αn

(

1 − n

χ

)

+ D∇2n, (2.3.7)

sometimes also called the Fisher-Skellam equation [2, 34]. This equation is the starting

point to explain the dynamics of many population models based on differential equations.

It describes a population that reproduces logistically and disperses randomly. Here n

represents the population per unit length, area or volume (depending on the system

dimension), α is the linear reproduction rate, and χ is the carrying capacity per unit

length, area or volume.

If f , on the other hand, only represents a death process, like for example, when a

population confronts adverse environmental conditions, we obtain a decaying population

in time that diffuses randomly,

∂n

∂t
= −α′n + D∇2n. (2.3.8)

Until now, we had only mentioned fluxes including diffusion exclusively. However, the

flux term J may vary with respect to the population spatial behaviour. For example, if

we consider that individuals movement take place in response to stimuli or taxis to its

environment the flux term J, changes accordingly [35–37]. In this thesis a directional

movement called dendrotaxis in response to spatial location of areas of plentiful resources

is considered for the modelling in the population flux J in Chapters 4 and 5 where it
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will be described extensively.

2.4 Spatially structured models

In Chapter 1 we established that the main focus of this work is to model, analyse

and interpret population dynamics in fragmented environments. This means that the

systems that we consider are heterogeneous. Different parts of the whole system obey

different equations of types (2.3.7),(2.3.8). The dynamics of the whole system depends

sensitively on the dynamics in the individual parts, and on the boundary conditions at

the interfaces between them. In the following chapters we analyse equations of this type

and the resulting global dynamics.

2.5 Interface conditions

In order to analyse the dynamics in a fragmented environment where different parts of

a system follow different type of behaviour, the interface conditions between different

regions are crucial for the understanding of the system dynamics. Here we shall always

require the continuity of the normal flux J · n between patches, i.e., that the number

of individuals leaving a certain type of region is equal to the number of individuals

entering a different contiguous region. To formulate the correct boundary conditions for

the population density, we consider various possibilities that will be addressed at the

right moment, according to the system under analysis.

2.6 Taxis and dendrotaxis

In Chapter 4, we introduce a term representing the individuals hazard sensitivity when

outside resource-rich regions called dendrotaxis. This sensitivity can be compared with

the measurement of the tendency of a group of particles, or in this case individuals, to

diffuse as a function of position as it occurs for example, in the chemotaxis, phototaxis

and thermotaxis [38]. The term taxis refers to the innate response on the behaviour
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of an organism due to a directional stimulus. Therefore the term dendrotaxis refers to

individuals that direct their movements towards patches of plentiful resources, avoiding

areas of scarce ones. This behaviour generates a gradient of the population dispersal,

affecting the way individuals disperse in a heterogeneous environment. A more detailed

description of how this term affects the dynamics of a system undergoing dendrotaxis is

provided in Chapter 4.

2.7 Transient, stationary state and linearisation analyses

of the general problem

The model equations we deal with in this thesis are non-linear partial differential equa-

tions (PDEs) based on reaction-diffusion systems. Non-linear PDEs are in general hard

to solve and their solution sets are difficult to analyse. This is the reason why non-linear

PDEs are often approximated with linear PDEs, and linear and non-linear ODEs (like

in the case of stationary state analyses). Sometimes the general solution of a PDE can

be discovered. However, for most of the problems of interest it is usually not necessary

to obtain it since the aim of the equation is to describe the dynamics of a model [39].

In this thesis, different methods to analyse and describe the dynamics of these equations

are introduced including the linearisation of the equations, the analysis of stationary

states and the numerical analysis of the full evolution of the PDEs.

2.7.1 Transient analysis

The transient analysis of a PDE takes place when the dynamics of the problem un-

der analysis is studied over time. In this thesis, this means that the dynamics of the

population change over space given by equations (2.3.7) and (2.3.8) is analysed over

time.

Since equation (2.3.7) is a non-linear PDE, the transient analysis of the models pre-

sented in this thesis is done numerically. Through numerical analysis of the transient

problem we study different characteristics of the dynamics of our system evolution over
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time. These characteristics include the solution and analysis of waves of advance, the

population movement across patches with different dynamical functions, the spatial ef-

fect over the population movement over time and the evolution of populations over time

in different habitat patches.

2.7.2 Stationary state

When the evolution over time of the population reaches an equilibrium, making the

changes of population over time negligible, then we can say that the population has

reached a stationary state where

dn

dt
= 0. (2.7.1)

In this case, the partial differential equations (2.3.7) and (2.3.8) transform into a non-

linear and a linear ODE respectively (in the one-dimensional case), making their analysis

more accessible. The stationary state equations analyses will allow us to study the

population behaviour at long times, once an equilibrium has been reached and the

population distribution over space is constant.

2.7.3 Linearisation

Partial differential equations that model the dynamics of biological systems are often

non-linear. However, the study of linear PDEs becomes important because many times

the solutions to non-linear systems, can be approximated by the solutions to associated

linear problems. Linearisation involves creating a linear approximation of a nonlinear

system that is valid about a given solution. We use this type of analysis to investigate

what is the evolution of a population close to a point in a given domain and time.

For example, assuming that the initial conditions for equation (2.3.7) are such that

n(x, t) is initially close to n(x, t) = 0 by supposing that n(x, t) = 0 + ǫn0(x, t), where ǫ

is an arbitrarily small positive quantity. We can substitute this into (2.3.7) to obtain

∂n0

∂t
= αn0 − ǫ

n2
0

χ
+ D∇2n0. (2.7.2)
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Taking the limit ǫ → 0 we obtain the linearisation of (2.3.7) at n(x, t) = 0,

∂n0

∂t
= αn0 + D∇2n0. (2.7.3)

Since n(x, t) = ǫn0(x, t), n0 satisfies the same boundary conditions as n and we can

solve the linearised problem, as we will see in the following chapters.

2.8 Literature review

In this section we present a review of the literature related to the study area of this

thesis: fragmented ecosystems. The review is divided in several subsections as follows:

Firstly, we present a number of approaches taken to model these type of ecosystems

including biological comparison and analysis of different mathematical modelling. Then,

we examine the literature on reaction-diffusion models, and also look at some models

that generalise this approach. Lastly, we make a link between the models studied in

the literature and those which we shall present in this thesis, emphasising both relevant

similarities and differences. The focus of this thesis is to describe single population

models. Therefore, we shall focus on single population models, and exclude the rather

larger literature involving interacting models of two or more species that is discussed for

example in [31].

2.8.1 General review

The dynamics of a population subject to movement in fragmented ecosystems can be

analysed in many different ways. The focus of the study of a particular aspect of the

dynamics then, gives birth to different models. These models can be either experimental,

based on the acquisition of biological data and its interpretation, or theoretical, based

on the general dynamics of the ecosystem with the aim of reproducing its behaviour.
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2.8.1.1 Biological models

In discussing ecological models, we note the importance of reconciling observation with

theory. Mathematically, plausible ecological models are relatively easy to formulate, but

do not always pass basic observational tests. For example, Delgado and Penteriani [40],

showed via radio-tracking data, that random walk models, that imply dispersal driven

by Fickian diffusion, do not predict accurately the spatial spread of the eagle owl Bubo

bubo, inhabiting heterogeneous systems. They discovered that random walk models,

compared with the radio-tracking data, severely underestimate the spatial spread of this

species.

On the other hand, Andow et. al. [41], described how reaction-diffusion models, applied

to a pair of populations inhabiting homogeneous environments predicted their velocity of

spread very accurately. They proved that the velocity of spread of the muskrat (Ondatra

zibethicus) and the small cabbage white butterfly (Pieris rapae) could be accurately

predicted using a logistic population growth and Fickian diffusion as a dispersal strategy.

These two examples show that different modelling strategies are neccesary to reproduce

the dynamics of different populations, building paths to focus modellers attention on

different aspects of the different types of biological systems. In the case of the study

of Delgado and Penteriani, for instance, they propose to integrate behavioural traits in

the population dispersal modelling. The inclusion of behavioural effects on population

dispersal, has recently received much more attention, as we will see in §2.8.5. Some

examples of behavioural studies are presented in the work of Zollner and Lima, on dis-

persal dynamics of the white-footed mice, (Peromyscus leucopus) [21, 42], the dispersal

of eastern chipmunks (Tamias striatus), grey squirrels (Sciurus carolinensis), and fox

squirrels (Sciurus niger) [43] in fragmented agricultural landscapes. They focus on the

measurement of perceptual range, that is the maximum distance from which an ani-

mal can perceive the presence of remote patches of habitat, noticing that the ability

of dispersal of a population depends on this factor. Their results emphasise the need

to introduce behavioural factors in the modelling of movement of these type of species

individuals across fragmented landscapes, like they do in [44]. Selonen and Hanski [45]

on the other hand, investigated by statistical sampling of radio-collared individuals, how
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the elements of a fragmented landscape, such as patches and corridor linking patches,

have different roles in the dispersal of individuals. They studied the role of connect-

ing woodland strips between woodland patches as possible dispersal corridors for the

Siberian flying squirrel. They also investigated the movement of the squirrels across

open areas. By data collection statistics, their results show that flying squirrels used

corridors and sometimes open areas for inter-patch movement. They also found that

individuals moved faster and more directly in open areas than in woodland regions, and

that the type of connection that a patch would have with other patches, such as open

areas or corridors, did not affect the will of the individuals to leave a patch.

These biological examples are presented here for two reasons: The first one is that, the

models studied in Chapter 4 and 5 have their biological basis on a squirrel species. These

papers then, provide some behavioural context to model the movement and dispersal of

these type of species in fragmented landscapes. The second one is that these models,

provide the justification to add behavioural factors in the continuous equation models

provided in this thesis. These factors are added in Chapter 4 in form of a term that

models the individuals attraction towards better environments.

The use of mathematical models, in particular models based on continuum partial dif-

ferential equations, can provide important insights and predictions for the dynamics of

ecosystems in general and fragmented environments in particular. Some times, simple

diffusion is sufficient to model the dispersal of certain populations, as it happens for the

muskrat Ondatra zibethicus and the small cabbage white butterfly Pieris rapae et. al.

[41]. However, to model the population dynamics of other species, it is necessary to add

other factors, such as the individuals behaviour towards their environment, as shown

in the examples provided in this section. In this thesis we try to incorporate a set of

different factors in the modelling of population dispersal in fragmented systems. In our

basic models we include key biological features (birth, death, diffusion) that are modelled

mathematically by reaction-diffusion equations introduced in Chapter 3. In Chapters 4

and 5 we introduce some behavioural factors. In particular we study the propensity to

drift towards a good environment by including an extra term to the equations.
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2.8.1.2 Theoretical models

In this section we present a set of mathematical models that describe different features

of population dynamics in fragmented ecosystems. Continuum models may describe

some aspects of the populations dynamics very well, but other characteristics are better

treated with a discrete description. The difficulty in analysing a certain population

may also determine the type of method taken to study it, and sometimes, not only

one, but several approaches are needed. This results in a diversity of ways to study

population dynamics in fragmented environments. Here, we outline a few approaches

based on discrete and stochastic models, lattices and integro-differential equations, while

we postpone the analysis of continuum reaction-diffusion models for the following section.

A key development occurred in 1953, when Kimura [46] developed the so-called the

“stepping stone model”. This model assumes that the individuals of a population over

an area are more or less distributed discretely forming clusters of colonies. This model

has been used in the field of population ecology as a reference. For instance, Durret

and Levin [47] described a couple of models based on discrete particle system models,

in which the space is represented by a grid of sites with a finite number of states where

a state might correspond to the presence or absence of an individual on a site, for

example. Their results obtained from studying single populations models indicate that,

when the probabilities of reproduction are small enough, the system always die out.

However, if the reproduction probabilities are large enough, an equilibrium state that

avoids extinction, appears.

Bevers and Flather [48], developed a probabilistic model based on reaction-diffusion

equations to describe the dispersal of a population in a fragmented system. They pro-

posed a map lattice for the population domain and assumed different growth functions

depending on the spatial variables and used it to determine relationships between shape

and persistence of population under Fickian diffusion.

Roques and Stoica [49] used nonlinear reaction and diffusion models applied to het-

erogeneous environments generated via stochastic processes to investigate species per-

sistence in fragmented environments. Subsequently, Roques and Chekroun [11], using
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reaction-diffusion equations, eigenvalue equations, and stochastic models, simulated the

phenomenon of harvesting in a population over a two-dimensional habitat. They inves-

tigated the consequences of fragmentation over harvesting populations. They discovered

that the harvesting allowance that a species can sustain maintaining a constant harvest-

ing rate over time, results larger for aggregated regions than for dispersed ones.

In other approaches, Kot et. al. [7] used detailed dispersal data and population growth

dynamics to construct integro-differential equations describing population dynamics of

animal and plant populations, resulting on explicit formulas for the speed of invasion of

populations dependent on their distribution.

Fagan et. al. [50] analysed how the size of a patch in a fragmented landscape affects the

dynamics of a forager population using integro-differential equations. They discovered

that, the way that populations make use of their habitat is crucial to determine the

stability of the populations, and established critical patch sizes for population persistence

and stable equilibria. Latore et. al. [20] also developed an integro-differential model to

predict critical patch size for seasonal plant population living in a finite homogeneous

habitat. Using previous models [4, 51] as the basis of their model, they found that the

critical patch size of seasonal plant populations depends on the population growth rate

and on dispersal characteristics.

Much of this thesis addresses problems raised by Guichón and Doncaster [15]. These

authors used spatial explicit stochastic models to predict control strategies for the spread

of an invasive species: the Asiatic red-bellied beautiful squirrel Callosciurus erythraeus.

Their model is based on empirical data extracted from the squirrel location in Argentina,

as well as from other published sources [52–57]. They found that a good control strategy

for this invasive species, consists on the extraction of individuals from the now established

habitat, in order to stop their reproduction and spread.

Other authors have also investigated fragmentation effects over populations by use of ob-

servational methods [58], lattices and stochastic approaches [59–61], integro-differential

equations [62–64] and other statistical methods [65–69]. Here however, we restrict the

review to continuum reaction-diffusion approaches, that is the main direction of this

thesis.
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2.8.2 Continuum models using pde’s

In order to model accurately a population growth and dispersal over a fragmented envi-

ronment, the main biological features that need to be accounted for are: population

reproduction and death rates, dispersal, intra-species and inter-species competition,

carrying capacities, habitat fragmentation, and directed movement. Reaction-diffusion

models in general take account of some of these features by formulating partial differen-

tial equations that depend on the location of the individuals over space and time. For

example, the dynamics of a single population system can be modelled by the presence

of a population density (n(x, t)), and its interaction with the environment in space and

time. The rate of change of population density can be described by

∂n

∂t
= births− deaths + migration (2.8.1)

This simple conservation equation underlies mathematical modelling of populations us-

ing partial differential equations. In the following we discuss examples of such models in-

cluding: a non-diffusive model, early reaction-diffusion models, reaction-diffusion models

in single domains, reaction-diffusion models in heterogeneous domains, and generalised

reaction-diffusion models.

2.8.2.1 A non-diffusive model

In 1971, Levins [70] built a model for coexistence and exclusion of different species in a

fragmented environment. In this model, Levins assumes a logistic growth function in the

inhabitable regions, with a linear extinction rate outside the good habitat. Based only

on these assumptions, Levins finds that the competition among species is directly related

to their local extinction and migration rates. The model lacks diffusive terms describing

individual migration. However, it provides a basis for models of higher complexity, like

those we use in Chapters 3-5. For instance, in these models we assume, following Levins

model, the existence of logistic growth functions in the resource-rich regions and linear

decay in resource-scarce regions. In addition to these terms, our models will include
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factors related to the dispersal of individuals, boundary conditions and behavioural

features.

2.8.2.2 Early models

The origins of the study of population growth and dispersal dates back to the 1930s.

The first mathematical paper describing the population spread in a homogeneous one-

dimensional domain is due to Fisher, Kolmogorov et. al. and Skellman [2, 34, 51]. Fisher

discussed the problem of a population distributed in a line where a mutant gene grows

following a logistic law. The population disperses with a fixed diffusion constant in a

one dimensional domain. For this problem Fisher proposed a one dimensional equation

given by:

∂u

∂t
=

∂2u

∂x2
+ u(1 − u). (2.8.2)

Equation (2.8.2) describes the nonlinear evolution of a population in a one-dimensional

habitat. Around the same time period Kolmogorov et. al [34] studied a more gen-

eral problem using parabolic partial differential equations describing simultaneously the

growth and diffusion processes.

Fisher and Kolmogorov independently discovered that equation (2.8.2) has an infinite

number of travelling wave solutions. Since then, equation (2.8.2) have been the basis

of many population models including those we shall use. Equation (2.8.2) is studied in

Chapters 3, and is the basis of the model studied in Chapters 4 and 5.

Later on, Skellam [51] developed a model for the dispersal of living organisms using

random-walk theory. He discovered that the survival of a population that moves within

its habitat is related to their habitat size. As a result, he proposed that if the area

of an isolated terrestrial habitat is smaller that a certain critical size, the population

cannot survive. This study initiated the research on critical patch size. In this context,

Kierstead and Slobodkin [4] developed a model based on planktonic patchiness studying

a population model with diffusion and linear growth. In their model they assume a

population inhabiting a region of fixed size with lethal surrounding areas. In this work,

Kierstead and Slobodkin found a measure for the critical patch size of populations in one
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dimension given by Lc = 2.4048
√

D
α where D is the diffusivity constant and α is the net

growth rate in the patch. From their discovery, these type of models received the name

of KISS models, where KISS is an acronym for the discoverers of it (Kierstead, Slobodkin

and Skellam). The ideas implemented by Kierstead, Slobodkin and Skellam are one of

the fundamental pieces needed to construct the theory of fragmented populations and

they are examined and extended in Chapter 3.

2.8.2.3 Single patch models with logistic growth and diffusion

Single patch systems with different type of boundary conditions are the basis required

to study fragmented systems, and provide the principal piece of a heterogeneous envi-

ronment, i.e. a fragment. Therefore, many have investigated these apparently simple

systems over the years. In Chapter 3 we also investigate single patch dynamics.

In 1994 Holmes et. al. [71] summarized a number of ecological models using partial

differential equations to discuss dispersal, ecological invasions, the effect of habitat ge-

ometry and size, and spatial patterning. Their study is based on reaction-diffusion

equations including biased random motion. The purpose of this study was to make

pde’s models accessible to experimental ecologists, emphasising the importance of pde’s

in the modelling of a great variety of ecological processes.

Okubo developed a two-dimensional extension to the KISS model [72] that predicts a

critical patch area given by

A = c0π

√

D

f ′(0)
. (2.8.3)

Here, c0 is a constant determined by the geometry of the patch, D is the diffusion

coefficient and f ′(0) (the first derivative of the population growth function), represents

the population growth rate at very low population density.

Cantrell and Cosner have extensively studied of models for heterogeneous ecological sys-

tems using reaction-diffusion equations. Their results include measures of critical patch

size [3] and dispersal changes due to predator incursions that also affect critical patch

size [73]. They have also formulated interface conditions relating population density

directly inside and directly outside a patch [74]. In these papers they mainly explore
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single patch, or closed domain systems, by investigating their eigenvalue solutions and

relating them to biological quantities. The mathematical technique they usually follow

to study these systems is the analysis of eigenvalue equations. In chapter 3 we touch

on the subject of eigenvalue problems using them to study critical patch size in closed

domains. However, later on, our approach focus on the study of individual fluxes across

different domains, either in semi-infinite domains and finite ones.

2.8.3 Travelling waves

The interest of knowing what happens in regions that are large enough to reach con-

stant velocities in time, either homogeneous or heterogeneous, and how the dispersal of

populations can be related to mathematical structures is not a new subject and here the

study of travelling waves as a form of dispersal is treated.

As mentioned in §2.8.2.2, in 1937 Kolmogorov, Petrovski and Piskunov [34] found that

for the logistic equation with diffusion,

∂u

∂t
−∇2u = u(1 − u) (2.8.4)

there is a family of planar travelling waves that for a given set of initial conditions travel

at constant speed c with minimum speed cmin = 2 and such that no fronts exist with

c < cmin.

Kolmogorov et. al. indicated that the population would have an infinite speed of

propagation, unless a threshold level, below which a population cannot be detected,

existed. Giving conditions for this threshold existence, Kolmogorovs’ et. al. model

predicted that the population would propagate as a wave front with velocity

cmin = 2. (2.8.5)

for asymptotically large times.

Andow et. al. [41], studied the success of single population invasions, taking place in dif-

ferent habitats, for three independent experimental cases. In this study, the theoretical
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predictions, previously described by Kolmogorov et. al. were corroborated experimen-

tally by Andow et. al. for two out of three study cases. The velocity of spread of

populations is a very important measure in biological populations since it helps predict-

ing the fate of populations in time. In the following section, we present a more complete

review of propagating waves in populations, since this is one of the key features we

analyse in Chapter 5.

In general, the velocity of a wave of advance c for the Fisher equation in a one-

dimensional infinite homogeneous space has received great attention [2, 5, 28–31]. How-

ever, no analytic solutions of this equation for general velocities c [75] exist except for

some exceptions. Ablowitz and Zeppetella, [76] obtained a particular solution for the

velocity of the wave of advance given by c = 5/
√

6 for the population distribution

n(x, t) =
1

(1 + e(x−ct)/
√
6)2

. (2.8.6)

In two-dimensional systems, travelling wave solutions for the Fisher-Kolmogorov equa-

tion have received much less attention [14, 75, 77, 78] and so far, no analytic travelling

wave solutions for general velocities have been found [77]. However, some results for trav-

elling waves solutions in two dimensions can be found. Brazhnik and Tyson [77] study

different travelling wave solutions in two dimensions for the Fisher equation. Some of

these solutions are explicit and some other numerical.

In this thesis, we study numerically travelling waves in corridor geometries to investigate

the velocity of the wave of advance, rather than the structure of the wave itself. This

velocity will help us to calculate the speed of propagation of populations subject to the

Fisher-Kolmogorov equation.

2.8.3.1 Periodic environments with travelling waves

In 1976 Levin, [79] produced a paper in which he uses a reaction-diffusion equations to

model an heterogeneous system with n different species distributed over an intercon-

nected network of m patches. In this study he discussed how the spatial configuration of

the environment may influence species diversity depending on the heterogeneity of the
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environment. Levin’s model constitutes a seminal approach to the study of many patch

systems using reaction-diffusion equations.

Kinezaki et. al. [6] modelled biological invasions in the context of periodically frag-

mented environments. They consider a two-dimensional striped environment consisting

of favorable and unfavorable habitats with the respective widths L1 and L2. These are

alternately arranged along the x-axis. For the dynamics of the system they use an ex-

tended Fisher equation in which they suppose different diffusion constants and different

per capita growth rates for the favorable and unfavorable habitats. The results of this

model show different forms of travelling wave solutions that depend on a set of param-

eter values determining the level of the domain fragmentation. In this work they also

determine that, as the fragmentation scale increases, the rate at which the population

expands their habitat, increases as well. Kinezaki, Kawasaki and Shigesada [80] then

constructed a two-dimensional model based on a modified Fisher model. In this work,

the growth rates and diffusion coefficients were varied sinusoidally on a two-dimensional

domain. They show that the velocity of the wave of advance depended on the amplitude

and the wave length of the diffusion coefficient and the intrinsic growth rate. Many other

models based on these two models have emerged since then [14, 81–83]. These models

typically express environmental heterogeneity by assuming periodic or a-periodic vari-

able diffusion coefficients and intrinsic growth rates in the partial differential equation.

Their solution and investigation usually involves the use of statistical and stochastic

tools, and their applications are diverse. These include mathematical applications like

the demonstration of existence and uniqueness theorems on travelling waves [14, 82]

and biological applications such as, how to maximise the chances of survival of certain

populations [83] and how to prevent biological invasions [84].

In particular, the model by Fagan et. al. [85] resembles the model studied in Chapter 3.

In [85] a one-dimensional a-periodic system is analysed using reaction-diffusion equations

with spatially variable growth and decay functions. While the population dynamics is

completely deterministic, the heterogeneity over space is stochastic. This stochasticity,

together with the growth and decay coefficients, critical patch sizes and maximum gap

lengths, determines how far a population can disperse. The results of Fagan et. al.
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suggest that a close relationship between the population biological traits (growth, decay,

critical patch area and maximum gap cross ability) and the occupancy and spread of

populations exist.

The equations and boundary conditions used in this study are similar to those which we

use in the analysis of the model proposed in Chapter 3. However, the approach taken to

analyse the system is completely different. We focus on the dynamics of a single patch

surrounded by unfavorable regions and then, we study it in detail. Our results show

how the individual flux depends on the biological traits such as growth and decay rates,

as well as diffusion coefficients. We then relate these results to the biological traits such

as carrying capacity and critical patch size. We believe that once the correct dynamics

for a single patch are obtained, a general model can be developed for either a periodic

or a-periodic system. Therefore, the study of local systems is a priority in this thesis.

In chapters 4 and 5 we also analyse equations similar to the ones analysed by Fagan

et. al., but we introduce a behavioral term and study in detail much smaller systems

constituted by two patches and a gap, corridors and single patch dynamics including

also density dependent factors such as the Allee effect, described in the following section.

2.8.4 Models with Allee effect

The Allee effect owes its name to the pioneering work of of W.C. Allee [86], who noticed

firstly that goldfish had better chances to survive in waters inhabited previously by

goldfish than in waters that did not have goldfish populations before [87]. Then, he also

noticed that larger groups in populations enhanced reproduction and survival rates [88].

Nowadays, the Allee effect is a widely studied topic in spatial ecology and is believed

to be an important factor in dispersal and colonisation. McCarthy [89] defines it as an

inverse density dependence in the population, occurring when the population growth rate

is reduced at low population size. This may, for example, occur when the reproductive

success is very poor due to external factors such as the difficulty to find mates. In this

thesis, the influence of the Allee effect on the colonisation of an initially empty patch is

studied in Chapters 4 and 5.
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The Allee effect applied to reaction-diffusion equations, has been applied in different

models [7, 71, 90, 91]. For example, Keitt et. al. [92] studied spatially continuous and

discrete reaction-diffusion models where Allee effects cause invasions to fail under differ-

ent circumstances. Their results indicate that species habitat ranges may be limited by

Allee effects. On the other hand, Cantrell and Cosner [93] investigated the consequences

of an Allee effect over an island that is being colonised from a source population on a

continent in a one-dimensional system. They discovered that the colonising species have

to be close enough to the island being colonised and have sufficiently rapid dispersal as

well as sufficiently low mortality rates in transit for colonisation. In this study no special

boundary conditions or spatial heterogeneity is incorporated. The models we analyse in

Chapter 4 and 5 are similar to this model, and they also predict a dependence between

distance to the patch to colonise and the colonisation success. However, our models also

include certain types of boundary conditions that will account for behavioural factors

and explicit heterogeneity over the landscape. In contrast with Cantrell and Cosner [93]

model, we also perform an extensive study on the relationship between gap length and

the ability to establish a population in the initially empty patch and we numerically

investigate two-dimensional systems.

2.8.5 Models with generalised flux terms

In different areas of science such as medicine, engineering, materials, among others,

terms modelling transport and fluxes are many times determined by terms which go

beyond simple Fickian diffusion. These generalised flow models can model for example

the response of an agent or individual to a directional stimulus. This is the case of

chemotaxis, phototaxis and thermotaxis [38]. In bio-medicine for example, these mod-

elling taxis terms, play a very important role in phenomena such as fracture-healing

[94] or tumor growth [95]. Another example is the modelling of very fast invasions of

human populations. In this case, these taxis terms are based on the assumption of

directed movements as methods of resource exploration, and the existence of resources

that depend on the population density [96].

In terms of ecological fragmentation, the implementation of terms related to directed
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movement in spatially explicit reaction-diffusive models goes back to the studies by Levin

[97] who used aggregation and individual based models to explore the responses of indi-

viduals to their environment. His results show that clusters of individuals are formed in

a non-uniform way as a consequence of the responses of individuals to their environment

and to each other. Later, Grunbaum [98] developed a model based on advection-diffusion

equation (advection for the taxis terms) where the magnitude of both, diffusion and ad-

vection were governed by an algorithm which modelled the individuals learned response

to its local environment. If such learning did not exist, there was no individual taxis.

Cantrell [99] also developed a reaction-diffusion-advection model for two competitors

with different dispersal strategies, inhabiting a spatially heterogeneous environment,

using eigenvalue analysis. One of the species dispersed by simple diffusion, while the

other had a term accounting for directed movement towards better environments, beside

the normal Fickian diffusion one. This paper shows that the species with directed

movement terms, moves faster than ones without it. Moreover, he showed that a species

with directed movement has a competitive advantage over one without it, this is in

contrast to species subject to simple diffusion only, where the slower diffusing species

always has the competitive advantage.

One of the latest models including movement behaviour is a model attributed to Fagan

et. al. [100]. In this model they use an individual-based approach assuming resource

availability as the biggest driver of movement decisions. Using evolutionary program-

ming and artificial intelligence techniques they showed qualitatively how to integrate

different behaviours (orientation, perception and memory) in individual dispersal, ac-

cording to the existing surrounding environment.

Our model includes this behavioural trait in the boundary conditions as it is explained

in Chapter 4. As the individuals approach the boundary of a habitat patch, they feel

threatened by their surrounding. This is modelled by constructing a dendrotaxis function

which adds an extra term to the flux. This function will produce a discontinuity in the

population density at the boundary (the individuals have a strong preference for resource

rich regions over scarce-resource regions) and continuity on the flux (the number of

individuals leaving a regions is the same number arriving to the next region). The
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model we propose in Chapters 4 and 5 is then based on reaction-diffusion equations

with boundary conditions that account for the individuals sense of danger. We explore

extensively the model of two patches separated by a dangerous region in one- and two-

dimensions, while we also analyse different structures in two-dimensions.

2.8.6 Summary

In this section we summarise the key results of this literature review applied to the

development of different models in this thesis. As stated in §2.8.2, continuum population

models can typically be formulated as a conservation equation of the type,

∂n

∂t
= births− deaths + migration (2.8.7)

where each factor is modeled by a mathematical function. In Chapter 3, we investigate

single patch models based on an equation with logistic growth and diffusion

∂n

∂t
= n(1 − n) + ∇2n (2.8.8)

that was first developed by Fisher, Kolmogorov et. al. and Skellman [2, 34, 51]. We

investigate properties such as critical patch size, previously investigated by Kierstead

and Slobodkin [4], Cantrell and Cosner [3, 73], Holmes et. al. [71] among others.

We also look at dispersal rates previously investigated in [41], at growth rates studied

in [4, 7, 48, 51, 70, 85, 101]. We study carrying capacities also analysed in [85] and

boundary effects as seen in [34, 74]. However, the focus of Chapter 3 is to understand

the population dynamics in single patch systems, and explore their density and currents,

finding new solutions and to investigate novel phenomena.

In chapters 4 and 5, we expand the model given by equation (2.8.8) assuming environ-

ments of the form previously studied by Kinezaki et. al. [6] and [14, 81–83]. However,

this previous work is predominantly based upon stochastic models, that insert the het-

erogeneity in the growth function. We, on the other hand, assume different growth

functions in each region as in [85], and use interface conditions to model the individuals
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preference for one domain over another. These boundary conditions help us to model

a directed movement type term. To our knowledge, this approach is new in the area of

fragmented ecosystems.

We also study the consequences of Allee effects on these type of systems. Such studies

have been carried out in [7, 71, 90, 91, 93] for different systems, but, due to the interface

conditions applied in Chapters 4 and 5, the consequences of the Allee effect on population

dispersal are different and very interesting, as we will see later in this thesis.

2.8.7 Other reviews

The literature review presented here is a review based on single population models

related to the models studied in this thesis. However, a number of interesting reviews

on the area of spatial ecology can be found in [5, 102–105].

2.9 Summary

In this chapter, we gave an overview of the basic models and concepts used to study and

analyse populations in fragmented environments.We also presented a literature review

of theoretical work related to the work performed in this thesis.





Chapter 3

One-dimensional population

models

In chapter 2 we discussed the most standard population models used in mathematical

ecology, commonly employed as a starting point for the analysis and study of spatially

structured population systems. Using these models as groundwork for our analysis, in

this chapter we study one-dimensional problems in fragmented environments.

One of the advantages of solving one-dimensional problems is that they are usually sim-

pler to solve, the results are more accurate and some are even exact. However, the study

of one-dimensional systems have also some disadvantages. For example, one-dimensional

systems do not provide the whole information relevant for real two-dimensional systems

analysis, and important features of the dynamics may be lost. Another disadvantage is

that some one-dimensional mathematical methods, cannot be extended to two dimen-

sions and there are no exact solutions. Therefore, other methods, mainly numerical,

must be used. In this chapter, we analyse one-dimensional systems that, even with the

disadvantages mentioned above, provide essential information about the dynamics of

more complex systems in two and more dimensions. In Chapter 4 we expand the anal-

ysis to include some other characteristics of these type populations while in Chapter 5

two-dimensional systems are analysed.

41



42 Chapter 3 One-dimensional population models

3.1 Semi-infinite domain with absorbing boundaries

Here, we analyse the dynamics of a one-dimensional single population system inhabiting

a semi-infinite patch with plentiful resources available for the population individuals,

subject to logistic growth and diffusion in the presence of absorbing boundaries and

lethal surroundings. In applied probability theory as well as in theoretical physics, the

term absorbing boundaries refers to the fact that the quantity under study (in this case

n is zero at the boundary [106]. Here we will adopt this term to refer to this type of

boundary condition.

An exact solution by means of a first integral for model equation in the stationary state

is found, followed by an approximate analysis for the same system. Finally, these two

methods are compared.

In homogeneous environments it is a sensible assumption to say that over long time

scales, the species population does not change with time. However, if the ecosystem

presents inhomogeneities, the situation changes. When the ecosystem presents a cer-

tain level of fragmentation where regions of plentiful and scarce-resources co-exist, the

individuals start diffusing along them. This diffusion corresponds to a current of indi-

viduals moving between regions. Based on this idea we divide the semi-infinite system

into three regions: One region represents a homogeneous habitable region which will be

called high-quality patch. Another region represents a disturbed habitat. This habitat

results in such a danger for the population, that no individual can survive in it. This

region is called a lethal region. The interface located exactly between the two patches is

the boundary.

Figure 3.1 shows a homogeneous environment and a system composed by a high quality

patch surrounded by a lethal region. Some individuals diffuse out of the patch generating

a flux of individuals towards the lethal region.
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Large Homogeneous Environment

Large Diffusive Environment

Individual loss

Boundary

High quality patch

Lethal region

High quality patch

Figure 3.1: The figure on the left is a homogeneous environment. At steady state this
system has a constant population over time. The figure on the right shows a system
composed by a high quality patch surrounded by a lethal region. Some individuals
diffuse out of the patch, towards the lethal region. This situation generates a loss or

flux of individuals towards the lethal region.

3.1.1 Model

When a population inhabits an homogeneous region, individuals of the population tend

to diffuse homogeneously over the entire region, spreading according to the intrinsic

characteristics of the population. However, if this region is surrounded by a completely

different environment, like for example, an island surrounded by sea, the individual

behaviour will change. There are two possibilities: either the individuals avoid going

towards these regions, or they simply diffuse towards them.

Here we examine the case where a single population system distributes almost homoge-

neously along a semi-infinite patch, diffusing along it, and carelessly diffusing towards

the absorbing boundary and lethal surroundings. Later we consider the case where the

individuals perceive the danger of going away from the region with plentiful resources,

thus, avoiding the dangerous or lethal areas.

Assuming that the population in a semi-infinite patch follows the dynamics in time

represented by a source function plus diffusion, like the one described by equation (2.3.6),

we can write,

∂n

∂t
+ ∇ · J = f(n,x), (3.1.1)

where n is the population per unit area, f represents the population growth function, J
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is the individuals flux, x is the spatial variable and t is the time. If the population obeys

a logistic growth, diffusing at the same time along the high quality patch and towards

the lethal region, f is then written as,

f(n,x) =

{

αn

(

1 − n

χ

)

in the resource-rich patch (3.1.2)

while

n = 0 in the lethal region (3.1.3)

χ represents the total carrying capacity and α is the population growth rate. J cor-

responds to the flux of individuals diffusing from the high quality patch to the lethal

region and it is given by,

J = −D∇n. (3.1.4)

According to this model the population grows logistically in the high quality patch, the

individuals die in the lethal region, and the individuals diffuse in the patch. Outside

the patch, as we assumed lethal surroundings, the population and the flux are zero. An

extensive analysis of a similar system consisting of a population following logistic growth

in a finite region can be found in [28]. However, we would like to focus in the analysis

of a semi-infinite region that is not so widely studied.

3.1.2 Model non-dimensionalisation

To simplify the model described by equations (3.1.1) - (3.1.4) we non-dimensionalise

the equations and parameters of this one-dimensional system. The units of equation

(3.1.1) are: [n] = [L−1], [D] = [L2T−1], [α] = [T−1], [χ] = [L−1] and [x] = [L], where L

represent length units and T time units. Defining the dimensionless quantities: t∗ = αt,

n∗ =
n

χ
and x∗ =

x

ξ
, where ξ =

√

D

α
, we can now rewrite the system in the new starred

variables to obtain,

∂n∗

∂t∗
= n∗(1 − n∗) +

∂2n∗

∂x∗2
in the resource-rich patch, (3.1.5)
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and

n∗ = 0 in the lethal region. (3.1.6)

In this context n∗ is the normalised population which represents the population existent

in the patch over the carrying capacity per unit length χ. t∗ is the relative time with

respect to the population growth rate α, and ξ is defined as the diffusion length. This

length describes the diffusion of a population in space, given a constant diffusion coeffi-

cient and the per capita population growth rate. Finally, x∗ is the length scale x divided

by ξ.

The initial conditions in this system imply a completely full patch at t = 0 i.e.

n∗ = 1 at t∗ = 0, (3.1.7)

everywhere. At the same time, the boundary conditions of this system are given by,

n∗ = 0 at x∗ = 0, (3.1.8)

n∗ → 1 as x∗ → ∞. (3.1.9)

These initial and boundary conditions are key to determine the system dynamics. n∗ = 0

at x∗ = 0, implies that at the patch boundary the population goes to zero and no

population exist beyond it. On the other side, n∗ = 1 as x∗ → ∞ implies that as we

move away from the boundary, the population grows and saturates reaching the value

of n∗ = 1 at distances where the environment becomes practically homogeneous away

from the boundary. We also consider that the change of population in space as x∗ → ∞

reaches a constant value resulting in the boundary condition,

∂n∗
∂x∗

= 0 as x∗ → ∞. (3.1.10)

This behaviour is shown in figure (3.2).
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x∗ → ∞

n∗

0

1 ∂n∗

∂x∗
= 0

Figure 3.2: Semi-infinite domain (x∗ → ∞) where the population tends to one as x∗

increases.

Equation (3.1.5) is a second order non-linear partial differential equation which is difficult

to solve, and its solution is hard to analyse. In general, this equation does not have an

exact solution [39], and its approximate or semi-analytic solutions, involve the treatment

of elliptic functions.

Fortunately for us, an exact solution for the stationary state of this system, with the

boundary conditions imposed by equations (3.1.8), (3.1.9) and (3.1.10) does exist as we

will show in §3.1.3. In §3.1.3 and §3.1.4 we find an exact and an approximate solution

for equations (3.1.5) and (3.1.6) in the following way. Firstly, we obtain the solution to

the exact integral of the model. Later, the system is analysed using a patching method,

which will be explained in §3.1.4. Finally, the results of these two methods are compared

and the accuracy of the approximated method with respect to the exact solution. A good

approximation from the patching method to the exact result is expected to be reached.

A good approximation will permit the use of this method in the analysis of other one-

dimensional systems with the certainty of obtaining reasonable results.

3.1.3 Analytic solution for the stationary state

Equation (3.1.5) has no general analytic solution [5] and the solution to the system

presented cannot be formulated analytically. However, an explicit analytic solution for

the stationary state may be obtained. Due to the lack of analytic solutions for the vast

majority of this type of systems, the existence of an analytic solution allow us to measure

the accuracy of the approximate system solutions with the exact solution in order to

validate our analysis. This is of great importance since most of the results found in this
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thesis are either approximate semi-analytic, or numerical.

In a completely homogeneous system, the population is such that their individuals fill up

the system completely. However, the system we are analysing, is not completely homo-

geneous. There is a current of individuals diffusing towards the lethal region throughout

the boundary. If we consider an initial population that fills up the whole of the semi-

infinite patch, then we can write after dropping the stars from equations (3.1.5) - (3.1.9),

n(x, t) = 1 (3.1.11)

After some time, there will be a flux of individuals towards the lethal region. Since the

size of the patch is semi-infinite, the individual flux towards the lethal region is very

small with respect to the patch size, and constant after some time. The change of the

population over time is therefore negligible, and we can consider the system to be in a

stationary state. The population flux eventually becomes constant, and consequently

produces a stationary state for the population,

n → ns(x) as t → ∞. (3.1.12)

where ns stands for the population in stationary state. In the stationary state, equation

(3.1.5) becomes a non-linear second order ODE. In general, the solution to this equation

involves performing elliptic integrals. Fortunately, the case studied here has an exact

solution and this solution is analysed by analytically solving the equation (3.1.5) with

the boundary conditions given by equations (3.1.8), (3.1.9) and (3.1.10).

3.1.3.1 Stationary state analysis

Rewriting equation (3.1.5) for the stationary state and dropping the subindex s of the

population we obtain,

0 = n(1 − n) +
d2n

dx2
. (3.1.13)

Defining

u =
dn

dx
(3.1.14)
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we obtain

du

dx
= −n(1 − n), (3.1.15)

that substituted into equation (3.1.13) gives

u
du

dn
= −n(1 − n), (3.1.16)

Equation (3.1.16) can now be integrated to obtain

∫

udu =

∫

−n(1 − n)dn, (3.1.17)

equivalent to,

u2

2
= −n2

2
+

n3

3
+ C, (3.1.18)

To find the value of the constant C we use the boundary conditions provided in equations

(3.1.9) and (3.1.10) to obtain,

C =
1

6
given that as x → ∞, u = 0 and n = 1 (3.1.19)

Rearranging terms and substituting the value of C in equation (3.1.18), we apply the

boundary condition stated in equation (3.1.8) to obtain,

∫ n̄

0

dn
√

(1 − n2) − 2
3(1 − n3)

=

∫ x̄

0
dx. (3.1.20)

Luckily, equation (3.1.20) has a repeated root n = 1, so the solution of the integral

can be written in terms of elementary functions. When a repeated root is found in the

denominator of the integrand of a polynomial function of degree 3 or 4, the repeated

factor can be taken out of the radical to leave a polynomial of degree of 1 or 2 inside the

square root and express the integral in terms of elementary functions [107]. If equation

(3.1.20) lacked the repeated root mentioned above, it would become an integral equation,

preventing us from finding an analytic solution in terms of elementary functions.
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Factorizing and arranging terms, equation (3.1.20) becomes

√
3

∫ n̄

0

dn
√

(1 − n)2(2n + 1)
=

∫ x̄

0
dx. (3.1.21)

Taking v =
√

2n + 1 and
dv

dn
=

1√
2n + 1

dn

dx
then

dv

dx

√
2n + 1 = ± 1√

3
(1 − n) = ± 1

2
√

3
(3 − v2). (3.1.22)

Notice that for n = 0, v = 1. With this change of variable equation (3.1.21) transforms

into

2
√

3

∫ v̄

1

dv

3 − v2
=

∫ x̄

0
dx. (3.1.23)

where v̄ =
√

2n̄ + 1. The solution of the integral given by equation (3.1.23) is

ln

(√
3 + v̄√
3 − v̄

)

− ln

(√
3 + 1√
3 − 1

)

= x̄ (3.1.24)

that can be simplified to

ln(2 −
√

3) + ln

(√
3 + v̄√
3 − v̄

)

= x̄. (3.1.25)

Taking exponentials in both sides of equation (3.1.25) we obtain

ex̄ = (2 −
√

3)

(√
3 + v̄√
3 − v̄

)

(3.1.26)

that in terms of v̄ can be written as

v =
√

3

(

ex̄ − (2 −
√

3)

ex̄ + (2 −
√

3)

)

(3.1.27)

Substituting v̄ =
√

2n̄ + 1 in equation (3.1.27) and rearranging terms, we can now

express the population n̄ with respect to the distance x̄. Dropping the bar from the

variables in equation (3.1.25) we obtain,

n(x) =
1

2



3

(

1 − (2 −
√

3)e−x

1 + (2 −
√

3)e−x

)2

− 1



. (3.1.28)
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Equation (3.1.28) gives the dependence of n on x for a semi-infinite domain, where n is

population in space at stationary state and x is the spatial variable.

In figure 3.3 the expression given by equation (3.1.28) is presented graphically. Later

we compare these results with the results obtained in §3.1.4 in §3.1.5.

10 20
x

0.5

1
n

Figure 3.3: Analytic dependence of the population n against spatial variable x for a
semi-infinite system. As x → ∞, n → 1 whereas for x . 1, n(x) is linear.

3.1.4 Approximate analysis

As we mentioned in §3.1.3, the analytic general solution of equation 3.1.5 does not exist.

However, the existence of an analytic solution for specific boundary conditions gives

us the possibility to compare this results with other approximate solutions of similar

systems. Here we compare this analytic solution with an approximate solution of the

same system using the patching method [108]. This analysis will allow us to test the

accuracy of approximate solutions with analytic ones in order to validate our models.

3.1.4.1 Model

The patching method is a technique to solve boundary-value problems used when the

differential equations can be solved in closed form for special types of forcing terms

[108]. By approximating the original forcing term by one of these special types in

various regions, a closed form solution in separate parts, can be found over the whole

domain. The solutions in the various regions as well as their derivatives, are patched
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at the points joining each separated region of the domain, obtaining an approximate

solution for the whole domain.

In this case we consider a two regions system where the region x . 1 is governed

by a population that grows linearly while in the region where x → ∞, the population

approaches one, n → 1. These two regions are matched at the point δ where the solution

and their derivatives of both solutions are equal, as shown in figure 3.4.

x → ∞

n(x)

0

1

0.5 b

δ

A

B

Figure 3.4: The patching method is used to match the solutions of two regions in a
semi-infinite single patch system, n grows linearly when x . 1 and n ≈ 1 as x → ∞.
The domain is divided in two regions A and B to describe the system through the

patching method. The patching point in the figure is x = δ

Consider now, a semi-infinite system in the stationary state with absorbing boundaries,

where the the population at x = 0 is zero and at infinity is one. From figure (3.4) we

can see that the domain can be split in two regions. Without loss of generality, we

suppose that in region A the population grows from n(x = 0) = 0 to the value n = 0.5

as x increases. In region B the population grows from n = 0.5 to n = 1. Without loss

of generality, the point n = 0.5 is chosen as matching point, although other matching

points can be chosen, as we will see in §3.1.7.

In region A the system dynamics is governed by the equation

n · (1 − n) +
d2(n)

dx2
= 0. (3.1.29)

Because in this region n is close to the boundary and at the boundary n = 0, we can
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linearise equation (3.1.29) to obtain

n = −d2n

dx2
, (3.1.30)

that has the solution

n = n0 sin(x) (3.1.31)

using the initial condition n(0) = 0, where x ∈ [0, δ]. As we move away from x = δ, the

value of n becomes close to 1. Assuming then that in region B,

n = 1 −m (3.1.32)

where m << 1, equation (3.1.29) can be written as

(1 −m) · (1 − (1 −m)) +
d2(1 −m)

dx2
= 0. (3.1.33)

Linearising and rearranging terms we obtain,

m =
d2m

dx2
. (3.1.34)

that has the general solution

m = m1 sinh(x− δ) + m0 cosh(x− δ). (3.1.35)

As the boundary conditions of the system require that as x → ∞, n → 1 the solution

transforms into

m =
1

2
m0e

−(x−δ). (3.1.36)

where δ is the point where n = 0.5, the point where both solutions are matched.

3.1.4.2 Solution matching

If we assume that inside region A, n < 0.5, while in region B, n > 0.5 we find that the

solution in A equates the solution in B, at n = 0.5, for some x = δ.
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Recalling that n = 1 − m in region A, equations (3.1.36) and (3.1.31) are matched at

n = 0.5 to obtain

n = 1 −m0e
−(x−δ) = 0.5 (3.1.37)

and

n = n0 sin(x) = 0.5 (3.1.38)

In this example, we also assume that the population, as well as the current, is continuous.

This implies that the solution must be continuous with continuous derivative, therefore,

n0 cos(x) = m0e
−(x−δ). (3.1.39)

Rearranging terms and matching solutions at x = δ we find that,

n0 cos(δ) = 0.5. (3.1.40)

Dividing equation (3.1.38) by equation (3.1.40), the value of δ where the two solutions

match is

cot δ = 1 ⇒ δ = π/4. (3.1.41)

Substituting the value of δ in equation (3.1.38) the value of n0 is obtained, such that,

n0 sin(π/4) = 0.5 ⇒ n0 = 1/
√

2, (3.1.42)

and from equation (3.1.37), m0 is found to be,

m0 =
1

2
exp(π/4 − π/4) =

1

2
. (3.1.43)

Once m0 and n0 have been obtained, the general solution for the system can be written

as,

n =
1√
2

sin(x) for |x| < π/4, (3.1.44)

and

n = 1 − 1

2
eπ/4−x for |x| > π/4. (3.1.45)
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The solution for the patching approximation solution is shown in figure 3.5 where the

black dot represents the matching point of the solution.

Π

4
10 20

x

0.5

1
n

Figure 3.5: A patching solution shows the dependence of the rescaled population n
with respect to the distance x from the boundary in a semi-infinite domain. The black
dot at x = π/4, n = 0.5, indicates the matching point of the solutions between region

A and B.

3.1.5 Comparison between exact and approximate solutions

Figure 3.6 shows the solutions for the patching method and the exact method. The solid

line shows the exact solution, while the dashed line shows the approximate solution.

Notice that when x >> 1 the solutions are practically the same. For x close to the

boundary however, these solutions slightly differ from each other. To see how important

the difference between the exact method and the patching method is, an analytical

comparison of the two solutions is given in §(3.1.5.1) and §(3.1.5.2).

3.1.5.1 Approximations for x close to zero

To compare the solutions given in equations (3.1.28) and (3.1.44) we first expand them

using a Taylor series, for x close to zero obtaining,
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x

0.5

1
n

Figure 3.6: A comparison between exact and approximate solutions of n(x) in a
semi-infinite domain is shown. The solid line corresponds to the exact solution while
the dashed line shows the patching solution. The black dot represents the matching

point.

n(x << 1) =
1

2



3

(

1 − (2 −
√

3)(1 − x)

1 + (2 −
√

3)(1 − x)

)2

− 1





≈ x√
3
≈ 0.58x (3.1.46)

for equation (3.1.28). This solution shows a linear growth in e−x when x is close to

zero.

In the case of the patching method the solution for x < π/4 is given by equation (3.1.44).

Again performing a Taylor expansion for x close to zero, we obtain

sin(x) = x− x3

3!
+ ... (3.1.47)

then, keeping linear terms, equation (3.1.44) is approximated to,

x√
2
≈ 0.71x. (3.1.48)

This solutions show that there is some discrepancy between the exact solution and the

approximate solution that has to be taken into account. The effect of this discrepancy
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on the system dynamics will depend on the size of the patch. If the patch is very large

(i.e. if its’ size tends to infinity) the difference between results is negligible, while if the

patch size is close to the critical patch size, the difference becomes important.

3.1.5.2 Approximations for x >> 1

For values of x >> 1, i.e. for values of x where e−x2

becomes negligible, the solution of

the exact method gives

n =
1

2



3

(

1 − (2 −
√

3)e−x

1 + (2 −
√

3)e−x

)2

− 1



. (3.1.49)

Expanding and keeping only linear terms in the exponential, the equation (3.1.49) can

be simplified to give

n ≈ 1

2

[

3 − 6(2 −
√

3)e−x − 1 − 2(2 −
√

3)e−x

1 + 2(2 −
√

3)e−x

]

. (3.1.50)

Rearranging equation (3.1.50) gives,

n ≈ 1 − 1.072e−x. (3.1.51)

In the case of the patching approximation we have that for x > π/4

n ≈ 1 − 1.097e−x. (3.1.52)

which is indeed, very close to the result obtained by the exact solution.

3.1.6 Organism current

Here, we study the individuals current within the system. This current measures the

number of individuals moving from the resource-rich patch into the lethal region. We

expect that in the interior far from the boundary the current will be approximately zero

J = 0 since the population will be evenly distributed in these regions. As we get closer to

the boundaries, the individuals leaving the resources rich patch create a gradient in the
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population distribution resulting in a current of individuals that reaches its maximum

J = Jmax at the boundary.

Assuming that the current is given by Fick’s law and using the rescaled units, the flux

is given by

J(x) = −dn

dx
. (3.1.53)

From equation (3.1.28) we have that the exact solution for the semi-infinite patch is

given by

n =
1

2



3

(

1 − (2 −
√

3)e−x

1 + (2 −
√

3e−x)

)2

− 1



 . (3.1.54)

The flux is given by the derivative −dn

dx
, hence,

dn

dx
= −(6ex(7 − 4

√
3 + (−2 +

√
3)ex))

(−2 +
√

3 − ex)3
. (3.1.55)

In the case of the patching method, we use the matching point δ = π/4 where the

solution for n is given by equations (3.1.44) and (3.1.45). Taking the derivative −dn

dx
of

these two equations the flux for the patching method is given by,

− dn

dx
= − 1√

2
cos(x) for |x| < π/4 (3.1.56)

and

− dn

dx
= −1

2
eπ/4−x for |x| > π/4 (3.1.57)

The figure 3.7 shows the flux of individuals in a semi-infinite domain for the patching

and the exact methods. In both cases the figures show the absolute value of the flux

in direction of the positive axes starting from the boundary. The flux shows how the

population changes in space, reaching a maximum in the boundary of the patch. Observe

in figure 3.7 that as x → ∞ the flux goes to zero, whilst if x is very close to zero the flux

increases. Notice also that, for x close to the boundary, the exact solution differ from

the approximate one. Differences between exact and approximate solutions always exist,

however, in the following section we investigate an alternative to reduce this difference
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JHxL

Figure 3.7: Flux of individuals in a semi-infinite domain. The solid line shows the
exact solution while the dashed line shows the patching solution. It can be seen that
for x close to the boundary there is a considerable flux. However as x → ∞ the flux

tends to zero.

between the solutions.

3.1.7 Different matching points

Due to the existing difference between the exact and the approximate solution, partic-

ularly in the region where x . 1, here we explore different patching points to see if the

location of the chosen matching point affects the results obtained.

Patching point Solution for x << 1 Solution for x >> 1

n = 0.25, δ = 0.32175 n ≈ 0.79x n ≈ 1 − 0.689e−x

n = 0.5, δ = π/4 n ≈ 0.71x n ≈ 1 − 1.097e−x

n = 0.75, δ = 1.24905 n ≈ 0.79x n ≈ 1 − 1.7435e−x

Table 3.1: Semi-infinite domain comparison for different patching points.

Table 3.1 show the patching solution for different solution matching points, while figures

3.8 and 3.9 show the different solutions at different matching points for the population

and the flux of individuals respectively compared with the exact solution.

Equations 3.1.46 and 3.1.51 provide the information of the exact solution for x < π/4,
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Figure 3.8: Comparison between exact and approximate solutions of n(x) in a semi-
infinite domain. The black solid line corresponds to the exact solution while the dashed
lines show different patching solutions. The black dot represents the matching points

at n = 0.25, n = 0.5 and n = 0.75.
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Figure 3.9: Comparison between exact and approximate solutions of J(x) in a semi-
infinite domain. The black solid line corresponds to the exact solution while the dashed
lines show different patching solutions. The black dot represents the matching points

at n = 0.25, n = 0.5 and n = 0.75.

and x >> π/4 respectively. These results compared with the results found in Table 3.1

tell us that the best approximate solution is provided by our first analysis where the

patching point was located at δ = π/4.

We notice that trying different matching points for the system analysed in this chapter

does not improve our first approximation. Therefore, the solutions found in §3.1.4.2 and

§3.1.6 are the ones we keep for the rest of this analysis. Even if there is some difference
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between the solutions, the approximation is qualitatively similar to the exact solution

within the whole domain, and for distances large enough ((i.e. for distances where the

change of population in space is negligible), the solution is practically the same for both,

the exact and the approximate solution.

The discrepancy between solutions influences the analysis of approximate solutions for

domains sizes close to the critical patch size x = π, and suggests the exploration of

different approximation methods in future analyses to increase the precision of the results

found in this chapter.

3.1.8 Individual loss

In this section we measure the reduction of the total population in the stationary state

due to the flux of individuals through the boundary.

By studying figure 3.6 we can qualitatively observe that the available space left by the

population size lost due to diffusion and death, through the boundary is larger when

using the exact method than when the approximate method is used. The quantitative

measure of this feature of the system is important, since it gives us an idea of how impor-

tant the nature of the boundary conditions and the patch length are for the preservation

of individuals. Mathematically speaking, the size of the population lost L due to the

presence of the boundary is given by

L =

∫ ∞

0
(1 − n)dx. (3.1.58)

where n = 1 would represent a completely filled homogeneous patch and n is the density

of individuals in the patch.

In the case of the exact solution, we have that, according to equation (3.1.21), the change

of population in space is given by

dn

dx
=

1√
3

√

(1 − n)2(2n + 1), (3.1.59)
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therefore,
∫ 1

0
(1 − n)

dn

dn/dx
=

∫ 1

0

√
3dn

(2n + 1)1/2
. (3.1.60)

Assuming that u = 2n + 1, equation (3.1.60) can be expressed as

√
3

2

∫

√
3

1

du√
u

=
√

3u
∣

∣

∣

√
3

1 =
√

3(2n + 1)
∣

∣

∣

√
1

0 =
√

3(
√

3 − 1) ≈ 1.268. (3.1.61)

In the case of the approximate solution we have use the matching point δ = π/4. As

equation (3.1.58) has to be divided into two regions we write,

∫ ∞

0
(1 − n)dx =

∫ π/4

0
(1 − n)dx +

∫ ∞

π/4
(1 − n)dx. (3.1.62)

From equations (3.1.44) and (3.1.45), the individual loss through the boundaries for the

approximate solution is given by

∫ ∞

0
(1 − n)dx =

∫ π/4

0

(

1 − 1√
2

sin(x)dx

)

+

∫ ∞

π/4

(

1 −
(

1 − 1

2
eπ/4−x

))

dx =

=
1

2

(

1 +
π

2

)

+
1√
2

(

cos(
π

4
− 1)

)

≈ 1.078. (3.1.63)

This is equivalent to the number of individuals lost divided by the carrying capacity per

unit length

(

n

χ

)

. In both cases, exact and approximate, we observe that the number of

individuals lost is of the order of one correlation length scale. This can be interpreted

as if the patch length was decreased in length by one correlation length because of the

number of individual lost through the boundary.

Let us also observe that the loss of individuals is larger in the case of the exact solution

than in the approximate solution. However, both solutions are in the same correlation

length scale range.

3.1.9 Summary

Table 3.2 shows a comparison of the results obtained for the semi-infinite system using

the two different methods: the exact solution method and the patching method with

the matching point at n = 0.5, δ = π/4.
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Exact method Patching method

x << 1 x/
√

3 x/
√

2

x >> 1 1 − 1.072e−x 1 − 1.097e−x

Table 3.2: Semi-infinite domain comparison for the patching method and the exact
method.

These results show that the comparison of the patching method with the exact method

is a good approximation. These solutions do not perfectly match for patch sizes of the

order of the CPS, however, both solutions describe the same type of dynamics. This

comparison gives assurance on the results obtained (and to be obtained) using these

types of methods. We know that an approximate solution using the patching method,

for example, will not be exactly the same to an exact solution. However, we can be

confident on having good approximations, that can explain accurately the dynamics of

the systems analysed.

In §3.1.6 we analysed the flux of individuals in a semi-infinite patch as shown in figure

(3.7). We observe that as we move away from the boundary the individual flux decreases.

On the other hand, the closer we are to the boundary the higher the flux becomes. Notice

also that the flux is always leaving the occupied area.

Finally, in this section, we found that the reduction of the total population close to the

boundary can be summarised in terms of a loss of population, equivalent to a length of

approximate one correlation, or effective patch length.

3.2 A single finite patch with absorbing boundaries

In this section we study the analytic solution for a one-dimensional, absorbing bound-

aries, single patch problem. This type of system has been widely studied through dif-

ferent methods and by different authors due to its relevance in the study of fragmented

ecosystems.

For instance, Grindrod [33] and Murray [31] discuss this problem in terms of waves and

pattern formation and Murray also discusses the construction of the problem in detail.
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Okubo [5] uses reaction-diffusion models, and Kot [28] solves the linearised problem. A

more mathematical approach is given by Cantrell and Cosner [8] who study features like

critical patch size and population persistence by means of reaction-diffusion equations.

Other authors [29, 30, 101] also study this same problem with different perspectives and

goals.

The relevance of this problem lies in the fact that this system provides the basis of the

analysis of fragmented ecosystems by analysing the most basic fragmented environment:

a patch with plentiful resources embedded in a larger domain composed of areas of

scarce-resources with decaying growth functions that depend on the spatial coordinates.

Our goal by analysing this system, is to provide a deep understanding of the basis of

fragmented ecosystems by studying and re-discovering some results previously found.

At the same time, we aim to add new results and interpretations of the system, in order

to expand the understanding of this, and other systems analysed in this thesis. This

analysis includes the study of diffusion coefficients, carrying capacity, growth rate, fluxes,

and some corrections to results found by other authors. These corrections are important

in the analysis of models that aim to describe more accurately biological phenomena.

Using firstly, eigenvalue equations, we perform a Fourier series expansion to the system,

and finally we apply, the patching method to obtain an approximate solution. Using the

results produced on this analysis, we discuss the carrying capacity of the system, the

effective growth rate of the population and the current due to the diffusion of individuals

outside the patch.

3.2.1 Model

In §3.1 we studied a single semi-infinite patch with an absorbing boundary. In this

section, the equations governing the dynamic of the systems analysed are similar, but

the boundary conditions change since the patch is finite. The system under analysis

here is centered at x = L/2, has length L, initial conditions given by

n(t = 0) = 0 (3.2.1)
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and boundary conditions given by,

n = 0 at x = 0 and x = L, (3.2.2)

and

∂n

∂x
= 0 at x = L/2 (3.2.3)

as shown in figure 3.10. Assuming that the population inside a finite patch with absorb-

ing boundaries follows the dynamics given by equation (3.1.5) then,

∂n

∂t
= n(1 − n) +

∂2n

∂x2
for 0 < x < L, (3.2.4)

in a patch of finite non-dimensional length L with plentiful resources. Outside this region

we have that,

n = 0 for x < 0 and x > L. (3.2.5)

Here, as in §3.1.2, n is the relative population, t is the relative time and x is the length

scale. The population grows logistically and diffuses in the plentiful resources patch,

while in the lethal regions the individuals die.

0 L

n(x,t)
n(0)=n(L)=0

Figure 3.10: Population of a one-dimensional patch of length L centered at x = L/2
with absorbing boundaries.

3.2.2 Early time analysis

In this section we consider that at early times n(t ≈ 0) is close to zero. As n is small we

can neglect the quadratic term of the logistic equation and linearise equation (3.2.4) to

write,

∂n

∂t
= n +

∂2n

∂x2
, (3.2.6)
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subject to the boundary conditions n(0) = n(L) = 0 and
∂n

∂x
(L/2) = 0.

Using the method of separation of variables [39, 109] we solve equation (3.2.6). Assuming

that n(x, t) = n(x)T (t) we rewrite equation (3.2.6) as

1

T

∂T

∂t
=

1

n

(

n +
∂2n

∂x2

)

. (3.2.7)

As both sides of equation (3.2.7) have to be satisfied simultaneously, then

∂T

∂t
= α̃T, (3.2.8)

and
(

n +
∂2n

∂x2

)

= α̃n. (3.2.9)

The solution of equation (3.2.8) is simply

T (t) = eα̃t. (3.2.10)

and α̃ is a constant to be found. To solve equation (3.2.9), we note that equation (3.2.9)

together with the boundary conditions (3.2.2) are an eigenvalue problem.

An eigenvalue problem is a boundary value problem of the type

Af = λf (3.2.11)

where any non-zero function that returns from the operator exactly as it is, except for

the multiplicative scaling factor λ (its eigenvalue), is called the eigenfunction of the

operator A. The solution of the differential eigenvalue problem will also depend on the

boundary conditions of f where each eigenvalue λi admits a corresponding solution for

fi when combined with the boundary conditions [108].

Notice that in equations (3.2.8) and (3.2.9) α̃ is a constant because both equations, must

be satisfied simultaneously. This happens only when α̃ do not depend on x or on t, i.e.

when α̃ is a constant. Equation (3.2.9) then represents an eigenvalue equation where α̃
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represents the eigenvalue and n(x) is the eigenfunction. This equation admits an infinite

number of solutions given by an infinite sequence of eigenvalues

α̃1 ≥ α̃2 ≥ α̃3... ≥ α̃k ≥ ... with α̃k → −∞ (3.2.12)

as k → ∞ [8, 109]. From equation (3.2.12) we can see that the principal eigenvalue of

equation (3.2.9) is the largest eigenvalue α̃1.

On the other hand, it can be shown that the eigenfunction associated to the principal

eigenvalue of a function [8] can be taken to be positive inside the domain. We emphasise

this particular aspect of the eigenvalue equation because this means that the solution of

equation (3.2.9) represents a possible population and will grow exponentially if α̃1 > 0

and decay exponentially if α̃1 < 0. This problem also predicts that when α̃1 = 0 the

critical patch size is reached, as shown for instance by Grindrod [33], and Cantrell [8].

To find the solution of equation (3.2.9) we rewrite it as

− κ2n =
∂2n

∂x2
, (3.2.13)

where

− κ2 = α̃− 1. (3.2.14)

The sign of the eigenvalue −κ2 give us the behaviour of the solution. Given the boundary

conditions (3.2.2), and (3.2.3), the only possible set of eigenvalue solutions are given by

values where −κ2 > 0. The solution of this equation is,

n(x) = n0 sin(κx) + m0 cos(κx), (3.2.15)

where n0 and m0, are determined using the boundary conditions. The boundary condi-

tions imply that m0 = 0, since n(0) = 0 and equation (3.2.15) reduces to,

n(x) = n0 sin(κx). (3.2.16)
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The boundary conditions imply that,

n(0) = n(L) = 0, (3.2.17)

resulting in

sin(0) = sin(L) = 0, (3.2.18)

that happens only when,

κL = nπ. (3.2.19)

obtaining as a final solution for n(x)

n(x) = n0 sin
(nπx

L

)

. (3.2.20)

Equation 3.2.20 explicitly shows how the principal eigenvalue nπ/L is the one found for

the solution n(x) in order to satisfy the boundary conditions.

From equations (3.2.10), and (3.2.20) the general solution of equation (3.2.6) can be

written,

n(x, t) =

∞
∑

0

An exp

[

1 − n2π2

L2
t

]

sin
(nπ

L
x
)

. (3.2.21)

The coefficients An can be obtained using the Fourier sine series as it is shown in standard

literature [109, 110]. Here we restrict ourselves to show the solution of equation (3.2.21)

for n = 0, 1 in figure 3.11 since our analysis is focused in more specific parameters (α̃).

0

Π
x

0

4
t

0

1

nHx,tL

Figure 3.11: Population density solution of a single patch with absorbing boundaries.

Equation (3.2.9) allows us to take the maximum positive eigenvalue of the equation
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to obtain the maximum effective growth rate of the population in the patch. This

eigenvalue is associated with the effective population growth in a patch. Taking κL = π,

we substitute 1 − α̃ = κ2 in equation (3.2.19) to obtain,

α̃ = 1 − π2

L2
(3.2.22)

Equation (3.2.22) gives us a relationship between the effective growth rate and the patch

size L. Notice also that the largest value that the effective population growth can take

is α̃ = 1. These factors provide important information about the system dynamics that

can be summarised as:

1. If L < π, α̃ < 0 and the population declines. In patches with effective patch

size smaller than π the individual loss rate due to dispersal through the boundary

overcomes the local growth rate inside the patch.

2. If L is fixed and bigger than π then α̃ > 0, this means that the local population

growth rate is larger than the loss rate of individuals from dispersal. The popu-

lation grows until it reaches the carrying capacity of the system which is directly

related with the size of the patch.

3. If L grows to infinity, equation (3.2.22) reaches its maximum value α̃max = 1. This

means that as we increase the size of the system, the boundary conditions become

less important and the system looks more like an homogeneous system.

One key reason for studying the linearised problem analysed in this section is that this

system gives predictions on the persistence of decay of a population depending on the

sign of the eigenvalue α̃1. It also predicts that when α̃1 = 0 the critical patch size is

reached as shown for instance by Grindrod and Cantrell [8, 33].
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3.2.3 Critical patch size

In this section we analyse what happens at the critical patch size, L = π. If L = π,

α̃ = 0 and
π2

L2
= 1 gives us the critical patch size:

L = Lc = π (3.2.23)

The importance of this quantity relies on the fact that it provides a measure of the

minimum size required for an ecosystem to sustain a population. In terms of ecological

conservation this is of great importance because it gives us an idea of how much a

fragmented ecosystem can be sustainable depending on its level of fragmentation and

the size of each fragment.

Although the analyses provided here are one-dimensional, and most biological systems

are at least two-dimensional, one-dimensional model can provide qualitative insight of

the model dynamics, other models can be used as a reference, and in other cases (like

in the CPS measurement) they can be extended to two dimensional results.

The result given by equation (3.2.23) indicates that when the critical patch size is

reached, the individual loss due to dispersal balances the local population growth rate

resulting in an effective growth rate of α̃ = 0. This means that the effective increment

on the number of individuals in the system is zero reaching a steady state where the

change of population in time remains constant.

Figure 3.12 shows the behaviour of α̃ against L. It can be seen from figure 3.12 that

α̃ approximates 1 when L tends to infinity. It also shows that α̃ = 0 when L = π and

becomes negative when L < π.

The concept of critical patch sizes for heterogeneous systems have been studied before.

Many of the results given in this whole section can also be found in books such as those

written by Murray [31], Kot [28], Cantrell and Cosner [8] and Okubo [5]. The original

paper where the critical patch size was studied for the first time was written by Kierstead

and Slobodkin [4]. All these authors find a critical patch size for the one-dimensional

linearised system given by equation (3.2.23).
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Figure 3.12: Effective growth rate α̃ against effective patch size. Notice that α̃ is
negative for effective patch sizes smaller that π, zero for effective patch size equal to π
and positive for effective patch sizes larger than π. The maximum value of α̃ is one.

The measurement and understanding of relevant biological quantities is the main purpose

of this thesis. Therefore, the study of all these fragmented systems is focused on finding

relations and links of known and unknown results to biological parameters and features

of these type of systems. For example, in this chapter we emphasize the relevance of

what we call the effective growth rate and its relation with the critical patch size and

the diffusion length scale or correlation length which becomes important in the study of

other systems.

3.2.4 Stationary state analyses for a patch with absorbing boundaries

In this section we analyse the stationary state of a system constituted by a single one-

dimensional patch with absorbing boundaries and surrounded by lethal regions. The

dynamics of the problem are provided by equations (3.2.2) – (3.2.5) while its stationary

state is given by

n(1 − n) +
∂2n

∂x2
= 0 for 0 < x < L, (3.2.24)

n = 0 for x < 0 and x > L, (3.2.25)
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The boundary conditions are again specified by

n = 0 at x = 0 and x = L, (3.2.26)

and

∂n

∂x
= 0 at x = L/2 (3.2.27)

3.2.4.1 Patch limit close to the CPS

In this section we examine the problem of the stationary state of a single patch of size

close to π (the CPS) with absorbing boundaries in terms of Fourier series approximations.

Applying equation (3.2.17) to equation (3.1.13) in its stationary state we obtain a solu-

tion for the linearised system given by

n(x) = n0 sin
(πx

L

)

. (3.2.28)

in the domain [0, L], for L close to π. The objective now is to obtain the value of n0

by finding the Fourier series approximation to the solution of this equation and obtain

a general solution for the problem. Taking equation (3.2.28) and substituting it in the

stationary state equation (3.2.24), we get

0 = n0 sin
(πx

L

)

− n2
0 sin2

(πx

L

)

− n0
π2

L2
sin
(πx

L

)

, for 0 < x < L, (3.2.29)

and n = 0 elsewhere. Now we expand the quadratic term in the Fourier series to find

the value of n0 in terms of the patch length. Thus,

sin2
(πx

L

)

=
∑

l

Al sin

(

πxl

L

)

+ Bm cos
(πrm

L

)

. (3.2.30)

Now we have to find the values of the coefficients Al and Bm . The formula to find these

coefficients is,

Al =
2

L

∫ L

0
f(x) sin

(

l πx

L

)

for l = 1, 2, 3... (3.2.31)
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and

Bm =
2

L

∫ L

0
f(x) cos

(

m πx

L

)

for m = 0, 1, 2... (3.2.32)

Fortunately, the function we are dealing with (sin2(x)) has the following properties which

simplify the calculations,

Bm =
2

L

∫ L

0
sin2

(

m πx

L

)

cos
(mπx

L

)

= 0, (3.2.33)

due to orthogonality between the functions [109, 110].

A0 = 0 by definition. Therefore, we find A1 as a first approximation.

A1 =
2

L

∫ L

0
sin2

(πx

L

)

sin
(πx

L

)

=
2

L

∫ L

0
sin3

(πx

L

)

(3.2.34)

Making the change of variable θ =
πx

L
and u = cos(θ), this integral becomes

A1 =
2

π

∫ π

0
sin3

(πx

L

)

=
2

π

∫ π

0

(1 − u2) sin(θ)du

−sin(θ)
. (3.2.35)

that has the solution

A1 =
8

3π
. (3.2.36)

It is possible to derive the rest of the coefficients, however we are only interested in the

first terms as these have the largest effect on the system dynamics. With this result

equation (3.2.29) develops into,

0 = n0 sin
(πx

L

)

− 8

3π
n2
0 sin

(πx

L

)

− π2

L2
n0 sin

(πx

L

)

, (3.2.37)

dividing by n0 sin(πxL ) equation (3.2.37) reduces to

0 = 1 − 8

3π
n0 −

π2

L2
. (3.2.38)

Rearranging terms in equation (3.2.38)we obtain

n0 =
3π

8

(

1 − π2

L2

)

. (3.2.39)
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From eqn. (3.2.39) is clear to see that n0 is positive only when L > Lc = π. The

equilibrium solution for this system is then

n = n0 sin
(πx

L

)

=
3π

8

(

1 − π2

L2

)

sin
(πx

L

)

. (3.2.40)

This equation describes the stationary state of a population reproducing on a one-

dimensional patch of length L larger than, but close to π. This approximation is valid

only for patch lengths close to the critical patch size where the steady-state solution

keeps its sinusoidal form. For larger patch lengths, the solution given by equation

(3.2.40) changes loosing its sinusoidal form. To analyse systems of larger size we use the

patching method used in §3.1.4.

In Figure 3.13 we observe that the total population n is larger than zero when L > Lc.

For L ≈ Lc the steady state of the population n presents a population close to zero, but

still positive. As the patch length is increased, the total population in stationary state

increases.

L=þ+0.01

L=þ+0.1

L=þ+0.5

L=3þ/2

ll

Lc=Π

Π

2
Π 3 Π

2

x0

0.1

0.3

0.5

0.7

nHxL

Figure 3.13: Stationary state for the population density given by n = n0 sin(πx/L)
against the patch length L. Notice that the patch length L must be larger than the

critical patch size Lc = π in order to obtain a positive stationary state.
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3.2.5 Limit for patches much larger than the CPS

In this section we analyse a finite one-dimensional single patch of length L with absorbing

boundaries. The problem is analysed for the stationary state of the system. The patch

is considered to be centered at x = 0 and is solved using the patching method. Here

we assume that the patch length is large L >> 1, but not infinite. Therefore, suitable

boundary conditions for the system are n(x = 0) ≈ 1 and n(x = |L/2|) = 0.

Assuming that the system is in a stationary state (
∂n

∂t
= 0), we divide the patch into

two regions A and B as shown in figure (3.14). In region A we suppose that the total

A

B

L/20-L/2

0.5

n(x)

Figure 3.14: One-dimensional system with absorbing boundaries in which n ≈ 1 in
the center while n = 0 at the boundary.

population is close to one, hence

n = 1 −m (3.2.41)

with m << 1. In particular we assume that n ≥ 0.5 in region A. In region B we assume

that n < 0.5. If the whole system has a solution, the solutions of regions A and B match

at some point which will be found in the following sections.

3.2.5.1 Solution for region A

Assuming that in region A, n = 1−m and (n > 0.5), equation (3.1.13), can be rewritten

as

(1 −m)(1 − (1 −m)) +
d2(1 − n)

dx2
= 0, (3.2.42)
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which can be linearised and rearranged to obtain

m =
d2m

dx2
. (3.2.43)

The general solution of this equation is

m = m0 cosh(x). (3.2.44)

Therefore, in region A the solution for the population dependent on the length of the

patch is

n = 1 −m0 cosh(x). (3.2.45)

3.2.5.2 Solution for region B

In region B we assume that n < 0.5, therefore, equation (3.1.13) is reduced to

n · (1 − n) +
∂2(n)

∂x2
= 0, (3.2.46)

which can be linearised to obtain

n = −d2n

dx2
. (3.2.47)

to obtain the general solution

n = n0 sin(L/2 − x). (3.2.48)

3.2.5.3 Solution Matching

To find the values of m0, n0 we apply the boundary conditions assuming that the solution

as well as its derivative are continuous. Then we match the solutions at the point L/2−δ1

where the population value is assumed to be n = 1/2. Therefore,

n = 1 −m0 cosh(L/2 − δ1) = 1/2, (3.2.49)
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and

n = n0 sin(δ1) = 1/2. (3.2.50)

Since we assume that the solution and its derivative are continuous, we obtain for the

derivative,

n0 cos(δ1) = m0 sinh(L/2 − δ1). (3.2.51)

From equations (3.2.49),(3.2.50) and (3.2.51) the values of m0, n0 and δ1 are found.

Equating equations (3.2.49), (3.2.50) and dividing them by equation (3.2.50)we obtain,

cot(δ1) = tanh(L/2 − δ1), (3.2.52)

that is an equation dependent only on δ1. However, this is a transcendental equation

which cannot be expressed in terms of a finite sequence of algebraic operations, hence

we approximate it by assuming that L >> 1. In the case of the semi-infinite domain

the value of δ given by equation (3.1.41) was δ = π/4. In this case we assume that δ1 is

slightly larger than π/4 due to the finiteness of the domain. Hence,

δ1 =
π

4
+ β, (3.2.53)

applying trigonometric identities to equation (3.2.52), we obtain

tanh(L/2 − δ1) =
1 − e−(2(L/2−δ1))

1 + e−(2(L/2−δ1))
, (3.2.54)

and

cot(δ1) =
1 − tan(β)

1 + tan(β)
, (3.2.55)

these solutions imply that,

tan(β) = e−2(L/2−π/4)e2β . (3.2.56)

This equation now can be expanded in Taylor series close to the point x = β, to obtain

β = e−2(L/2−π/4)(1 + 2β), (3.2.57)
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equivalent to

β =
e−(L−π/2)

1 − 2e−(L−π/2)
. (3.2.58)

Equation (3.2.58) gives us the explicit solution to δ1 written as,

δ1 =
π

4
+

e−(L−π/2)

1 − 2e−(L−π/2)
. (3.2.59)

From equation (3.2.59) we can conclude that for relatively small patches (i.e. for patches

closer to the CPS) the size of δ1 increases, while as the patch size tends to infinity, we

recover the semi-infinite result for δ i.e. δ1 = π/4. The explicit form of (3.2.59) allows

us to obtain the values of m0 and n0. Using equations (3.2.49), (3.2.50), (3.2.51) and

(3.2.59) we find m0 and n0,

m0 =
− cos(δ1)

− cos(δ1) cosh(δ1 − L/2) + sin(δ1) sinh(δ1 − L/2)
(3.2.60)

and

n0 =
sinh(δ1 − L/2)

− cos(δ1) cosh(δ1 − L/2) + sin(δ1) sinh(δ1 − L/2)
. (3.2.61)

m0, n0 and δ1 are substituted in the general solutions given by equations (3.2.45) and

(3.2.48) to obtain the general system solution given by

n = 1 −m0 cosh(x), if x ∈ [−L/2 + δ1, L/2 − δ1] (3.2.62a)

n = n0 sin(L/2 − x), if x ∈ [−L/2,−L/2 + δ1] ∧ [L/2 − δ1,≤ L/2],(3.2.62b)

shown in figure (3.15)

3.2.6 Carrying Capacity

Equations (3.2.40), (3.2.62a) and (3.2.62b) provide a solution for n(x) in patches with

domain sizes of the order of the CPS and larger. Making use of these results, here

we obtain the solution for the carrying capacity in patch systems with lengths of sizes

L ≥ Lc. The carrying capacity can be thought as the total population that a patch can

sustain and it is obtained by integrating n(x) over the patch domain [0, L]. To obtain
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0- L
2

L
2

0.5

1
nHxL

Figure 3.15: Solution for a single patch of size L >> π with absorbing boundaries.
A solution is found for each region A and B, and matched at the points L/2 − δ and

−L/2 + δ.

the carrying capacity dependent on the patch length, for any patch length L, we obtain

a solution for patches with size of the CPS order and patches with sizes much larger

than the CPS separately. Then we join both solutions and obtain the total carrying

capacity Γ.

3.2.6.1 Carrying capacity for L ≈ Lc

For patch domains of length L ≈ Lc the total carrying capacity Γ is given by the

integral of n(x) along the one-dimensional domain [0, L] with L ≥ Lc. The value of n(x)

for domains of length close to the critical patch size was found in §3.2.4.1 and it is given

by

n(x) =
3π

8

(

1 − π2

L2

)

sin
(πx

L

)

. (3.2.63)

Then, the carrying capacity Γ for a domain of size L is

Γ =

∫ L

0
n(x)dx =

∫ L

0

3π

8

(

1 − π2

L2

)

cos
(πx

L

)

dx =
3(L2 − π2)

4L
(3.2.64)
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3.2.6.2 Carrying capacity for L >> Lc

To find the total carrying capacity per unit length in patches of sizes L >> Lc we use

the patching approximation. The carrying capacity of the system corresponds to the

integral of the population n over the domain [−L/2, L/2]. In this case, the integral over

the whole domain is split in two regions corresponding to the solutions of each region.

From equations (3.2.62a) and (3.2.62b) the total population integral in space is given by

Γ =

∫ L/2

−L/2
n(x)dx = 2

∫ δ1

0
n0 sin(x) +

∫ L/2−δ1

−L/2+δ1

(1 −m0 cosh(x)) (3.2.65)

This system is solved changing the origin of the system to x = −L/2. We also consider

that the solution of the population distribution over x is symmetric. Therefore the

integral from −L/2 to −L/2 + δ1 is equal to the integral from L/2 − δ1 to L/2. Using

the values of m0, n0, and δ1 found in §3.2.5.3 the carrying capacity for a domain of

length L >> Lc is given by

Γ = 2n0

∫ δ1

0
sin(x)dx +

∫ L/2−δ1

−L/2+δ1

1 −m0 cosh(x)dx. (3.2.66)

The solution of this integral is

Γ = −2n0(cos(δ1) − 1) + L− 2m0 sinh(L/2 − δ1). (3.2.67)

Substituting the values of m0, n0 and δ1 this is rewritten as

Γ =
−2 sinh(δ1 − L/2)

sin(δ1) sinh(δ1 − L/2) − cos(δ1) cosh(δ1 − L/2)
(cos(δ1 − 1)) + L +

+
2 cos(δ1)

sin(δ1) sinh(δ1 − L/2) − cos(δ1) cosh(δ1 − L/2)
(sinh(L/2 − δ1)) (3.2.68)

In the case where L >> Lc, the carrying capacity depends only on the length of the

patch and it grows linearly with it.
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3.2.6.3 Total carrying capacity

Figure 3.16 shows the dependence of the carrying capacity per unit length on the patch

size. Notice that for L ≤ Lc the carrying capacity per unit length is zero, then it grows

linearly for L >> Lc.

Π 3 Π 5 Π
L

1

5

10

G, Α

Figure 3.16: Carrying capacity Γ dependence on the patch length L.

This result is also compared with the results found on §3.2.3 as shown in figure 3.17.

Here we compare the effective carrying capacity per unit length Γ/L with the growth

rate α̃ in terms of patch length. The results indicate that the effective growth rate is

a monotonically increasing function starting with negative values for L < π where the

population always decline and therefore the carrying capacity of the patch is zero. At

L = π the effective growth rate is zero as well as the carrying capacity and the critical

patch size is obtained. For L > π the effective growth rate α̃ as well as the effective

carrying capacity Γ/L start increasing. Both quantities α̃ and Γ/L tend to one as the

patch size increases as it would be expected for an homogeneous environment. This

indicates that the larger the patch, the less influence the absorbing boundaries have on

the population dynamics. Notice that both quantities reach the value 1 only when the

system becomes homogeneous.
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Figure 3.17: Comparison of the effective carrying capacity Γ/L and the effective
growth rate α̃ against the patch length L.

3.2.7 Current

In this final section we study the outflow of individuals from an absorbing one- di-

mensional domain patch towards the lethal regions that surrounds it. This current is

produced by individual diffusion inside the patch. We expect that the largest current

occurs close to the boundary and becomes smaller as we move away from the patch due

to the individuals dying outside it.

3.2.7.1 Current for a patch of size L ≈ Lc

When L is slightly larger than the critical patch size the population distribution is given

by equation (3.2.40). The current can be found from this equation given that

J(x) = −dn

dx
. (3.2.69)

in non-dimensional units. As n(x) =
3π

8

(

1 − π2

L2

)

sin
(πx

L

)

, the current is

J(x) = −dn

dx
= −3π

8

(

1 − π2

L2

)

cos
(πx

L

)

(3.2.70)
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as shown in figure 3.18. Here it is shown how the current behaves with respect to the

population. The solid line represents the population density with respect to the length,

while the dashed line shows the current with respect to the patch length. In this figure

the patch is centered at x = 0 and has a length L = π + 1. At x = 0 the population is

maximum and the current is practically zero. As we approach the boundary the current

grows and it reaches a maximum exactly at the boundary x = L/2.

nHxL

J HxL L
2

x

0

0.35

0.25

0.5

Figure 3.18: Comparison between the population population distribution and the
current dependent on the patch length. The patch size for this system is L ≈ Lc.

3.2.7.2 Current for a patch with L >> Lc

Figure 3.19 shows the current for L >> Lc. As previously in this section the patch

is centered at x = 0. We observe that along most of the patch length the current is

zero, however, as soon as we get close to the boundary it increases abruptly reaching a

maximum at the boundary due to the absorbing boundary condition.

3.2.8 Current comparison for differently sized patches

In figure 3.20 three different currents are compared. A current for a domain of size

L ≈ Lc, another for a domain of size L >> Lc and the current for a semi-infinite patch.

The figure shows that the larger the patch, the larger the current is. We also found

that, the current for a patch with size much larger than Lc is practically the same than
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nHxL
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Figure 3.19: Population density and current with respect to the patch length. The
current in this figure is evaluated for a patch of size L >> Lc.

the current found for a semi-infinite patch since the population distribution is similar in

both cases. When the patch size tends to infinity, the population is almost homogeneous

along the patch. This gives a population distribution close to n = 1 almost everywhere,

except very close to the boundaries.

Notice also that, although quantitatively the currents for patches of sizes of the order

of the CPS and patches of sizes where L → ∞ are different; quantitatively the currents

are similar close to the boundary since both have the same sinusoidal form. In all the

cases, the current reaches its maximum value at the boundary and it decays with the

distance as we move away from the patch boundary, into the patch. This is due to the

population diffusion close to the boundary, where the gradient of the population respect

to the space coordinate is the largest.

When studying systems of many patches the measure of currents is crucial to determine

the sustainability of a system. If the current of individuals is such that they can man-

age to cross poor resources regions between patches of good habitat, then, the chances

for these individuals to establish sustainable reproducing populations in new patches in-

crease. More detailed studies of currents and patches systems are introduced in Chapters

4 and 5 where the ability of crossing a gap between two patches is studied.
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L > Lc
L >> Lc
L ®¥

5 10
x

0.38

0.7

J HxL

Figure 3.20: Comparison of the current for three different patch sizes. If the patch
size is of the critical patch size Lc order, the current is small with respect to the current
in patch of sizes where L >> Lc. If the patch size is much larger than the critical patch
size, but still finite, the current found is comparable with the current found for a semi

infinite patch.

3.3 A single finite patch with permeable boundaries

In this final section we analyse one-dimensional patch systems with permeable bound-

aries. In theoretical physics and earth science fields, the term permeable can usually be

related to a flow of matter through a surface [111]. In this sense, we define as a perme-

able boundary a boundary that allows a flux of individuals through it while keeping the

population at the boundary positive.

The idea behind the modelling of a single patch with permeable boundaries, is to think of

a resource-rich patch habitat where individuals reproduce and live, surrounded by scarce-

resources regions where populations decay, as shown schematically in figure 3.21. In

contrast with the systems analysed previously, these systems allow a flow of individuals

into the dangerous areas, where the individuals can diffuse and wander around, but

always decay and die over time. The probability of death for individuals outside the

patch, will depend on different causes such as the time spent in the scarce-resources

areas, the distance they travel outside the patch, the level of danger outside the patch,

and their resistance to the environment hostility.

The number of individuals that move out of the patch can be characterized by a flux

or current which will have a diffusion constant dependent on the hostility of the patch

surroundings and the individual resistance to adverse conditions. This diffusion constant
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outside the patch, will have a different value from the one inside it.

If we assume that individuals cannot differentiate between different types of habitat,

they will diffuse over different types of regions indistinctively, without seeking areas

advantageous for them. In this section, we assume that the individuals diffuse in this

way. This assumption does not apply very well for populations highly dependent on

the spatial availability of resources, but it can model some type of populations. For

example, many semi-aquatic species depend on both, aquatic and terrestrial habitats

to maintain viable populations [112]. Another type of example, covers some terrestrial

migrating species such as elephants, that, even though they do seek for environments

with plentiful resources for the herd sustain, they can travel very long distances across

different type of environments to reach a suitable habitat [113, 114].

Here, we use these type of analysis as a step-stone model to analyse species highly

dependent on their environment.

3.3.1 Model

Let us consider the problem of a one-dimensional patch of length d where the population

reproduces and live in the patch but decreases with distance from the boundary.

Taking the model described by equations (3.1.1) – (3.1.4) we write down a conservation

equation for n(x, t), where the probability density per unit area of finding an organism

in the surroundings of the point x takes the form

∂n

∂t
+ ∇ · J = f(n, x) (3.3.1)

where t is the time, n is the population per unit length, J is the probability flux of

individuals and f is the population growth or decay function; Here, the growth func-

tion in the resource-rich regions [−L/2, L/2] is modelled by a standard term used in

literature [2, 28, 115, 116]: the logistic function. Outside, in the resource scarce regions

[−L/2, L/2]∁, a linear decay rate is introduced. For the analysis of equations in this

section, we locate the origin of the resource-rich patch at x = −L/2 in order to make it
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symmetric from the x-axis origin and simplify the calculations. Then,

f(n, x, t) =



















α(x, n(x)

(

1 − n(x)

χ(x)

)

in [−L/2, L/2]

−α′(x)n(x) in [−L/2, L/2]∁

(3.3.2)

where, χ(x) represents the carrying capacity, α(x) is the rate of population growth and

α
′

(x) the decay rate.

From equation (3.3.1) J is the flux of organisms modelled by a diffusive term of the

form,

J = −D(x)∇n (3.3.3)

where D(x) represents Fickian diffusion and its value depends on the location of the

individuals, i.e. on the type of environment. This term provides a measure of the indi-

viduals diffusivity around their environment. Here, we consider that D(x) is a constant

in each region, such that

D(x) =



















D in [−L/2, L/2]

D′ in [−L/2, L/2]∁

(3.3.4)

With these considerations the time dependent problem over the whole x-axis can be

written as

∂n

∂t
= αn

(

1 − n

χ

)

+ D
∂2n

∂x2
in [−L/2, L/2], (3.3.5a)

∂n

∂t
= −α′n + D′∂

2n

∂x2
in [−L/2, L/2]∁.. (3.3.5b)

If we assume that both, the population and its derivative are continuous at the boundary,

then, the boundary conditions are defined as,

n|−L/2+ = n|−L/2− and n|L/2− = n|L/2+ , (3.3.6)
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for the population, and

D
∂n

∂x

∣

∣

∣

∣

−L/2+
= D′∂n

∂x

∣

∣

∣

∣

−L/2−
and D

∂n

∂x

∣

∣

∣

∣

L/2−
= D′∂n

∂x

∣

∣

∣

∣

L/2+
. (3.3.7)

for the current.

Inside the patch the system dynamics is given by equation (3.3.5a) introduced in §3.1.1

for the non-leaking patch. Outside the patch the dynamics is given by equation (3.3.5b).

The negative sign of α′ represents a death population rate and D′ represents the diffusion

constant outside the patch. The population at t = 0 is n = n0(x) which sets our initial

conditions, while the boundary conditions that the system has to satisfy as x → ±∞

are that n = 0 as well.

The model system is shown schematically in figure 3.21 .

-L/2

n(x,t)

L/20 x

Figure 3.21: One-dimensional patch of length L centered at x = 0 with permeable
boundaries. Inside the patch the population breed normally while outside the patch it

decreases exponentially.

3.3.2 Non-dimensionalisation

Using an analogous procedure to the one used in §3.1.2 the terms of equation (3.3.5b)

are written in non-dimensional units. The terms of equation (3.3.5a) keep the form

obtained in §3.1.2, using the parameters

t∗ = αt, n∗ =
n

χ
, x∗ =

x

ξ
, L∗ =

L

ξ
(3.3.8)

whereas outside the patch the following parameters are defined:

s =
α′

α
(3.3.9)
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and

λ =

√

D′α

Dα′ . (3.3.10)

D′ and α′ denote the diffusion constant and the decay rate in the resource-scarce regions.

Taking these considerations, the system takes the form,

∂n∗

∂t∗
= n∗(1 − n∗) +

∂2n∗

∂x∗2
in [−L∗/2, L∗/2] (3.3.11a)

∂n∗

∂t∗
= −sn∗ + sλ2∂

2n∗

∂x∗2
in [−L∗/2, L∗/2]∁. (3.3.11b)

while its boundary conditions become,

n∗|−L∗/2+ = n∗|−L∗/2− and n∗|L∗/2− = n∗|L∗/2+ , (3.3.12a)

∂n∗

∂x∗

∣

∣

∣

∣

−L∗/2+
= sλ2∂n

∗

∂x∗

∣

∣

∣

∣

−L∗/2−
and

∂n∗

∂x∗

∣

∣

∣

∣

L∗/2−
= sλ2∂n

∗

∂x∗

∣

∣

∣

∣

L∗/2+
. (3.3.12b)

Dropping the starred terms in equations (3.3.11a) – (3.3.11b) the non-dimensional equa-

tions of the system become,

∂n

∂t
= n(1 − n) +

∂2n

∂x2
in [−L/2, L/2], (3.3.13)

∂n

∂t
= −sn + sλ2∂

2n

∂x2
in [−L/2, L/2]∁, (3.3.14)

while the boundary conditions transform into,

n|−L/2+ = n|−L/2− and n|L/2− = n|L/2+ , (3.3.15)

for the population, and

∂n

∂x

∣

∣

∣

∣

−L/2+
= sλ2∂n

∂x

∣

∣

∣

∣

−L/2−
and

∂n

∂x

∣

∣

∣

∣

L/2−
= sλ2∂n

∂x

∣

∣

∣

∣

L/2+
. (3.3.16)

for its current.
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3.3.3 Eigenvalue problem solution

Following the same type of arguments used to construct equations the governing (3.2.13)

and (3.2.14) in §3.2.2 we analyse the problem of a leaking boundary patch of length L

centered at x = 0. In this case the solution for the leaking patch differs from the solution

of the non-leaking due to the differential equation leading the population dynamics in

each region, the initial conditions and the boundary conditions at x = ±L/2 for the

patch and the boundary conditions at x = ±∞ for the surrounding region.

Equations (3.3.11a) and (3.3.11b) are linearised to obtain the eigenvalue equations:

α̃n = n +
∂2n

∂x2
for x ∈ [−L/2, L/2], (3.3.17)

and

α̃n = −sn + sλ2∂
2n

∂x2
for x ∈ [−L/2, L/2]∁, (3.3.18)

which can be rewritten as

− κ2n =
∂2n

∂x2
for x ∈ [−L/2, L/2], (3.3.19)

and

k
2n =

∂2n

∂x2
for x ∈ [−L/2, L/2]∁, (3.3.20)

with

− κ2 = (α̃− 1) , (3.3.21)

and

k
2 =

(

1 + α̃/s

λ2

)

. (3.3.22)

.

The boundary conditions at x = ±L/2 are given by equations (3.3.6) and (3.3.7) in

non-dimensional units,

n|−L/2+ = n|−L/2− and n|L/2− = n|L/2+ , (3.3.23)
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for the population, and

D
∂n

∂x

∣

∣

∣

∣

−L/2+
= D′∂n

∂x

∣

∣

∣

∣

−L/2−
and D

∂n

∂x

∣

∣

∣

∣

L/2−
= D′∂n

∂x

∣

∣

∣

∣

L/2+
. (3.3.24)

for the current. The boundary conditions of the system also have to satisfy that n = 0 as

x → ±∞ since we assume that the population decreases in the resources-scarce region.

With these boundary conditions, and the initial conditions given by n(x, t = 0) = n0,

the solution of equations (3.3.19) and (3.3.20) is given by

n(x) = n0 cos(κx) for x ∈ [−L/2, L/2], (3.3.25)

and

n(x) = n1e
−kx for x ∈ [−L/2, L/2]∁. (3.3.26)

As we have assumed continuity at the boundary for the population and the current,

we can extract a set relations in the system that provide interesting information about

the dynamics of the system. In the following section, we analyse the stationary state of

equations (3.3.25) and (3.3.26) to obtain information with respect to the critical patch

size and propagation velocities in these type of systems.

3.3.4 Stationary state

Recalling that the system is governed by Fickian diffusion, i.e., J = −D(x)
dn

dx
the

non-dimensional currents inside and outside the resource-rich regions are given by,

J(x) = κn0 sin(κx) for x ∈ [−L/2, L/2], (3.3.27)

and

J(x) = sλ2
kn1e

−kr for x ∈ [−L/2, L/2]∁. (3.3.28)

with

κ =
√

1 − α̃ (3.3.29)
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and

k =

√

(

1 + α̃/s

λ2

)

. (3.3.30)

Matching now the solutions for the populations and the currents at the boundary x =

L/2, we obtain,

n0 cos

(

κL

2

)

= n1e
−kL/2, (3.3.31)

and

κN0 sin

(

κl

2

)

= sλ2
kN1e

−kL/2. (3.3.32)

Dividing equation (3.3.32) over equation (3.3.31) and rearranging terms we obtain

tan

(

κL

2

)

=
sλ2k

κ
, (3.3.33)

at the boundary. Then, in the stationary state (i.e. at α̃ = 0) equation (3.3.33) can be

reduced to

tan

(

L

2

)

= sλ. (3.3.34)

3.3.4.1 Propagation velocities rates

The quantity sλ can be interpreted in dimensional units as follows: From §2.8 the

velocity of the wave of advance front in homogeneous environments where populations

follow logistic growth is given by v = 2
√
Dα [4, 41, 51, 117]. Then, the quantity sλ in

dimensional units is written as

sλ =

√

D′α′

Dα
=

vo
vi

(3.3.35)

where vo stands for the wave of advance velocity front outside the resource-rich region,

and vi stands for the wave of advance velocity front inside the resource rich region.

Therefore, equation (3.3.35) can be seen as the propagation velocities ratio between

the wave of advance outside the patch vo and the propagation velocity of the wave of

advance inside the patch vi. The velocity acquired inside the patch vi will depend on

the value of the diffusion and growth rate parameters inside the patch D and α, while

the propagation velocity outside the patch, depends on the value of the diffusion and
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decay rates outside the patch D′ and α′. This is an interesting result since it tells us

how the critical patch size of the resource-rich patch depends on the effective growth and

death rates, and the diffusion rates between regions. These two velocities make a huge

difference on the dynamics of the system predicting completely different behaviours of

the population depending on the velocities rate as it will be detailed in the following

section.

3.3.4.2 Critical patch size

From equation (3.3.34) we obtain the minimum size necessary to sustain a population

dependent on the velocities outside and inside the patch. This critical patch size Lc for

a system of a leaking patch surrounded by dangerous regions is then given by

Lc = 2 arctan

(

vo
vi

)

(3.3.36)

which is schematically shown in figure 3.22.

1 10 20

vo

vi
0

Π

2

Π
Lc

Figure 3.22: Critical patch size dependent on the velocity ratio v = vo/vi in a patch
with permeable boundaries.

Equation (3.3.36) tells us how the parameters D, α, D′ and α′ influence the system

dynamics in the following way:

1. If vo → 0, then Lc = 0. This simply means that α′ is zero and there are no deaths

outside the patch. Therefore, we have an homogeneous environment and there is
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no need of the critical patch size definition.

2. If vo = vi, then Lc = π/2. The critical patch size is reduced to half of the size

of a patch with absorbing boundaries. Since the surroundings of the resource-rich

patch are not lethal, the length where the individuals can diffuse is less restrictive.

Less individuals die and the population resist for longer time.

3. If vo >> vi, then Lc → π. This limit agrees with previous results. If the velocity

outside the patch vo increases, the death rate, the diffusion coefficient, or both

increase giving place to a system with more dangerous surroundings. In the limit

when vo → ∞, the system becomes a patch with lethal surrounding and we recover

the result for the critical patch size where Lc = π

3.3.5 Population and current for a patch with permeable boundaries

In this section we use some of the results found in §3.3.2 to study the population dis-

tribution and its current in a patch of size L = π with permeable boundaries in the

stationary state. Equation (3.2.40) gives the population distribution for a patch of size

L with absorbing boundaries. Here we define a patch of size Lc = L = π, centered at

x = 0. Due to the permeable boundaries, the population at the boundary x = L/2 is

different than zero, therefore we can write,

n(x) = n0 cos(
̟x

L
) if x ∈ [−L/2, L/2]. (3.3.37)

where ̟ = π − β and β is a positive and small quantity to define a resource-rich patch

domain slightly smaller than the CPS. Using the initial population, found in equation

(3.2.39), n0 =
3π

8

(

1 − π2

L2

)

we can write for a domain of size π − β

n0 =
3̟

8

(

1 − ̟2

L2

)

. (3.3.38)

The system solution outside the patch is given by equation,

n(x) = n1e
−
(

x− L/2

γ

)

if x ∈ [−L/2, L/2]∁. (3.3.39)
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On the other hand, the population currents inside and outside the patch are given by,

J(x) = −3̟2

8L

(

1 − ̟2

L2

)

cos
(̟x

L

)

if x ∈ [−L/2, L/2] (3.3.40)

and

J(x) = sλn1e
−
(

x− L/2

λ

)

if x ∈ [L/2, L/2]∁. (3.3.41)

From equations (3.3.37) – (3.3.41), we can find the value of n1. Equating equations

(3.3.37) and (3.3.39) as well as their currents (3.3.40) and (3.3.41) at x = L/2 we

numerically obtain,

n1 = 0.2547 (3.3.42)

With n0 and n1 given by equations (3.3.38) and (3.3.42) the population and the current

dependent on x are given by

n(x) =
3̟

8

(

1 − ̟2

L2

)

sin(x) if x ∈ [−L/2, L/2], (3.3.43)

and

n(x) = 0.2547e
−
(

x− L/2

γ

)

if x ∈ [−L/2, L/2]∁, (3.3.44)

while,

J(x) = −3̟2

8L

(

1 − ̟2

L2

)

sin
(̟x

L

)

if x ∈ [−L/2, L/2] (3.3.45)

and

J(x) = 0.2547sγe
−
(

x− L/2

γ

)

if x ∈ [−L/2, L/2]∁. (3.3.46)

The population and current for a leaking patch with size Lc = π can be plotted now.

Figure 3.23 shows the population distribution and the current of a permeable boundaries

patch of size L = π.

The top figure in 3.23 shows the population distribution (solid line) over a patch of

size close to x = π, showing a population maximum at the center of the patch. The

population is continuous in space, and decays after x = L/2 where individuals diffuse

towards the dangerous regions.
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Figure 3.23: Population distribution and current for a patch with permeable bound-
aries of size L = π centered at x = 0. The parameters used here are s = 2 and

λ = 0.2

The current (dashed line) in figure 3.23 is continuous as expected (i.e., the number of

individuals coming from the patch to the boundary is the same number of individuals

leaving the patch from the boundary). The current is zero at the patch center, reaching

a maximum at the boundary. After this point the current decreases exponentially.

3.3.6 Population and current for a patches of size L ≫ Lc with perme-

able boundaries

In this section, we study the stationary state of a patch of size L ≫ Lc with permeable

boundaries, using the patching method introduced in §3.1.4. For the stationary state

the dynamics of the non-dimensional system is given by equations (3.3.13) – (3.3.14)

where
∂n

∂t
= 0, thus

0 = n(1 − n) +
d2n

dx2
if x ∈ [−L/2, L/2], (3.3.47)

and

0 = s

[

−n + λ2∂
2n

∂x2

]

if x ∈ [−L/2, L/2]∁, (3.3.48)

with boundary conditions,

n|−L/2+ = n|−L/2− and n|L/2− = n|L/2+ , (3.3.49)
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and

∂n

∂x

∣

∣

∣

∣

−L/2+
= sλ2∂n

∂x

∣

∣

∣

∣

−L/2−
and

∂n

∂x

∣

∣

∣

∣

L/2−
= sλ2∂n

∂x

∣

∣

∣

∣

L/2+
. (3.3.50)

If the patch size is very large, (i.e. L >> Lc so n ≈ 1 in most of the patch, except close

to the boundary), then, inside the patch we assume that the population distribution

takes the form n ≈ 1 −m with m << 1. Therefore, the solution of equation (3.3.47) is

given by

n(x) = 1 −m0 cosh(x) if x ∈ [−L/2, L/2]. (3.3.51)

The solution outside the patch is given by,

n(x) = n1e
−





x− L/2

λ





if x ∈ [−L/2, L/2]∁. (3.3.52)

The currents for this system are given by

J(x) = m0 sinh(x) if x ∈ [−L/2, L/2], (3.3.53)

and

J(x) = sλn1e
−





x− L/2

λ





if x ∈ [−L/2, L/2]∁. (3.3.54)

To find the values of m0 and n1 we use the boundary conditions (3.3.49) and (3.3.50) to

match the solutions at the boundary x = L/2. Hence,

1 −m0 cosh(L/2) = n1, (3.3.55)

and

m0 sinh(L/2) = sγn1. (3.3.56)

Rearranging terms we obtain,

m0 =
sγ

λ(L/2) + sλ cosh(L/2)
, (3.3.57)
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and

n1 =
sinh(L/2)

sinh(L/2) + sλ cosh(L/2)
. (3.3.58)

With these values, we obtain the general solution for the population distribution n(x)

and the current J(x) given by

n(x) = 1 −
(

sλ

sinh(L/2) + sλ cosh(L/2)

)

cosh(x) if x ∈ [−L/2, L/2], (3.3.59)

and

n(x) =

(

sinh(L/2)

sinh(L/2) + sλ cosh(L/2)

)

e
−





x− L/2

λ





if x ∈ [−L/2, L/2]∁. (3.3.60)

whereas,

J(x) =

(

sλ

sinh(L/2) + sγ cosh(L/2)

)

sinh(x) if x ∈ [−L/2, L/2], (3.3.61)

and

J(x) =

(

sλ sinh(L/2)

sinh(L/2) + sλ cosh(L/2)

)

e
−





x− L/2

λ





if x ∈ [−L/2, L/2]∁. (3.3.62)

Figure 3.24 shows the behaviour of the population n and the current J with respect to

spatial coordinate x for a large patch (L = 24) with permeable boundaries. We observe

that in the solution for the population distribution, the derivative of the population

is discontinuous as shown in the box in the top right of figure 3.24. The derivative

discontinuity of the solution may be attributed to the system parameters (diffusion and

growth/death rates), which are different for both regions. On the other and, we observe

that the current distribution, shown in figure 3.24 with dashed line, is continuous.

The population distribution shown in figure 3.24 describes a population that is very close

to one, along most of the length of the resources rich patch. However, as we get close

to the boundary, the population decays exponentially on the scarce-resources region.

The population decay outside the resources rich patch depends on the velocities ratio
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v = vo/vi described in §3.3.4.1.

Simultaneously, figure 3.24 shows that the current is zero over most of the patch length;

however, close to the boundary it increases. The current reaches a maximum at the

boundary and decays outside the patch depending on the values of v.

nHxL

x
J HxL L 2 L 3 L

0

0.5

0.5

1

Figure 3.24: Population and current for a patch of big length, L = 24 with permeable
boundaries.

In figures 3.25 and 3.26 the population and current distributions for different ratio

velocities v = vo/vi are shown. Here we assume that the rate s = α′/α is fixed and

equal to 0.5.

Notice that as v → 0 the population as well as the current outside the patch decrease

to zero in space recovering the results obtained in the patch with absorbing boundaries,

where the population and the current outside the patch are zero.

However, if v 6= 0 there is always a current outside the patch. When the propagation

velocity inside the resource-rich patch is much larger than the one outside, the individuals

do not diffuse much in the scarce-resources region, as if a “fence” existed between both

regions. The individuals are kept inside the patch and the ones trying to leave it, struggle

to find a way out.

At the same time, if the velocity ratio is bigger than one v > 1 the individuals move

more freely outside the patch. A larger number of individuals leave the patch and they

travel longer distances due to the number of individuals leaving the patch.
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Figure 3.25: Population distribution for a large patch of size L >> Lc with permeable
boundaries dependent on the propagation velocities ratio v = vo/vi outside and inside
the patches. As the velocity outside the patch increases, the population decreases

restricting the individual diffusion into the dangerous region.
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Figure 3.26: Current distribution for a large patch of size L >> Lc with permeable
boundaries dependent on the propagation velocities ratio, v = vo/vi outside and inside

the patches. As the velocity outside the patch increases, the current decreases.
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3.3.7 Summary

In this section we analysed different characteristics of a one-dimensional patch of size

L >> Lc with permeable boundaries. We found that, as expected, most of the popula-

tion concentrates in the resource-rich patch, declining quickly as individuals enter the

scarce-resources area. We also found that, even if the population is continuous along the

whole axis domain, its derivative is not. This implies that the different parameters used

to describe the system, influence the distribution of the population, hence, affecting its

dynamics. As we will see in Chapter 4, some parameters, like the dendrotaxis term, can

even make the population distribution to become discontinuous.

We also found that, as expected the size of parameters such as diffusion constants and

growth/decay rates influence greatly the system dynamics. We found that the velocity

propagation of individuals in these type of systems is governed by the diffusion constants

and growth/decay rates inside and outside the resource-rich patch. These velocities

determine the population current and distribution over the patch.

The experimental measurement of these type of parameters may help us to reach a bet-

ter understanding of the dynamics of similarly shaped ecosystems, and provide control

population strategies, either for conservation or eradication.

3.4 Summary

In this chapter we studied single one-dimensional patches systems with absorbing and

permeable boundaries. We mathematically analysed the systems itself and its different

parameters such as effective growth rate, diffusion coefficients and carrying capacity.

Different systems were analysed using exact and approximate semi-analytic methods

including Fourier series expansion and the patching method. The critical patch size of

this type of system was studied and compared with previous results and new ones.

Firstly, we solved exactly and approximately, the system of a semi-infinite system with

absorbing boundaries. Both solutions were compared in order to validate the approxi-

mate methods used later in this chapter.
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We discussed the problem of critical patch size for a single one-dimensional patch with

absorbing boundaries as an important biological parameter to obtain, previously studied

by other authors. Then, we solved this system for the stationary state of a patch with

absorbing boundaries obtaining a solution in agreement with previous solutions through

different methods.

The carrying capacity of a single patch with absorbing boundaries was also analysed and

compared with the population effective growth rate. We discovered that, as expected,

the carrying capacity of a patch with absorbing boundaries makes sense only for patches

of sizes larger that the critical patch size. We also found a relation between the patch

length and the carrying capacity. As the patch length is increased, the carrying capacity

of the system grows as a quadratic function firstly. Then, as the patch length tends to

infinity, the carrying capacity grows linearly with it.

The population and current distribution for patches systems with different lengths and

boundary conditions was obtained. We compared some results between systems. For

example, we found that the currents obtained for large patches with absorbing bound-

aries, (i.e. patches with sizes of over three times the CPS) had practically the same

currents found in the case of the semi-infinite patch. This imply that, for the analysis of

similar systems, both approximations can be used indistinctively. However, in the case

of patches of sizes close to the CPS found in §3.2.3, we found that the current is smaller

than the current obtained for the semi-infinite and the patch systems of sizes larger than

the CPS, and therefore the differentiation between analyses has to be made.

We analysed some features of a patch with permeable boundaries. We found solutions

for population and current distributions for patch sizes close to the critical patch size

(CPS) x = π, and patches much larger than the CPS with permeable boundaries. The

analysis provides information about the dynamics of a system with permeable boundaries

according to the biological parameters included in these systems (diffusion parameters

and growth/decay population rates) which is very important for the understanding of

population dispersal.

For patches with permeable boundaries, we found that the critical patch decreases or

increases according to rates between propagation velocities inside and outside the patch.
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This result gives us an idea of how different populations dispersing at different rates

can have very different dynamics. Therefore, different population strategies should be

applied for different populations.

We also found that the population currents and distributions in patches with perme-

able boundaries depends strongly on the propagation velocity of the population inside

and outside the patch. The knowledge of these velocities in specific population sys-

tems would provide vital information to predict the population dispersal, colonisation

or extermination of such population in different environments. It would also help us to

anticipate, for example, the invasion of a population, giving us the chance to prevent

such an invasion.

The study of these type of systems is also the preamble to Chapter 4 and 5, where other

characteristics are added to the population individuals.



Chapter 4

One-dimensional population

models with dendrotaxis

4.1 Introduction

The Asiatic red-bellied beautiful squirrel Callosciurus erythraeus was introduced into

Argentina in 1973 after the release of several individuals into the Argentinian Pampas.

This species, benefited from the widespread abundance of introduced trees in the Ar-

gentine Pampas has spread from a reduced number of individuals to a population that

inhabits over an area exceeding 680 km2 (Guichón, 2007) [15]. Its abundance results in

economic damage and its continuous spread threatens indigenous species in regions such

as the Otamendi Natural Reserve [118].

The invasion and spread of Callosciurus erythraeus has been studied by Guichón and

Doncaster (2008) using spatially explicit stochastic models [15]. This model predicts

different situations under alternative scenarios of strategic culling or habitat removal

aimed at slowing the spread. These models are based on empirical data extracted from

the squirrel location in Argentina as well as from published sources such as Tamura

[52–54], Gurnell [55], Yo et al. [56] and Akçacaya [57]. These models make specific

predictions on the dynamics of the squirrel; however, these predictions require the use

of many biological parameters that are not always easy to measure.

103
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Here, we present a mathematical analysis of potential impacts on spread rates due to

squirrel behaviours, particularly in avoiding hazard and seeking mates. Our contin-

uum model describes density-dependent growth and diffusion amongst woodland and

grassland patches that have a variable potential for reproductive success. In woodland

patches, the population obeys a modified logistic growth. In grassland patches, pop-

ulations are unable to sustain themselves and decrease exponentially. In all types of

patches, diffusion terms that model the dispersal of individuals across the patches are

included.

We introduce a novel development for gap analysis, that represents the individuals haz-

ard sensitivity when outside woodland patches. This sensitivity is modelled by a term

which has its origin in physical systems. We call this term dendrotaxis based on its

suitable Greek origin: δǫνδρo, (dendro=tree), and ταξισ, (taxis=arrangement). The

term taxis can be defined as the innate response on the behaviour of an organism due

to a directional stimulus, like occurs in chemotaxis, phototaxis and thermotaxis [38],

hence, the term dendrotaxis indicates that individuals direct their movements towards

densely wooded regions, generating a gradient of the population dispersal at the bound-

ary, ensuring a low individual migration from the woodland to the grassland.

Patch geometries are consistent with those found in the pampas, including linear cor-

ridors and isolated woodlands. Using numerical methods and semi analytic results we

analyse the dependence of the inter-patch length with the flux of individuals from a

full woodland patch to an empty woodland patch for one and two-dimensional systems.

We find a relation on the inter-patch length and the ability of reproductive success in

a previously empty woodland patch. We find that dispersal is slowed by Allee effects,

i.e., inverse density-dependent responses to the difficulty of finding mates at low den-

sity, when combined with hazard sensitivity. The velocity of spread then depends on

inter-patch distances and patch geometries.
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4.2 Biological discussion

According to Guichón and Doncaster [15], Tamura [52–54], Gurnell [55], Yo et. al.

[119], Akçacaya [57] and personal discussions with M.L. Guichón and C.P. Doncaster

the red-bellied beautiful squirrel Callosciurus erythraeus presents particular behaviours

which are summarized in the following paragraphs. The most important factors of the

population dispersal will be considered in our mathematical model, while secondary

factors will be discarded. These may be added later to the model, depending on its

potential importance for the system dynamics.

1. The time scales of movement in the woodland patches are small compared with the

time scales in the grassland. In the woodland the squirrels reproduce and inhabit

areas for large periods of time (on year length timescales) while in grasslands they

always move searching for woodland patches.

2. Squirrels present a hazard sensitivity which has to be considered. In previous

models we supposed that individual dispersal was ruled only by Fickian diffusion.

In this model we modify the flux term governing equations by introducing a novel

term which simulates the individuals hazard sensitivity to open spaces.

3. Individual dispersal may be slowed down due to difficulties of finding mates. We

model this by introducing an Allee effect (i.e., an inverse density-dependent re-

sponse to the difficulty of finding mates at low density) in the numerical simula-

tions. In the previous models we have supposed that populations have a logistic

growth function. Another possible growth rate function can be associated with an

Allee effect, modelling the difficulty of finding mates. At lower population densi-

ties, the squirrels struggle to reproduce to form a sustainable population, which

causes a very slow propagation in new habitats with respect to the model without

Allee effect. However, slow population spread of invading species may lead to un-

derestimation of the invasion risk posed by them and can also affect the optimal

control strategies for these invading species.

4. The general landscape geometry may be summarized into several different types

of habitat:
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(a) Patches of different sizes represented by forested areas that sustain popula-

tions.

(b) Open areas where individuals do not reproduce, with an enhanced death rate

that individuals avoid.

(c) Corridors which are represented by long lines of trees where the squirrels can

reproduce and sustain populations.

These different types of habitat may or may not be connected between each other and

may or may not allow dispersal depending on the configuration of the habitat. For

example, if the distance between two good patches of habitat is such that, the probability

for individuals to reach a new patch is close to zero, no dispersal will take place; however,

if it is short, the individuals may cross the gap between patches. Another example would

be the existence of junctions. The population of individuals would spread in different

directions which may lead them to different situations. This is shown schematically in

fig. 4.1.

W
oo

dla
nd

Grassland

Gap

Junction

Corridor

Figure 4.1: Individual dispersal in a patchy landscape may follow different dynamics
depending on the patch individuals choose to follow

Other factors that can be included in future models are
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1. Heterogeneous distributions of food and nest sites affects the squirrel dispersion.

2. The density dependence in terrestrial mammals is more related to fecundity and

recruitment of juveniles than to mortality of adults. This may suggest the adoption

of a different population growth function in the woodland that can select young

individuals over old ones.

3. Squirrels can travel up to several hundred meters per day exploring (for example in

a tree corridor) looking for nest sites and/or mates. This implies that the squirrels

diffusion length scale is very large.

4. Squirrels are a sociable species and they tend to travel in groups rather than

individually. This might be modeled with a term representing surface tension.

Qualitatively speaking, the surface tension would model intermolecular attractive

forces for the same type of molecules in the surface of a liquid. In this case,

the individuals would be “held” together by “cohesive forces” which would be

related to the preference of travel in groups. This cohesive force would manifest

at the boundary of the woodland patch, creating a “surface tension” like term.

Alternatively, this behaviour of population group travel may be modelled with a

concentration dependent diffusive flux of the form −D(n)∇n where the diffusion

coefficient D is a decreasing function of the population n. This would result in the

decrease of the diffusion coefficient due to an increase of the number of individuals

travelling together.

4.3 Logistic growth model

Based on the biological factors described in §4.2, here we develop a more generic model of

population growth and dispersal. This model accounts for the growth and migration of a

population of organisms sensitive to landscape fragmentation where regions of plentiful

and scarce-resources co-exist. In addition to the spatial variability in resources, we

include a term that models the spatial variability of hazardous areas according to the

population individuals perception.
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In order to follow the steps in the modelling, it is helpful to bear in mind the squirrel mi-

gration example introduced in §4.2. There the individuals migrate through a landscape

consisting of resources-rich patches where the feeding resources as well as the number of

nest sites are plentiful, interspersed with grassland areas where the food resources are

scarce, the nest sites are non-existent and the danger of predation is constant.

The model presented here is analogous to the one studied in Chapter 3, with the addition

of the hazard sensitivity factor and Allee effects. This factor is the the key modelling

challenge in this chapter and Chapter 5.

To introduce this hazard sensitivity factor we provide an analogy from thermodynamics.

Here we relate the tendency of molecules to diffuse with the way individuals diffuse in

fragmented environments. The chemical potential of molecules acts in a manner similar

to the the hazard sensitivity factor. Hence molecules diffuse due to spatial variation

in chemical potential and [120] in this case, molecules will naturally tend to go from a

higher chemical potential to lower chemical potential.

We start by writing down a conservation equation for n(r, t), where the probability

density per unit area of finding an organism in the surroundings of the point r takes the

form

∂n

∂t
+ ∇ · J = f(n, r) (4.3.1)

where t is the time, n is the population per unit area, J is the probability flux of

individuals and f is the population growth or decay function presented previously in

Chapter 3, giving

f(n, r, t) =



















α(r)n(r)

(

1 − n(r)

χ(r)

)

in Ω with α(r) > 0

α(r)n(r) in Ω∁ with α(r) < 0

(4.3.2)

where χ(r) represents the region carrying capacity, α(r) is the rate of population growth

(negative in Ω∁), which varies depending of the region where the individuals are located.



Chapter 4 One-dimensional population models with dendrotaxis 109

J is again the flux of organisms, previously modelled by Fickian diffusion of the form,

J = −D(r)∇n. (4.3.3)

However, this type of diffusion makes sense only if individuals are fairly insensitive to

environmental factors, resulting in their incapacity to differentiate between advantageous

and disadvantageous habitats (see for example [121]). Fickian diffusion do not occur

often [18, 28, 122], even in relatively simple organisms that can differentiate between

advantageous and disadvantageous habitats, therefore, the flux of organisms is amended

here to take the form

J = −D(r)∇n + nv. (4.3.4)

In this amendment, beside the Fickian diffusion, a drift velocity v towards better envi-

ronments is included.

This amendment is based on a similar behaviour occurring due to the presence of a

chemical potential in molecules. For example, if we have two containers of the same

volume with gases at different chemical potentials, diffusion will ”push” particles from

areas of higher chemical potential towards smaller chemical potential [120].

Here we specify v as virtually the simplest form that we can take assuming that it is

independent of n and depends on position only, i.e. a step function. This assumption

is based on the hypothesis that individuals actively seek areas advantageous to them

avoiding at the same time, disadvantageous ones.

In summary, we have two type of diffusions in this modelling, one that “pushes” individ-

uals from areas of larger population to areas of lower population, and another produced

by the dendrotaxis term that “pushes” individuals from areas of large dendrotaxis to

areas of low (or zero) dendrotaxis (since the individuals would be already in the wood-

lands).

If we consider a scenario in which the growth function f is zero, then the steady state
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is given by ∇ · J = 0. Suppose v takes the form

v = −D(r)∇µ, (4.3.5)

for some function µ(r). The flux term then has a steady state

∇ · [−D(r) (∇n + n∇µ)] = 0 (4.3.6)

with an equilibrium solution of the form,

n = Ae−µ(r) (4.3.7)

where A is a constant and has the property J ≡ 0 everywhere as an imposed property. If

v takes another form than (4.3.5), the steady solution does not have J ≡ 0 everywhere

and a pointless circulation of individuals occurs due to the fact that with a different

function the curl of the flux is different than zero. Assuming that such circulating

steady states do not occur, the velocity takes the form v = −D(r)∇µ and the model

proposed in equations (4.3.1) and (4.3.2) is summarised as

∂n

∂t
+ ∇ · J = α(r)n

(

1 − n

χ

)

in the resource-rich regions Ω (4.3.8)

and

∂n

∂t
+ ∇ · J = α(r)n in the resource-scarce regions Ω∁ (4.3.9)

where

J = −D(r)n∇(log n(r) + µ(r)), (4.3.10)

since equation (4.3.4) depends only on the position. According to equations (4.3.8)

and (4.3.9) the population grows logistically in the resource-rich areas while it decays

exponentially in the resource-scarce ones. The decay in the resource-scarce areas is the

result of lack of resources for feeding, nesting and any activity necessary for reproduction

and establishment, besides the high probability of predation. The availability of nesting

sites and food in the resource-rich region sets a carrying capacity that also imposes a

limit on the total number of individuals in these regions. The dendrotaxis term −Dn∇µ
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stands for the gradient of sense of danger that the population individuals experience

when exploring its surroundings assuming that they are sensitive to advantageous or

disadvantageous areas for their survival.

4.3.1 Dendrotaxis function

In order to investigate the qualitative behaviour of the model described in §4.3, we

restrict our attention to the case where the population of the resource-rich regions and

the resource-scarce regions are both uniform, so that

α(r) =











α in the resource-rich regions

−α′ in the resource-scarce regions
(4.3.11)

µ(r) =











0 in the resource-rich regions

µ0 in the resource-scarce regions
(4.3.12)

and

D(r) =











D in the resource-rich regions

D′ in the resource-scarce regions
(4.3.13)

where all the terms, α, α′, µ0, D and D′ are assumed to be constants.

The figures 4.2, 4.3 and 4.4 show qualitatively how we expect the dendrotaxis to affect

the dynamics of the system. Figure 4.2 shows the population of a system subject to

diffusion only. In this case the individuals of the population explore their environment

without actively seeking areas that are advantageous to them or moving away from

areas that are disadvantageous to them. In figure 4.3 we consider the dendrotaxis

term with almost the most simple function that we could take. We specify that µ

is constant in the resource-scarce regions and µ is zero in the resource-rich regions. The

dendrotaxis function generates a gradient on the population dispersal due to a flow of

individuals from higher dendrotaxis areas to lower dendrotaxis region, ensuring a low

individual migration from the resource-rich regions to the resource-rich regions as shown

in figure 4.4 producing a discontinuity across the boundary between the woodland and

the grassland. It works as an effective repulsive field that “pushes” the individuals away
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Figure 4.2: System subject to diffusive flux only. In the grassland the population
grows and diffuses. In the grasslands the population diffuse and decay.

from regions in which µ is larger than zero to those where it is zero.

Figure 4.3: Dendrotaxis function. This function is a step function where µ = 0 in the
resource-rich regions and µ is a positive constant value in the resource-scarce regions.

Figure 4.4 shows how due to the presence of the dentrotaxis term, a discontinuity on the

population density at the boundary has to be considered. The boundary discontinuity

is modelled imposing jump boundary conditions.

Figure 4.4: The presence of the dentrotaxis works as an effective repulsive field that
“pushes” the squirrels away from the grassland and into the woodland

The way to explicitly find the jump boundary conditions is by applying a standard

“pillbox” argument to equations (4.3.1) and (4.3.10). By doing this we see that the
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normal component on the flux density is continuous, that is

[J ·N]δΩ = 0. (4.3.14)

where J represents the flux and δΩ represents the boundary between the resource-rich

regions and the resource-scarce regions, while the squared brackets stand for the jump

across the boundary on the resource-rich region’s side (Ω) and the resource-rich region’s

side (Ω∁). This boundary condition maintains the continuity in the flux across the

boundary between the two regions. N is the outward normal to the boundary. In a

narrow region on either side of the boundary, where ∆x → 0, equation (4.3.7) will

approximately hold (otherwise the flux becomes very large). It follows then,

neµ(r)|δΩ = neµ(r)|δΩ∁ or
n|δΩ∁

n|δΩ
= exp(µ|δΩ∁ − µ|δΩ). (4.3.15)

that based on the dendrotaxis function assumed in equation (4.3.12) becomes

n|δΩ = neµ0 |δΩ∁ (4.3.16)

As it can be seen from equation (4.3.15) the value of n on each side of the boundary are

related by a proportionality µ|δΩ∁ − µ|δΩ where the function that varies only with the

position in the space, and in the case of a step function as the one given by (4.3.12) this

proportionality is reduced to µ0.

Figures 4.5(a) and 4.5(b) show one- and two-dimensional patches with discontinuities in

the boundary due tho the presence of a discontinuous dentrotaxis term, solved numeri-

cally with COMSOL Multiphysics.

4.3.2 Non-dimensionalisation

Now that the model described by equations (4.3.1)-(4.3.4) has been set-up, we non-

dimensionalise the system as in Chapter 3 via

t∗ = αt, n∗ =
n

χ
, r∗ =

r

ξ
, (4.3.17)
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(a) 1D Patch

(b) 2D Patch

Figure 4.5: One- and two-dimensional patches showing discontinuities in the bound-
ary due to the presence of a discontinuous dentrotaxis term.
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where, ξ =

√

D

α
, α is the growth rate in the resource-rich regions, D is the diffusion

coefficient in the resource-rich regions and µ0 is the constant value of the dendrotaxis

function in the resource-scarce regions. By using these parameters we obtain the non-

dimensional equations

∂n∗

∂t∗
= n∗(1 − n∗) + ∇∗2n∗ in Ω, (4.3.18)

δ
∂n∗

∂t∗
= −n∗ + λ2∇∗2n∗ in Ω∁, (4.3.19)

and jump boundary conditions,

n∗|δΩ = n∗eµ0 |δΩ∁ (4.3.20)

and

N · (∇∗n∗)|δΩ = N ·
(

λ2

δ

)

(∇∗n∗)

∣

∣

∣

∣

δΩ∁

, (4.3.21)

where

δ =
α

α′ (4.3.22)

and

λ =

√

D′α

Dα′ . (4.3.23)

The primed constants D′ and α′ denote the diffusion constant and the decay rate in

the resource-scarce regions. In the interest of brevity, we subsecuently drop the star

notation in equations (4.3.18) – (4.3.21). The non-dimensional equations of the system

then become,

∂n

∂t
= n(1 − n) + ∇2n in Ω (4.3.24)

δ
∂n

∂t
= −n + λ2∇2n in Ω∁, (4.3.25)
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n|δΩ = neµ0 |δΩ∁ , (4.3.26)

N · ∇n|δΩ =
λ2

δ
N · ∇n

∣

∣

∣

∣

δΩ∁

. (4.3.27)

These equations are all valid in one and two dimensions.

4.3.3 Parameters analysis

The model presented in §4.3 is a generic description of any population following the

behavior given by equations (3.3.8)–(4.3.27), but the parameters found in them will

depend on particular aspects of specific populations. Here we examine the example

introduced in §4.2 to understand the dynamics of a system formed by squirrels dispersing

in a fragmented environment, in the rescaled framework.

To estimate the size of the parameters we assume that eµ0 >> 1 since squirrels strongly

prefer to stay in the woodland rather than in the grassland, therefore the drift velocity

of the squirrels away from the grassland will be large.

On the other hand, we suppose that δ ≪ 1. This assumption implies that the decay

rate in the grassland is much larger that the growth rate in the woodland. According to

Guichón [15], these squirrels reproduce at a rate of approximately 1.53yr−1, while the

decay rate increases dramatically as soon as they leave the woodlands due to predation

and lack of food; implying for example that, it would be extremely unlikely to find a

squirrel wandering in the grasslands for anywhere close to 1.53 years.

Finally, we assume that
D′

D
≫ 1. This assumption is based on the fact that individual

movement, or diffusion in the grasslands is much faster than in woodlands. According

to empirical observations described personally by M.L. Guichón and C.P. Doncaster,

squirrels move much faster in grasslands than in woodland due to the hazard sensitivity

they present. At the same time, we suppose that the diffusion coefficient is small in

the woodlands than in the grassland. This assumption is based in the fact that if an
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individual establish a nest site with a mate in the woodlands, they will stay around the

nest site and not diffuse much.

Notice from equation (4.3.26) that if the drift velocity representing the hazard sensitivity

of the individuals is zero, the jump in the boundary goes to zero when µ0 = 0, recovering

the behaviour presented in Chapter 3, governed by Fickian diffusion only, thus canceling

the jump in the population density and maintaining the continuity in the individuals

flux.

4.4 Numerical solution

Setting up the basis of the model described in §4.3.2, we can study some features of the

population dispersal. We start with a numerical analysis of two resources-rich patches

separated by a scarce-resources gap shown in figure 4.6. We investigate how the pop-

ulation in a resources-rich patch disperses through it and how the flux of individuals

crossing a scarce-resources gap is affected by the scarce-resources gap depending on the

size of the parameters discussed in §4.3.3. Finally, we study the dependency of the gap

crossing time delay, respect to the gap length. In terms of numerical analysis, we explore

the system using COMSOL Multiphysics performing an extensive gap crossing analysis.

4.4.1 Gap crossing

Here we numerically analyse a one-dimensional system constituted by two resources-

rich patches (woodland) with a gap of resources-scarce regions (grassland) in between

as shown in figure 4.6.

Based on the model built in §4.3.2 we analyse an example of a one-dimensional system

constituted by two resources-rich patches as in figure 4.6, and solve equations (3.3.8) –

(4.3.27) using COMSOL Multiphysics for different gap sizes.

In the rescaled units, the example we investigate is constructed over the domain −M <

x < M + L as shown in the figure 4.7. The resources-rich patches are located at

Ω = (−M, 0) ∪ (L,M + L) while the scarce-resources areas are covered by the domain
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x = 0 x = L

Ω Ω∁

∂n

∂t
= n(1 − n) + ∇2nδ

∂n

∂t
= −n + λ2∇2n

∂n

∂t
= n(1 − n) + ∇2n

n|δΩ = neµ0 |δΩ∁

N · ∇n|δΩ = λ2

δ N · ∇n
∣

∣

∣

δΩ∁

Ω

Figure 4.6: Two patches of resources-rich separated by a gap of scarce-resources
are shown. The equations governing each region are written as well as the boundary
conditions in the border between the resources-rich and the scarce-resources regions.

b b b b
Woods WoodsGrass

-M 0 L L+M

Figure 4.7: Geometry of two resources-rich patches surrounded by scarce-resources
areas used for the system given in §4.4.1. This system is analysed numerically with

COMSOL Multiphysics.

Ω∁ = (0, L). We assume as initial condition a small population in the domain (−M, 0)

occupied by resources-rich with value n = 0.1 in the interval x = (−M,−M + 1). For

the example developed here M = 50 and L = 10.

According to equations (3.3.8)–(4.3.27) the parameters that have to be defined are µ0,

λ and δ which, based on the analysis of the parameters done in §4.3.3 we define as

µ0 = 3, λ2 = 2 and δ = 0.05. These values may be adjusted according to more accurate

biological data, but for simplicity we take these values here. To model the boundary

discontinuities resulting from the dendrotaxis term we use Heaviside functions at the

boundary of the patches, in this way we obtain the dendrotaxis step function shown in

figure 4.3. The introduction of the Heaviside functions is introduced in the flux terms

of the general equation at the boundary, instead of being introduced as a boundary

conditions due to software limitations.

The results of the example described previously are shown in figure 4.8 for a system with

25666 elements and 0 < t < 100 time units. Once the left resources-rich patch is filled

up some individuals start diffusing to the next patch through the scarce-resources area

decaying along the way. In this case the gap between patches is sufficiently small for

some individuals to cross it and start reproducing in the new resources-rich patch. Once
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Figure 4.8: Individuals dispersal in a one-dimensional two patches system. Each
patch has a size of s = 50 while the gap, located at x = 0 has a length L = 10. The
parameters used for the solution of this system are λ =

√
2, δ = 0.05 and µ0 = 3. Once

the left patch is filled up the individuals start dispersing to the right hand patch filling
it up.

the individuals reach the second resources-rich patch they start reproducing logistically

once again until they fill up the second patch.
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b b b b

Woods WoodsGrass
b bb b

b bb b

b bb b

b

b

b

b bb b

L = 1

L = 2

L = 13

L = 12

L = 11

x = 50 x = 50

Figure 4.9: One-dimensional systems with different gap scarce-resources subdomains.

4.4.2 Time delay dependent on gap length

To analyse the time delay dependence on the gap between patches length, we run the

model for a set of systems with different gap lengths, L = 0, 1, 2, ..., 13. For each system

we measure the time required to fill up the right hand patch up to a fixed population of

n = 0.5 at x = L starting from the point where the population at x = 0, the right hand

end of the left hand patch is equal to n = 0.5. The relation found tells us how the gap

crossing time depends on the gap length.

For the set of systems studied here we assume that each system consist of a pair resources-

rich patches of fixed size x = 50 separated by a set of different gap lengths L = 0 − 13

as exemplified in figure 4.9. For each system, the mesh of every subdomain, has a

maximum separation between points of x = 0.0075, while the maximum separation

between points close to the boundary is x = .0001. On the time scale we assume that

the solution changes with a time interval of 0.05 ranging from t = 0 to t = 70 for every

single system. By solving this set of systems with COMSOL Multiphysics, using the

parameters λ =
√

2, δ = 0.05 and µ0 = 3, we obtain the data provided in Table 4.1

The results for gap crossing time delay provided in Table 4.1 for a number of patch

systems with different gap lengths are obtained from systems solutions as the ones

shown in figure 4.10.

According to the data obtained from the numerical analysis, the elapsed time to cross

a scarce-resources gap grows linearly for sufficiently big gap sizes. However, if the gap
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Figure 4.10: Population dispersal in a two corridor patches system of length s = 50
separated by a gap of variable length, L = 0−13. A relationship between the waiting gap
crossing time and gap length are found. The left-hand side figures show the population
at different times when n|x=0 = 0.5 and the right-hand side figures of the population
at times when n|x=L = 0.5 for different gap lengths. The parameters used here are

λ =
√

2, δ = 0.05 and µ0 = 3.
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Gap size data

Gap size Mesh size Time delay between patches

0 23336 0.3
0.25 23283 0.4
0.5 23401 0.55
0.75 23480 0.6

1 23542 0.7
1.25 23608 0.85
1.5 23686 1.0
1.75 23729 1.15

2 23790 1.3
2.5 23909 1.7
3 24028 2.0

3.5 24146 2.55
4 24263 3.0

4.5 24381 3.4
5 24498 3.8

5.5 24615 4.25
6 24732 4.5

6.5 24849 5.0
7 24966 5.5

7.5 25083 6.0
8 25200 6.5

8.5 25314 6.65
9 25434 7.0

9.5 25551 7.5
10 25666 7.8

10.5 25781 8.35
11 25901 8.6

11.5 26017 8.9
12 26134 9.05

12.5 26251 9.35
13 26368 9.5

Table 4.1: Numerical data for different gap sizes with λ =
√

2, delta = 0.05 and
µ0 = 3.

size grows too much, the data analysis turns complicated because the population flux

becomes of the order of the numerical error in the calculations, making the numerical

results unreliable. This is the reason why we analyse only up to gap size L = 10.5.

Figure 4.11 shows the gap crossing time delay against gap length, overlapped with the

fitting curve t = 0.8289L + 0.3586 for 1.5 ≤ L ≤ 10.5.

To evaluate the effectiveness of this curve fitting we use a couple of statistical tools. The

sum of squares due to error (SSE) measures the deviation of the numerical obtained
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data from the fitting function,

SSE =

n
∑

i=1

wi(ti − fi)
2 (4.4.1)

where ti corresponds to the obtained numerical data while fi is the predicted value from

the fit. wi is the weighting applied to each point data, that in this case is assumed as 1.

For this measure, a value closer to 0 indicates a small error, making the fit more reliable

for prediction.

The other statistical tool we use to evaluate the effectiveness of the fitting function is

called R-square. This statistic measures how good the fit is to explain the variation of

the data defined as,

R− Square = 1 −
∑n

i=1 wi(ti − fi)
2

∑n
i=1 wi(ti − tav)2

. (4.4.2)

Here ti represents the numerical data, fi is the fitted data, tav is the mean of the observed

numerical data and wi = 1 is the weighting applied to each point of the observed data.

This statistic take values between 0 and 1, and the closer it gets to one, the better the

prediction is [123].

For the linear function found in this section we found a SSE = 0.14 and a R−square =

0.998. These results tell us that the function fit is a good approximation to our obtained

data.

The linear dependence of the time with the gap length for gaps with lengths between

1.5 ≤ L ≤ 10.5 in 1-dimensional systems is shown in figure 4.12 where the function has

95% of confidence bounds, which means that only the 5% of the data falls out of the

predicted fit. The width of the confidence bounds interval indicates how acurate the fit

is as well. The wider the interval, the more inaccurate the fitting function is. The linear

relation of crossing time with gap length is consistent with a constant velocity of the

wave of advance, as seen in many invasions (e.g. Muskrat in Europe).

If the size of the gap L is increased too much, the flux obtained at x = L do not meet

the precision required for the numeric calculations to be reliable and the gap length time

dependence becomes uncertain. Therefore, in §4.5 we perform an analytic study of how
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the population change and disperse in the system studied along §4.4.
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Figure 4.11: The blue dots corresponds to the numerical data obtained from the
analysis of a series of different systems constituted by two resources-rich patches and
different sized gaps in between. It measures the elapsed time to cross a gap depending
on the gap length. The red line corresponds to the linear approximation for gap sizes

of L ≥ 2.5. The parameters used here are λ =
√

2, δ = 0.05 and µ0 = 3

4.5 Asymptotic solutions

Analytical results of gap crossing individuals in an inhomogeneous environment are

presented in this section. An asymptotic analysis of the model described in §4.3.2, in line

with the estimation of the parameters discussed in §4.3.3 is taken for a one-dimensional

system.

The system we analyse in this section is shown in figure 4.13. Based on the assumed

knowledge of the value of the population on the left hand side resources-rich patch, we

investigate how the flux of individuals leaving the full, left hand resources-rich patch,

crosses the scarce-resources patch and arrives to the empty resources-rich patch, pre-

dicting the dynamics of the right hand resource-rich patch. The dynamics of the empty

resources-rich patch may or may not start a new reproducing population depending on

variables such as gap length, number of individuals crossing the gap, their ability to

disperse and their ability to reproduce. The boundary conditions at the boundary of

the empty resources-rich patch x = L will be obtained from the knowledge of the initial



Chapter 4 One-dimensional population models with dendrotaxis 125

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

G
ap

 c
ro

ss
in

g 
tim

e 
( 

t w
ai

t )

Gap length  ( L )

Analysis of a linear for the dataset
"Gap crossing time" vs. "gap length"

 

 

Linear fitting function
95% prediction bounds
Numerical data

Figure 4.12: The dots along the graphic denote obtained data from numerical anal-
yses of different gap sized systems. The solid line is the function fit while the dashed
lines show the 95% of confidence bounds for the linear fitting function. As observed
in the figure the width of the interval for the confidence bounds is quite thin, that
indicates a good data fit. The parameters used here are λ =

√
2, δ = 0.05 and µ0 = 3

population at the boundary of the full patch x = 0, and the solution of the system in

the scarce-resources region.

In the resource-rich area, Ω the population distributes almost homogeneously in x =

(−∞, 0). The scarce-resources zone Ω∁ is located in x = (0, L), where the population

simply decays. Finally, from x = L to x = ∞ another patch appears. We investigate the

dynamics of the population located in this last patch based on the information obtained

from the first resource-rich patch and the scarce-resource area population behaviour.

b

b

Ω

ΩC

x = 0 x = L

n0 ≈ 1
n̂1 = ǫ

n0

n̂1 b

Ω

b

x → −∞
n = 1

x → ∞

n(x)

n ≈ 0

Figure 4.13: One-dimensional system of two resources-rich patches with a scarce-
resources gap in between. The population at x = L is directly related with the popu-

lation at x = 0 and the boundary conditions.
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To analytically describe the system proposed, an asymptotic analysis close to the bound-

aries is performed we consider the limit

e−µ0 = ǫ (4.5.1)

where ǫ ≪ 1 and,

λ2

δ
=

Γ

ǫ
, (4.5.2)

where Γ = O(1), λ = O(1) and
Γ

ǫ
≫ 1 as well, so that equations(4.3.24)-(4.3.27) become

∂n

∂t
= n(1 − n) +

∂2n

∂x2
in x < 0 and x > L, (4.5.3)

δ
∂n

∂t
= −n + λ2 ∂

2n

∂x2
in 0 < x < L. (4.5.4)

in order to later simplify the system. The boundary conditions become,

ǫn|x=0− = n|x=0+ and n|x=L− = ǫn|x=L+ (4.5.5)

and

ǫ
∂n

∂x

∣

∣

∣

∣

x=0−
= Γ

∂n

∂x

∣

∣

∣

∣

x=0+
and Γ

∂n

∂x

∣

∣

∣

∣

x=L−

= ǫ
∂n

∂x

∣

∣

∣

∣

x=L+

(4.5.6)

Recalling that ǫ ≪ 1 and δ ≪ 1, we expand n in powers of ǫ by writing

n = n0 + ... in (−∞, 0) ∪ (L,∞) (4.5.7)

n = ǫn̂1 + ... in (0, L) . (4.5.8)

leading to the following set of leading order equations and boundary conditions,

∂n0

∂t
= n0(1 − n0) +

∂2n0

∂x2
in (−∞, 0) ∪ (L,∞), (4.5.9)
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− n̂1 + λ2∂
2n̂1

∂x2
= 0 in (0, L) , (4.5.10)

n0|x=0− = n̂1|x=0+ n0|x=L+ = n̂1|x=L− (4.5.11)

∂n0

∂x

∣

∣

∣

∣

x=0−
= Γ

∂n̂1

∂x

∣

∣

∣

∣

x=0+

∂n0

∂x

∣

∣

∣

∣

x=L+

= Γ
∂n̂1

∂x

∣

∣

∣

∣

x=L−

(4.5.12)

The solution of equation (4.5.10) in (0, L) is given by

n̂1 = A sinh
(x

λ

)

+ B cosh
(x

λ

)

(4.5.13)

while

∂n̂1

∂x
=

A

λ
cosh

(x

λ

)

+
B

λ
sinh

(x

λ

)

(4.5.14)

and the boundary conditions are given in equations (4.5.11) and (4.5.12). From equations

(4.5.13) and (4.5.14) we find that at x = 0

n̂1|x=0+ = B (4.5.15)

and

∂n̂1

∂x

∣

∣

∣

∣

x=0+
=

A

λ
(4.5.16)

From equations (4.5.15) and (4.5.16)and the boundary conditions given by (4.5.11) and

(4.5.12) we obtain

A =
λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=0−
and B = n0|0− . (4.5.17)

Substituting the values of A and B and rearranging terms in equations (4.5.13) and

(4.5.14) we obtain the relations

n0|x=L+ = n̂1|x=L− =
λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=0−
sinh(L/λ) + n0|x=0− cosh(L/λ), (4.5.18)
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∂n0

∂x

∣

∣

∣

∣

x=L+

= Γ
∂n̂1

∂x

∣

∣

∣

∣

x=L−

=
∂n0

∂x

∣

∣

∣

∣

x=0−
cosh(L/λ) +

Γ

λ
n0|x=0− sinh(L/λ). (4.5.19)

hence,

n0|x=0− = n0|x=L+ cosh(L/λ) − λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=L+

sinh(L/λ), (4.5.20)

and

∂n0

∂x

∣

∣

∣

∣

x=0−
=

∂n0

∂x

∣

∣

∣

∣

x=L+

cosh(L/λ) − Γ

λ
n0|x=L+ sinh(L/λ). (4.5.21)

obtaining a set of relationships between the population at x = 0 and the population at

x = L.

We now seek an approximate solution by making the further approximation that L >> λ,

where λ is a dimensionless quantity related to the the wave of advance velocities rate

inside and outside the woodland patch.

We expand equations (4.5.18) – (4.5.21) in Taylor series to find that,

n0|x=L+ ≈ eL/λ
(

λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=0−
+ n0|x=0−

)

, (4.5.22)

∂n0

∂x

∣

∣

∣

∣

x=L+

≈ eL/λ
(

∂n0

∂x

∣

∣

∣

∣

x=0−
+

Γ

λ
n0|x=0−

)

, (4.5.23)

(

n0|x=L+ − λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=L+

)

≈ n0|x=0− e(−L/λ), (4.5.24)

and
(

∂n0

∂x

∣

∣

∣

∣

x=L+

− Γ

λ
n0|x=L+

)

≈ ∂n0

∂x

∣

∣

∣

∣

x=0−
e(−L/λ). (4.5.25)

If we know the value of the population at n0|x=0− , equation (4.5.24) give us a set of

mixed boundary conditions for the scarce-resource region in terms of the gap length.

We can then find the boundary condition for the population at x = L+ since we know
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both, the governing equation for the population in the resource scarce region and the

boundary conditions.

The value of n0|x=0− is obtained from equation (4.5.22). The approximate boundary

condition at x = 0− is then given by

λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=0−
+ n0|x=0− ≈ 0. (4.5.26)

since we are assuming that L >> 0.

Now we look for the steady state solution of the problem for x < 0. Assuming that the

extension of the resource-rich patch x < 0 is infinite, we can make use of the results

found in Chapter 3. In §3.1.3 we analysed the stationary state of a semi-infinite patch

following the equation

0 = n(1 − n) +
d2n

dx2
. (4.5.27)

with the boundary conditions given by

n = 1 as x → ∞. (4.5.28)

with solutions for the population and its derivative given by

n(x) =
1

2



3

(

1 − (2 −
√

3)e−(x−x0)

1 + (2 −
√

3)e−(x−x0)

)2

− 1



. (4.5.29)

and

dn

dx
=

(6e(x−x0)(7 − 4
√

3 + (−2 +
√

3)e(x−x0)))

(−2 +
√

3 − e(x−x0))3
. (4.5.30)

In the case we are studying here, the resource-rich patch is located over the interval

(−∞, 0), therefore, the solutions given by (4.5.29) and (4.5.30) take negative values of

x. The boundary condition applied in §3.1.3 was n|x=0 = 0 (and therefore x0 = 0).

Here we use the boundary condition provided by equation (4.5.26).

The solutions for the population and its derivative, occupying a semi-infinite patch
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located in (−∞, 0) are then given by

n(x) =
1

2



3

(

1 − (2 −
√

3)e(x−x0)

1 + (2 −
√

3)e(x−x0)

)2

− 1



 for x < 0 (4.5.31)

and

dn

dx
=

6e(x−x0)((2 −
√

3) + (7 − 4
√

3)e(x−x0))

((−2 +
√

3)ex−x0 − 1)3
for x < 0. (4.5.32)

Applying now the boundary condition (4.5.26) at x = 0−, we obtain,

1

2



3

(

1 − (2 −
√

3)e(−x0)

1 + (2 −
√

3)e(−x0)

)2

− 1



 +
√

2
6e(−x0)((2 −

√
3) + (7 − 4

√
3)e(−x0))

((−2 +
√

3)e−x0 − 1)3
= 0,

(4.5.33)

from where we can find the value of n at x = 0−. Assuming that λ/Γ =
√

2, we take

the only real positive solution obtained for x0 given by x0 = 1.75 finding that,

n0|x=0− ≈ 0.745. (4.5.34)

Figure 4.14 shows the solution for the population in a stationary state for x < 0 with

the boundary condition given by equation (4.5.26) with λ/Γ =
√

2 so that x0 = 1.75.

-10-20
x0

0.5

0.75

1
nHxL

Figure 4.14: Population for x < 0 in a semi-infinite patch. As x → −∞, n → 1. At
x = 0 it is found that n = 0.745. We assumed that λ/Γ ≈ 0.7.
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Once the value of n0|x=0 = 0.745 is found, we can substitute it in equation (4.5.24)

obtaining,

(

n0|x=L+ − λ

Γ

∂n0

∂x

∣

∣

∣

∣

x=L+

)

≈ 0.745e(−L/λ) . (4.5.35)

Equation (4.5.35) give us a set of mixed boundary conditions for the right hand resources-

rich patch shown in figure 4.13. If we also suppose that the second patch is infinite, we

can assume that the population at x = ∞ will be zero. With this assumptions and the

results found in this section, we can now investigate the dynamics of the second patch.

4.5.1 Population dynamics after crossing a gap

In this section we investigate the dynamics of an initially empty patch with plentiful

resources, where the boundary conditions are taken from equation (4.5.35) and from

the assumption of having a very large patch (x → ∞). As in previous analysis, the

population in the initially empty patch takes the dynamics given by equation (3.3.8),

∂n

∂t
= n(1 − n) + ∇2n (4.5.36)

in a one-dimensional space.

With the initial conditions (4.5.35) plus the assumption that at t = 0, n0 = 0 and as

x → ∞ the population tends to zero,

n|t=0 = 0, (4.5.37)

and

n|x→∞ = 0, (4.5.38)

we analyse the population dynamics in the new patch close to its boundary. Figure 4.15

shows the system we analyse in this section.
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x = L

∂n

∂t
= n(1 − n) +

∂2n

∂x2

Woodland

x → ∞

n|t=0 = 0
B.C.

n|x→∞ = 0

n− λ
Γ
∂n
∂x

∣

∣

x=L
= 2e−L/λ

Figure 4.15: The dynamics of a gap with the boundary conditions stated is studied.
These boundary conditions emerge after a number of individuals coming from a plentiful
resource area cross a scarce-resources gap in a one-dimensional system. The population
at x = L is directly related, and predicted by with the population at x = 0 and the

boundary conditions.

Assuming that e−L/λ → 0 we can write,

e−L/λ = ϑ ≪ 1. (4.5.39)

Expanding n in powers of ϑ,

n = ϑn(0) + ... (4.5.40)

the set of leading order equations (4.5.36) and boundary conditions (4.5.35), (4.5.37)

and (4.5.38) to order ϑ is,

∂n(0)

∂t
= n(0) +

∂2n(0)

∂x2
(4.5.41)

n(0)
∣

∣

∣

x=L
− λ

Γ

∂n(0)

∂x

∣

∣

∣

∣

∣

x=L

= 1, (4.5.42)

n(0)
∣

∣

∣

x→∞
= 0 (4.5.43)

and

n(0)
∣

∣

∣

t=0
= 0. (4.5.44)

This set of equations is linear, therefore, we can solve it using Laplace transforms.
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Defining

n̄(0)(x, s) =

∫ ∞

0
e−stn(0)(x, t)dt, (4.5.45)

equations (4.5.41) – (4.5.44) transforms into

sn̄(0) = n̄(0) +
∂2n̄(0)

∂x2
, (4.5.46)

(

n̄(0)
∣

∣

∣

x=L
− λ

Γ

∂n(0)

∂x

∣

∣

∣

∣

∣

x=L

)

=
1

s
, (4.5.47)

and

n̄(0)
∣

∣

∣

x→∞
= 0. (4.5.48)

The solution of equation (4.5.46) in the frequency domain is then

n̄(0) = Ce
√
s−1(x−L) + De−

√
s−1(x−L). (4.5.49)

From equation 4.5.48 we obtain C = 0 since n̄(0) = 0 as x → ∞, therefore,

n̄(0) = De−
√
s−1(x−L). (4.5.50)

and

∂n̄(0)

∂x
= −

√
s− 1De−

√
s−1(x−L). (4.5.51)

The value of D is obtained by evaluating equations (4.5.50) – (4.5.51) at x = L, and

applying the boundary condition from equation 4.5.47,

D =
1

s
(

1 + λ
Γ

√
s− 1

) ≡
Γ
λ

sΓ
λ + s

√
s− 1

(4.5.52)

therefore,

n̄(0)(s, t) =
Γ
λ

s
(

Γ
λ +

√
s− 1

)e−
√
s−1(x−L). (4.5.53)

Defining

F(s) = e−
√
s−1(x−L), (4.5.54)
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G(s) =
Γ
λ

s
(

Γ
λ +

√
s− 1

) (4.5.55)

and using the convolution theorem,

L−1(F(s) · G(s)) =

∫ t

0
f(u) · g(t− u)du (4.5.56)

where f(t) and g(t) are the inverse Laplace transforms of F(s) and G(s),

f(t) =
(x− L)e

−(x− L)2

4t
+ t

2
√
πt3

, (4.5.57)

g(t) =

(

Γ
λ

)2
(

1 − e

(

(Γ

λ )
2
+1

)

t
erfc

(

Γ
λ

√
t
)

)

+ Γ
λ erfi(

√
t)

1 +
(

Γ
λ

)2 , (4.5.58)

where erfc is the complementary error function and erfi is the imaginary error function.

The solution in the time domain for equation (4.5.53) is then,

n(0)(x, t) =

∫ t

0

(

Γ
λ

)2
(

1 − e

(

(Γ

λ)
2
+1

)

(t−u)
erfc(Γλ

√
t− u)

)

+ Γ
λ erfi(

√
t− u)

1 +
(

Γ
λ

)2 ·

(x− L)e

−(x− L)2

4u
+ u

2
√
πu3

du. (4.5.59)

Assuming that
Γ

λ
= 0.7, the solution of equation (4.5.59) can be plotted. This solution

is shown in figure 4.16, where it is observed how the population grows exponentially for

x ≈ L, decaying later as x → ∞. At the same time, the figure shows how the population

grows with time, presenting the solution of the equation at 5 different times.

4.5.2 Gap crossing time analysis

To finish the study of this one-dimensional type of systems, here we use some asymptotic

analysis to investigate how the elapsed time to cross an asymptotically large gap varies

with the size of the gap. According to equation (4.5.59), the population close to the
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Figure 4.16: Semi-analytical results of the population growth in the second patch
after the population flux start reaching the second patch with Γ/λ = 0.7.

boundary is given by,

n(0)(x, t) =

∫ t

0

(

Γ
λ

)2
(

1 − e

(

(Γ

λ)
2
+1

)

(t−u)
erfc(Γλ

√
t− u)

)

+ Γ
λ erfi(

√
t− u)

1 +
(

Γ
λ

)2 ·

(x− L)e

−(x− L)2

4u
+ u

2
√
πu3

du. (4.5.60)

To find an approximation to the gap crossing time, we look for the values of t where n

first becomes of O(1). We know from (4.5.39) that

n = ϑn(0) + ... (4.5.61)

where

ϑ = e−L/λ (4.5.62)

therefore n becomes of size one

n(0) ≈ eL/λ (4.5.63)
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from where we can find a relationship for the gap length L dependent on the gap crossing

time t given by

eL/λ =

∫ t

0

(

Γ
λ

)2
(

1 − e

(

(Γ

λ )
2
+1

)

(t−u)
erfc(Γλ

√
t− u)

)

+ Γ
λ erfi(

√
t− u)

1 +
(

Γ
λ

)2 ·

(x− L)e

−(x− L)2

4u
+ u

2
√
πu3

du (4.5.64)

Taking natural logarithms on both sides we obtain

L

λ
≈ log









∫ t

0

(

Γ
λ

)2
(

1 − e

(

(Γ

λ )
2
+1

)

(t−u)
erfc(Γλ

√
t− u)

)

+ Γ
λ erfi(

√
t− u)

1 +
(

Γ
λ

)2 ·

(x− L)e

−(x− L)2

4u
+ u

2
√
πu3

du











(4.5.65)

that once evaluated and plotted at x ≈ L, results in a linear dependence of t over L. The

slope of this relationship is log(f(t)) ≈ L/λ = 0.8440t − 2.41, result in agreement with

the data found in the numerical analysis where we had found that t = 0.8289L+ 0.3586,

that in terms of L/λ is L/λ = 0.8530t − 0.3059 with λ =
√

2. This result is valid for

large L (i.e. for values where eL/λ ≈ 0), where we can observe that the slope of the

curves match almost perfectly. Let us note also that the slope of the curve depends on

the value of the parameter λ which varies according to the species under study and the

spatial structure.

In figure 4.17 we show the linear dependence of L/λ over t for Γ = 1, λ =
√

2, and

L = 10, while figure 4.18 shows the comparison between the numerical results and the

semi-analytical ones.

We can conclude from this section that both results show that the gap crossing time

shows a linear relationship with the gap length, which, as expected, tell us that the

longer the gap between patches, the longer the time the individuals take to cross the

gap.
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Figure 4.17: Semi-analytic results found for the dependence of the gap length where
L/λ ≈ log(n(0)(t)) versus the gap crossing time t. The parameters used here are given

by λ =
√

(2) and Γ = 1.

In the following section we analyse another factors that can contribute to the slowing of

the spread of individuals in a fragmented environment.

4.5.3 Allee effect

Another possible scenario in the analysis of population dispersal in a fragmented envi-

ronment is to assume the existence of an Allee effect in the population growth function

among the resource-rich regions. The Allee effect is a negative density dependence in

the population and it occurs when population growth rate is reduced at low population

size [89]. An Allee effect may occur for example, when the reproductive success is very

poor due to factors such as low fecundity or difficulty to find mates.

The spread of an invading species typically starts at very low density populations. This

suggest that we should include Allee effects in the model, and we suspect that they may
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Figure 4.18: Numerical and semi-analytic results found for the dependence of the
gap length L versus the gap crossing time t. The comparison between results is given
for large L where both results have practically the same slope. These results have
importance only for L > 0. The parameters used here are given by λ =

√
2 and

Γ/λ = 0.7 where we have assumed that Γ = O(1).

significantly influence the spread. Allee effects are known to affect the strategies for

optimal control as well as the determination of individuals spatial ranges, distributions

and patterns [103].

The system we analyse in this section is the same we analysed in §4.5 and shown in figure

4.13. Based on knowledge of the value of the population at the boundary of the left hand

side resources-rich patch, we investigate the dynamics of the right hand resources-rich

patch. In this case the dynamics of the empty right handed resources-rich patch do

not follow simple logistic growth, but a function presenting an Allee effect. This effect

may results in the possible collapse of the population depending on variables such as

Allee effect strength, as well as gap length, number of individuals crossing the gap, their

ability to disperse and their ability to reproduce.

To model the Allee effect, we introduce a generic growth function including a negative

density dependence factor at low population. Consider a single population system, the
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population growth can be described by the equation

f(n, r, t) = α(n)g(n, r) in the resource-rich regions (4.5.66)

where α(n) denotes a negative density dependent net growth function, where the net

growth rate is given by

α = b− d (4.5.67)

where b is the total number of population births and d, the total number of deaths. We

include the Allee effect by assuming that the number population births depends on the

population density, so that

b → b̄ (n/n0)

1 + n/n0
(4.5.68)

where n0 is related to the critical population where α goes negative. Rewriting equation

(4.5.67) in terms of (4.5.68) we obtain,

α = ᾱ− b̄

(

n0

n + n0

)

(4.5.69)

where ᾱ = b̄− d. Substituting (4.5.69) in (4.3.1) and (4.3.2) we can write

∂n∗

∂t∗
=

[

ᾱ− b̄

(

n0

n∗ + n0

)]

n∗(1 − n∗

χ
) + D

∂2n∗

∂x∗2
(4.5.70)

where χ, represents the carrying capacity of the system, D is the diffusion coefficient

in the resource-rich regions and

[

ᾱ− b̄

(

n0

n∗ + n0

)]

is the net population growth rate

which gives us a density dependent growth function for the areas of rich resources. Here

the stars denote dimensional variables.

4.5.3.1 Non-dimensionalisation

In order to simplify equation (4.5.70) we non-dimensionalise the system by,

t = ᾱt∗, n =
n∗

χ
, x =

x∗

ξ
, (4.5.71)
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where, ξ =

√

D

ᾱ
. χ represents the carrying capacity of the system and ᾱ is the density

dependent population growth rate and D is the diffusion coefficient in the resource-rich

regions. This gives the non-dimensional equation

∂n

∂t
=

[

1 − ςν

ς + n

]

n(1 − n) +
∂2n

∂x2
in the resource-rich regions. (4.5.72)

where,

ς = n0/χ, and ν = b̄/ᾱ . (4.5.73)

Figure 4.19 shows how the Allee effect influences the population growth function. Here-

after we shall assume that ς << 1.

Allee effect

threshold
Χ

n0

1
x

nHxL

Figure 4.19: Allee effect influence on the population growth in a empty resources-rich
patch. The growth rate is negative below some threshold and it becomes positive after
this threshold indicating that at values of n ≈ 0, the reproductive success is unlikely.

4.5.3.2 Steady state analysis

We now would like to investigate what happens in the initially empty patch located at

x > L under the presence of an Allee effect. Our hypothesis is that migration from

x < 0 results in either (I) a steady solution for a small decreasing population in x > L ,

or (II) a growing population solution in x > L that eventually develops into a travelling

wave. Here, we investigate the possibility of non-growing forms due to the presence of

Allee effects in form of steady state solutions.

Writing the set of governing equations and boundary conditions for the initially empty
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patch and assuming that n = O(ς), since the population flux arriving to the patch is close

to zero at the boundary we write n ≈ ςN in x > L. To a leading order approximation,

equation (4.5.72) becomes,

∂N

∂t
=

[

1 − ν

1 + N

]

N +
∂2N

∂x2
. (4.5.74)

The boundary conditions for this system come from the asymptotic relationships we

found in §4.5 between the population at x = 0 and x = L. At x = L+ equation (4.5.24)

gives,
(

N |x=L+ − λ

Γ

∂N

∂x

∣

∣

∣

∣

x=L+

)

≈ n|x=0−

ς
e(−L/λ). (4.5.75)

to order ς. The boundary conditions at x → ∞ are given by

N → 0 and
∂N

∂x
→ 0 as x → ∞ (4.5.76)

Hence, the interesting limit happens when
e(−L/λ)

ς
is of O(1). Once the governing

equation and boundary conditions are set, we look for a steady state solution to equation

(4.5.74) satisfying,

0 =

[

1 − ν

1 + N

]

N +
∂2N

∂x2
. (4.5.77)

Writing
∂N

∂x
= u, we can rewrite equation (4.5.77) as

udu = −
[

1 − ν

1 + N

]

NdN. (4.5.78)

This equation can be integrated on both sides, to obtain an expression for
∂N

∂x
in terms

of N given by

∂N

∂x
= ±

[

2ν(N − log(N + 1)) −N2
]1/2

, (4.5.79)

where the constant factor is equal to zero considering the boundary conditions given by

equation (4.5.76). As we are looking for a decaying solution to equation (4.5.79) so n = 0

as x → ∞, we substitute the negative solution of (4.5.79) into the boundary condition
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(4.5.75) to obtain

(

N |x=L+ +
λ

Γ

[

2ν(N − log(N + 1)) −N2
]1/2

∣

∣

∣

x=L+

)

=
n|x=0−

ς
e(−L/λ). (4.5.80)

This equation gives us a relationship for N |x=L+ in terms of the gap distance between the

two resource-rich patches. If equation (4.5.80) has at least one real root, then equation

(4.5.77) is fulfilled and steady solutions to equation (4.5.79) exist. If no root can be

found, then there is no stationary state solution to (4.5.79), and our hypothesis is that

the population carries on growing, developing into a travelling wave solution over time.

Defining M =
n|x=0−

ς
e(−L/λ), we can now plot equation (4.5.80) for different values

of M and ν. Solutions to the stationary state are possible whenever equation (4.5.80)

has a real root, i.e. when the solution to equation (4.5.80) crosses the x-axis. Notice

that, for each value of ν there is a critical value of M (or L) for which a stationary

state solution exist. If not such solution exists, we anticipate that the population will

develop into a travelling wave. Notice that the values that M can take range between

0 − 0.745, since N |x=0+ = 0.745 from equation (4.5.35), and L ≥ 0. The smaller M is,

the bigger the gap L is. Therefore, the existence of a stationary state solution increases

as M decreases.

From the solutions to equation (4.5.80) shown in figure 4.20 we see that, if
n|x=0−

ς
e(−L/λ)

is large enough, then no steady solutions exist. At the same time, if the Allee effect is

close to zero or non-existent, there are no solutions to the stationary state. However, as

ν increases, steady solutions start to appear. Finally, if ν = 0, there is no real solution

to equation (4.5.80). This is in accordance with what one would expect. Large gaps and

large Allee parameters stop the solution from propagating.

Figure 4.20 shows the solution to equation (4.5.80) displaying the dependence of the

parameter ν on M . Varying the values of these two parameters ν ∈ [1, 1.35] and M ∈

[0, 0.7] and using the values for the parameters Γ = 1 and λ =
√

2, we discover a family

of solutions for the existence of steady state solutions to equation (4.5.80), that occurs

when a solution crosses the N-axis. Notice that for each value of M and ν there is only

one curve solution which may or may not cross the N-axis. By fixing the value of ν we
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can find a critical value of M where the solution for the stationary state exist; using

the critical value of M we can also find the critical value of L where stationary state

solutions exist.

Ν = 1.05

Ν = 1.20

Ν = 1.35

M = 0
M = 0.35
M = 0.7

0.25 0.5
N

-0.4

0.4

-M +
Λ 2 Ν HN - logHN + 1LL - N2

G
+ N

Figure 4.20: The Allee effect parameter ν and the gap length parameter M give
place to a set of stationary state solutions to equation (4.5.80) for N = N |x=L+ . These
solutions are found when a curve crosses the x-axis indicating the existence of a real
root. These roots are denoted by the black dots in the figure. The parameters range

here are M ∈ [0, 0.7] and ν ∈ [1, 1.35] while λ =
√

2 and Γ = 1.

As an example we assume that ν = 1.06 and M = 0.093. Using these two values we

numerically find the root of equation 4.5.80, given by N = 0.088. As the root exist, we

now solve numerically equation (4.5.79) with the value of N |x=L+ equal to N = 0.088.

Figure 4.21 shows the solution for the population close to x = L with the parameters

mentioned.

15 30
x - L

0.045

0.09
NHxL

Figure 4.21: Solution of equation 4.5.74 for the population dependence on the dis-
tance. This population presents an Allee effect and has a steady state solution where a
small population decays along the right hand patch. The Allee effect parameters used

are M = 0.093, and ν = 1.06.
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Now, from figure 4.20 we can observe that for each value of ν we can find a critical value

of M at which the stationary state solution ceases to exist. Since M =
n|x=0−

ς
e(−L/λ),

the Mcrit is given by,

Mcrit =
n|x=0−

ς
e(−Lcrit/λ), (4.5.81)

and the Lcrit is then given by

Lcrit = λ log

(

n|x=0−

ςMcrit

)

. (4.5.82)

Equations (4.5.80), (4.5.81) amd (4.5.82) give us a set of relationship between Mcrit,

Lcrit and ν from which we can find the maximum distance that a population can cross.

According to these relationships, if L > Lcrit, only stationary state solutions exist, and

no dispersal takes place. If L < Lcrit then, we believe that the solution develops into

a travelling wave solution. In the following section, we test these results against some

numerical simulations.

Figure 4.22 shows how the critical gap length Lcrit depends on the Allee parameter. As

ν grows, the critical length Lcrit decreases, as expected. The larger the Allee effect is,

the smaller distance the individuals are able to cross in order to reproduce and form

population travelling waves.

1 1.1 1.2 1.3 1.4
8

15

22

ν

L
cr

it

Figure 4.22: Dependence of the Allee critical gap length Lcrit on the Allee parameter
ν. The Allee effect parameters ν and critical gap lengths Lcrit were obtained using
equation (4.5.80) to obtain a value of Lcrit for each value of ν. These parameters used

are given by n|x=0− = 0.745 Γ = 1, λ =
√

2 and ς = 0.001.
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4.5.3.3 Numerical results

Using COMSOL Multiphysics we analyse the system studied in this section with a mesh

consisting of 25666 elements, 1000 time units and an Allee effect growth function given

by
(

1 − ν

1 + N

)

(4.5.83)

where ν = 1.4 in the first analysis, for an Allee parameter slightly larger than the critical

Allee parameter νcrit ≈ 1.35 for a system with a gap length of L = 10. For the second

analysis we take ν = 1.3, an Allee parameter value slightly smaller than the critical Allee

value.

If the Allee effect is sufficiently large, the numerical results show that the population

reaches a stationary state shown in figure 4.23. This figure display the results obtained

for the system analysed in §4.4.1 but with the presence of an Allee effect, with value

ν = 1.4. The dynamics of the system is driven by equation (4.5.72) and the boundary

conditions are given by (4.3.26) and (4.3.27). The parameters of the system are µ0 = 3,

δ = 0.05 and
Γ

λ
= 0.7.

The results obtained for this system show that the individuals current crossing to the

right hand patch reaches a stationary state due to the presence of an the Allee effect. This

stationary state shows a constant population decay over time, forbidding the population

from reproducing along the patch.

On the other hand, if we choose a slightly smaller value for the Allee parameter (ν = 1.3),

the numerical results show that, even with the presence of an Allee effect, the individuals

reproducing over time, develop into a growing population as presented in figure 4.24.

Notice however, that the time scale taken for the individual population to grow, is much

longer than the time scale found for a population without an Allee effect (see §4.4.1).In

the cases analysed here, we assumed that the gap length was L = 10. In this case, as

shown in the figure, the population does fill up the patch eventually, forming a travelling

wave solution.

Intuitively, these results are congruent with what may happen in reality. If the gap
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Figure 4.23: Individuals dispersal in a two patches system with Allee effect. Once
the left patch is filled up the individuals start dispersing to the right hand patch. Due
to the presence of an Allee effect the right-hand empty patch do not fill up, although
it does present a stationary state of a small decaying population where the maximum
population is close to zero. The parameters used in this system are: µ0 = 3, δ = 0.05,

Γ

λ
= 0.7 and ν = 1.4

length between patches is larger that the critical gap length, the few individuals that

cross it would find very difficult to reproduce, failing to deliver a sustainable population.

At the same time, if the gap is smaller than the critical gap length, the individuals will

struggle to reproduce, but will eventually find mates. However, the reproduction process

will take longer due to the difficulty to find mates.

These results suggest that, the introduction of external factors that can induce or in-

crease an Allee effect on the population, can be used as a population control strategy.

The deployment of oral contraceptives could be an option to induce and increase an Allee

effect in some populations, like in the control of the population example introduced in

Chapter 4: the Asiatic red-bellied beautiful squirrel Callosciurus erythraeus. We be-
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Figure 4.24: Individuals dispersal in a two patches system with Allee effect. Once
the left patch is filled up the individuals start dispersing to the right hand patch. Since
the Allee effect parameter ν = 1.3 applied to this system is below the critical Allee
parameter νcrit ≈ 1.35 for a gap size L = 10, the right-hand empty patch fills up.
The population forms a travelling wave solution, but in a longer period of time. The

parameters used in this system are: µ0 = 3, δ = 0.05,
Γ

λ
= 0.7, and ν = 1.3

lieve this is a feasible strategy, since a very small increment on the Allee parameter ν

makes a big difference in terms of population spread success as it is shown in figure 4.22.

It also suggest that an early strategy of population control in populations presenting

Allee effect, can be very effective in order to eradicate an invasive population, since the

population reproduction rate at small populations is close to zero.

4.6 Summary

In this chapter we analysed one-dimensional systems presenting variable reproduction

potential dependent on the spatial position. Additionally, we modelled a term for indi-
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viduals attraction towards certain type of environments (rich resource regions) named

dendrotaxis. In these regions the individuals of a given species population would repro-

duce and diffuse.

The model proposed in this chapter presents the novelty of including not widely studied

factors in population modelling, that is, the explicitly spatial preference of individuals

over some regions against others. We found interesting results regarding individual

dispersal in heterogeneous regions. In particular we study the dispersal of individuals

in a system composed by two regions where populations are reproductively successful,

separated by a region characterised by terms denoting threat for the population survival.

Relationships between gap lengths and success of population dispersal are encountered,

showing that if the gap between resource-rich regions is increased, the probability of

success for a population diminishes. We also found a set of relationships that allow

us to predict the dynamics of a population entering a plentiful resource region, after

crossing a scarce-resource region. We discovered a population relationship between the

time it takes to cross a gap between regions and the gap length, both, analytically and

numerically. Comparisons between asymptotic solutions, as well as numerical ones are

developed along the whole chapter matching both results to a very good accuracy.

In §4.5.3 we study the impact of an introduced Allee effect over this type of population.

As expected, when population is subject to Allee effects, the individual dispersal success

has enormous consequences. Depending on the strength of the Allee effect, we found

that either populations diffuse much slower than in the case of simple logistic growth,

or the reproduction success in the initially empty patch fails. These results suggest that

different population control strategies may be applied. Among those strategies we can

propose an early elimination or extraction of invading individuals in new patches, or

administration of oral contraceptives to enhance the Allee effect.

In this context, we found a relationship that gives us the dependence of the Allee pa-

rameter ν, on the gap length between patches L. We found that, the larger the Allee

effect is, the smaller the gap should be in order for the population to become success-

fully reproductive. We obtain critical gap lengths Lcrit for fixed values of ν that show

the maximum distance that a current of individuals can cross, before it develops into a
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decaying stationary state.

In the following chapter we develop similar studies for this type of systems in two-

dimensional regions.





Chapter 5

Two-dimensional population

models with dendrotaxis

5.1 Introduction

In this chapter the dynamics of a two-dimensional single population systems in a frag-

mented environment is studied. We extend the approach taken in Chapter 4, to a

two-dimensional analysis and investigate some aspects of dispersal movement in corri-

dor networks.

Our reference biological system in this thesis has been represented by the dispersal of the

population of Callosciurus erythraeus in the Argentinian pampas, introduced in §4.1-

4.2. However, all the systems studied here can model any biological population subject

to logistic growth in plentiful resource patches that, due to saturation, have to disperse

towards new habitats. The way these individuals disperse is achieved by crossing areas

of threat for their survival. In these models we assume that individuals distinguish

between hazardous areas and areas of abundant resources.

In this chapter we examine features of the population dynamics in two-dimensional frag-

mented areas such as individual dispersal rates, individual gap crossing dynamics and

invasion success, dependent on the geometry of the system and the intrinsic character-

istics of the system.

151
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We numerically study the gap crossing dynamics of a population. In analogy to the

systems studied in Chapter 4 we analyse the dynamics of two long thin corridors of

suitable habitat separated by a gap embedded in a hazardous area. By thin we mean

that the width compared with the length of the corridors is much smaller (by at least

two orders of magnitude).In Appendix A we formulate the mathematical problem that

we need to solve in order to perform a semi-analytic analysis of gap crossing dynamics.

5.2 Corridor habitats

We define habitat corridor as a linear habitat embedded in a larger area of disconnected

regions of habitat. Differing from other definitions [124], this definition includes con-

nected and disconnected linear habitats that support both, breeding populations and

transient individuals.

Recently, the study of corridors in conservation ecology has played an important role

in the study of population dispersal and population viability increase [124–128] with

different opinions about their success relative to landscape connectivity improvement.

There is empirical evidence that for specific species corridors improve the connectivity

of the landscape and enhance animal dispersal. There are some example of this, like

the case of the eastern chipmunk Tamias striatus, that make use of different width sized

fence row corridors, of different habitat composition, to disperse live and reproduce

[129]. Other study cases of rodent dispersal in fragmented environments with corridors

are studied in [43, 130–133].

In this chapter our reference species is again the Asiatic red-bellied beautiful squirrel

Callosciurus erythraeus, and its introduction and spread over the Argentinian pampas

across an area exceeding 680 km2 [15].

The way individuals make use of corridors can be divided in two types: transient cor-

ridor users and corridor inhabitants. The transient users simply travel along corridor

without establishing in them. The inhabitants breed and reproduce in the corridors.

The possibility of establishment of an individual in a corridor will depend for example,

on the width, size and resources availability in the corridor with respect to the species.
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Corridors become the species dwelling only if they cover all the species needs such as:

nest or habitat space, food and availability of reproductive partners [134].

Guichon et. al., [15], analysed a geographical population distribution located in the area

of Jauregui, Argentina shown in figure 5.1. From figure 5.1, we observe a complex spatial

distribution of different types of habitat where the squirrels live and reproduce. In the

following sections, we focus on a particular type of structure found for the analysed

distribution. This structure will be compared with a line corridor network.

Figure 5.1: Geographical distribution of Callosciurus erythraeus in the region of
Jauregui, Argentina where tree line corridor networks can be observed. The white areas
in regions (b) and (c) denote grassland regions, the grey areas correspond to sub-urban
areas and the darker areas to woodland. The red lines highlight some tree corridor lines
an networks. The image of the squirrel geographical location of the squirrel population

was taken from (Guichón, 2007) [15].

According to personal information exchange with M.L. Guichón and C.P. Doncaster the

Asiatic red-bellied beautiful squirrel make constant use of tree corridors as a mean of
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dispersal and as a nesting resource as well. The tree patches are highly fragmented in

these regions and a big part of the region is structured as corridors which may or may

not connect areas of woodland. Thus, a considerable proportion of the squirrels habitat

is more or less linear.

In the next section, we present a mathematical analysis of wave of advance velocities

in 2-dimensions dependent on patch or corridor width and its impact on population

dispersal over corridor networks. We make use of continuum models describing density-

dependent growth and diffusion amongst resource-rich regions and corridors and areas

of scarce-resources with variable potentials for reproductive success.

In corridors and resource-rich regions, populations obeys a modified logistic growth. In

scarce-resource areas, populations are unable to sustain themselves and decrease expo-

nentially. In all types of patches, diffusion terms that model the dispersal of individuals

across the patches are included. We also analyse, as in the previous chapter, spread

rates due to squirrel behaviours, particularly in avoiding hazard and seeking mates.

In the following section we analyse how the velocity of the wave of advance changes with

the width of a resource-rich region or corridor. This velocity will allow us to investigate

the dispersal of individuals in corridor networks, common in agricultural fragmented

landscapes. Later, we will formulate the gap crossing problem for two-dimensional

systems.

5.3 Travelling waves in one- and two-dimensional homoge-

neous environments

If u is a function representing a travelling wave solution, propagating in one direction,

the shape of the solution is the same for all time and has a constant speed of propagation

c [31], i.e.

u = u(r · m̂− ct) = u(z), with z = r · m̂− ct, (5.3.1)

where m̂ is the direction of propagation, as shown in figure 5.2.
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Figure 5.2: One-dimensional travelling wavefront with velocity c along the x axis.

The study of travelling waves has been widely investigated in biological phenomena

processes due to its recurrent appearance. These phenomena range from chemical re-

actions to mechanical waves in many vertebrate eggs and population dispersal [31]. In

the following sections, we investigate the dynamics of a plane wave travelling in a two-

dimensional space. Firstly, we introduce some analytical results for travelling waves in

homogeneous regions. Numerical results of how a population of individuals confined to

move along a linear region spreads over it are also shown.

5.3.1 Analytic analysis

In general, determining the velocity of a wave of advance c in a one-dimensional infinite

homogeneous space following the dynamics of Fisher equation in non-dimensional units,

∂n

∂t
= n(1 − n) +

∂2n

∂x2
(5.3.2)

is a problem that has been extensively studied [2, 5, 28, 30, 31].

Equation (5.3.2) is the simplest reaction-diffusion equation that admits travelling wave

solutions [31]. If the travelling wave is moving from left to right with the boundary

conditions n(−∞, t) = 1 and n(∞, t) = 0, then, the velocity of these travelling wave

solutions, has the limit

c ≥ cmin = 2 (5.3.3)



156 Chapter 5 Two-dimensional population models with dendrotaxis

Kolmogorov et. al., also proved that if the population n(x, 0) also has compact support,

of the form

n(x, 0) = n0(x) ≥ 0, with n0(x) =











1 if x ≤ x1

0 if x ≥ x2

(5.3.4)

where x1 < x2 and u0 is continuous in x1 < x < x2, then the solution of equation (5.3.2)

evolves into a travelling wave solution of the form u(z) with z = x − 2t. This means

that it always evolves to a travelling wave solution with the minimum velocity cmin = 2

[31]. If the initial conditions do not have compact support, then the solution depends

on the behaviour of u(x, 0) as x → ±∞. This marked dependence of the velocity of the

wave of advance on the initial conditions at infinity is explained in Murray’s book [31]

following an analysis done by Mollison [135] as shown below.

If we first consider the leading edge of an evolving wave where the population density

in the equation (5.3.2) is close to zero so we can neglect the quadratic term, we obtain

a linearised equation given by

∂n

∂t
= n +

∂2n

∂x2
. (5.3.5)

Considering that as x → ∞, n(x, 0) ≈ Ae−ax, for A > 0 and a > 0, and that there is a

travelling wave solution of the form

n(x, t) = Ae(x−ct), (5.3.6)

we can substitute equation (5.3.6) into (5.3.5) to obtain a relationship between a and c

given by

ac = 1 + a2 ⇒ c = a +
1

a
. (5.3.7)

Notice from figure 5.3 that the minimum velocity for the relationship given by equation

(5.3.7) is cmin = 2 for a = 1 while for any other value of a > 0 the velocity is larger than

c = 2. If we now consider min[e−ax, e−x] for x >> 0 (given that we assumed n2 ≪ n

for the Fisher linearised equation), then

a < 1 ⇒ e−ax > e−x (5.3.8)
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Figure 5.3: The velocity c dependent on a shows a minimum at a = 1 for which
cmin = 2. For any other value of a > 0, c > 2.

which tell us that the velocity of propagation with the asymptotic initial condition given

by n(x, 0) ≈ Ae−ax depends on the leading edge of the wave, and the velocity of the

wave of advance is given by equation (5.3.7). On the other hand, if a > 1 then e−ax is

bounded above by e−x, (where a = 1) giving an asymptotic wave front velocity of c = 2.

Therefore, if the initial conditions are given by n(x, 0) ≈ Ae−ax, then the asymptotic

wave speed of the travelling wave solution of equation (5.3.2) is

c = a +
1

a
, 0 < a ≤ 1, c = 2, a ≥ 1. (5.3.9)

In two-dimensional systems, propagating wave fronts for the Fisher-Kolmogorov equa-

tion have received much less attention [14, 75, 77, 78] and so far, analytic travelling wave

solutions for general velocities c have not yet been found [77]. However, some results for

travelling waves solutions in two dimensions can be found.

The non-dimensional Fisher equation in a two-dimensional space is written as,

∂n

∂t
= n(1 − n) +

∂2n

∂x2
+

∂2n

∂y2
. (5.3.10)

If we assume that a two-dimensional travelling wave moves in the direction of the x-axis,
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we can write c = c(y, z) where z = x− ct and,

−c
∂n

∂z
= n(1 − n) +

∂2n

∂z2
+

∂2n

∂y2
. (5.3.11)

If we assume an infinite homogeneous environment, then, n does not depend on the

variable y and the wave propagating in the two-dimensional space in the x-axis direction

recovers the form it had in the one-dimensions, namely that discussed in this section.

The system analysed in the following sections, is again, inhomogeneous. The properties

of the solutions become a difficult task since they depend on the spatial variables, for

instance, on the width of the spatial component y. This factor complicates the search

for an analytical solutions [136] and numerical results have to be investigated. In the

following section, we numerically analyse the velocity of the wave of advance in corridors

of different widths. We expect that these velocities also satisfy equation (5.3.3), and that

for infinitely wide systems, the travelling waves solutions approach the solutions found

in the one-dimensional systems c → 2.

5.4 Numerical solution for travelling waves in corridors

In the following sections we study the numerical behaviour of a population following

logistic growth over a set of long corridors with variable widths. Here we investigate a

corridor of uniform width and determine how the speed of the wave of advance depends

on the width of the corridor.

Later, we analyse the effect of junctions on corridor networks, focusing on the effect of

junctions on the propagation velocity. Finally, we analyse numerically the gap crossing

time dependence on the gap length between two corridors.

These analyses are used to infer the approximate behaviour of the spreading dynamics

over a corridor network.
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5.4.1 Mathematical problem

The model set-up of the two-dimensional system provided here is based on the one

provided in Chapters 3 and 4. Here we recall equations (4.3.24) – (4.3.27) to describe

the dynamics of a general ecosystem constituted by a single population dispersing in

a fragmented environment over a two-dimensional space as shown in figure 5.4. The

population dynamics in non-dimensional variables (see §4.3.2 for more details) is given

by,

Ω

Ω∁

Gap

Junction

Corridor

Ω

Ω

Figure 5.4: Two-dimensional geometry for an arbitrary two-dimensional system with
corridor networks.

∂n

∂t
= n(1 − n) + ∇2n in Ω (5.4.1)

δ
∂n

∂t
= −n + λ2∇2n in Ω∁, (5.4.2)

where Ω represents areas of plentiful resources and Ω∁ areas of scarce-resources. The

jump conditions are given by,

ǫn|δΩ = n|δΩ∁ , (5.4.3)

N · ∇n|δΩ =
λ2

δ
N · ∇n

∣

∣

∣

∣

δΩ∁

(5.4.4)
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where ǫ = e−µ0 , δ =
α

α′ and λ =

√

D′α

Dα′ .

As in Chapter 4, the parameters D, D′, α, α′ represent the diffusion coefficients inside

and outside the plentiful resources regions, the growth rate in the plentiful resources

areas and the decay rate in the scarce-resource regions respectively. Meanwhile, µ0

represents the constant value of the dendrotaxis function in resource-scarce regions,

µ(r) =











0 in the resource-rich regions

µ0 in the resource-scarce regions
(5.4.5)

5.4.2 Corridors

In this section, we attempt to find a numerical approximation for the speed of propa-

gation of a population system, over an infinite corridor of uniform width, traversing an

infinite region of scarce-resources. In order to do this we consider the geometry shown

in figure 5.5. From this figure we assume that the corridor is represented by the region

Ω, and the scarce-resource regions are represented by the region Ω∁. We also suppose,

that the length of the corridor is 2Q ≫ 1 and that the width of the domain is much

larger than the width of the corridor P ≫ R which will enable us to discard boundary

effects from the scarce resources regions.

-Q Q
-P-R

-R
R

R+P

Ω

Ω∁

Figure 5.5: Two-dimensional geometry used in the numerical analysis of the dispersal
of individuals between along a single tree line corridor of variable width 2R.

In the plentiful resources areas we assume as usual, logistic population growth plus dif-

fusion (equation (5.4.1)), in grasslands, the population decays exponentially and diffuses

(equation (5.4.2)). Finally, the boundary conditions around the woodland regions are

constructed by using a step dendrotaxis function. In rescaled units the example investi-

gated here and shown in figure 5.5 we take: 2Q = 100, while the domain width is given
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Velocities for different corridor widths

Corridor width Mesh size Approx. velocity

1 13630 No travelling wave
1.5 19022 No travelling wave
1.8 19862 2.857142
2 19823 2.898550

2.5 20703 2.941176
3 21411 3.030303

3.5 22015 3.125000
4 22354 3.333333

4.5 22691 3.225806
5 22992 3.200000

5.5 22869 3.125000
6 23630 3.125000
7 25024 3.030303
8 25282 2.941176
10 29862 2.857142

12.5 31816 2.777777
15 26388 2.777777
20 27017 2.500000
30 37198 2.380952
40 43849 2.272727
50 41988 2.083333
80 42067 2.000000

Table 5.1: Numerical data for corridors of same length but with different widths. The
parameters used in this system are λ =

√
2, δ = 0.05 and µ0 = 3.

by 2P = 20. The quantity 2R indicates the corridor width.The initial conditions are

given by,

n|t=0 =











0.1 x ∈ {−Q,−Q + 1}, y ∈ {−R,R}

0 elsewhere
(5.4.6)

Based on the analysis of the parameters done in §4.3.3 here, the parameters µ0, λ and

δ are defined as, µ0 = 3, δ = 0.05 and
Γ

λ
≈ 0.7 matching the values taken in equations

(5.4.1)–(5.4.3).

We vary the width of the corridors, by changing the value of R. We take different values

of R shown in Table 5.1 to obtain the velocity of the wave of advance in corridors of

widths 2R = 0 − 50. For corridors of widths larger than 2R = 10, we also expand

the width of the domain P to assure that the system is not influenced by the domain

boundaries. These numerical results are shown in Table 5.1.



162 Chapter 5 Two-dimensional population models with dendrotaxis

To obtain the velocity, we measure the position and time of the cross section of the

two-dimensional wave of advance at y = 0 as shown in figure 5.6. Then, we register

the positions xi by determining x(ti) so that n(x(ti), ti) = 0.5 at different times ti. We

finally record the positions and times xi, ti to obtain a set of values for the velocity

vw = ∆x
∆t . Taking several measures of time for each system, we obtain the velocity of the

travelling wave, when the velocity vw becomes constant, so vw = c. The velocity of the

travelling wave depends on the width of the system 2R and it is denoted as c2R, that

appears once the changes of position respect to fixed intervals of time become constant.

Figure 5.6: Position of the wave of advance over the x-axis at different times for a
corridor with width 2R = 5. Once the wave starts travelling fixed distance over fixed

intervals of time the velocity of the wave of advance c5 = 3.2 is measured.

The data recorded is obtained for meshes that are robust under changes of size and

time, i.e. for smaller number of mesh elements, the results do not change. According

to the data acquired from the numerical analysis, the wave of advance velocities for

the different corridor widths range between c = 2.0 − 3.3333. These results allow us to

assume in the following sections that, the individuals spread at more or less the same

width-dependent velocity over long corridors. We also observe that, as the corridor
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gets wider, the velocity decreases approaching the one-dimensional velocity in a Fisher-

Kolmogorov system cmin = 2. The dependence of the velocity with respect to corridor

width is shown in figure 5.7 where we observe how the velocity increases from c1.8 = 2.85

in a corridor of width 2R = 1.8, to a maximum value of c4 = 3.333 in a corridor of width

2R = 4 decreasing later with the corridor width, and approaching the minimum velocity

c80 = 2.0, found in one-dimensional systems.
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Figure 5.7: Dependence of the velocity of the wave of advance with respect to the
corridor width. The velocity varies from a maximum velocity of c4 = 3.333 to c80 = 2.0
where the system behaves as a one-dimensional travelling wave in the x-axis direction.

Figure 5.7 shows the velocity of the wave of advance dependence on the corridor width.

The results show that for corridor widths between R = 1.8 −−4, the velocity increases

along the corridor and for R > 4 it decreases tending to the minimum velocity cmin = 2.

The nature of this velocity variation is not clear to us, and needs further investigation.

However, an explanation of the velocity increase for narrow corridors could be associated

to the fact that individuals leave the corridor from the sides, diffuse rapidly outside the

corridor and come back in further ahead of the wave, thereby increasing the velocity of

the wave of advance. For corridor widths larger than 4 the velocity of wave of advance

decreases approaching the minimum velocity found in one-dimensional systems. Another

explanation for this velocities variation may be attributed to corridor boundary effects,
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although a conclusive interpretation for the behaviour of the population wave of advance

velocity dependent on the corridor width results difficult at this point.

Nevertheless, these numerical results give us an idea of how population individuals would

spread along a whole network of corridors, assuming that they spread at more or less

the same velocity for sufficiently wide corridors, i.e. for corridors with 5 w R w 10.

In the following analyses, we will assume that the velocity of spread is close to c = 3

for corridors of relatively small width (5 w R w 10), in agreement with our numerical

results. In order for a habitat to support a breeding population, it is necessary for it

to have the minimum food and resources needed for the population to establish there.

Therefore, if the width of the corridor is very small, it may not support any population,

as obtained in the numerical solutions for corridors of widths R = 0 − 1.2.

Figure 5.8 shows the cross section of the population at t = 50 for different corridor

widths. This figure shows that for each corridor the population has a maximum that

depends on the corridor width as observed. Once the population maximum is obtained at

some point over the x-axis x0, the population travels in the form of a wave of advance,

again, in the direction of the x-axis. For corridors with width 1.3 < 2R < 1.8 no

travelling wave solutions are found. In this case, the population do reproduce over

time, filling the patch over long periods of time. However, no travelling wave solution

appears in these systems. For corridors with width 0 < 2R < 1.2 no population is

sustainable according to the numerical results obtained. In these type of corridors,

the population diffuses a little, but the width is so small that the population cannot

reproduce. Therefore, the population decays and collapse after long periods of time.

Another point that has to be considered in this analysis is that, the diffusion length

ξ =

√

D

α
(the thickness of the wave of advance) has to be much smaller than the

corridor domain length 2Q. This is in order to maintain the form of the travelling wave.

This means that the solutions obtained here are applicable only over corridors of lengths

2Q >> ξ. According to Guichón et. al., the parameter estimates for the beautiful red-

bellied squirrel population rate of increase and mean dispersal distances (or diffusion

coefficient) over woodland areas are α = 1.53yr−1 and D = pi · 1km2/yr which gives

a value of ξ ≈ 654m in. As we require 2Q to be much larger than ξ, the length scale
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Figure 5.8: Individuals disperse in a set of corridor systems of widths 2R =
1.8, 5, 10, 20. The cross section of the population at t = 50 in each system is plot-
ted. Observe that each system has a maximum in the population where the carrying
capacity of the system that depends on the corridor width is reached . If the corridor
width is smaller than 2R = 1.2 the population does not reproduce successfully due
to lack of minimal habitat area for the population survival. The parameters in these

systems are λ =
√

2, δ = 0.05 and µ0 = 3.

of the corridors has to be probably measured in kilometers. For shorter corridors other

strategies would have to be applied.

In the next section we analyse the effect of junctions on dispersal velocity to then be

able to do an overview of a whole corridors network.

5.4.3 Junctions

In this section we analyse the effect that junctions have over the individual dispersal of

a populations in corridor type geometries.

Intuitively, we anticipate that the contribution to the woodland areas that a junction

has, will have little impact over the spread of the population along the whole corridor

network. However, we expect the population to have a little more available space to

diffuse at the junction, influencing the dynamics of the population close to the junction.

The velocity of spread will have more or less the same value away from the junction, and
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Figure 5.9: Individuals disperse in a corridor of width 2R with a long junction at the
right end. The plot shows the distance taken to measure the velocities of the population

before and after getting to the junction.

the population will continue reproducing until it finds an obstacle, such as gaps between

woodlands.

Figure 5.10 shows the contour plot of the population at n = 0.5 along a corridor con-

nected by a junction at uniformly spaced times ∆t = 10. The domain mesh is constituted

by 21789 elements and the numerical solutions are recorded over 150 units of time. As

the population arrives to the junction, the individuals start reproducing and dispersing

equally in both directions filling eventually both sides of the corridor.

The velocity in the corridor of width 2R = 5 before the junction P1 = {(x, y) =

({0, 100}, {−2.5, 2.5})} is found to be approximately c = 3.2 for sufficiently large times,

while the average velocity after crossing the junction, from P2 = (x = 202.5, y = 0) to

(x = 202.5, y = 40) (see figure 5.9), is about c = 3.7, noticing a relatively small incre-

ment on the velocity due to the presence of the junction. This increment was noticed in

all the systems analysed numerically.

As predicted previously, we find that the presence of junctions in a corridor network has

little effect on the overall velocity of population dispersal.

5.5 Gap crossing numerical analysis in 2D

In this section a two-dimensional gap crossing analysis analogous to the one done in

§4.4 is performed. We carry numerical studies for the solutions of equations (5.4.1) –
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Figure 5.10: Individuals disperse over a corridor of width 2R = 5 joint by another
corridor through a junction. The contour plot of the population is shown at equally
spaced times, showing the effect of the junction over the population dynamics. The

parameters used in this system are λ =
√

2, δ = 0.05 and µ0 = 3.

(5.4.4) in two woodland patches separated by a grassland gap with the geometry shown

in figure 5.11. Here, we numerically investigate the population dispersal from a full

woodland patch, across a grassland gap and towards a second empty woodland patch

using COMSOL Multiphysics. We discuss the effects of the size of the grassland gap,

the diffusion coefficients and the growth and decay rate parameters discussed in §4.3.3

on the dispersal of individuals.

-Q 0 L L+Q
-P-R

-R
R

R+P

Woodland Woodland

Grassland

Figure 5.11: Two-dimensional geometry used in the numerical analysis of the dis-
persal of individuals between two tree line corridors across a grassland area.

In the resource-rich regions the population diffuses and grows logistically (equation

(5.4.1)). In the scarce-resources regions the population diffuses and decays (equation

(5.4.2)). In rescaled units, the example we investigate is built over the geometry pre-

sented in figure 5.11. In this case we assume that R = 2, P = 8, Q = 100 and L = 10.
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The initial condition is again given by

n|t=0 =











0.1 x ∈ {−Q,−Q + 1}, y ∈ {−R,R}

0 elsewhere
(5.5.1)

According to equations (5.4.1)–(5.4.3) the parameters µ0, λ and δ, based on the analysis

of the parameters done in §4.3.3 are defined as, µ0 = 3, δ = 0.05 and
Γ

λ
≈ 0.7. These

are generic values that can be adjusted according to biological data, but for simplicity

we take again these values.

The results of the example described previously are shown in figure 5.12 for a system with

34514 elements and 100 time units. These numbers are taken once we have confirmed

that the numerical results are robust under changes to the mesh and time sizes. This

figure describes the dynamics of a two-dimensional system constituted by two woodland

patches and grassland surroundings. Once the left woodland patch is filled up some

individuals start diffusing to the next patch through the grassland decaying along the

way. Even if the number of individuals leaving the first patch is very small compared

with the total population, the diffusion taking place in grasslands allows some individuals

to reach the second patch. At the same time, the gap between patches is small enough

to permit the gap crossing for some individuals. Once the gap obstacle is overcome the

individuals start reproducing logistically in the new woodland patch, until they fill it

up.

As in the one-dimensional systems, if the gap is large enough, the numerical results

for the population flux become of the order of the numerical error in the calculations,

making the numerical results unreliable.

5.5.1 Gap crossing time

In this section we investigate the time it takes for a population to cross a gap of given

length L from a resource-rich region to another. We investigate the dependence of

the crossing time upon the gap length. We expect to obtain a linear relationship on

the crossing time as we did in the one-dimensional case. Here we consider the system
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Figure 5.12: Individuals dispersal in a two-dimensional two patches system. Once
the left patch is full the individuals start dispersing to the right hand patch crossing the
gap, reproducing and eventually filling it up. The parameters used for this numerical

simulation are µ0 = 3, δ = 0.05 and
Γ

λ
≈ 0.7
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analysed in §5.5 for gap lengths varying from L = 0 to L = 12.

The way we measure the gap crossing time in this case is similar to the one performed

in the one-dimensional case. For each system of fixed gap length, we measure the time

τ it takes for the population density to go from a value of n = 0.5 from the point x = 0,

to a population value of n = 0.5 at the point x = L starting from the point where the

population at x = 0, the right hand end of the left hand patch is equal to n = 0.5.

This procedure is repeated for each gap length L = 1−12, and the relationship between

waiting time and gap length is found.

For each system, the mesh of every sub-domain, has a maximum separation between

points close to the boundary of x = 0.35. On the time scale we assume that the solution

changes with a time interval of 0.1 ranging from t = 0 to t = 100 for every system. The

meshing for the two-dimensional system is coarser than the one-dimensional one due to

the limited computational resources available. However, we made sure that the results

obtained by solving this set of systems are robust under changes in mesh and time, so

the results obtained are the same than the results obtained with even coarser meshes.

These systems were solved using COMSOL Multiphysics, with the parameters λ =
√

2,

δ = 0.05 and µ0 = 3 and the results obtained are presented in Table 5.2.

The results for gap crossing time delay provided in Table 5.2 for a number of patch

systems with different gap lengths are obtained from systems solutions as the one shown

in figure 5.12.

According to the data obtained from the numerical analysis in two-dimensional systems,

the elapsed time to cross a grassland gap also grows linearly. As the gap gets larger,

the population current becomes of the order of the numerical error, making the analysis

inaccurate. Therefore, we analyse only systems with gaps of size L < 12. Figure 4.11

shows the gap crossing time delay against gap length, overlapped with the fitting curve

t = 1.115L − 0.5307 for 2 ≤ L ≤ 10. This relationship corresponds to a velocity of

the population spread over the resources-scarce regions since it gives a relationship of

distance travelled over time. Hence, this velocity has the constant value c2D = 0.8968(=

1/1.115). This velocity is smaller than the velocity found for the one-dimensional case,

which makes sense, since the movement is in two dimensions. In the one-dimensional case
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Gap size data

Gap size Mesh size Time delay between patches

0 21422 0.15
0.25 21411 0.40
0.5 21181 0.55
0.75 21249 0.70

1 21542 1.00
1.25 21355 1.15
1.5 21577 1.55
1.75 21621 1.40

2 21459 2.00
2.5 21429 2.25
3 21683 2.85

3.5 21611 3.50
4 21579 4.00

4.5 21859 4.25
5 21715 4.95

5.5 21667 5.40
6 21725 5.95

6.5 21910 6.50
7 21930 7.10

7.5 21912 8.00
8 21608 8.50

8.5 21834 9.20
9 21916 9.60

9.5 21870 9.50
10 22132 9.90

10.5 21878 10.05
11 21700 10.75

11.5 21922 11.20
12 21906 11.75

Table 5.2: Numerical data for different gap sizes in a two-dimensional system with
λ =

√
2, δ = 0.05 and µ0 = 3.

we found that the relationship between waiting time and gap length was t = 0.8289L +

0.3586, and therefore, the velocity was given by c1D = 1.2064(= 1/0.8289)

To evaluate the effectiveness of this curve fitting we use the statistical tools used in the

analysis for the one-dimensional system. The sum of squares due to error (SSE) given by

equation (4.4.1) is obtained as well as the R-Square, defined in equation (4.4.2). These

two values are given by a SSE = 0.4543 and a R− Square = 0.9956. These results tell

us that, even if the SSE is relatively large in comparison to the one obtained for the

one-dimensional system, the fitting function is a good approximation to the numerical
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data.

The linear dependence of the time with the gap length for gaps with lengths between

2 ≤ L ≤ 10 in the two-dimensional system is shown in figure 5.14 where the function

has 95% of confidence bounds.
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Figure 5.13: The blue dots corresponds to the numerical data obtained from the
analysis of a series of different systems constituted by two woodland patches and dif-
ferent sized gaps in between. It measures the elapsed time to cross a gap depending on
the gap length. The red line corresponds to the linear approximation for gap sizes of

L ≥ 2.5. The parameters used here are λ =
√

2, δ = 0.05 and µ0 = 3
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Figure 5.14: The dots along the graphic denote obtained data from numerical anal-
yses of different gap sized systems. The solid line is the function fit while the dashed
lines show the 95% of confidence bounds for the linear fitting function. As observed in
the figure the width of the interval for the confidence bounds indicates a good data fit.

The parameters used here are λ =
√

2, δ = 0.05 and µ0 = 3
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As found in the one-dimensional system, we found that the gap crossing time between

patches follows a linear relationship for sufficiently large gaps. This is a very interesting

discovery since with the knowledge of the velocity of the wave of advance over resource-

rich regions and corridors, it can help us predicting the way individuals disperse in

networks of heterogeneous habitats, providing information necessary to develop control

strategies with anticipation.

5.6 Allee effect

The last aspect we study in this chapter, is the effect of an Allee effect on the population

growth function over the resource-rich regions. We expect that, as in the case of the

one-dimensional systems, the Allee effect will affect the dispersal of the populations,

either by decreasing the individual flux between patches or by stopping it.

We would also expect the existence of a critical gap crossing distance for each set of

Allee parameters, as we found in the one-dimensional case. We model the Allee effect

as in Chapter 4 to model Allee effect by writing,

∂n

∂t
=

[

1 − ςν

δ + n

]

n(1 − n) + ∇2n in the resource-rich regions, (5.6.1)

in non-dimensional units, where the dimensionless parameters are given by,

ς = n0/χ, and ν = b̄/ᾱ . (5.6.2)

To solve the model including the Allee effect we apply the growth function in the

resource-rich regions given by equation (5.6.1). Using COMSOL Multiphysics we anal-

yse a system of 45410 elements and 1000 time units for a set of corridors with a gap of

length L = 10 between them.

The numerical results obtained are shown in figures 5.15 and 5.16.

In figure 5.15 we observe that, if the proposed Allee effect over the domain is sufficiently

small, the current of individuals eventually start reproducing over the new initially empty
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Figure 5.15: Cross section for the population dispersal in a two patches two-
dimensional system with Allee effect at different times. Once the left patch is filled
up the individuals start dispersing to the right hand patch. Due to the presence of a
weak Allee effect the right-hand empty patch fills up, but in a longer period of time.
The blue solid line shows a population reaching the value n = 0.5 at x = 0 and t = 39.5.
The green solid line shows the time t = 71.5 when the population reaches the value

n = 0.5 at x = 10. The parameters used in this system are: µ0 = 3, δ = 0.05,
Γ

λ
≈ 0.7,

ς = 0.00125 and ν = 5

patch. However, the waiting time taken for them to reach a population of n = 0.5 at

x = L starting from a population of n = 0.5 at x = 0 increases. For instance, the

crossing time obtained for the patch without Allee effect was t = 9.9, while the gap

crossing time obtained for this Allee effect increases to t = 32.

On the other hand, if we increase the Allee effect assuming values of ς = 0.0075 and

ν = 5, we notice that, the flux of individuals reaching the second patch, never manages

to reproduce successfully as shown in figure 5.16. These results are obtained for a

system with a gap of length L = 10, that in all the previous studies, had presented a

reproductive success in the new patch. Notice however, that, as in the one-dimensional

case, a stationary state for a constantly decaying population in the new patch, does

exist. This result is shown in figure 5.17.

These results suggest for example, that the introduction of external factors that can

induce or enhance an Allee effect on the population can be used as a control strategy.

The deployment of oral contraceptives could be an option to induce an Allee effect in

some populations, like in the control of the population example introduced in Chapter
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Figure 5.16: Cross section for the population dispersal in a two patches system with
Allee effect at different times. Once the left patch is filled up the individuals start
dispersing to the right hand patch. Due to the presence of an Allee effect the right-
hand empty patch do not fill up, although it does present a stationary state of a small
decaying population, as in the one-dimensional case. The blue solid line shows the
population at t = 37, the green line shows when the population reaches a stationary
state at t = 70. Finally the black dotted line shows how the population stationary state
is kept over time. It shows the population at t = 1000. The parameters used in this

system are: µ0 = 3, δ = 0.05,
Γ

λ
≈ 0.7, M = 0.01, ς = 0.0075 and ν = 5

4, Asiatic red-bellied beautiful squirrel Callosciurus erythraeus.

5.7 Networks of corridors

Once the main structures that compose a network of corridors have been studied, we can

make a summary of how a population would disperse over a corridor network, composed

of long corridors where, the lengthscale of the wave of advance in the corridor is much

shorter than the length of the corridor itself. Let us take the example of figure 5.18 as

an example.

Assuming that the velocity over a corridor is c = 3 and that junctions do not have a

major effect on the velocity dispersal we can find the time it takes for a population to

move from a to b through a corridor network. If we also assume that the slope of the

waiting time against gap length is m = 1, then we can also find the waiting time for

the population to cross gaps of different length. Here we assume that there is no Allee
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Figure 5.17: Cross section for the population dispersal in a two patches system with
Allee effect. A close up of the stationary state of a decaying population in the second
patch at t = 1000 is shown. The parameters used in this system are: µ0 = 3, δ = 0.05,

Γ

λ
≈ 0.7, M = 0.01, ς = 0.0075 and ν = 5
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Figure 5.18: Example of a two-dimensional corridor network used to illustrate the
results found in §5.4.2 5.4.3 and 5.5. The darker areas represent suitable habitat, while
the clearer ones are hazardous regions for the population. The population disperse
along the corridor network from (a) to (b) through two different paths: the dashed one

and the dotted one.

effect.

In figure 5.18, we propose a number of arbitrary values for the corridor lengths and gaps

as shown. From these values we can find the time it takes to go from the point a to

the point b through different paths. If we take the purple dashed path, we can add the

values of the corridor lengths the population travels to obtain a total of 250 length units.
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In the case of gaps, we obtain a total of 25 length units. Assuming that the velocity over

the corridors is c = 3 and that for the gap lengths ∆x = ∆t we obtain a total travelling

time of t = 3(250) + 25 = 805 units of time.

If we take the white dotted path, we reach a point where the gap reaches a length that

makes the numerical analysis unreliable. In this case our hypothesis is that without the

presence of an Allee efect, the population flux eventually reaches the next patch, pro-

ducing a dispersing population that eventually reproduces. If an Allee effect is assumed

in the population dynamics, no dispersal would take place, resulting in the failure of

population dispersal from point c to b.

This is an extremely simplified example, with arbitrarily taken values for the corridor

lengths and gaps. However, with the right biological parameters, and better accuracy in

each segment of network, the results found along this chapter can help us describe the

population dispersal over real landscapes, similar to the one described in this section.

This is of importance in landscape ecology, since these type of models, provide an alter-

native type of strategy, that could be used in conjunction with the standard methods of

data collection and statistical analysis [15, 41, 65, 105].

5.7.1 Short corridors

In the case where the corridors are much shorter than the lengthscale of the wave of

advance, another simplification becomes appropriate in which the population within a

segment of corridor, grows at the same rate at all points within the corridor. In other

words, the spatial derivative along the corridor are negligible in (5.4.1).

5.8 Summary

In this chapter we investigated two-dimensional systems numerically presenting variable

reproduction potentials dependent on the spatial location. We include the dendrotaxis

term modelling in this way the individuals attraction towards environments with plen-

tiful resources. In these regions individuals of a given species population reproduce
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and diffuse. In particular we analyse regions with corridor type structures, which are

one of the spatial configurations in which our reference biological example, Callosciurus

erythraeus, live and reproduce.

We found a set of results regarding individual dispersal in these type of regions. We

provide results to population moving along corridors, investigating the effect of corridor

width and corridor junctions over the individual dispersal. We discover that for corridor

widths large enough 2R > 1.8 waves of advance with velocities in the range 2 ≤ c ≤ 3.2

exist. We also find that the existence of junctions do not have a considerable effect on

the population dispersal velocities.

We also study the dispersal of individuals in a system composed of two corridors of

favourable habitat, separated by a region of scarce-resources. As in Chapter 4, we found

relationships between gap lengths and success of population dispersal. In these two-

dimensional systems we find that the larger the gap between corridors, the reproduction

success in a new corridor decreases. We also investigated the dependence of gap crossing

time between corridors on the gap length. As in the case of the one-dimensional anal-

ysis, we found the relationship between these two quantities is linear. However, in this

chapter, the slope of the waiting time vs. the gap length is larger. We believe that this

can be attributed to the system dimension. Since in two dimensions the individuals can

move in the x and y direction, the waiting time becomes larger due to the increment on

the degrees of freedom of the system.

We made a summary of all the structures studied along this chapter to exemplify how a

population would disperse in a corridor network. We conclude that with a small set of

biological parameters and more accuracy of the measures for each type of segment of the

network, a good prediction of real populations dispersal may be achieved. Hence, these

models could present an alternative to predict population dispersal over landscapes with

structures similar to the one studied here.

Finally, we investigated the impact of the Allee effect over systems of corridors sepa-

rated by scarce-resources regions. As expected, when the population is subject to Allee

effects, the individual dispersal success decreases. These results may help producing

new strategies for population control. Among those strategies we can propose an early
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elimination or extraction of invading individuals in new patches, or administration of

oral contraceptives to enhance the Allee effect.

In terms of conservation on the other hand, populations may already exist at their car-

rying capacity. Then, if a land removal takes place, the population may overcome its

carrying capacity. This would force a migration into other resources-rich areas. The

results presented in this chapter and the previous one can be also applied to the move-

ment and dispersal of conservation targeted populations. The same results presented

in Chapter 4 and 5 could be applied to evaluate the possibility for a population to dis-

perse and survive in a purposely modified homogeneous ecosystem. At the same time,

these results may help to provide strategies of land conversion, in order to provide the

necessary resources for a population to survive in such landscape.





Chapter 6

Discussion, Conclusions and

Further Work

6.1 Discussion

In this thesis we focused on the study of the dynamics of populations inhabiting het-

erogeneous environments. We studied different continuous models based on partial dif-

ferential equations in one and two dimensions. Using different methods: analytical,

semi-analytical and numerical we analysed features that have not previously been ex-

plored in existing models.

We then proposed a new model for population dynamics in fragmented environments

accounting for the landscape effect on individual behaviour. This model acknowledges

the individuals response to hazardous areas by introducing a new term in the reaction-

diffusion equation that works as an attractive field towards resource-rich areas.

In Chapter 1 we gave an introduction of the dynamics of fragmented environments in

terms of biological concepts. Then in Chapter 2, we introduced and explained the most

commonly used continuous population models in population ecology. We also provided

a bibliographic review based on the biggest advances around the study of dispersal of

populations in fragmented environments.

181
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Later in Chapter 3, we firstly presented a set of analyses based on pre-existent population

models. Then, we included new studies and results of three different systems. In the

first system we analysed a semi-infinite system with absorbing boundary conditions. We

found analytic results for this system, which were compared with approximate results

for the same system, in order to validate other approximate results computed for the

systems analysed later.

The second analysis was performed for a single one-dimensional system of length of

the order of the critical patch size, and the third analysis was done for a single one-

dimensional patch of length patches much larger than the CPS but finite (L ≫ Lc),

both systems with absorbing boundaries.

Some of the results found for patches with lengths close to the critical patch size, like

the critical patch size limit itself, were previously investigated. However, we presented

them as a way to enhance the understanding of these systems and their relationship with

the new results found. The results found in this chapter include a relationship between

the carrying capacity and the effective population growth rate with the patch length,

obtaining a linear relationship between patch size and carrying capacity.

One of the characteristics we analysed in depth in Chapter 3 was the individual flux

and its relationship with the patch size and the boundary conditions. We focus our

attention on this quantity since its measurement is a key feature to describe population

movement and dispersal over different environments. We found that, the current of

individuals correspondent to patches with sizes L ≫ Lc is almost identical to the one

found in semi-infinite systems. This is an interesting result, since the semi-infinite patch

system is tractable analytically while large systems are not. Therefore, we found that the

possibility of using semi-infinite systems to approximate results of large ones is possible.

We also found that for patches with permeable boundaries, the critical patch size depends

on the ratio between the propagation velocity of the population, inside and outside the

patch. We discovered that the population distribution and the current of individuals,

also depends on these two velocities of propagation. This dependence show us that the

way individuals disperse in a system constituted by a resources-rich patch surrounded by

resources-scarce regions is similar to a population confined in a patch (the resource-rich
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one) surrounded by a fence. When the individuals reach the boundary, even if they are

not restricted by any obstacle, our results show that they “struggle” to leave the patch.

This conclusion is obtained from the lack of continuity on the population derivative at

the patch boundary.

Finally, we observe that in all the single-patch systems analysed in Chapter 3, the current

reaches its maximum at the boundary, while the population density tends to zero. Far

away from the boundary, the current decays in the patch and in the dangerous or lethal

areas. On the other hand the population distribution is constrained mainly to the patch,

becoming zero outside it, for the case of lethal boundaries, and decaying exponentially

in the case of systems with permeable boundaries.

In Chapter 4 we build up a model based on a biological reference system: the invasion

and dispersal of the Asiatic red-bellied beautiful squirrel Callosciurus erythraeus in the

Argentinian pampas. This model is constructed on the groundwork of the individuals

dynamics provided in [15] and by personal communication with Dr. M. L. Guichón and

C. P. Doncaster.

In this model we introduce an explicit term that accounts for the spatial preference of

individuals for some regions over others in their own environment, that we name den-

drotaxis. The way we introduce this environmental preference is through the boundary

conditions. Beside this, we associate the population growth or decay function to the

spatial location of the individuals. Joining these two factors we develop the system

analysed in Chapter 4 and 5 where a population that depends explicitly on their loca-

tion for their reproductive success, and that accounts for their individuals sensitivity to

their surroundings is modelled.

In Chapter 4 we focus the analysis on one-dimensional systems. In particular we study

the dispersal of individuals in a system composed by two patches of potentially successful

reproductive populations, separated by a region of danger for the population. We find a

linear relationship between the time taken to cross such hazardous areas and the hazard

area length. In this analysis we include analytic and numerical results, showing that

this relationship holds for both analyses, when the hazard area length is big. We also

find semi-analytic results for the population distribution, after crossing a gap.
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Then we analyse the consequences of the presence of an Allee effect on the dynamics

of this system. We find analytic solutions for a stationary state solution, that develops

when the Allee effect is such that the population is unsuccessful to reproduce. If such

stationary state does not exist, our assumption is that the population eventually re-

produce following logistic growth and developing into travelling wave solutions. In this

context, we found a relationship between the size of the Allee parameter ν and the gap

between patches L. We discovered the existence of a critical gap Lcrit that, for a given

value of ν tells us the maximum length of the gap that a population can cross, before

it goes to a decaying stationary state. This relationship shows that, as expected, the

bigger the Allee effect is, the smaller the gap has to be for the population to be able to

support breeding populations.

The latest mathematical analysis is done in Chapter 5, where we analysed the model

constructed in Chapter 4 in a two-dimensional space. The analyses performed in this

chapter are mainly numeric, although, there is an outlined semi-analytical analysis of

these systems in Appendix 1.

Consistent with the type of geometries where our reference species the “Asiatic red-

bellied beautiful squirrel”, we studied corridor type structures. We did an analysis

of travelling wave solutions finding a dependence between the velocity of the wave of

advance and the corridor width. We find that when the corridor is wide enough, and the

velocity of spread is in a single direction, the velocity is given by cmin = 2
√
Dα. This

velocity is the minimum velocity [34] found for a travelling wave solution to the Fisher

equation in one dimension,

∂n

∂t
−∇n = n(1 − n). (6.1.1)

For corridor widths larger or equal than 2R = 1.8, we found that the velocity is always

larger than the minimum velocity c > cmin. However as the corridor width increases,

the velocity of the wave of advance tends to the minimum velocity cmin = 2.

We also find critical widths for corridors, for which travelling wave solutions are formed.

This width corresponds to 2R = 1.8 in rescaled units. A relationship between corridor

width and velocity of the travelling wave solution was found, and velocity of the wave
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of advance over junctions was examined. Finally, we analysed the compatibility of this

model with the dynamics of our reference species behaviour. Since the mean dispersal

rate of the Asiatic red-bellied beautiful squirrel D, is very large compared with its

reproduction rate α, the correlation length, that is proportional to ξ ∝
√

D
α is of the order

of 600m. In order to conserve the travelling wave form, we need that L >> ξ. Therefore,

the mathematical model presented in Chapter 5 can be applied only to corridors of length

scales of the order of kilometers.

Then, we analysed the dynamics of individuals gap crossing over corridor geometries

with gaps, similar to the analysis performed in Chapter 4. We discovered a linear

relationship between the waiting time twait to cross a gap, and the gap length L. This

is in agreement with the results found in Chapter 4, although the slope of the linear

relationship is larger in the case of the two-dimensional system. We attribute this

difference to the dimensionality of the system. In two dimensions the individuals have

a one more degree of movement freedom, and therefore the waiting time is larger.

We then explored the consequences of the Allee effect over the patch-gap-patch system.

As in the case of the one-dimensional system, the response of the population due to the

Allee effect is characterized by either the delay on the reproduction time of the popula-

tion reaching an initially empty resource-rich patch, or by the developing of a population

decaying stationary state. We believe that, as in the case of the one-dimensional sys-

tem, the existence of critical gap lengths Lcrit dependent on the applied Allee effect

must exist. However this not explored, and we leave it as a future work to develop in

the following months.

Finally, we summarised the results found for separated geometry structures to explore a

system containing all of them. A calculation of the dispersal of a population over a cor-

ridor network through different paths was examined, finding dispersal times dependent

on the path taken by the species. The results found as a whole in Chapters 4 and 5,

lead us to believe that with the use of a small set of parameters such as the population

mean dispersal time, reproduction rates, Allee effect values (if they exist), and decay

rates in different environments, can help us to predict the dispersal time from region to

region over the same fragmented habitat.
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In general, this thesis presents an analysis of spatially fragmented systems where a variety

of systems and their dynamics are examined in different situations. These analyses gave

very interesting results related to dispersal velocities, reproduction success dependent on

the landscape structure, Allee effect consequences dependent on the population ability to

disperse and on the landscape configuration, and dispersal effects caused by behavioural

features (individuals sense of danger).

6.2 Conclusions

In this thesis we provide a short introduction to spatial population ecology, explaining the

basic biological concepts needed to understand and implement mathematical models that

resemble the biological systems. An introduction to the standard mathematical models

of fragmented ecosystems is also presented and a literature review on the subject is done.

We also present a set of one- and two-dimensional models for fragmented ecosystems,

focusing on the dynamics of population dispersal over fragmented environments. Two

different approaches are taken: in the first one, the population diffuses without being

affected by the structure of their environment. In the second one, the population dis-

perses acknowledging the structure of their landscape, showing a preference for some

regions over others.

We find a set of results that explain the population dynamics with respect to relevant

biological features for the individual dispersal, such as, dispersal rates, death rates, con-

sequences of Allee effects on the population reproduction, carrying capacities dependent

on patch sizes, dispersal velocities, and ability to cross hazardous regions.

Although the models presented here are very simplistic compared with other models

such as, the stochastic models presented by Guichón and Doncaster [15], they have

some advantages. Their advantage relies on the generality of the results obtained. Even

if we used the Asiatic red-bellied beautiful squirrel as a biological reference, these models

can be applied to any other population subject to similar conditions and behaviours.

The importance of the models presented in this thesis is that they give a new insight
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into the field of spatial population models, presenting alternative ways to understand

the population dynamics over systems constituted by one or two patches, that can be

generalised to systems with a larger number of patches. Therefore, the analyses pro-

vided along this thesis are focused on the discovery of specific results for the population

dispersal in systems of one or two patches surrounded by areas of variable danger.

6.3 Further work

In Chapter 3, we detailed the dynamics of the population and current distribution of

a population confined to a one-dimensional patch surrounded by regions of variable

danger. These results, are very specific to the length scale of the system analysed in this

thesis. However, these results could be generalised for a system with a large number

of patches, either, by assuming periodicity on the system structure or stochasticity

in the patch distribution. This would provide general results for systems with a large

number of patches such as effective population growth and decay rates, effective carrying

capacities, effective current distribution and effective population distributions. Some

ways to perform these generalisation include homogenisation methods and a variety of

function distributions.

In Chapter 4, we introduced the idea of dendrotaxis to model individuals behaviour

towards their environment. The way we modelled this term was by assuming a sharp

attraction, in the form of step functions towards resource-rich regions. This results in

the imposition of jump conditions in the boundary. However, a more realistic approach

may consider that the level of attraction towards the resource-rich regions depends on

the distance to the patch. Therefore, the introduction of, for example, a linear or an

exponential function as a dendrotaxis term may model the individual behaviour in a

better way.

We also pointed out in Chapter 5, that the analysis performed for corridor structures

was only suitable in corridors of lengths much bigger than the diffusive length L ≫ ξ.

An analysis of the population dynamics for short corridors is therefore needed. In short

length corridors, we presume that no travelling waves will form, and different means of
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dispersal rate may have to be investigated.

A more detailed analysis of the Allee effect over two-dimensional systems, as well as

analytical analyses are also needed. Obtaining critical gap lengths Lcrit for fixed values

of Allee parameters is one of most immediate features to analyse, since its accurate

measurement may direct the development of population control strategies, such as the

implementation of contraception methods for the targeted population.

Analytical results for two-dimensional analyses are outlined in Appendix A. However, the

completion of these analyses, and the possible implementation of different methodologies

and modelling features to these systems, can be a very interesting area of future research.

Finally, a clear comparison between the results originated from experimental data and

stochastic models (as the ones presented in [15]), with the results found through the

models presented in this thesis, would be a very interesting topic of study. This com-

parison would test the validity of the models presented here, pointing out issues and

possible strategies to improve the models proposed in this thesis.



Appendix A

Semi-analytic analysis of

corridors and gap crossing

In this appendix we perform a semi-analytic analysis of the a two-dimensional system

constituted by one-dimensional line corridors that follow a logistic reproduction function

immersed in a two-dimensional plane with decaying reproduction functions, shown in

figure A.1.

y = γ

y = −γ

ΩC

Ω Ω

γ ≪ 1

b

(x, y) = (0, 0)

Figure A.1: Two-dimensional geometry used in the analysis of the dispersal of indi-
viduals between two tree line corridors and through a grassland area.
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A.1 Model setup

Going back to the set of equations given by (5.4.1)-(5.4.4), we know that in the resource-

rich regions the population grows logistically and in the scarce-resource regions, the

population decays linearly. We also know that at the boundary the dendrotaxis term

produce a discontinuity on the population number at the boundary, while the flux of

individuals from one patch of woodland to another is kept continuous. Keeping this

in mind we analyse the geometry given in figure A.1. The darker areas in figure A.1

represent line corridors where the population grows logistically, while the rest of the

domain is constituted by scarce-resource regions. If we assume that the line corridors

are very thin then we can assume that γ ≪ 1 from figure A.1 and we can write y = γY .

With this consideration equations (5.4.1)–(5.4.2) transform into

∂n

∂t
= n(1 − n) +

∂2n

∂x2
+

1

γ2
∂2n

∂Y 2
in Ω, (1.1.1)

δ
∂n

∂t
= −n + λ2∇2n in Ω∁. (1.1.2)

while the boundary conditions (5.4.3)–(5.4.4) become,

n|y=γ = n|Y=1, (1.1.3)

n|y=−γ = n|Y=−1, (1.1.4)

and

N · ∇n|y=γ =
Γ

γ2
N · ∇n

∣

∣

∣

∣

Y=1

, (1.1.5)

N · ∇n|y=−γ =
Γ

γ2
N · ∇n

∣

∣

∣

∣

Y=−1

. (1.1.6)

Here, as in equations (3.3.10) and (4.5.2), λ =

√

D′α

Dα′ and Γ = ǫλ2

δ . In Ω we expand n

in powers of γ by writing

n = n0(x, t) + γ2n1(x, Y, t) + ... (1.1.7)
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to leading order. Equation (1.1.1) becomes

∂n0

∂t
= n0(1 − n0) +

∂2n0

∂x2
+

∂2n1

∂Y 2
in Ω. (1.1.8)

Expanding n in Ω∁ we obtain,

n = ǫñ0(x, t) + ... in Ω∁. (1.1.9)

Observe that the canonical limit is given by Γ = O(γ2), then, defining Γ = γ2Γ̃, Γ̃ =

O(1). Equation (1.1.2) becomes,

0 = −ñ0 + λ2

(

∂2ñ0

∂x2
+

∂2ñ0

∂y2

)

in Ω∁. (1.1.10)

The one-dimensional boundary conditions given in equations (4.5.11) and (4.5.12) are

transformed into the four boundary conditions for the two-dimensional system:

∂n1

∂Y

∣

∣

∣

∣

Y=1

= Γ̃
∂ñ0

∂y

∣

∣

∣

∣

y=0+
, (1.1.11)

∂n1

∂Y

∣

∣

∣

∣

Y=−1

= Γ̃
∂ñ0

∂y

∣

∣

∣

∣

y=0−
(1.1.12)

n0(x, t) = ñ0|y=0+ , (1.1.13)

n0(x, t) = ñ0|y=0− . (1.1.14)

Integrating equation (1.1.8) respect to Y we obtain,

∫ Y=1

Y=−1

∂n0

∂t
dY =

∫ Y=1

Y=−1
n0(1 − n0) +

∂2n0

∂x2
+

∂2n1

∂Y 2
dY , (1.1.15)

that results in the equation

∂n0

∂t
= n0(1 − n0) +

∂2n0

∂x2
+

1

2

[

∂n1

∂Y

∣

∣

∣

∣

Y=1

− ∂n1

∂Y

∣

∣

∣

∣

Y=−1

]

, (1.1.16)
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or equivalently,

∂n0

∂t
= n0(1 − n0) +

∂2n0

∂x2
+

Γ̃

2

[

∂ñ0

∂y

∣

∣

∣

∣

y=0+
− ∂ñ0

∂y

∣

∣

∣

∣

y=0−

]

. (1.1.17)

Due to the symmetry of the system

(

∂ñ0

∂y

∣

∣

∣

∣

y=0−
= − ∂ñ0

∂y

∣

∣

∣

∣

y=0+

)

we have that

∂n0

∂t
= n0(1 − n0) +

∂2n0

∂x2
+ Γ̃

∂ñ0

∂y

∣

∣

∣

∣

y=0+
. (1.1.18)

In summary we have that for a 2 dimensional system composed by two arbitrarily thin

corridors and grassland area the equations are sumarised on dropping the subscripts for

n0 and ñ0 as,

∂n

∂t
= n(1 − n) +

∂2n

∂x2
+ Γ̃

∂ñ

∂y

∣

∣

∣

∣

y=0+
in Ω, (1.1.19)

0 = −ñ + λ2∇2ñ in Ω∁, (1.1.20)

n(x, t) = ñ|y=0− = ñ|y=0+ for x > |L|, (1.1.21)

∂ñ

∂y

∣

∣

∣

∣

y=0−
= − ∂ñ

∂y

∣

∣

∣

∣

y=0+
for −L < x < L (1.1.22)

schematically shown in figure A.2.

With this set of equations we can analyse the problem analytically. By setting the initial

conditions n(x, t)|t=0 = n|y=0+ we can solve for ñ (1.1.20), evaluate
∂ñ

∂y

∣

∣

∣

∣

y=0+
and evolve

equation (1.1.19) in time. In the following section we choose to use a boundary integral

method to solve this problem, due to the complexity of the problem.
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-L L

ñ|
y=0

= n(x, t) ñ|
y=0

= n(x, t)

λ2∇2ñ− ñ = 0 in ΩC

∂n

∂t
= n(1− n) +

∂2n

∂x2
+ Γ̃

∂ñ

∂y

∣

∣

∣

∣

y=0+

in Ω

∂ñ
∂y

∣

∣

∣
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= ∂ñ

∂y
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∣

∣

y=0+
= 0

ΩC

Ω

Figure A.2: A summarised two- dimensional geometry for the analysis of a two long
corridor system is presented. In the corridor the population grows logistically, while
in the grassland the individuals die at linear rate. At the boundary the individuals

present a “sense of danger” which prevents them from leaving the corridor.

A.2 Boundary integral method analysis

Since the equations in Ω∁ are independent of time, the population change in time is zero

everywhere, except in the lines {|x| > L, y = 0;∈ ℜ2} where the population follows the

dynamics given by equation (1.1.19). Equation (1.1.19) expresses how the population

grows logistically and diffuses throughout the corridor. In the region {ℜ2 \ {y = 0, |x| >

L}}, named Ω∁, the population obeys a linear death rate with diffusion, modelled by

equation (1.1.20).

One way to solve this set of equations is by means of Green’s functions and Bound-

ary Integral Methods [56, 137–139]. These methods involve finding the solution of a

partial differential equation in form of an integral equation where the kernel of this inte-

gral equation is partially or totally constituted by the Green’s function of the problem.

Therefore, the solution of a boundary integral problem requires the ability to calculate

the Green function of the differential equation under study.

Green’s functions can express differential equations in terms of distributions instead of

functions. To illustrate this feature of Green’s functions we write an ordinary differential

equation in terms of linear operators,

L(x)u(x) = f(x) (1.2.1)
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where L is a linear operator, f(x) is a known function and u(x) is the solution to find.

A way of solving this equation is by means of eigenfunction expansions, but another way

is through Green’s function calculation. In this case, equation (1.2.1) can be written as

Lg(x, ρ) = δ(x− ρi) (1.2.2)

where ρi can be thought as point of excitation or a potential source [140]. The solution

u(x) is given by an integral where the kernel of the resulting integral equation is com-

posed, partially or completely, by the Green’s function g(x, ρ) associated to the partial

differential equation [137].

The essential feature and importance of boundary integral methods, is that often they

allow a problem involving the domain of interest to be simplified to one where only its

boundary is involved [141]. In this way the dimension of the problem is also reduced

by one. This method reduces a boundary value problem of a differential equation in a

domain to an integral equation on the boundary. The boundary value problem of the

differential equation is exchanged for a singular integral equation in the boundary, where

the problem is solved either analytically if possible, or numerically [56].

Then, in terms of boundary integral equations, the solution of equation (1.1.20), λ2∇2ñ−

ñ = 0 away from the line y = 0 can model the effect of the boundary conditions by

assuming the presence of a linear source along y = 0, where the strength of the source

is a priori unknown.

The method we use is explained as follows. To obtain the field n(r) produced by a

distributed source ρ(r; r0), the effect of each elementary portion of source ρi(r0) is cal-

culated and integrated over the source distribution.

As shown in figure A.3, if G(r; r0) is the problems’ Green’s function at the observer’s

point r caused by a unit source ρi(r0) at the point r0, then the field n(r) produced by

a source distribution ρ(r0) is the integral

n(r) = −
∫ b

a
ρ(r0)G(r; r0)dr0 (1.2.3)
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G(r; r0)

b
a ρi(r0)

* b

n(r) = −
∫ b

a
ρ(r0)G(r; r0)dr0

b b

a b*
ρ(r0)

*

* * ** **b *

*

Figure A.3: On the left, a field G(r; r0) produced at the point r by a source located
at r0 is shown. On the right, the field n(r; r0) produced by the source distribution ρ(r0)
at the point r is described. Each source distribution ρi(r0) contributes to obtain the

field n(r; r0).

in the whole range of r0 occupied by the sources [138].

If the equation is homogeneous, but the boundary conditions are not, the problem can

be solved by considering the boundary conditions as equivalent to sources using the

boundary integral method, see [142]. Inhomogeneous boundary conditions are replaced

by homogeneous ones and the sources changed appropriately.

Here we wish to solve for ñ0 which satisfies the following problem,

λ2∇2ñ0 − ñ0 = 0 in Ω∁, (1.2.4)

ñ0|y=0 = n0(x, t) for |x| > L (1.2.5)

∂ñ0

∂y

∣

∣

∣

∣

y=0

= 0 for |x| < L. (1.2.6)

ñ0 → 0 as x, y → ∞ (1.2.7)

Firstly, we solve (1.2.4) over the whole space ℜ2 and then apply the boundary condi-

tions. To satisfy the boundary conditions, we solve equation (1.2.4), considering that

the sources are located in the boundary of the whole plane ℜ2, or in this case, in
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{|x| > L, y = 0;∈ ℜ2}. The Green function for equation (1.2.4) satisfies,

∇2G− 1

λ2
G = δ(x− x0)δ(y − y0), (1.2.8)

that is referred sometimes as the modified Helmholtz equation and has the solution,

G(x, y) =
1

2π
K0

( r

λ

)

, r =
√

(x− x0)2 + (y − y0)2, (1.2.9)

where K0 is the modified Bessel function of the second kind [139, 143, 144].

The equation λ2∇2ñ0 − ñ0 = A(x, y), with the boundary conditions given by equations

(1.2.5) and (1.2.6) has the solution,

ñ0(x, y) = −
∫ ∞

−∞
−
∫ ∞

−∞
K0

( r

λ

)

A(x0, y0)dx0dy0. (1.2.10)

This is the solution for a source A(x, y) everywhere in the space. Thus, if A(x, y) = 0

everywhere except on |x| < L, y = 0, we can write,

ñ0(x, y) =

(

−
∫ −L

−∞
+−
∫ ∞

L

)

K0

(

1

λ

√

(x− x0)2 + y2
)

A(x0, t)dx0, (1.2.11)

for some function A(x, t). In order to determine this function in terms of n0(x, t) we

apply the boundary conditions (1.2.5) to obtain

n0(x, t) =

(

−
∫ −L

−∞
+−
∫ ∞

L

)

K0

(

1

λ
|x− x0|

)

A(x0, t)dx0, (1.2.12)

assuming n0(x, t) is a known function. Equation (1.2.12) gives an integral equation

which can be solved to find A(x, t) for |x| > L.

A.2.1 Problem context

The characteristics of the problem specified by equations (1.2.10)–(1.2.12), results in

the postulation of an ill-posed problem. The ill-posedness of the problem origins due

to the line break over y = 0 at |x| < L, y = 0. This break determines the solution

of the integral equation (1.2.12) not to be well defined. To handle the ill-posedness



Appendix A Semi-analytic analysis of corridors and gap crossing 197
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Ai+1

xi+1

xi

i+ 1

ϑi

0 1

×× ×× × × ×
i

Figure A.4: To find the value of the function A(x0, t) in the domain x0 ∈ [0, 1],
the whole domain is divided in N sub-intervals. The function Ai(x0, t), is piecewise
constant in each sub-interval ϑi where i = 1, 2, ..., N . The integral given by equation
(1.2.14) is performed for each function Ai(x0, t). All the integrals are added to find the

general solution of the integral equation.

of the problem, different regularisation methods can be used. In §A.2.4 the Tikhonov

regularisation method is explored as a choice to find the approximate solution of equation

(1.2.12).

A.2.2 Numerical analysis

To find the value of the function A(x0, t) we solve numerically the integral equation

given by equation (1.2.12), supposing that the function n0(x, t) is a known function. We

start firstly by considering the simpler problem,

f(x) = −
∫ 1

0
K0

(

1

λ
|x− x0|

)

A(x0)dx0 for 0 ≤ x ≤ 1 (1.2.13)

shown in figure A.4. The interval x = [0, 1] is sub-divided in N intervals of size
1

N
.

Each sub-interval is denoted by the variable ϑ. In equation (1.2.13), we approximate

the function f(x) as a piecewise linear function for each interval ϑi. At the same time,

we approximate A(x0) by a function that is piecewise constant in each sub-interval.

For each sub-interval ϑi, we integrate the function Ai(x0, t) respect to x0 over the whole

domain [0, 1], obtaining for a single sub-interval

f(xi) = −
∫ i+1

i
K0(

1

λ
|xi − x0|)Ai(x0)dx0, (1.2.14)
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that for the domain [0, 1] transforms into

f(xi) =
N
∑

i=1

−
∫ i/N

(i−1)/N
K0(

1

λ
|xi − x0|)Ai(x0)dx0. (1.2.15)

Equation (1.2.15) defines a row in a matrix equation for every value of xi that, after

evaluating over the whole domain looks like:

































f(x1)

f(x2)

...

f(xi)

...

f(xN)

































=
1

λ

































· · · −
∫ i+1/N
i/N K0(

1
λ |x1 − x0|)dx0 · · ·

· · · −
∫ i+1/N
i/N K0(

1
λ |x2 − x0|)dx0 · · ·

...
. . .

...

· · · −
∫ i+1/N
i/N K0( 1

λ |xi − x0|)dx0 · · ·
...

. . .
...

· · · −
∫ i+1/N
i/N K0(

1
λ |xN − x0|)dx0 · · ·

































































A1

A2

...

Ai

...

AN

































(1.2.16)

The value of the integral for a sub-interval ϑi in the domain x0 = [0, 1] from the point

xj is a single entry of the matrix M given by,

M =
1

λ

































· · · −
∫ i+1/N
i/N K0(

1
λ |x1 − x0|)dx0 · · ·

· · · −
∫ i+1/N
i/N K0(

1
λ |x2 − x0|)dx0 · · ·

...
. . .

...

· · · −
∫ i+1/N
i/N K0( 1

λ |xi − x0|)dx0 · · ·
...

. . .
...

· · · −
∫ i+1/N
i/N K0(

1
λ |xN − x0|)dx0 · · ·

































(1.2.17)

where,

M(i, j) =
π

N

[

(−i + j + 1/2)

[

K0

( | − i + j + 1/2|
N

)

L−1

( | − i + j + 1/2|
N

)

+

+ K1

( | − i + j + 1/2|
N

)

L0

( | − i + j + 1/2|
N

)]

+

+(−j + i + 1/2)

[

K0

( |i− j + 1/2|
N

)

L−1

( |i− j + 1/2|
N

)

+

+ K1

( |i− j + 1/2|
N

)

L0

( |i− j + 1/2|
N

)]]

. (1.2.18)

In equation (1.2.18), K0 and K1 are the Modified Bessel functions of order 0 and 1
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Figure A.5: Solution for A(x0) before regularisation. The regularisation of this
function must be done because the integrals performed in each sub-domain are singular.

As a consequence the integral equation is ill-posed.

respectively, L−1 and L0 are the Modified Struve functions of order −1 and 0 respectively,

N is the total number of sub-intervals the domain is divided in, and the value of the

(i, j) entry of the matrix M is found according to the position on the domain. The

matrix equation resulting from this numerical method is then

f(xj) = MijAi. (1.2.19)

Once the matrix M is found, we can find the value of the function A(x0) by inverting

the matrix to obtain,

Ap = Mpqf(xq). (1.2.20)

Figure A.5 shows the solution for A(x0) calculated using equation (1.2.20). Notice that

the solution shown in figure A.5 is not smooth. This is because the matrix M calculated

from such singular integral problems is generally ill-conditioned; therefore, regularisation

of the matrix equation given by (1.2.20) is necessary to find the approximate solution

to the function A(x0).
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A.2.3 Condition number

The condition number of a matrix measures the sensitivity of the solution of a system of

linear equations to errors in the data giving an indication of the accuracy of the results

from matrix inversion and the linear equation solution. It is defined as

k(A) = ‖A‖
∥

∥A−1
∥

∥ (1.2.21)

where A is the matrix defined by the linear equation Ax = b, and ‖·‖ stands for the

standard Euclidean norm.

If the condition number takes values of k(A) = 10k one can expect to loose at least

k digits of precision. At the same time, values close to 1 indicate a well-conditioned

matrix. In the problem we are examining, the condition number for the non-regularised

solution is 753.6305, implying that our solution has lost at least 3 digits of precision.

A.2.4 Tikhonov regularisation

When an ill-posed continuum problem has to be discretised in order to find a numerical

solution, the solution of the problem usually involves the incorporation of extra assump-

tions for its’ numerical treatment. A sensible assumption in this case, is to suppose

that the solution is smooth. If we assume that the solution of the problem is smooth,

then we can use the Tikhonov regularisation [145]. This is the most commonly used

regularisation method for such ill-posed problems.

The problem

Ax = b, (1.2.22)

analogous to equation (1.2.19), results being ill-posed and the matrix A happens to

be singular, we need to look for a solution with the right properties. The Tikhonov

regularisation includes a term that minimizes the condition number giving preference to

one solution over the others, producing a smooth solution.

To minimize the error of the matrix equation given by equation (1.2.22) the method we
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use consist in optimise the solution using the linear least squares method and then add

the regularisation term:

|Ax− b| + λ2 |Tx| (1.2.23)

where |·| represents the Euclidean norm, λ is the regularisation parameter and |T| is the

Tikhonov matrix.

If we ignore the regularisation to the solution given by the Tikhonov matrix, the solution

is completely dominated by contributions from data errors. By adding regularization

we are able to minimize these contributions and maintain the sum given by (1.2.23) of

a reasonable size.

The Tikhonov matrix induces a constraint on the solution x which may be increased

or decreased by the value of λ, the regularisation parameter to be chosen [146]. In the

example we solve, we assume that the Tikhonov matrix constrains the 4th. derivative

of the solution x, making the solution smooth and continuous, whilst the regularisation

parameter has the value λ = 1. The results of the regularisation are shown in §A.2.5

A.2.5 Solution for a line in one dimension

For the problem analysed we suppose that the matrix T is a difference operator of

fourth order which represents the fourth differential operator of the solution. We use

this operator to enforce the smoothness of the solution under the assumption that the

solution itself is mostly continuous. The function of T is to ensure that the difference

between the forth derivative of the solution and the solution itself tends to zero producing

a continuous solution. This regularisation improves the conditioning of the solution

enabling a reliable result. The condition number is then reduced to 1.

Figures A.6 and A.7 show the regularised solution for A(x0) and the error comparison

Err(x0) of the solution, before and after the regularisation respectively. We observe

that the solution is greatly improved and smoothed while the error in the solution is

decreased substantially.
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Figure A.6: Solution of A(x0) after regularisation. The regularisation of this function
makes the solution smooth and reliable, while the error is also reduced dramatically.
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Figure A.7: The figure on the left shows the error Err(x0) of the function A(x0)
without regularisation. The figure on the right shows the error Err(x0) with regulari-
sation. After regularising the function A(x0) the error average, as well as the Err(x0),

decrease substantially.
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Figure A.8: Dependence of the population density on the location in space. Along
the line x ∈ [0, 1], y = 0 the majority of the population individuals will be located. At
the same time, as we move away from this line, the less individuals we will find. The
number of individuals located in each point is found by integrating the now known
function A(x0) times the green function K0((x − x0)2 + y2)1/2 over the whole domain

in ℜ2.

A.3 Two-dimensional analysis of the solution

In §A.2.5 we have found the solution for the function A(x0) in the domain [0, 1]. With

this solution we investigate how the general solution n(x, y) changes in the plane ℜ2.

The solution n(x, y) tells us how the population changes in space supposing that the

only available woodland area is the line [0, 1] and the rest of the plane is grassland. Each

point of the line [0, 1] will affect the dynamics of the population at the point xi, yj as

explained in §A.2. To analyse the area around the domain [0, 1] we set a domain like

the one shown in the figure A.8.

The value of n at the point (xi, yi) will be a scalar produced by the integral,

n(xi, yj) = −
∫

Ω
A(x0)K0((xi − x0)

2 + y2j )1/2 (1.3.1)

where (xi, yj) is the point where the “population field” n(xi, yj) is measured and A(x0)

is the function encountered in §A.2.5.

The function n(x, y), is represented by the integral resultant of the product of the vector

A(x0) and the integral given in (1.3.1). At each point (xi, yj) a single value n(xi, yj) for

the integral (1.3.1) is found, defining the element (i, j) of the matrix M of size Q× R.
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The size of Q is the number of points in x and R is the number of points in y which

defines the two-dimensional mesh obtained by calculating the “population field” n(x, y).

For the point (xi, yj) we have,

n(xi, yj) = −
∫ 1

0
(A1(x0), ...Ai(x0), ..., AN (x0))K0((xi − x0)

2 + y2j )1/2 (1.3.2)

equivalent to

n(xi, yj) = −
∫ 1

0
A1(x0)K0((xi − x0)

2 + y2j )1/2 + ... + −
∫ 1

0
AN (x0)K0((xi − x0)

2 + y2j )1/2.

(1.3.3)

In matrix terms the function n(xi, yj) is given by,

n =



















n(x0, y0) n(x1, y0) · · · n(xQ, y0)

n(x0, y1) n(x1, y1) · · · n(xQ, y1)

...
. . .

...
...

n(x0, yR) n(x1, yR) · · · n(xQ, yR)



















(1.3.4)

that gives us the solution of equation 1.2.13 in a two-dimensional domain where all the

elements xi are contained in a domain bigger or equal than [0, 1] ∈ x, and the elements

yj are contained in a domain bigger or equal than [−δ, δ] ∈ y.

The solution for a population line located at x ∈ (0, 1) y = 0 in the two-dimensional

domain (x, y ∈ {{0, 1}, {−1, 1}) is plotted in figure A.9.
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Figure A.9: Solution of the population distribution n(x, y) after regularisation. The
contour plot indicates how as we move away from the population line x ∈ (0, 1), y = 0

the population disperses and decrease, as expected.
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