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1 INTRODUCTION  

Odontocetes (toothed whales) routinely produce pulsed sounds, which many studies have shown to 
be used for echolocation [1]. The deliberate production by dolphins of bubble nets suggested that 
their echolocation may function well in bubbly water that would confound man-made sonar [2,3], an 
observation supported by the outstanding sonar performance of such animals in shallow waters.  A 
sonar scheme - Twin Inverted Pulse Sonar (TWIPS) - which exploited the fact that bubbles would 
scatter closely-spaced pairs of equal-amplitude pulses nonlinearly, whilst other targets would 
not [2], was developed and tested successfully at sea [4, 5].  However TWIPS worked because 
consecutive pulses had inverted phase, and the only pulses resembling these to be found in 
odontocetes have been recorded to date at amplitudes too low to be of use in such a processing 
scheme [4, 6].  Their origin is not certain and their purpose (if any) has also not been 
determined [6]. 
 
However, it is well known that odontocetes, like the Atlantic bottlenose dolphin (Tursiops truncatus), 
emit sequences of pulses (a click train) when interrogating a target. Each pulse can have a high 
peak-to-peak amplitude [1].  If the pulse is of sufficiently high amplitude, bubble pulsations can 
become nonlinear [2].  These echolocation pulses take the form of broadband, short duration 
acoustic ‘clicks’. The dolphin’s performance in detecting and classifying targets, particularly in 
shallow water environments where the returned signal will usually be dominated by the scatter from 
the wave-generated bubble clouds if these are close to the target, is widely accepted to be superior 
to man-made sonar [7]. During target interrogation, there is considerable variation in the power and 
frequency of the dolphin clicks [1, 8, 9].  The hypothesis that two dolphin-like clicks of different 
amplitude can be combined to improve target discrimination in a bubble-filled environment is tested. 
 
Here, the nonlinear theoretical responses of bubbles are incorporated into a simulation of the 
response of a bubble cloud which contains a linear target. The signal returned by the bubble cloud 
is then calculated, and subsequently processed with the intention of discriminating the presence of 
a linearly scattering object from the bubble cloud that surrounds it. In addition to target 
discrimination, a further test is carried out to evaluate the performance of the use of such pulse 
pairs for linear target detection in a bubble-filled environment using a Receiver Operating 
Characteristics (ROC) curve. 
 

2 THEORY 

It is common for a dolphin to emit multiple pulses during target interrogation. This may be for the 
orthodox purpose of monitoring changes in a target, relative motion between target and source, or 
for insonifying different aspects of a target.  However, this paper will investigate if it can further be 
used in clutter reduction or target discrimination.  As a form of simplification, it is assumed that a 

first pulse, 1( )c t , of duration T, is followed by a second similar pulse, 2( )c t , of different amplitude. 

The response from a pulse excitation of a target that scatters linearly can be represented by 

= ∗ = −∫
�

1 1 1( ) ( ) ( ) ( ') ( ') 'y t h t c t h t t c t dt  where ( )h t  is the impulse response of the system. If 2( )c t  is 

1903



Proceedings of the 11
th

 European Conference on Underwater Acoustics 
 
 

greater than 1( )c t  by a factor of G, and used as the new excitation, the response 2( )y t  is then given 

by = ∗ =2 2 1( ) ( ) ( ) ( )y t h t c t Gy t . 

 
A matched filter is commonly used in sonar systems [10]. Assuming the matched filter is scaled 

such that its overall gain is unity, then denoting the outputs of the matched filter for ( )y t  as ( )Y t , it 

follows that =2 1( ) ( )Y t GY t .  Therefore the subtraction of 1( )GY t  from 2( )Y t , which will be termed P- 

in this paper, is zero for a linear scatterer.  For nonlinear scatterers, P- will, in general, give a non-
zero value. This is because for a nonlinear system, the scattering from a pulse of different amplitude 
does not scale with the linear gain G.  
 

The addition of 1( )GY t  and 2( )Y t , referred to as P+ in this paper, tends to enhance the linear 

components of the scattered signal relative to the nonlinear ones. Such processing will not lead to 
the complete removal of nonlinear components, but only serve to partially suppress them.  The 
processing scheme for the linear target enhancement and nonlinear scatterer enhancement by this 
Biased Pulse Summation Sonar (BiaPSS) is shown in Figure 1.  It is worth noting that 
TWIPS [2, 4, 5] is based on a specific instance of BiaPSS with G = -1. 
 

 
 

Figure 1: Processing scheme by which the echoes from a pair of dolphin-like pulses of different 
amplitude are processed to enhance/ cancel the nonlinear/ linear components of the scattering 
through weighted subtraction and addition of the scattering. The magnitude of the first pulse is 

greater than that of the second pulse by a factor of G. 
 

3 METHOD 

For the study carried out here, each pulse is approximately 60 sµ  in duration and consists of two 

chirps with nominal frequency band of 30 – 84 kHz and 76 – 130 kHz. The higher frequency chirp is 
delayed by 10 sµ relative to the lower frequency chirp. This model is based on the one proposed 

by Capus et al. [8]. The time and frequency domain representations of the dolphin-like pulse used is 
shown in Figure 2. The frequency bandwidth of the pulse corresponds to a bubble resonant radius 
of approximately 25 to 110 sµ  at the sea surface.  In the pair of pulses used in the simulation, the 

amplitude of the second pulse is 50% of that of the first pulse.  
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(a) Time-domain (b) Frequency-domain 

  
 

Figure 2: The pulse used in the simulation presented in (a) time-domain and (b) frequency-domain 

with peak-to-peak sound pressure level (SPL) of approximately 228 dB re 1 Paµ . 

 
The results shown here are obtained using the simulation method of Chua et al. [11].  The 
theoretical nonlinear responses for bubbles of different radii when subjected to a pair of pulses of 
different amplitude are first computed using the nonlinear Keller-Miksis equation [12]. These 
theoretical bubble responses are then incorporated in the simulation to assess the performance of 
such a pulse pair in the classification and detection of a linear target in a bubble-filled environment.  
An instantaneous linear scatterer with a target strength of -35 dB is used as the target. 
 
The smoothed envelopes of the return signals (over consecutive runs) are processed as described 
in Figure 1, and for display purposes are then stacked (with amplitude represented by colour, as 
defined in the colour bar), forming image plots for comparison. The image plots show the 
repeatability of the test as the bubble cloud evolves. For the image plots shown, 100 separate runs 
have been stacked. 

 
 

4 RESULTS 

 
By comparing the responses of a scatterer from a pair of pulses of different amplitude (through 
weighted addition and subtraction), discrimination between linear and nonlinear scatterers can 
occur. To illustrate this, consider Figure 3, where a linear and nonlinear scatterer can be 
discriminated using a pair of pulses of different amplitude when a linear target is placed within a 
bubble-filled environment.  
 

 (a) P+ (b) P- 
                         Bubbles Target    Bubbles             Bubbles              Bubbles  

                              ↓          ↓           ↓               ↓    ↓                  ↓     ↓ 

 
Figure 3: (Colour online) Simulation of target (TS= -35 dB) in a bubble-filled environment with the 

image plots of (a) P+ and (b) P-. The target is located at 2.5 m. Each colour scale has been 
normalized to a maximum value in each plot, which for (a) is 3.0 x 10

9
, and (b) 2.7 x 10

9
. 

 
Figure 3(a) shows (on a linear colour scale) the results obtained when a pulse pair (of which the 
second pulse has an amplitude that is half of the first) were added, so highlighting the presence of 
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the target. By subtracting the response from the first pulse with the correctly-scaled responses from 
the second pulse, the linear scatters are removed as observed in Figure 3(b). By comparing the 
plots of the sum and difference of the responses from the pulse pair of the same set of data, 
discrimination between linear (target) and nonlinear (bubble clouds) scatterers can take place. 
 
A further test is carried out to determine if the use of the sum of the responses from the pulse pair, 
P+, can improve linear target detection compared to “standard sonar” processing. In this context, 
standard sonar processing consists of averaging the smoothed envelopes of the match-filtered 
responses from the pulse pair. This is compared with the processing scheme for the enhancement 
of linear scatterers (shown in Figure 1) where the match-filtered signal from the pulse pair is first 
linearly added before obtaining the smoothed envelopes.  
 
A ROC curve [13] comparing the relative performance of the two processing is shown in Figure 4. 
The ROC curve is generated using the distribution of the backscattered response in the region 
around the target position in the target absent and target present cases.  In Figure 4(a), linear axes 
are used for the ROC curve while in (b), logarithmic axes are used to display a more useful range of 
probability of detection and probability of false alarm.  The sum of the responses from a pair of 
pulses of different amplitude gives a probability of detection of 46% before giving a single false 
alarm, compared to a probability of detection of 27% for standard sonar processing before giving a 
single false alarm. Depending on the scenario, even small levels of false alarm can be costly (for 
example, a false alarm in mine detection could entail closure of a sea route and deployment of 
divers) [4]. 
 

(a) (b) 

  
 

Figure 4: (Colour online) ROC curves of standard sonar processing compared with P+ for case 
shown in Figure 3 where the solid circles are the ROC curve of the former and the solid triangles 

represent the ROC curve of the latter. Pd is the probability of detection while Pfa is the probability of 
false alarm. In (a), a linear scale is used for both axes while in (b), a logarithmic scale is used for 

both axes. 
 
Although the results presented here suggest the use of a pair of dolphin-like pulses of different 
amplitude allow for discrimination between linear and nonlinear scatterers and can potentially 
improve the detection of a linear target in a bubble-filled environment, the authors are not aware of 
evidence which shows that dolphin can process pulses of different amplitude in the same manner, 
despite some studies suggesting that dolphins can combine multiple echoes for target detection and 
estimation [14, 15]. 
 
In general, the effectiveness of the signals with different amplitude increases when a greater 
proportion of the bubble population scatter nonlinearly, and it is easier for a bubble to scatter 
nonlinearly if the pulse frequency is close to the bubble resonant frequency. It is also intriguing to 
note that the frequency band of the dolphin ‘clicks’ in which the dolphin clicks’ energy is most 
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concentrated coincides with the resonant frequencies of bubble sizes which are most numerous in 
typical oceanic conditions. 
 

5 CONCLUSION 

The simulations suggest that the use of a pair of dolphin-like pulses of different amplitude can 
discriminate between linear and nonlinear scatterers using BiaPSS. For the bubble population used 
in the simulation, the detection performance of the linear target in the bubble-filled environment is 
also shown to outperform standard sonar processing in the ROC curves. 
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