The University of Southampton
University of Southampton Institutional Repository

Modelling terrestrial ecosystem productivity using remote sensing data

Modelling terrestrial ecosystem productivity using remote sensing data
Modelling terrestrial ecosystem productivity using remote sensing data
Production efficiency models (PEMs) have been developed to aid with the estimation of terrestrial ecosystems productivity where large spatial scales make direct measurement impractical. One of the key datasets used in these models is the fraction of photosynthetic active radiation absorbed by vegetation (FAPAR). FAPAR is the single variable that represents vegetation function and structure in these models and hence its accurate estimation is essential. This thesis focused on improving the estimation of FAPAR and developing a new PEM model that utilises the improved FAPAR data. Foremost, the accuracy of operational LAI/FAPAR products (i.e. MGVI, MODIS LAI/FAPAR, CYCLOPES LAI/FAPAR, GLOBCARBON LAI/FAPAR, and NN-MERIS LAI TOC algorithm) over a deciduous broadleaf forest was investigated. This analysis showed that the products varied in their prediction of in-situ FAPAR/LAI measurements mainly due to differences in their definition and derivation procedures. The performance of three PEMs (i.e. Carnegie-CASA, C-Fix and MOD17GPP) in simulating gross primary productivity (GPP) across various biomes was then analysed. It was shown that structural differences in these models influenced their accuracy. Next, the influence of two FAPAR products (MODIS and CYCLOPES) on ecosystem productivity modelling was analysed. Both products were found to result in overestimation of in-situ GPP measurements. This was attributed to the lack of correction for PAR absorbed by the non-photosynthetic components of the canopy by the two products. Only PAR absorbed by chlorophyll in the leaves (FAPAR chlorophyll) is used in photosynthesis and hence it was hypothesised that deriving and using this variable would improve GPP predictions. Therefore, various components of FAPAR (i.e. FAPAR canopy, FAPAR leaf and FAPAR chlorophyll) were estimated using data from a radiative transfer model (PROSAIL-2). The FAPAR components were then related to two sets of vegetation indices (i.e. broad-band: NDVI and EVI, and red-edge: MTCI and CIred-edge). The red-edge based indices were found to be more linearly related to FAPAR chlorophyll than the broad-band indices. These findings were also supported by data from two flux tower sites, where the FAPAR chlorophyll was estimated through inversion of net ecosystem exchange data and was found to be better related to a red-edge based index (i.e. MTCI). Based on these findings a new PEM (i.e. MTCIGPP) was developed to (i) use the MTCI as a surrogate of FAPAR chlorophyll and (ii) incorporate distinct quantum yield terms between the two key plant photosynthetic pathways (i.e. C3 and C4) rather than using species-specific light use efficiency. The GPP predictions from the MTCIGPP model had strong relationship with the in-situ GPP measurements. Furthermore, GPP from the MTCIGPP model were comparable to the MOD17GPP product and better in some biomes (e.g. croplands). The MTCIGPP model is simple and easy to implement, yet provides a reliable measure of terrestrial GPP and has the potential to estimate global terrestrial carbon flux.
Ogutu, Booker
4e36f1d2-f417-4274-8f9c-4470d4808746
Ogutu, Booker
4e36f1d2-f417-4274-8f9c-4470d4808746
Dash, J.
51468afb-3d56-4d3a-aace-736b63e9fac8
Dawson, Terence
e46ccc97-a1a2-4352-ac44-a8941fce7b3a

Ogutu, Booker (2012) Modelling terrestrial ecosystem productivity using remote sensing data. University of Southampton, School of Geography, Doctoral Thesis, 235pp.

Record type: Thesis (Doctoral)

Abstract

Production efficiency models (PEMs) have been developed to aid with the estimation of terrestrial ecosystems productivity where large spatial scales make direct measurement impractical. One of the key datasets used in these models is the fraction of photosynthetic active radiation absorbed by vegetation (FAPAR). FAPAR is the single variable that represents vegetation function and structure in these models and hence its accurate estimation is essential. This thesis focused on improving the estimation of FAPAR and developing a new PEM model that utilises the improved FAPAR data. Foremost, the accuracy of operational LAI/FAPAR products (i.e. MGVI, MODIS LAI/FAPAR, CYCLOPES LAI/FAPAR, GLOBCARBON LAI/FAPAR, and NN-MERIS LAI TOC algorithm) over a deciduous broadleaf forest was investigated. This analysis showed that the products varied in their prediction of in-situ FAPAR/LAI measurements mainly due to differences in their definition and derivation procedures. The performance of three PEMs (i.e. Carnegie-CASA, C-Fix and MOD17GPP) in simulating gross primary productivity (GPP) across various biomes was then analysed. It was shown that structural differences in these models influenced their accuracy. Next, the influence of two FAPAR products (MODIS and CYCLOPES) on ecosystem productivity modelling was analysed. Both products were found to result in overestimation of in-situ GPP measurements. This was attributed to the lack of correction for PAR absorbed by the non-photosynthetic components of the canopy by the two products. Only PAR absorbed by chlorophyll in the leaves (FAPAR chlorophyll) is used in photosynthesis and hence it was hypothesised that deriving and using this variable would improve GPP predictions. Therefore, various components of FAPAR (i.e. FAPAR canopy, FAPAR leaf and FAPAR chlorophyll) were estimated using data from a radiative transfer model (PROSAIL-2). The FAPAR components were then related to two sets of vegetation indices (i.e. broad-band: NDVI and EVI, and red-edge: MTCI and CIred-edge). The red-edge based indices were found to be more linearly related to FAPAR chlorophyll than the broad-band indices. These findings were also supported by data from two flux tower sites, where the FAPAR chlorophyll was estimated through inversion of net ecosystem exchange data and was found to be better related to a red-edge based index (i.e. MTCI). Based on these findings a new PEM (i.e. MTCIGPP) was developed to (i) use the MTCI as a surrogate of FAPAR chlorophyll and (ii) incorporate distinct quantum yield terms between the two key plant photosynthetic pathways (i.e. C3 and C4) rather than using species-specific light use efficiency. The GPP predictions from the MTCIGPP model had strong relationship with the in-situ GPP measurements. Furthermore, GPP from the MTCIGPP model were comparable to the MOD17GPP product and better in some biomes (e.g. croplands). The MTCIGPP model is simple and easy to implement, yet provides a reliable measure of terrestrial GPP and has the potential to estimate global terrestrial carbon flux.

Text
Ogutu_Thesis_2012.pdf - Other
Download (24MB)

More information

Published date: 1 March 2012
Organisations: University of Southampton, Global Env Change & Earth Observation, Faculty of Social, Human and Mathematical Sciences

Identifiers

Local EPrints ID: 341720
URI: http://eprints.soton.ac.uk/id/eprint/341720
PURE UUID: 71b8b976-82a5-4e50-a83e-709f077f3c10
ORCID for Booker Ogutu: ORCID iD orcid.org/0000-0002-1804-6205
ORCID for J. Dash: ORCID iD orcid.org/0000-0002-5444-2109

Catalogue record

Date deposited: 27 Sep 2012 15:44
Last modified: 15 Mar 2024 03:33

Export record

Contributors

Author: Booker Ogutu ORCID iD
Thesis advisor: J. Dash ORCID iD
Thesis advisor: Terence Dawson

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×