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ABSTRACT 

CAENORHABDITIS ELEGANS 

 

The aim of this project is to identify behavioural phenotypes associated with ethanol in C. 

elegans and potential molecular targets for ethanol that underpin an ethanol response. This will 

be achieved through a multi-lateral approach using bioinformatics, genetics and neuroscience 

based methodology.  

  In accord with previous experiments, behavioural analysis showed that several phenotypes 

could be used to describe and assess the state of ethanol induced intoxication and dependence 

over a range of concentrations. C. elegans exhibits an inhibition of locomotion at high ethanol 

concentrations. This manifests as a reduction in the population that chemotax towards a food 

reward whilst lower ethanol concentrations show no such reduction in population chemotaxis. 

There is also a change in locomotion which characterises an ethanol withdrawal; this is a 

separate response from the intoxicating behaviour seen at higher concentrations. Similar to the 

response seen in populations, individual worms show a dose dependent reduction in pharyngeal 

pumping rate. This also shows no significant difference at lower concentrations to their 

untreated counterparts. 

  Observations from studying pharyngeal pumping indicate that worms do show a behavioural 

response at lower ethanol concentrations. Worms placed in an environment with food and 

ethanol will not exhibit feeding behaviour as control worms do, instead worms disperse away 

from the food source. This behaviour can be observed at a threshold of around 10mM ethanol. It 

is unclear how ethanol causes this phenotype. Overall, these data provides new paradigms for 

assessing low dose effects. These assays will be important for future studies designed to model 

low dose effects. 

  With respect to higher doses, ethanol is known to activate cellular and physiological pathways 

that underpin stress. Here, we have investigated whether the unfolded protein response (UPR) is 

an important mediator of stress induced by ethanol. Our evidence suggests no clear activation of 

the UPR by ethanol concentrations that exert behavioural effects. In an attempt to pre-empt 

genetic data, we initiated a database of genes involved in ethanol responses, which were mapped 

on to C. elegans and human homologues. These were used to build an ethanol network, which 

could be used to refine investigations of ethanol-related genes in C. elegans. 
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1 Introduction 

1.1 Ethanol toxicity, metabolism and distribution 

Ethanol is a 2 carbon, aliphatic molecule with a hydroxyl group. It is the active ingredient in 

alcoholic beverages consumed globally. It comes from the natural product of anaerobic 

fermentation by the yeast Saccharomyces cerevisiae and has been utilised by humans 

throughout recorded history. Such is the popularity of ethanol as a social beverage that in 2006 

the total UK household expenditure on alcohol totalled approximately £41.6bn. This is greater 

than the entire UK national defence budget for 2010/11. The consumption of alcohol is not risk 

free and comes with a considerable health risk depending on the duration and amount 

consumed. In the UK, as of 2004, the cost to the National Health Service (NHS) is estimated to 

be between £1.4 billion and £1.7 billion a year. The estimated cost of alcohol-related crime and 

anti-social behaviour estimated to be up to £7.3 billion per year (NHS Information centre, 

2008). The health costs also translate into private sector economic losses, with up to an 

estimated £6.4 billion lost through alcohol related loss of productivity (UK Cabinet Office, 

2004). Thus ethanol is a considerable cause of mortality and morbidity with vast economic cost. 

Ethanol is a wide-acting, low specificity central nervous system (CNS) depressant. The acute 

effects of ethanol range from stimulation and euphoria at low doses through to relaxation and 

sedation at moderate to high doses. At higher doses ethanol acts as an anaesthetic, which can 

depress the CNS to such an extent as to lead to coma and cessation of respiratory function. 

Further complicating the risks associated with acute intoxication, chronic consumption can also 

lead to severe health problems dependent on the drinking pattern. Ethanol has both positive, 

reward, and negative, relief from, reinforcing affects which can lead to psychological and 

physiological dependence. Physiological dependence is associated with additional medical 

complications to those associated with acute and chronic intoxication. Withdrawal from 

dependence can result in convulsions, coma and death; it is commonly treated by drugs with 

similar sites of action to alcohol, such as benzodiazepines (Schuckit, 2009). 

1.2 Ethanol metabolism  

Approximately 95% of ethanol is metabolized by the body, with the remainder passed out in the 

breath, sweat and urine. In humans, alcohol is metabolized by a rate of 10 g/hour (Zakhari, 

2006). Ethanol is metabolised by the enzyme alcohol dehydrogenase, which is predominantly 

found in the liver but is expressed throughout the body. Ethanol is metabolised into 

acetaldehyde and then to acetic acid by the enzyme acetaldehyde dehydrogenase. Acetaldehyde 

is an unstable product and can form free radicals under cellular conditions. Some of the effects 

of ethanol intoxication and withdrawal are believed to be due to acetaldehyde formation 
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(D'Addario et al., 2008), although this theory remains controversial due to the low levels of 

serum acetaldehyde and the difficulty of it crossing the blood brain barrier. Acetic acid can 

either be directly excreted in the urine or converted to acetyl Co-enzyme A by the enzyme 

ACSS2, where it can be further metabolised in the Krebs cycle. Ethanol is also metabolized by 

catalase and cytochrome P450 2E1, although the extent to which these two enzymes play a role 

in vivo is unclear; these enzymes are thought to act when ethanol levels are high or in regions 

with low alcohol dehydrogenase activity, such as in the central nervous system.  

1.3 Ethanol distribution 

Ethanol quickly diffuses through the body showing no major localisation at any one organ 

(Gifford et al., 2008). Molecular interaction simulations and NMR studies show that ethanol 

resides in the phosphate backbone of the lipid bilayer (Chanda and Bandyopadhyay 2004, 

Gurtovenko and Anwar 2009). Blood alcohol levels are indicative of brain alcohol levels. The 

liver is the main organ associated with ethanol metabolism and therefore is considerably 

damaged after chronic ethanol drinking. Alcoholic fatty liver disease, alcoholic hepatitis and 

cirrhosis are often the outcomes of chronic ethanol abuse. Away from the liver several organs 

suffer from the abuse of chronic ethanol consumption. The gastric system is at a higher risk of 

developing cancer on ethanol abuse. The heart may suffer with alcoholic cardiomyopathy and a 

higher risk of atherosclerosis. Excessive alcohol consumption is also a risk factor for type 2 

diabetes. Fertility is also reduced with chronic ethanol consumption.  

In the brain chronic ethanol abuse can result in Wernicke’s encephalopathy and Korsakoff’s 

syndrome. Two conditions associated with poor motor coordination, ataxia, short term memory 

loss and confusion. Sufferers often have overlapping symptoms and illness is sometimes 

classified as Wernicke-Korsakoff syndrome. The brain may also suffer atrophy of the prefrontal 

cortex in alcoholics. 

Ethanol when ingested contributes to a huge range of health problems dependent on the 

concentration of ethanol and the length of time it is consumed over. The wide scope of ethanol’s 

actions is apparent in the distribution of health problems over the body. These are underwritten 

by a large number of molecules that ethanol is thought to interact with. As with many drugs that 

work to affect the CNS, ethanol controls a varying degree of behaviours. These too are 

controlled by the many molecules that ethanol interacts with in a time and dose dependent 

fashion. 

1.4 Molecular targets of ethanol in C. elegans 

1.4.1 SLO-1 

SLO-1 is a BK (“Big K
+
 conductance”) calcium activated potassium channel (CAK) activated 

by increases in intracellular calcium concentration or membrane depolarisation. The role of 
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CAKs is as action potential inhibitors through reducing cell excitability via hyperpolarisation. 

SLO-1 tends to be found at neuron-smooth muscle junctions at both the presynaptic and post 

synaptic terminals (Holden-Dye et al., 2007). C. elegans SLO-1 has been shown to be activated 

by ethanol between 20-100mM. slo-1 mutants are resistant to ethanol and slo-1 gain of function 

mutants resemble ethanol intoxicated worms (Davies et al. 2003). Ethanol has been shown to 

inhibit the frequency of body bends, locomotion speed and egg laying, of which locomotion 

speed and egg laying defects are absent in slo-1 mutants. Changes in ethanol resistance were 

independent of membrane permeability and ethanol metabolism. The effects of ethanol 

resistance were not due to hyperactivity caused by loss of slo-1 as confirmed by mutant 

comparison and aldicarb resistance. In general, acute ethanol activates the SLO-1 channel and 

depresses neuron firing.  

Chronic ethanol consumption affects the SLO-1 channel by reducing sensitivity to ethanol, 

increasing SLO-1 expression and reducing the number of channels at the cell membrane. 

Alternatively, increased slo-1 expression has been linked to an increase in positive acting cAMP 

response element-binding protein isoforms (CREB), inducing expression of slo-1 on ethanol 

exposure. These changes may underlie the compensatory changes made in ethanol tolerance as a 

result of chronic consumption. Underlying these changes may also be a role of membrane lipids 

and accessory proteins (Yuan et al., 2000). Indeed the membrane lipid raft hypothesis has 

become a popular theory for describing the action of alcohol on certain membrane components, 

and there is certainly evidence for a role of lipid and ethanol structural content in the membrane 

affecting membrane proteins.  

1.4.2 GAS-1 

GAS-1 is a 49-kDa subunit of complex I of the mitochondrial electron transport chain in C. 

elegans. Mutations in the gas-1 gene increase sensitivity to ethanol. Complex I is required for 

the first steps of oxidative phosphorylation; the transfer of an electron from NADH to a 

quinone. The 49kDa GAS-1 subunit is conserved between species and required for complete 

complex I subunit assembly and function. Complex I is the mitochondrial electron transport 

chain component most sensitive to ethanol and volatile anaesthetics. Measuring the levels of 

oxidative phosphorylation in wild-type and gas-1 mutants Kayser et al. concluded that 

sensitivity arose solely from complex I inhibition. Sensitivity of gas-1 mutants to ethanol is 

specifically because of the reduced rate of complex I activity (Kayser et al., 2003). The authors 

suggest that ethanol may affect movement because of the reduced output of ATP. It is also 

worth noting that the authors raise concerns about the potential difference in mitochondrial 

diffusion rates and site specific ethanol concentration when extrapolating from in vitro to in 

vivo. Previous work by the group has also linked gas-2 and unc-79 with ethanol sensitivity and 

locomotion (Morgan and Sedensky, 1995). 
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1.4.3 NPR-1 

npr-1 encodes a putative neuropeptide Y family, GPCR protein which binds the ligands of two 

FMRFamide-related peptides. npr-1 has been shown to alter the behaviours of locomotion, 

social aggregation and food bordering (de Bono et al. 2002, Gloria-Soria and Azevedo 2008, 

Harvey 2009). The wild C. elegans strain CB4856 has a single point mutation, V215F, which 

results in a lower function allele of which no other isotypes have been found to exist in other 

natural populations. Ethanol acts as a depressant of locomotion in worms; but has less of an 

affect over time due to the development of tolerance. The CB4856 strain develops ethanol 

tolerance more rapidly than N2 independent of initial response, locomotory speed or metabolic 

clearance. This difference in tolerance maps to the npr-1 locus (Davies et al., 2004). NPR-1 

plays a role in negatively regulating the development of acute tolerance. Evidence suggests that 

the suppression of food dependent social behaviours by NPR-1 and the suppression of acute 

ethanol tolerance are separable affects and are likely to work through separate pathways. It is 

believed that the two ligands of NPR-1, Flp-18 and Flp-21 may play a role in NPR-1 mediated 

tolerance, although Flp-21 mutants showed no difference from N2 and Flp-18 has yet to be 

analysed. The evidence suggests that ethanol increases NPR-1 activity, thus resulting in a down 

regulation of this pathway in a plastic response to exposure, with withdrawal from ethanol then 

leaving this down regulation exposed to normal conditions (Davies et al., 2004).  

1.4.4 Exocytosis and the SNARE complex  

Exocytosis of neurotransmitters from the presynaptic nerve requires vesicle fusion and release 

of pre-stored transmitters. This is achieved via the SNARE complex, which consists of three 

main proteins SNAP-25, VAMP-2 and syntaxin-1. Munc18-1 is a murine SM family protein 

that associates with syntaxin-1 to assist in vesicle transport, vesicle docking and syntaxin-1 

transport (Deak et al. 2009, Rodkey et al. 2008). Munc18-1 associates with the SNARE 

complex protein syntaxin-1 and controls sensitivity to ethanol. A D216N mutation in the protein 

regulates ethanol preference, and appears to modulate SNARE complex binding by Munc18-1. 

The mutation broadens the duration of single exocytotic events. An orthologous mutation in C. 

elegans unc-18 also confers resistance to ethanol (Graham et al., 2009). 

There is no obvious defect in the synaptic machinery in the C. elegans mutants, although it does 

seem that the mutation may increase synaptic output. This would possibly indicate that ethanol 

would work to reduce synaptic transmission and that mutations that affect the exocytotic output 

may confer resistance to alcohol. This correlates well with evidence that resistance to the acute 

effects of ethanol is a risk factor for alcoholism. Alterations to the vesicle fusion process and 

resistance to ethanol have also been recently noted in studies looking at the proteins RAB3 and 

AEX3, which control vesicle docking and fusion (Kapfhamer et al., 2008). This implicates 

ethanol in the wider machinery of synaptic output as a mechanism for the acute effects of 

intoxication and the development of alcoholism.  
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1.4.5 Heat shock proteins and chaperones 

Mutagenesis screens identified four genes that conferred resistance to the anaesthetic affects to 

ethanol (Hong et al., 2008). These genes were jud-1 to jud-4 and remain poorly characterised. 

jud-4 is C02D4.1 which shares limited homology with the mammalian Homer proteins. jud-4 is 

not expressed neuronally but in the hypodermis and vulva muscles. It is not clear how these 

genes interact with ethanol or the biological system to bring about changes in sensitivity to 

anaesthetics (Hong et al., 2008). Earlier work by the same group have also looked at a large 

scale genomics approach to the actions of ethanol, and characterised what appears to be an 

induction of the unfolded protein response. They characterised genes that may be affected by 

ethanol exposure at different time points using Microarray analysis. 

Of interest was that ethanol induced a lot of heat shock genes and two non-chaperone genes, glr-

2 and T28C12.4 a protein with limited homology to human neuroligin. As we see later on GLR 

may require the unfolded protein response (UPR) equipment for specialised folding, and an 

upregulation may indicate that transport is perturbed (Shim et al., 2004). The group used an 

ethanol concentration of 7% v/v in M9 buffer. They found that the 230 non-redundant genes 

were differentially expressed.  They identified a region upstream of several genes involved in 

the stress response which they named the ESRE (ethanol and stress dependent response 

element). This sequence was conserved between C. briggsae and C. elegans (Kwon et al., 

2004). It has functional overlap with regulatory elements described by another group 

(GuhaThakurta et al., 2004). They later went on to show the difference in regulatory sequences 

of different aspects of the heat shock proteins on various stresses including ethanol (Hong et al., 

2004). This evidence offers a large support to the idea that ethanol stress is a trigger for the 

UPR. 

1.4.6 CREB 

cAMP response element binding protein (CREB) is a downstream bZIP transcription factor with 

two isoforms alpha and delta. It has a common KID domain with a serine residue at position 133 

which gets phosphorylated. Phosphorylation of serine 133 allows binding of CREB to the CRE 

region in the promoters of 100+ genes (Suo et al., 2006). It is predominantly associated with 

activation of upstream metabotropic receptors and changes in calcium or cAMP dependent 

signalling. It holds a significant interest with relation to this project because of its homology to 

the ATF proteins activated on the UPR, its role in ethanol mediated neurodegeneration and its 

possible activation by NPR-1 and the link to ethanol mediated tolerance (Davies et al., 2004).  

Glutamate receptor mediated excitotoxicity and oxidative stress are two of the prevalent 

mechanisms associated with neurodegeneration. The underlying toxicity of these factors is 

mediated by the antagonistic actions of the transcription factors CREB and NF-κB. These two 

transcription factors mediate toxicity by antagonistically binding DNA. This can be 

demonstrated with drugs that either increase CREB binding to DNA, and thus dampen toxicity, 
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or decrease CREB binding to DNA and increase toxicity. Ethanol decreases CREB levels and 

increases levels of NF-κB DNA-binding activity, thus increasing neurotoxicity (Zou and Crews, 

2006).   

Rat based binge drinking models of ethanol consumption result in neurodegeneration in selected 

brain regions. Both CREB and NPY are diminished in the hippocampal dentate gyrus during 

binge drinking but increase on ethanol withdrawal. The expression of these two proteins is 

negatively correlated with neurodegeneration, which is more prevalent after 4 days of binge 

drinking. Neurogenesis may be controlled by CREB and this is shown to be decreased during 

binge drinking whilst increasing after sustained abstinence (Pandey et al., 2005a).  

Increased anxiety is often seen as a risk factor for the development of alcohol abuse. 

Withdrawal after chronic exposure decreases phosphorylated (activated) CREB and NPY in 

different regions. This process in the central amygdala may be linked to ethanol withdrawal 

mediated anxious behaviour. Administration of a PKA inhibitor into the central amygdala 

reduces phosphorylated CREB levels and increases anxious behaviour and ethanol preference. 

CREB levels are lower in preferring rats vs. non-preferring. CREB may mediate anxiety and 

alcohol preference via NPY modulation (Pandey et al., 2005b). Therefore CREB may act as a 

genetic determinant of alcohol abuse. CREB has also been shown to help mediate the effects of 

self-administration of several drugs of abuse. Ethanol increases the levels of phosphorylated 

CREB in the nucleus accumbens; promoting self-administration. This may be due to an increase 

in striatial proenkephalin (Newton and Messing, 2006).  

In C. elegans CREB plays an important role in synaptic plasticity and starvation. The protein 

CREB maps to the C .elegans homolog CRH-1. CRH-1 is activated in a subset of neurones, the 

SIA neurons, on starvation. This is mediated by the GPCRs ser-3 and egl-30. It is partially 

dependent on phospholipase C and is negatively regulated by GOA-1 and calcium/calmodulin 

dependent kinase (CMK-1) (Suo et al., 2006). CRH-1 also controls foraging rate in C. elegans. 

CRH-1 modulates tph-1 expression in the ADF neurons, whose post-synaptic effects are 

controlled by the (5-HT2-like) SER-1 receptors. The serotonergic circuit is also contributed to 

by the interneuron RIH which lacks any expression of tph-1. The RIH serotonergic phenotype 

relies solely on exogenous sources of neurotransmitter, through the ADF neurons. CRH-1 drives 

expression of tph-1 which controls 5HT metabolism. 5HT is responsible for negatively 

regulating foraging rate through SER1 and SER4 (Zubenko et al., 2009). These two results 

would seem at odds because Suo et al. suggest that starvation induces CREB whilst Zubenko et 

al. suggest that this would reduce foraging rate. Clearly the picture is more complicated and 

needs to be reconciled. But it does suggest a role for tph-1 and crh-1 in starvation induced 

behaviour.  
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1.4.7 GABA 

Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter which binds to two sub 

sets of receptor, ionotropic receptors GABAA and GABAC (chloride pore forming) and 

metabotropic receptors GABAB (G-protein coupled). GABA is synthesised in the cytoplasm 

from glutamate by the enzyme L-glutamic acid decarboxylase (GAD) using PLP as a co-factor. 

The effects of ethanol have been primarily noted in the GABAA and GABAB receptors (Federici 

et al., 2009; Werner et al., 2009). GABAA receptor is a chloride pore composed of 5 of the 19 

available protein isoforms (α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ). These combinations would result in a 

large number of receptor subtypes if all associations were independent, but this is not the case 

and many of the subunits associate only with others. 

Each subunit consists of a large, extracellular, N-terminal, cysteine loop containing domain 

attached to four transmembrane domains and a short extracellular C-terminus. A combination of 

the protein subunits 2nd trans-membrane regions associate to make up the lumen of the chloride 

pore. This central chloride pore is involved in the influx of chloride ions into the cell or 

resulting in hyperpolarisation. The predominant forms of GABAA receptor subtypes found in 

the mammalian brain are the 2α12β2γ2 subtype making up 60%, the 2α22β3γ2 subtype at 15% 

and the 2α32β3γ2 subtype at 10% (Michels and Moss, 2007). The various other subtypes make 

up the remaining 15% percent. These subtypes are primarily associated with the pre and post 

synaptic membranes. The delta subunit associating subtypes are only found peri and extra 

synaptically.  

GABAA receptors bind benzodiazepines barbiturates, anaesthetics, and neurosteroid. Identified 

in the 1980’s, drugs that stimulate the receptors enhance ethanol’s actions, whereas drugs that 

inhibit the receptors reduce ethanol’s affect, confirming ethanol’s action at the GABAA site. 

Overall ethanol works to activate GABAA receptors leading to a depression of action signal 

potential by hyperpolarisation. This is thought to contribute to the major depressive effects of 

ethanol on the CNS.  GABAA receptor subunit alpha has an identified binding site for ethanol. 

The site sits at A291 and has a pocket of water surrounding the amino acid. On ethanol binding 

the receptor conformation changes; opening the pore and allowing chloride entry.  

There have been many studies looking at the effects of ethanol on the subunit composition of 

the most predominant GABAA receptors; evidence suggests that ethanol may selectively 

increase activity for this receptor subtype although these studies have used high concentrations 

of ethanol. There is also a current search for binding sites that operate at low levels of ethanol 

exposure. There have been mixed reports for the activation of the extra-synaptic GABAA 

receptors with a subunit composition of 2α42β2δ (Marutha Ravindran et al., 2007), but 

controversy remains over the concentrations of ethanol needed to activate the receptor (Lobo 

and Harris, 2008; Sundstrom-Poromaa et al., 2002). One of the main problems associated with 

subunit specific studies is the plasticity of the GABA receptor subunits when using knockout 
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studies. Often there have been reports of subunit compensation in knockout models which may 

skew findings. The new focus is to analyse role of specific subunits with loss of function 

mutants. These may reflect a more distinct analysis of function. 

1.4.8 Glutamate 

Glutamate receptors exist in two forms, ionotropic non-selective cation channels and 

metabotropic GPCR. Glutamate is the main excitory neurotransmitter in the CNS. Glutamate 

receptors are found predominantly at the post-synaptic membrane. There are three subtypes of 

ionotropic receptor; NMDA, kainite and AMPA. These channels are permeable to cations and 

regulated by a number of ionic and peptide signalling pathways (Mattson, 2008). 

The NMDA receptor exists as a two subunit complex with a mandatory NR1 subunit and a NR2 

(A-D) subunit. The changes in subunit composition are temporally and spatially regulated. 

Further isoforms of the two subunit types exist due to differential splicing of transcripts. Both 

subunits have phosphorylation sites which enhance channel function. Phosphorylation by a 

number of different kinases has been linked to altered activity and trafficking of subunits. 

NMDA receptors require the cofactor glycine for its activation. In addition to these Mg
2+

 is a 

blocker of NMDA receptor activity in a membrane voltage dependent manner (Kloda et al., 

2007).   

Ethanol inhibits the response of NMDA receptors in varying brain regions and is likely to be 

subunit dependent. Evidence suggests that there is a direct effect of ethanol on the NMDA 

receptor, either through a reduced potency of the agonist glycine or through subunit specific 

interactions (Nagy, 2008; Ridge et al., 2008). Post translational modification of NMDA 

receptors may also be affected by ethanol. Long term ethanol administration results in an 

upregulation of NMDA receptors to counter the depressive effects of ethanol (Nagy, 2008), 

although the precise temporal and subunit specificity of ethanol’s actions remain under debate. 

Ethanol withdrawal leads to hyperactivation of the NMDA receptors and is likely responsible 

for the convulsive and excitotoxic phenotypes in long term users. The result is that withdrawal 

from ethanol is potentially harmful and has to be treated with neuroinhibitory drugs such as the 

benzodiazepines.  

1.4.9 Endocannibinoids 

Endocannibinoids (EC) are believed to play a role in learning, memory, cognition, appetite and 

metabolic regulation. Cannibinoid receptors (CB) are found predominantly in the CNS and 

selective PNS target organs such as the kidneys, lungs, liver and immune system.  CB receptors 

are GPCR and exist as two receptor sub-types, CB1 and CB2. CB1 is mainly found in neural 

tissues whereas CB2 is mainly associated with the immune system. CB receptors are negatively 

coupled to the adenyl cyclase system and N and P/Q type calcium channels, whilst positively 

regulating A-type potassium channels and MAP kinases (Bisogno, 2008). 
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Ethanol treatment either down regulates or desensitises CB receptors and thier G-protein 

mediated effect (Rubio et al., 2008). A mechanism of desensitisation is unclear, but the CB 

GPCR show desensitisation on dual ethanol treatment and agonist mediated constitutive 

activation, and it is plausible that ethanol may work in this manner. It has also been reported 

that G-protein levels and activity may be affected as a downstream or paralogous effect of 

ethanol’s actions on CB receptors. Tolerance is therefore linked to an upregulation of 

endocanniboids and their precursors. Much like with other neurotransmitter systems that are 

suppressed, withdrawal from ethanol results in a sensitisation of the CB system. 

It has been suggested that a lower function of CB receptors to ethanol may result in 

predisposition to alcohol preference (Vinod et al., 2008). Pre-treatment with SR141716A 

(Rimonabant), an inverse agonist of the CB1 receptor, has been found to decrease consumption 

and preference of ethanol (Dyr et al., 2008). Antagonism of CB1 reduces the motivation to drink 

ethanol and CB1 agonists facilitate ethanol consumption. CB1 deletion reduces preference to 

consume ethanol. It is likely then that CB receptors work to increase alcohol drinking and 

preference, and may play a role in the development to alcoholism (Malinen and Hyytia, 2008). 

1.4.10 Dopamine 

3, 4-dihydroxyphenylethylamine (dopamine) is a neurotransmitter and hormone, with 5 receptor 

subtypes each with their respective variations. Dopamine is synthesised in neurons where it is 

packed into vesicles for calcium mediated release into the synaptic cleft. D1 type receptors are 

D1 and D5, and activate adenyl cyclase through Gs G-protein. The D2 type receptors are D2, 

D3 & D4. The DAT is a dopamine transporter required for reuptake of dopamine into the pre 

synaptic node. It is what mediates signal strength and duration. DAT is unique to DA neurons 

and is found in the perisynaptic membrane rather than the cleft. Its action is sodium, potassium 

and temperature dependent, and is a target for a number of drugs, including cocaine (Foll et al., 

2009; Zhu and Reith, 2008). Dopamine is also a precursor to noradrenaline and adrenaline. 

Dopaminergic neurons are primarily present in the ventral tegmental area, the substantia nigra 

and arcuate nucleus of the hypothalamus. Dopamine primarily functions in reward, cognition, 

motivation and motor activity. It also has a role in pleasure, sexual interaction, salience, pain, 

sociability and psychosis. The most common attribute associated to dopamine function is in 

reward prediction error. Dopaminergic neurons are active at the receipt of a novel reward, and 

their activity dampened when no reward is produced. It is said that the affect mediates the 

feeling of wanting, and plays a major role in motivation. This is known as the mesolimbic 

reward pathway. 

Drug abuse stimulates release of dopamine from the nucleus accumbens and this is reduced on 

withdrawal; thus highlighting dopamine as one of the main pathways for reward and 

reinforcement of drug abuse (Foll et al., 2009). Changes in the dopamine system have been 
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noted in animal and human studies; with reduced densities of dopamine transporters and D2 

receptors in alcoholics. Current work shows that the nucleus accumbens is a filter through 

which the effects of the dopamine system are mediated, controlling the link between desire and 

action. 

Ethanol has been shown to stimulate the release of dopamine from the nucleus accumbens in a 

dose dependent manner, by stimulating release rather than by inhibiting DAT. This is likely to 

be controlled by the ventral tegmental area (Wanat et al., 2009). It is also possible that ethanol’s 

action on other neurotransmitter systems leads to the increased release of dopamine. Withdrawal 

from ethanol promotes a reduction in dopamine release, and relief from withdrawal promotes 

dopamine release. The return of dopamine to basal levels after a continual exposure is in line 

with a tolerance affect. It has been suggested that the levels of basal dopamine and the release of 

dopamine on ethanol exposure are likely to mediate the differences in non-preferring vs. 

preferring rodent models. Alcohol preference in rats has been associated with lower Bmax of D2 

receptors, with unaltered binding preference in dopaminergic regions of the brain, whilst studies 

on D1 and D3 receptors remain inconclusive.  

1.4.11 Serotonin (5HT) 

5-hydroxytryptamine (serotonin) is a neurotransmitter involved in the modulation of anger, 

aggression,body temperature, mood, sleep, human sexuality and appetite. In addition to the 

CNS, serotonin is expressed in the gut, where it mediates cell to cell interactions. The main 

region of serotonergic neurons is in the brainstem’s raphe nuclei, with the axons projecting into 

the majority of brain areas. There are 7 serotonin receptors (1, 2, 3, 4, 5A, 6, 7) with receptors 

5HT1 and 5HT2 having 5 and 3 identified isoforms respectively. All of the receptors are 

metabotropic with the exception of 5HT3 which is ionotropic. 5HT receptors can modulate the 

effects of other neurotransmitter release such as glutamate. 

Serotonin is removed from the synaptic cleft by uptake through a monoamine transporter, either 

SERT or PMAT. It is these receptors that are implicated in the effects of cocaine. They are also 

targets for SSRIs (selective serotonin reuptake inhibitors) which are used to treat anxiety and 

mood related disorders. This is of interest because around 40% of alcoholics have anxiety 

related problems or have had prior history of anxiety related problems. It may indicate that 

levels of serotonin become altered over time in relation to alcohol abuse, or that genetic 

variation at the serotonin system level may be a risk factor for developing alcoholism (Caldwell 

and Miczek, 2008).  

Application of serotonin receptor antagonists reduce ethanol intake, whereas the application of 

exogenous serotonin increase the effects associated with ethanol. GPCR including 5HT 

receptors have their high affinity state inhibited by ethanol (Seeman and Kapur, 2003). Ethanol 

increases neuronal firing in the ventral tegmental area and decreases firing in Purkinje neurons 
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with both these affects being enhanced by serotonin application. These affects are dependent on 

age, with aged rats not showing as significant affect (Jeng et al., 2000). The prevalence of 

alcohol use with age may have an effect on memory and learning; these may be mediated by 

serotonin. Oliveira-Silva et al. found that ethanol does not have any effect on age related 

memory and learning impairment and there is no change in 5HT levels related to age. This 

affect was independent of age extension via calorie restriction (Oliveira-Silva et al., 2007).  

Whilst it seems that the use of alcohol does not interact with the serotonin system in older 

models, the use of alcohol by pregnant women has been shown to have a significant affect. 

Ethanol exposure during pregnancy is associated with a variety of physical and neurological 

dysfunctions, giving rise to a spectrum disorder of foetal alcohol syndrome (FAS). Serotonin is 

vital for the development of the central nervous system and its altered role in development has 

been linked to ethanol consumption during pregnancy. The role of serotonin in development 

seems to be controlled through the 5HT1A receptor, which amongst other things causes the 

release of S-100β. S-100β is a growth factor with multiple outputs. Ethanol treatment increases 

serotonergic cells in the striatum and hippocampus in rat foetuses. There is also an increase in 

the area of GFAP staining, an astroglial cell marker, in the striatum and hippocampus, both 

areas affected in FAS. This links ethanol exposure to perturbed serotonin system which controls 

CNS development (Ramos et al., 2002).  

Serotonin is thought to be responsible for impulsivity and aggression. Alcohol also increases 

aggression in some individuals and is thought to be a major role in crime, with more than half of 

rapes, murders and related violence having the offender under the influence of alcohol (Krug et 

al., 2002). Projections in the prefrontal cortex are believed to regulate alcohol mediated 

aggression. The SSRI Citalopram has been shown to reduce anxiety and aggressive behaviours 

associated with ethanol. In mice Citalopram has no effect on alcohol mediated aggression in the 

first 2 weeks of administration, but after 17 days abolished alcohol mediated aggression whilst 

not affecting the baseline (Caldwell and Miczek, 2008). Chronic ethanol use is associated with 

long term changes including neuronal damage. Chronic ethanol consumption is correlated with 

neurodegeneration in the CA1 region of the hippocampus and reduced 5HTT staining, 

implicating the serotonin system (Tagliaferro et al., 2002). 

1.4.12  Opioid system 

The opioid system comprises of five main classes of endogenous opioid neurotransmitters; 

dynorphins, enkephalins, endorphins, endomorphins and nociceptin. There are three main 

classes of opioid receptor μ, δ, κ (MOR, DOR, and KOR), yet more remain but are under 

characterised ζ, ε (zeta, epsilon). In addition there is the ORL1 receptor for nociceptin. All the 

receptors are GPCR and are found primarily on GABAergic neurons. They are not limited to the 

CNS, they are also found around the digestive tract.   
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The central amygdala is involved in mediating stress, fear and anxiety behaviours and is 

involved in the stress related behaviours of drinking, and possibly the reinforcing affects. MOR 

receptors and enkephalin are found in the GABAergic neurons of the central amygdala. The link 

between ethanol reinforcement and MOR is well established, although the mechanisms remain 

under debate (Kitanaka et al., 2008; Vukojevic et al., 2008), and knockout mice show reduced 

ethanol consumption and anxiety. MOR antagonists reduce ethanol consumption, and activation 

of DOR by agonists reduces ethanol consumption (Margolis et al., 2008; Nielsen et al., 2008). 

KO of the delta receptor show increased ethanol consumption. This highlights the role of MOR 

as a positively acting regulator of ethanol consumption and DOR as a negative regulator of 

ethanol consumption. 

Ethanol activates MOR in the central amygdala which decreases presynaptic transmission of 

glutamate and GABA. The decrease in GABAergic neurotransmission may also be dependent 

on corticotropin-releasing factor (CRF) (Kang-Park et al., 2009). The ventral tegmental area is a 

nucleus of dopaminergic neurons that is inhibited via GABAergic neurons. These GABA 

currents can be modulated by ethanol and MOR. Ethanol affects the presynaptic release of 

GABA and not the postsynaptic GABA receptors. DAMGO, a MOR agonist, and ethanol both 

inhibit GABAergic neurons. Both reduce GABA transmission and result in exciting 

dopaminergic neurons. MOR antagonists and competitive agonists reduce excitory effect on 

dopaminergic neurons (Xiao and Ye, 2008).  

Whilst the role of MOR and ethanol is to stimulate reward through activation of dopaminergic 

neurons, it appears that agonists of KOR inhibit the rewarding effects of ethanol. Both 

naltrexone and nalmefene, opioid receptor antagonists, reduce ethanol consumption in rats, with 

nalmefene decreasing the ethanol consumption in AP rats more than naltrexone. This is 

suggested to be because that nalmefene has a 2 fold higher binding affinity for KOR than 

naltrexone. Administration of nor-BNI, a KOR specific agonist, to dependent and non-

dependent rats reduced ethanol self-administration (Walker and Koob, 2008). This highlights 

the role of KOR in depression of alcohol consumption. 

1.4.13 mAChRs 

Muscarinic acetyl choline receptors have 5 receptor subtypes (m1-m5) all of which are G-

protein coupled receptors. M1, M3 and M5 receptors are positively coupled to PLC by Gq 

protein, whilst M2 and M4 receptors are coupled negatively to adenyl cyclase by Gi protein. M1 

receptors are expressed in all major brain areas while M2 are limited to the forebrain as a 

presynaptic auto-receptor that works to inhibit neurotransmitter release. M3 receptors are 

expressed mainly in the smooth muscle. The M4 receptor is mainly expressed in the striatum 

and colocalised with dopamine D1 receptors, but is not limited to this area. The M5 receptors 

are expressed in the substantia nigra and ventral tegmental area. The expression pattern of M4 
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and M5 receptors suggests a role in drug reinforcement, although there is little evidence for a 

role in these behaviours. 

mAChR antagonists increase locomotory activity on ethanol treatment and this affect is 

independent from dopamine. Treatment with scopolamine, a non-specific receptor mAChR 

antagonist, produced locomotory activity increases in ethanol treated FAST and DBA/2J mice 

greater than either drug alone. Treatment with D2 and D1 receptor antagonists was unable to 

stop this affect (Scibelli and Phillips, 2009). Ethanol has also been found to be a potent inhibitor 

of muscarinic receptor-stimulated proliferation of astroglial cells, with an IC50 of 10–25 mM. 

Activation of M3 receptors by carbachol causes this proliferation by downstream activation of 

DNA synthesis, and this affect is inhibited by ethanol possibly by interfering with activation of 

the downstream targets PKCζ and p70S6K (Guizzetti and Costa, 2002). Acetylcholine is 

associated with learning and memory consolidation, and changes in mAChRs seem to correlate 

well with ethanol induced deficits in memory and learning. Previous studies point to an increase 

of mAChRs on the cell surface in SH-SY5Y cells treated chronically with ethanol (Caron and 

Alling, 2001). This upregulation of mAChRs seems to be a functional response to ethanol 

treatment inhibiting mAChRs. We also note that ethanol causes an upregulation in M4 mRNA, 

but not M1 in NG108-15 and NCB-20 cells (Fukamauchi et al., 1998). It is unclear as of yet 

what these functional changes in mAChR regulation are responsible for in ethanol related 

behaviour, but it may play a role in acute ethanol stimulation on locomotory activity. 

1.5 Behavioural effects of ethanol in C. elegans 

Whilst several molecular targets for ethanol have been identified above they only offer a brief 

glimpse into the behaviour of C. elegans on ethanol treatment. As the response to ethanol is 

context and dose dependent it is important to distinctly identify the behaviours associated with 

each state, from acute treatment through to chronic treatment and the plastic changes that 

underlie further behavioural changes. It is by classifying these behavioural states as distinct and 

paradigm-dependent that we are able to build a platform from which to investigate the 

molecular basis of ethanol activity. Difficulty has always arisen in trying to classify a spectrum 

of behavioural changes into distinct states, but it is essential for clarification in experimentation 

and understanding. Here we aimed to identify behavioural states associated with acute 

intoxication, treatment withdrawal, withdrawal relief and chronic tolerance. Vital to 

understanding how alcohol works at a molecular level is a need to control the dose of ethanol 

looked at; further investigation into lower sub-intoxication doses and behaviour are also 

investigated.  

Primarily focus turns to previously developed assays for measuring the dose dependent effect of 

ethanol with the study of worm locomotion and chemotaxis. Locomotion is defined by a stretch 

sensitive control of sinusoidal body movement over a substrate, starting with a directed head 



14 
 

movement. It works to propel the worm over an environment. It is also regulated by several 

over-riding behaviours which work to control direction and speed, such as escape from a 

nocioceptive response or towards a chemo-attractant. Chemotaxis; the movement of the worm 

towards a chemical stimuli can also be used as a measure of behaviour. Ethanol as a depressant 

works to inhibit locomotion and therefore inhibits chemotaxis. This can be used to assess the 

behaviour of worms on varying ethanol treatment paradigms. 

Pharyngeal pumping is vital to worm function; it regulates the passing of bacterial foodstuffs 

into the gut passage. It can also be used as a behavioural measure of ethanol intoxication. The 

pharynx is a somewhat distinct microcircuit of neurons regulated by sensory inputs of food 

availability. Food activates pharyngeal pumping and withdrawal from food suppresses pumping. 

The pharynx can be used as an estimate of how pharmacological agents such as ethanol can 

regulate a semi isolated neuronal system and a simple behavioural output. 
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2 Ethanol Mediated Behaviour 

2.1 Introduction 

Ethanol is a major source of morbidity and mortality, responsible for 2.5 million deaths annually 

worldwide. Understanding the mechanism of alcohol intoxication and addiction is of major 

medical value. To study ethanol in a behavioural and physiological context we can utilise the 

nematode worm Caenorhabditis elegans as an experimental system (See 1.4 and 1.5). C. 

elegans, much like other organisms, has distinct behavioural phenotypes dependent on the 

concentration of ethanol and treatment paradigm. Acute and chronic intoxication, withdrawal, 

relief from withdrawal and tolerance are all shown as separate behavioural phenotypes. These 

behaviours are underpinned by distinct molecular effectors that act in concert to regulate the 

overall physiological response. By identifying the components it should help to understand the 

possible mechanisms of ethanol response in higher organisms and how behaviour is controlled 

at a molecular level. 

2.1.1 Ethanol toxicity and response in C. elegans 

C. elegans is under-utilised for dissecting the pharmacological action of ethanol compared to 

other experimental models. Nevertheless, C. elegans represents a useful model for ethanol 

experimentation and has contributed to understanding the molecular basis of ethanol response. 

Using C. elegans to model different behavioural states allows the investigation of the underlying 

regulation. This requires C. elegans to show acute responses to ethanol and behavioural 

plasticity to chronic treatment. This is explored further below. 

2.1.2 Locomotion in C. elegans 

Locomotion is defined as the power or ability to move. In C. elegans it is characterised by an 

undulatory wave that acts to propel the organism forward. Locomotion begins with a controlled 

directional movement of the worms head; this in turn causes stretch receptors directly posterior 

of the head to detect a change in tension in the cuticle/surface of the worm. The components that 

make up the nervous system and muscular controls utilised in worm locomotion are often 

homologous to components in the mammalian and human nervous system, although not always 

in directly analogous roles. It is these networks and molecular machinery which are affected by 

ethanol intoxication, thus by studying locomotion in C. elegans we can gain an insight into the 

possible mechanisms that control human behaviour. 

2.1.2.1 Chemotaxis assays and quantitative measure of ethanol effects 

Locomotion towards a cue as a result of directed behaviour is called chemotaxis. In C. elegans 

the cue is often a chemical substance associated with the presence of bacterial food. Worms will 
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chemotax towards gradients of ions, cyclic nucleotides, organic molecules and bacterial species. 

Movement towards a cue is controlled in a similar way to the random tumble movement 

exhibited by bacteria. Worms will move up a gradient of an attractant, comparing temporal 

changes in gradient concentration and deceasing turn frequency on movement towards source, 

whilst increasing turn frequency on movement away from a food source. This behaviour results 

in a biased random ‘walk’ towards a cue. 

The presence of food in C. elegans suppresses turning behaviour and slows locomotion; 

maximising time spent in the presence of a food source (Maricq et al., 1995). This behaviour is 

switched off in when the worm is no longer in a food rich environment. Behaviour changes to a 

temporally controlled search mode. The initial response, from 0 to 15 min, is to switch to local 

area search. Turn frequency is increased as is the omega turn count. Speed increases from 

feeding levels and the angle of each turn increases. The result is a restricted search pattern to the 

immediate area around the worms starting position. This reduces chance of missing food 

sources that lie in the immediate vicinity. If food is not found after 15-20 min the worms then 

switch to long distance search behaviour. Turn frequency, angle and omega turn frequency are 

decreased whilst speed increases slightly. This has the effect of a more long distance movement 

away from the starting position to ever distant food sources. This behaviour switch is made after 

a local search for foods sources. 

2.1.3 Pumping behaviour in C. elegans 

C. elegans will often chemotax towards cues indicative of a food source. Feeding in C. elegans 

is regulated by pharyngeal pumping. The pharynx is the lumen, musculature and neuronal 

network that sits in the head of the worm at the entry to the gut cavity. The pharynx acts as a 

pump that draws in bacterial food during feeding. It is regulated by a small number of neurons 

(twenty) that are connected to the rest of the central nervous system by a single direct neuronal 

connection mediated by RIP. Thus the microcircuit that regulates pumping is unique in that it is 

almost completely isolated from other inputs. In addition the pharynx and its distinct 

microcircuit can be dissected from the worm and studied without the worm body. Again the 

circuit provides a useful tool in which to study the regulation of an almost isolated system of a 

small number of neurons which uses the same components as a more complex system in higher 

organisms.  

2.1.4 Ethanol concentrations in C. elegans & Humans 

Alcohol levels between humans and C. elegans are not directly comparable. Levels able to 

cause acute and chronic intoxication in C. elegans, are fatally toxic to humans by many 

magnitudes. Human blood alcohol content (BAC) of 0.10% by volume, (22mM) just over the 

drink drive limit in the UK, and enough to cause impairment of motor function and changes to 

behaviour. C. elegans however does not show any impairment of motor function until around 



17 
 

150mM, and severe impairment at 300mM after prolonged exposure. It is unknown why these 

differences in exposure concentrations are so great. It can be speculated that C. elegans has 

adapted to an environment rich in alcohol, such as rotting fruit, and evolved some resilience to 

exposure. Others have suggested that the cuticle may provide an entry barrier to ethanol 

diffusion, and that levels measured suggest a lower more analogous concentration exists 

internally in the worm (Davies and McIntire, 2004). Experimentation has shown that the lipid 

cuticle provides little barrier to ethanol and that behaviours present on ethanol exposure are not 

dependent on a cuticle, such as pharyngeal pumping (Mitchell et al., 2007).  

The concentration of ethanol used to test C. elegans is one to illicit behaviours that are partially 

analogous to the behaviours seen in other organisms such as humans and mice, and not directly 

linked with BAC or exposure concentrations. Whilst slightly limiting, C. elegans still provides a 

strong platform for an ethanol led investigation into the molecular basis of behaviour. 

2.2 Methods 

2.2.1 Media  

2.2.1.1 NGM 

Nematode growth media; used as a substrate for worm culture and experimentation. For 5 litres: 

NaCl 12g 

Peptone 10g 

Agar 80g 

H2O 3888ml 

 

Put a large magnetic stirrer bar in a 5l bottle, autoclave, cool to hand hot (~55° C) stirring 

continuously for about 1 to 1.5hrs and then add: 

CaCl2   (1M) 4ml  (autoclaved) 

MgSO4  (1M)  4ml  (autoclaved) 

K
+
 Phosphate buffer  (pH6) 100ml  (autoclaved) 

Cholesterol  (5mg/ml)        4ml  (stored at -20˚C) 

 

A Peristaltic pump is used to aliquot 10ml NGM into 55mm Petri dishes.  Tubing for the pump 

wrapped in aluminium foil must also be autoclaved. 

To reduce contamination, the area of bench used for plate pouring is swabbed down with 70% 

ethanol, and gloves are used for the entire procedure. 
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NGM plates are left to ‘dry’ (with the lids on) at 20°C for 24 - 48hours before seeding with 

OP50. 

Plates destined for use in ethanol experimentation are devoid of cholesterol, to eliminate any 

residual effects from the ethanol used to store the cholesterol remaining in the media. 

2.2.1.2 Potassium Phosphate Solution 

Potassium Phosphate; used as a pH buffer in nematode growth media. For 1 litre: 

K2HPO4 23g  (0.132M) 

KH2PO4 118.12g (0.868M) 

H2O to 1L 

Autoclaved 

2.2.1.3 E. coli OP50 cultures 

LB agar plates streaked with OP50 are incubated at 37° C overnight, then sealed with parafilm 

and stored at 4° C. 

A fresh plate is streaked with OP50 every month. 

Individual colonies of OP50 are grown overnight in 10ml of LB broth in sterile universal 

bottles, on a shaker at 37°C.  50μl of this bacterial suspension is pipetted at the centre of each 

NGM plate (without spreading). Seeded plates can be stored at room temperature (20°C) for up 

to 2 weeks. 

2.2.1.4 LB Broth 

LB Broth is used as a nutrient source for liquid cultures of E. coli OP50. For 1 litre: 

Bacto-tryptone 10g 

Yeast extract 5g 

NaCl 10g 

Added the to 800ml H2O  

Adjust pH to 7.5 with NaOH.  

Adjust volume to 1L with dH2O 

2.2.1.5 M9 Buffer 

M9 buffer is used to wash worms in preparation for experimentation. For 1 litre of M9 Buffer: 

KH2PO4 3g 

Na2HPO4 6g 
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NaCl 5g 

MgSO4 (1M) 1ml 

H2O to 1L 

Autoclaved 

2.2.2 Nematode culture  

2.2.2.1 Escherichia coli OP50 culture.  

E. coli OP50 strain was cultured in LB Broth at 38°C. Cultures were grown in liquid media at a 

culture density of 0.8 absorbance at optical density 600 [OD600], exponential growth phase, 

before transferring to nematode growth media for C. elegans assays. Heat killed OP50 was 

heated in a water bath at 70°C for 30 min before being transferred to nematode growth media. 

2.2.2.2 Nematode strains.  

C. elegans strains were maintained with standard nematode culture techniques (Brenner, 1974) 

at 20°C unless otherwise stated. The wild type reference strain was (Bristol) N2. The zdIs4 

strain was from the C. elegans Genetics Centre (CGC) and contained an integrated plasmid 

containing an 1.1kb genomic fragment of the upstream promoter region of hsp-4 fused to GFP 

(hsp-4::GFP). zdIs4 was expressed GFP at low levels across the worm; predominantly in cells 

adjacent to the gut. Upon increase in unfolded protein stress the cells increased GFP expression.  

The zdIs4 strain was out crossed five times. The gk514 strain from the CGC and contains a 

mutation in the hsp-4 gene on chromosome II. The gk514 strain was out crossed once. The 

pmyo2::GFP strain expresses GFP in the pharynx and contains a neuronal specific, partial 

rescue of slo-1. 

2.2.2.3 Worm preparation.   

All worms were transferred to separate culture plates 24 hours prior to experiments. Transferred 

worms were selected at larval stage 4 (L4) and allowed to mature into adult worms overnight. 

These adult worms were then used for the worm race, pumping and dispersal assays. 

2.2.2.4 Ethanol concentrations in plates.  

Samples of agar, 1cm x 1cm cubes, were collected from ethanol treated and untreated (control) 

test plates. Agar samples weights were recorded. Samples were sonicated for 1 h in 1 ml of 

ddH2O. Sigma NAD-ADH test vials were made up to 16 ml with ethanol test buffer solution 

(100ml of 3.75g of glycine, 5.84g of NaCL in ddH2O, made to pH 9 with NaOH). 20 μl of post-

sonication sample solutions were added to 600 μl of NAD-ADH test solution. Samples of 

ethanol solution at concentration 0, 10, 20, 40, 100, 200 mM were used for calibration. 20 μl of 

the calibration samples were added to 600 μl of NAD-ADH test solution. All samples were 

replicated 3 times. All samples were then incubated at 37°C for 10 min before recording the 
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absorbance of each sample at 340 nm. Sonication of the agar samples removes the alcohol from 

the agar to the ddH2O. The alcohol can then be treated with alcohol dehydrogenase (NAD-ADH 

test solution) for a set time and the absorption spectra of the reaction product measured. The 

absorbance gives an indirect measure of the alcohol present in the solution and therefore in the 

mass of the agar sample. Comparison against a concentration curve of known samples gives an 

indication of the concentration in the test plates. 

2.2.3 Worm race assay 

2.2.3.1 Worm race assay.  

9cm culture plates were hand poured with 25 ml of NGM agar and left  to set for 24h. 9cm 

plates were marked at two points at a distance of 5cm apart. The two points marked the E.coli 

food spot and the worm starting position. One point was seeded with 50 μl of E. coli OP50 at 

0.8A [OD600], ensuring that the E. coli was limited to a single culture spot. 6cm machine poured 

stock plates were seeded with a centrally placed spot of 50 μl of E. coli OP50 at 0.8A [OD600] 

and incubated for 24 hrs.  

Seeded plates were treated with ethanol to give a final concentration of either ~50 mM or 300 

mM. Ethanol was pipetted directly onto the agar surface; volumes of ethanol were often such 

that the ethanol would cover the entire plate surface. Plates were incubated 24h for ethanol to 

equilibrate across agar, with plate lid covers sealed up until experimentation to avoid 

evaporation.  

50L4 + 1 day worms were transferred to conditioning plates for 6 hours. Worms were rinsed off 

6cm plates with 1ml of M9 and transferred into an Eppendorf tube. Worms were allowed to 

settle for 5 min and form a loose pellet before removal of the supernatant. A further 1ml of M9 

buffer was added and left for 5 min. Supernatant was removed leaving a loose pellet of worms 

in approximately 30 μl of solution.  

Worms were transferred to 9cm plates on the marked point 5cm opposite the food and the 

transfer spot allowed to dry. When no liquid remained timing for that food race began. The 

mean transfer rate for worms, incorporating losses from washing and transfer, was 60% (i.e. 

60/100 worms). E. coli food spot was checked every 10 min for 2 hours and the number of 

worms recorded. The worms on the food were removed after counting at 10 min intervals. The 

number of worms left on the plate after 2 hours that have not reached the food spot was also 

recorded. A representative plate from the 6cm conditioning plates and 9cm race plates were kept 

after the assay to measure ethanol concentration.  
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2.2.4 Pumping assay 

2.2.4.1 Pumping assay preparation.  

Growth media used in all assays contained 0.8A [OD600] OP50 grown for 2 days. All assays 

except food lawn assays used a 50 μl spot of OP50. Food lawn assays used a 100 μl OP50 spot 

spread over the entire culture plate with a glass plate spreader before 2 days growth. Ethanol 

was added 1 day before starting all assays. All assays were done under a temperature controlled 

environment at 21°C. Treatment types were blinded unless noted. 

2.2.4.2 Pumping experiment.  

Single adult worms were transferred to OP50 seeded plates for 5 min before recording 

pharyngeal pumping rate. Worms were transferred to an unseeded plate and allow to crawl free 

of bacteria for a further 5 min. Worms were then transferred to the unseeded test plates and 

pumping was recorded at 5, 20, 40 and 60 min time intervals. Worms were then transferred back 

to an OP50 seeded culture plate for a final 5 min before again recording pumping rate. Pumping 

rate was recorded for 1 min using a hand counter. Worm presence or absence from OP50 food 

spots at both beginning and end transfers was recorded where noted. 

2.2.4.3 Pumping on food assay.  

Single adult worms were transferred to a culture plate containing a lawn of OP50 bacterial food. 

After 5 min pumping rate was recorded using a hand counter for 1 min. 

2.2.4.4 Pumping off food assay.  

Single adult worms were transferred to an unseeded cleaning plate for 5 min to crawl free from 

bacterial food. Worms were then transferred to an unseeded culture plate for 60 min. Pumping 

rate was recorded at the 5, 20, 40 and 60 min intervals using a hand counter for 1 min. 

2.2.5 Dispersal assay 

2.2.5.1 Dispersal assay.  

15 adult worms were transferred directly on the OP50 of a centrally seeded culture plate and the 

number of worms remaining on the food at 1 min or 5 min intervals, for the 10 min and 60 min 

durations respectively, was recorded.  

2.2.5.2 Dispersal on heat killed OP50 food.  

Worms were transferred to plates as in the dispersal assay but using heat killed OP50 and 

compared to experiments using live OP50.   

2.2.5.3 Transferred food dispersal assay.  

OP50 food was grown on separate culture plates, either pre-treated with ethanol or non-treated. 

Prior to running the dispersal assay the OP50 food spots were excised from the pre/non-treated 

plates and placed onto unseeded pre/non-treated destination plates. The OP50 was placed such 
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that the bacterial spots were pressed against the destination plate. Pressure was applied and 

given 1 min to settle before the OP50 was removed, leaving a transferred spot of OP50 on the 

destination plate. The dispersal assay was then run using the destination culture plates.  

2.3 Results 

2.3.1 Food race assays 

C. elegans N2 strain were treated with varying concentrations of ethanol either during 

(intoxication), or for 6 hours prior (withdrawal) to, a food race assay. The food race assay 

quantifies the chemotaxic of the worm can be used in combination with ethanol to define 

distinct ethanol states. Untreated Worms had a mean 75% of the population reach the food after 

a period of 2 hours, N=16 (Figure 2.1A).   

Worms treated with 50 mM ethanol during a food race after 6 hours conditioning with no 

treatment, an acute low dose of ethanol, were not significantly different from control worms 

receiving no treatment at 2 hours, [Unpaired t-test, P>0.05] (Figure 2.1B). After 2 hours a mean 

72% of untreated, control worms made the food reward. Similarly after 2 hours a mean 72% of 

50 mM ethanol treated worms made the food reward in the control paired race assays, N= 7. 

Worms treated with 300 mM ethanol during a food race after 6 hours conditioning with no 

treatment, an acute high dose of ethanol, were significantly different from control worms 

receiving no treatment at 2 hours, [Unpaired t-test, P<0.001] (Figure 2.1C). After 2 hours a 

mean 68% of untreated, control worms made the food reward. In comparison after 2 hours a 

mean 3% of 300 mM ethanol treated worms made the food reward in the control paired race 

assays, N=6.  

Worms treated with no ethanol during a food race after 6 hours conditioning with 300 mM 

ethanol, withdrawal from ethanol, were significantly different from control worms receiving no 

treatment at 2 hours, [Unpaired t-test, P<0.05] (Figure 2.2A). After 2 hours a mean 74% of 

untreated, control worms made the food reward. In comparison after 2 hours a mean 52% of 300 

mM ethanol withdrawn worms made the food reward in the control paired race assays, N=10. 

Worms treated with 50 mM ethanol during a food race after 6 hours conditioning with 300 mM 

ethanol, relief from withdrawal, were not significantly different from worms treated with no 

ethanol during a food race after 6 hours conditioning with 300mM ethanol, withdrawn, at 2 

hours [1 way ANOVA with Bonferroni correction, P>0.05] (Figure 2.2B). Both relieved and 

withdrawn worms were significantly different from untreated, control worms at 2 hours [1 way 

ANOVA with Bonferroni correction, P<0.05]. After 2 hours a mean 77% of untreated, control 

worms made the food reward. In comparison after 2 hours a mean 56% of 300 mM ethanol 

withdrawn worms and a mean 60% of 50 mM ethanol relieved worms made the food reward in 

the control paired race assays, N=10. 
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Worms treated with 300 mM ethanol during a food race after 6 hours conditioning with 300 mM 

ethanol (“ethanol tolerant”) were not significantly different from worms treated with 300 mM 

ethanol during a food race after 6 hours conditioning with no ethanol, an acute high dose of 

ethanol, at 2 hours [1 way ANOVA with Bonferroni correction, P>0.05] (Figure 2.3). Both 

tolerant and acutely intoxicated worms were significantly different from untreated, control 

worms at 2 hours [1 way ANOVA with Bonferroni correction, P<0.001]. After 2 hours a mean 

79% of untreated, control worms made the food reward. In comparison after 2 hours a mean 5% 

of 300 mM ethanol tolerant worms and a mean 7% of 300 mM ethanol intoxicated worms made 

the food reward in the control paired race assays, N=10. 
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Figure 2.1. Food race of N2 worms on increasing ethanol concentrations.  

N2 worms untreated were raced over a distance of 5cm towards a food reward. The population of 
worms reaching the food was recorded every 10 min for 2 hours, with the number of worms left after 
2 hours also recorded. (A) No ethanol. 75% ± 2.2 SE of the population reached the food after 2 hours, 
N= 16; (B) N2 worms treated with 50 mM ethanol (Low ethanol) and no ethanol (Control). 72% ± 1.2 
SE of 50 mM ethanol treated worms reached the food after 2 hours, whilst 72% ± 2.9 SE of untreated, 
control worms reached the food race after 2 hours, N=7. There is no significant difference between 
treatments; (C) N2 worms treated with 300 mM ethanol (High ethanol) and no ethanol (Control). 3% ± 
0.9 SE of 300 mM ethanol treated worms reached the food after 2 hours, whilst 68% ± 1.7 SE of 
untreated, control worms reached the food race after 2 hours, N=6. Results are significantly different 
between treatments (Unpaired t-test, P<0.001.) 
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Figure 2.2. Effect of withdrawal from ethanol on food race assay. 
N2 worms were raced over a distance of 5cm towards a food reward. The population of worms 
reaching the food was recorded every 10 min for 2 hours, with the number of worms left after 2 hours 
also recorded. (A) worms conditioned with 300 mM ethanol and then raced on no ethanol 
(Withdrawn),  and untreated worms (Control). 52% ± 4.0 SE of 300 mM ethanol conditioned worms 
reached the food after 2 hours, whilst 74% ± 4.0 SE of untreated, control worms reached the food race 
after 2 hours, N=10. Results are significantly different between treatments (Unpaired t-test, P<0.05). 
(B) As in A, plus worms conditioned with 300 mM ethanol and then raced on 50 mM ethanol (Relief). 
56% ± 3.6SE of 300 mM ethanol conditioned worms reached the food after 2 hours, whilst 60% ± 6.3 
SE of 50 mM ethanol relieved worms reached the food. 77% ± 3.5 SE of untreated, control worms 
reached the food race after 2 hours, N=10. Results are not significantly different between ethanol 
treatments, but are significantly different from control worms (ANOVA, P<0.05). 
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Figure 2.3. Effect of pre-conditioning with 300mM ethanol on food race assay. 
N2 worms treated with 300 mM ethanol (Intoxicated), conditioned with 300 mM ethanol and then 
raced on 300 mM ethanol (Tolerant) and untreated worms (Control) were raced over a distance of 
5cm towards a food reward. The population of worms reaching the food was reordered every 10 min 
for 2 hours, with the number of worms left after 2 hours also recorded. 5% ± 1.473 SE of 300 mM 
ethanol tolerant worms reached the food after 2 hours, whilst 7% ± 2.385 SE of 300 mM ethanol 
intoxicated worms reached the food. 79%± 2.983 SE of untreated, control worms reached the food 
race after 2 hours, N=10. Results are not significantly different between ethanol treatments, but are 
significantly different from control worms. 

 

2.3.2 Investigating the use of pumping assays to define dose-dependent effects of 

ethanol 

The initial experiments focused on the pumping rate of individual worms with and without food. 

Unpublished observations suggested that low dose effects <50 mM) could be resolved when 

using electrophysiological recording of pharyngeal pumping (James Dillon, pers. comm.). We 

tried to verify this using an assay featuring intact animals. Worms were placed on food for a 5 

min period either side of a 1 hour period off food. The rate of pumping on and off food was 

observed over this period. Treatments included 50mM ethanol (Figure 2.4) and a higher 300mM 

dose (Figure 2.5).  

There was an initial response to ethanol on food. Pumping rate is lower in 50mM ethanol treated 

worms (Figure 2.4) at the first time point. This response was lost at the later time point of 70 

min when the worms are returned to food. Unrecorded observations during the non-blinded, trial 

phase (Figure 2.4A) showed that worms often moved from the food spot on which they were 

placed. It was hypothesized that the worms were showing a lower pumping rate because worms 

were slowing pumping in response to a non-food environment, not because the low 

concentration was inhibiting the pumping. This dispersal behaviour was investigated further. 
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Figure 2.4. Pumping assay on and off food in the presence of 50mM ethanol. 
A. Adult worms were treated with 50mM ethanol (Ethanol) or left untreated (Control). Pumping rate 
was measured on food after 5 min (-10 min), off food (5, 20, 40 & 60 min) and then back on food (70 
min). Points represent mean pumping rate. Control N = 38, Ethanol N = 38. Error bars represent ± 
S.E.M. B. Repeat analysis, blinded to treatment type; return to food measurement taken at 65 min. 

2.3.2.1 High dose effects 

Treatment with high 300mM ethanol caused an inhibition of pumping both on, off and when 

returned to food (Figure 2.5). This is consistent with the previously reported dose-dependent 

inhibition of locomotion in food race assays (data not shown).  
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During the observations required to make pumping measurements on food, I noted that the 

worms dispersed from the food. The dispersal rates of the ethanol treated worms show a higher 

rate of dispersal than their control counterparts (Table 2.1). This confounds pumping 

measurements, as food is a major trigger for pumping. 
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Figure 2.5. Pumping assay on and off food in the presence of 300mM ethanol. 
Adult worms were treated with 300mM ethanol (EtOH) or left untreated (Control). Pumping rate was 
measured on food after 5 min (-10 min), off food (5, 20, 40 & 60 min) and then back on food (65 min). 
Points represent mean pumping rate. Control N = 38, Ethanol N = 38. Error bars represent ± S.E.M. 

 

Table 2.1. Pumping assay dispersal from food, blinded. 
Adult worms were treated with 300mM ethanol (EtOH) or left untreated (Control). Values represent 
dispersal over all repeats. Control N = 38, Ethanol N = 38.  

Treatment Worms off food (%) 

-10 min +65 min 

Ethanol 78 56 

Control 14 11 

 

2.3.2.2 Pharyngeal pumping on bacterial lawns 

To avoid problems with dispersal from food, pharyngeal pumping was also assayed on food 

plates seeded with a bacterial lawn. Worms cannot therefore ‘escape’ the food signal. Pumping 

was assayed at four ethanol treatment concentrations: 25mM, 50mM, 150mM and 300mM. 

Treatment groups were blinded. Of the 4 treatment groups none showed any significant 

difference from control treatments, apart from the 300mM ethanol treatment, which reduced 
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pharyngeal pumping (Figure 2.6). Median pumping in groups Control and 25mM ethanol were 

209.5 and 202.5 pumps per minute; the distributions in the two groups did not differ 

significantly (Mann–Whitney U = 1898, n1 = n2 = 60, P > 0.05 two-tailed, P = 0.6101). Median 

pumping in groups Control and 50mM ethanol were 214 and 219 pumps per minute; the 

distributions in the two groups did not differ significantly (Mann–Whitney U = 1982.5, n1 = 50, 

n2 = 68, P > 0.05 two-tailed, P = 0.1236). Median pumping in groups Control and 150mM 

ethanol were 220 and 208 pumps per minute; the distributions in the two groups did not differ 

significantly (Mann–Whitney U = 125, n1 = n2 = 16, P > 0.05 two-tailed, P = 0.4641). Median 

pumping in groups Control and 300mM ethanol were 220 and 44.5 pumps per minute; the 

distributions in the two groups differed significantly (Mann–Whitney U = 31.5, n1 = n2 = 16, 

P < 0.05 two-tailed, P = 0.0003). 

These results are in contrast to the previous experiments where worm dispersal behaviour led to 

a decreased pumping rate on food. 
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Figure 2.6. Effect of increasing ethanol concentrations on pumping rate on a bacterial lawn. 
Pumping assay on food, blinded. Adult worms were treated with 25mM (A), 50mM (B), 150mM (C) or 
300mM (D) ethanol (Ethanol) or left untreated (Control). Pumping rate was measured on food after 5 
min. Bars represent mean pumping rate. Control N = 60, Ethanol N = 60 (A), Control N = 60, Ethanol N 
= 68 (B), Control N = 16, Ethanol N = 16 (C) and Control N = 16, Ethanol N = 16 (D). Error bars represent 
± S.E.M.  

2.3.2.3 Pharyngeal pumping off food 

Pumping off food at 150mM shows a slight increased pumping rate over control worms initially 

but soon decreases (Figure 2.7B). This may be a stimulatory effect of ethanol at a short time 

point before a more chronic inhibition of pumping later on. Adapted graphs from Figure 2.4 and 

Figure 2.5 are shown for comparison (Figure 2.7A & Figure 2.7C). It is worth noting that these 

graphs may not show any early time point stimulation of pumping rate due to an additional 

treatment in ethanol for 10 min prior, the food phase. The variability in the 150mM ethanol 

treatment is likely due to the lower N numbers. 
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Legend on next page. 
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Figure 2.7. Pharyngeal pumping assay off food, blinded. 
Pumping assay off food, blinded. Adult worms were treated with 50mM (A), 150mM (B) & 300mM (C) 
ethanol (EtOH) or left untreated (Control). 50mM (A) and 300mM (C) graphs adapted from Figure 2.4B 
and Figure 2.5 respectively. Pumping rate was measured off food at 5, 20, 40 & 60 min. Points 
represent mean pumping rate. Control N = 18, Ethanol N = 18 (B), Control N = 38, Ethanol N = 38 (A & 
C). Error bars represent ± S.E.M. 

2.3.3 Worm dispersal: a novel assay for alcohol effects 

In addition to informing the design of the pumping assays the dispersal offered a novel ethanol 

assay. We thus sought to define basis of the response. 15 worms were placed on a food spot, as 

in the pumping assay, and the number of worms that stayed on the food over time was counted. 

Worm dispersal was observed over a 10 min period on 50mM ethanol, and at a longer 60 min 

period (Figure 2.8). In addition the dispersal assay was extended to include a range of ethanol 

concentrations (0-300mM) over 10 min (Figure 2.9). Treatment type was blinded in all 

experiments. 

Treatment with 50mM ethanol causes worms to move away from the OP50 food spot after just 1 

minute. Approximately 50% of the population move away after this time and remain off for the 

duration of 10 min. Untreated worms have approximately 90% of the population stay on the 

food, with little variation over time. Extending the treatment duration from 10 to 60 min results 

in a slight increase in the worms that stay on the food, with around 75% of the ethanol 

population on returning to food after 60 min. Although individual worms were not recorded this 

suggests that they leave food and then move back towards it. 
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Figure 2.8. Dispersal from food assay for short and long time periods.  
15 adult worms were treated with 50mM ethanol (Ethanol) or left untreated (Control) for 10 min (A) 
or 60 min (B). Dispersal rate from food was measured at 1 min (A) or 5 min (B) intervals. Points 
represent mean dispersal rate. Control N = 10, Ethanol N = 10. Error bars represent ± S.E.M. 
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B. 50mM Ethanol Worms on Food (15)
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C. 150mM Ethanol Worms on Food (15)
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D. 300mM Ethanol Worms on Food (15)
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Worms on Food (15)
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Figure 2.9. Dispersal from food assay for increasing ethanol concentrations. 
15 adult worms were treated with 25mM (A), 50mM (B), 150mM (C) or 300mM (D) ethanol (Ethanol) 
or left untreated (Control) for 10 min. Dispersal rate from food was measured at 1 min intervals. 
Points represent mean dispersal rate. Control N = 10, Ethanol N = 10. Error bars represent ± S.E.M. 
50mM graph (B) as Figure 2.8; repeated for comparison. 

 

Increasing ethanol treatment causes C. elegans to disperse away from the food with a maximal 

dispersion at 150mM (Figure 2.9C). At 150mM approximately 35% of the worms are away 

from the OP50 food at 10 min. At the higher 300mM concentration the worms show a reduced 

propensity to disperse from the OP50 food, with perhaps ethanol inhibiting locomotion such as 

to hinder dispersal. The lowest ethanol concentration 25mM shows worms initially dispersing, 

but then recovering to baseline levels seen in control, untreated worms over time. This is likely 

the threshold for a dispersal phenotype. 

There are 2 distinct possibilities which can explain the results above. Either the worm’s 

behaviour is directly modified by ethanol interacting with the worm, or the presence of ethanol 

is changing the bacterial environment and indirectly modifying behaviour. To address this issue, 

an experiment was designed to investigate whether ethanol treatment had an effect on the OP50 

bacterial food itself.  
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2.3.3.1 Worm dispersal on heat-killed bacteria 

Worms were treated with either 50mM ethanol or no treatment in the presence of alive or heat 

killed bacterial food. If the bacteria were acting as a cue, rather than ethanol acting directly on 

the worms, then using heat killed bacteria, which cannot metabolise ethanol, would remove the 

dispersal phenotype. Likewise, if the worms were being affected by ethanol then heat-killed 

OP50 would not affect dispersal behaviour. 

There is no observable difference between those on 50mM ethanol and dead OP50 versus dead 

OP50 without ethanol (Figure 2.10). Furthermore, worms fed heat-killed bacteria dispersed 

more that those fed live food, with or without ethanol. It is therefore it is not possible to discern 

whether or not they roamed away from ethanol in the presence of food because of an interaction 

between bacteria and ethanol generating an aversion substance. These results are consistent with 

the worms being neophobic, dispersing from novel environments. It could also be explained, 

however, by an in ability for the worms to recognise heat-killed OP50 as a food source.  

 

Worms on Dead Food (15)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10

Time (min)

W
o

rm
s
 o

n
 f

o
o

d

Alive Alive+E Dead Dead+E
 

Figure 2.10. Dispersal assay with heat killed OP50. 
15 adult worms were placed on live OP50 (Alive) or heat-killed OP50 (Dead) and on plates containing  
50mM ethanol (+E) or left untreated for 10 min. Dispersal rate from food was measured at 1 min 
intervals. Points represent mean dispersal rate. Control N = 10, Ethanol N = 10. Error bars represent ± 
S.E.M. 

2.3.3.2 Worm dispersal on OP50 incubated in ethanol  

Separate to the experiment with heat killed OP50, bacterial food was either pre-treated with 

50mM ethanol or not treated (Figure 2.11). The food was then transferred to a plate containing 
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or not containing 50mM ethanol. This was rationalized to allow food pre-treated with ethanol 

and transferred to a non-ethanol plate would cause worm dispersal if it was an indirect effect of 

the bacteria. Conversely if there was no dispersal then it would indicate no involvement of the 

bacteria, and may either be due to the environment or a direct affect. 

Bacteria transferred after pre-treatment showed no differential effect on worm dispersal, 

whereas bacteria that was not pre-treated with ethanol but had ethanol present in the test plate 

showed worm dispersal consistent with previous paradigms. This result points to the bacteria 

not being responsible for any dispersal and indicates either an environmental or interaction 

driven response. 
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Figure 2.11. Dispersal assay with transferred OP50. 
15 adult worms were placed on transferred OP50 either pre-treated with 50mM ethanol (Et OP50) or 
left untreated (CON OP50) for 10 min. 15 adult worms were also placed on transferred OP50 left 
untreated to plates that contain either 50mM ethanol (Et Plate) or no treatment (CON plate).  
Dispersal rate from food was measured at 1 min intervals. Points represent mean dispersal rate. 
Control N = 5, Ethanol N = 5. Error bars represent ± S.E.M. 

The results indicate that there may be some behavioural response to ethanol intoxication, 

although this still needs to be separated from the environmental cue. The next step is to see if 

the response remains in the presence of a pre-condition treatment with ethanol to the worms. 

2.4 Discussion 

The results show that ethanol mediated behaviour can be modelled in the organism C. elegans. 

Treatment of ethanol at high concentrations shows a major depression in locomotion associated 
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with a reduced ability to reach a food reward after 2 hours. This affect is not seen at 

concentrations of ethanol less than 150mM. Removing worms from ethanol causes a withdrawn 

state which presents itself as a reduction in locomotion greater than that of control worms but 

not as great as ethanol intoxicated worms. The withdrawal response seen with longer 

conditioning times is that of a ‘separate’ response, and not of any lingering residual effect of 

alcohol still present in the worm. As withdrawal state worms show an improvement in race 

outcomes when reintroduced back to ethanol, it would not be expected in worms intoxicated 

with a reducing exposure to ethanol after removal. A withdrawn state can be partially rescued 

(“relief”) in worms by treatment with a low concentration of ethanol, (Mitchell, unpublished 

data). Although not seen in these results, worms show an increased ability to make the food 

reward after 2 hours compared to withdrawn worms. It is likely that a conditioning time of 6 

hours is not sufficient to produce a significant difference between withdrawn and relieved states. 

Increasing conditioning length to 12 or 24 hours should be able to distinguish responses. This 

may also be the case for worms that have been chronically exposed to ethanol to develop 

tolerance. No significance is seen between worms on chronic exposure to ethanol and those who 

have been acutely treated. By increasing the time conditioned in ethanol it should separate the 

responses so that tolerant worms are significantly different to acutely treated worms.  

Looking at the pharyngeal pumping off and on food there seems to be a dose dependent 

inhibition with increasing ethanol concentrations reducing the pumping rate. This may be time 

dependent as early time points suggest a possible stimulatory affect. Looking at dispersal from 

food worms again show an increased rate of dispersal with increasing concentrations of ethanol. 

This does seem to be limited by the ability of ethanol to inhibit locomotion. It is still unclear as 

to why the worms disperse from food, although early indication point to a non-bacterial food 

dependent mechanism. It is interesting to note that heat-killed food also causes dispersal 

behaviour similar to ethanol treatment. It is likely that the environment is playing a role in food 

dispersal, with changing of food type or culture background causing an aversive response; 

neophobia. Both sets of experiments warrant further investigation. 

Modelling the behavioural effects of ethanol in C. elegans allows an investigation into the 

genetic and molecular determinants underpinning these behaviours. By studying the effects of 

genetic and pharmacological manipulation on the different behavioural states, the molecular 

targets of ethanol can be discovered. This will be the experimental method used to look at other 

aspects of C. elegans ethanol biology in later chapters. 

2.5 Future Work 

Whilst the behaviours under low and high ethanol intoxication and on ethanol withdrawal are 

clear further work needs to be done to significantly identify the differences in relief and 

withdrawal and tolerance and intoxication. Increasing the ethanol conditioning time may 
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significantly separate these behaviours. Whilst these methods are becoming established we can 

use them to test and differentiate potential genetic targets for modulating the ethanol 

behavioural paradigms. Whilst the worm race paradigm offers a robust assay for understanding 

how ethanol works at acute and chronic treatments with relatively high dose ethanol 

concentrations, it is limited to using a population of worms. Future work should also focus on 

creating a sound paradigm dependent assay to use on individual worms.  

It is important to define the dispersal response to ethanol as a function of behavioural change 

due to ethanol or environment. Pre-exposure to an ethanol source should clarify whether the 

response is a reaction to environmental change or a direct effect of ethanol on behaviour such as 

an increase in speed or inhibition of turns. Examining the effect of early exposure should also be 

a priority during food absence as it appears that there may be a slight increase in pumping rate 

during the first 10 min that is unaccounted for on 150mM ethanol treatment. Existing 

experiments failed to pick up this response as worms were being treated with ethanol prior to 

absence from food.  
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3 Bioinformatic Identification of Genes Involved In 

Ethanol Response 

3.1 Introduction 

The need to standardise data stems from the overwhelming variation in recording and analysing 

different variables. This problem is particularly pronounced in biology because of the 

complexity of the information and the ideas that are portrayed (Soldatova and King, 2005).By 

categorising information by certain defined criteria, it is possible to overcome the potential 

problem of analysing data from different sources (Thomas et al., 2007). The work done on how 

ethanol mediates its control over behaviour is vast in its scope and multifaceted in its evidence. 

By integrating this data into a database using consistent annotation practices, it is possible to 

analyse the whole rather than the sum of its parts. In this chapter, strictly defined information 

from articles on the molecular mechanisms of ethanol actions from across 5 species has been 

compiled in a controlled format for analysis. Combined with the Gene Ontology database 

information there is approximately 3500 records of evidence for over 900 biologically important 

molecules implicated in the action of ethanol within an organism. Information on treatment 

type, duration and ethanol concentration are also available for a number of records.  

3.1.1 Ontologies 

An ontology is a system of controlled vocabulary to allow organisation and retrieval of related 

information. The idea of an ontology is to define a specific vocabulary for information such that 

it cannot vary within a certain criteria, and is therefore not open to multiple interpretations. It 

also aids in the integration of new information and the search and retrieval of related 

information by automated processes (Rubin et al., 2008). The number of different ontologies in 

the public domain is increasing, which can make linking information more difficult. Not all 

ontologies that are created will follow the guidelines of others, including the use of controlled 

vocabularies. When two or more ontologies overlap in function, careful consideration needs to 

be made regarding the information to be mapped onto the ontology before selecting a particular 

ontological system in preference to another.  

The use of an ontology ties in with the storage of information in databases. Often the ontology is 

used as a way of management and automated searching for a particular database. This is how 

the ontology system will help search and filter information from the ethanol database. Having 

an ontological based system also allows information to be easily searched or analysed in a high 

throughput manor (Beissbarth, 2006) 
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3.1.1.1 The Gene Ontology (GO) 

The Gene Ontology (Ashburner et al., 2000) is the archetype biological ontology database, 

which maps the gene products of different species with information regarding three major 

components; cellular component, biological process and molecular function. A gene product is 

related to other gene products by its local within a cellular compartment, its process within that 

compartment and the molecular function of that gene product. These are mapped hierarchically 

for each gene in the form of parent-child relationships linked by identifiers to the relationship 

type. These are the following terms: 

- is_a 

- part_of 

- develops_from 

- regulates 

- positively_regulates 

- negatively_regulates 

These relational identifiers allow information that is linked to be pulled out at any number of 

levels and to map down to the information that is related. This is a very powerful way of 

representing data and used by many ontologies.  

In addition to being used to select candidate genes, GO has been integrated into the ethanol 

target database to permit queries using these pre-existing terms. 

3.1.1.2 The Evidence Code Ontology (ECO) 

Another important type of information that needs to be controlled is the type of change that is 

observed within the biological organism due to the ethanol exposure. This problem depends on 

the type of information disseminated, as different biological molecules vary in different ways as 

well as the way in which they were measured. A good start to defining the evidence is to say 

what is happening and how it was inferred. We use the Evidence Code Ontology (ECO) 

(Evidence Code, 2008) for the controlled vocabulary discussing how the evidence was inferred.  

3.1.2 Molecular targets of ethanol 

The information and data available on the responses to ethanol is overwhelming. Many different 

organisms, treatment methods and analysis have been used to characterise ethanol mediated 

behaviour and pathology. Handling the data with such a variety is a difficult process and is not 

made easier by the lack of an integrated resource for data mining. The aim of this investigation 

is to create a universal database which incorporates pre-existing information and allows further 

integration of new information such that data can be searched, queried and filtered for analysis. 

To ensure a set standard with information integration, data is stored according to ontological 
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design by which variation and redundancy is minimal. Several common pathways that respond 

to ethanol are conserved between species and are highlighted in section 1.4. 

Because of the profound effect that ethanol has on the central nervous system a large chunk of 

the research in to the molecular mechanisms controlling behaviour have focused on classical 

neurotransmitter systems and intracellular signalling cascades. These make up the majority of 

the research articles that form the base of the databases dataset.  

3.1.3 Homology mapping 

Part of the motivation of this work is the translation of observations from one organism into 

other organisms for further analysis. Of particular interest here is the relationship between 

known ethanol targets in humans and model organisms, in particular C. elegans. By recording 

specific protein UniProt accession numbers, molecules from this database can be mapped on to 

homologues from other species. Of particular interest for this analysis are putative orthologues – 

gene/proteins that are related by a speciation event (i.e. shared a single common ancestral gene 

in the common ancestor of the two species being compared).  

3.2 Methods 

3.2.1 Source data  

Data was gathered from 114 review articles dated from 2006 – 2009. Third party databases are 

queried for ethanol responsive proteins. Review articles obtained by keyword searches through 

the PubMed database. Articles are included based on the organism; Homo sapiens, Rattus 

Norvegicus, Mus musculus, Drosophila Melanogaster and Caenorhabditis elegans. 

3.2.2 Database design.  

The database was created using Microsoft Access 2003. Data is stored in nine Tables (Table 

3.1) with a single main Input table storing the primary data (Figure 3.1). In addition to a unique 

entry identifier (“ID”), this table has fifteen input fields (Table 3.2). The Molecule table lists all 

the molecules (including UniProt Accession number where possible) that are currently 

associated with ethanol response, with the original name given in the study in the Input table. 

3.2.2.1 Ontologies 

Biological ontologies are used in this work to control the vocabulary of the input data as a way 

of data management, and to facilitate automated searching of terms. This database makes use of 

the Evidence Code Ontology (ECO) and Gene Ontology (GO) (Ashburner et al., 2000). ECO 

was used to control the terms used in the database, while GO was used to define some of the 

source data (see 3.2.1). 
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3.2.2.2 Molecules 

To limit duplication and confusion, genes and proteins were converted to a “Common name”, 

linked where possible to an unambiguous UniProt accession number. Chemicals were linked to 

the PubChem database accession numbers which are unique from the UniProt accession 

numbers.  

3.2.3 Orthology mapping 

Orthology mapping was performed by Dr Richard Edwards. Ensembl version 60 (accessed 

2/12/10) was used to download predicted orthology relationships between the five main 

organisms in the database: Human, Mouse, Rat, D. melanogaster and C. elegans. PICR was 

used to map UniProt accession numbers from the ethanol database onto Ensembl gene 

identifiers. These links were used to map all possible proteins from the database on to human 

proteins for network analysis and visualisation.  

3.2.4 Human network visualisation 

Orthology-mapped human proteins were visualised as a set of hyperlinked web pages using 

HAPPI (http://www.southampton.ac.uk/~re1u06/software/happi/index.html) for further data 

exploration. These pages can be accessed at: 

http://www.southampton.ac.uk/~re1u06/research/bendb_html/. 

3.3 Results 

The original search for review articles generated a list of 113 articles. This dataset was narrowed 

down based on target organism, journal availability and language, to focus only on reviews 

focused on the specific action of ethanol in a molecular context between 2006 and 2009. For 

humans and rodents the articles were all review based whilst there were too few articles for flies 

and worms to do this, and thus the worm and fly data is from non-review articles. Articles on 

dual ethanol and burn treatment, cosmetics and ethanol manufacturing were excluded as non-

relevant.  

The database is an ongoing construction and the results presented here are best considered as a 

pilot study. In total, there are 3472 separate entries from across the five different organisms. 

There are 915 different proteins from these entries. These were gathered from 66 review articles 

and The Gene Ontology database query. The database includes the Evidence Code Ontology for 

standardising evidence input. An overview of the database design and relationships is given in 

Fig 3.1. 

 

http://www.southampton.ac.uk/~re1u06/software/happi/index.html
http://www.southampton.ac.uk/~re1u06/research/bendb_html/
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Figure 3.1. Main databases tables and relationships. 
Descriptions of tables and fields are given in text, Table 3.1 and Table 3.2. 
 
 
Table 3.1. Ethanol database tables. 

Table Description Entries
1
 

INPUT Main entry table 3472 

Organism Experimental organism 6 

Molecule Molecule ID to common name and text description mapping 992 

Exposure_Type Exposure Type ID to text description mapping 5 

Exposure_Method Exposure Method ID to text description mapping 4 

Exposure_Length_Unit Description of distinct exposure units used 8 

Evidence OBO Evidence Ontology terms 148 

Change Phenotypic change ID to text description mapping 93 

Source_Status Source status ID to text description mapping 3 

1. No. entries in table. 
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Table 3.2. Overview of fields in main database table. 

Field Description Values
1
 

Molecule Protein, gene or other molecule affected 992 

Original_Name Molecule name given in source paper 902 

Organism Experimental organism included in the literature 5 

Tissue_Type Tissue implicated in the ethanol response as defined by 

the literature 

110 

Cell_Type Cell type implicated in the ethanol response as defined 

by the literature 

45 

Exposure_Type Nature of ethanol exposure (chronic, acute etc.) 5 

Exposure_Length_Value The numerical value of the exposure time used for 

ethanol treatment 

n/a 

Exposure_Length_Unit Units of length of ethanol exposure 7 

Exposure_Conc Concentration of ethanol used in the experiment 119 

Exposure_Method Nature of exposure method (in vitro, in vivo etc.) 4 

Change Observed phenotypic (biochemical or behavioural) 

change associated with ethanol exposure and the 

molecule input 

93 

Evidence OBO evidence code ontology (ECO) term 53 

Source Source PubMed ID, or the organism specific database 

source ID for third party database gathered information  

1525 

Source_Status Database curation field (read or unread literature 

source) 

3 

Relevance Brief text input to describe inclusion of a particular 

source or third party database search 

n/a 

1. No. distinct values in database. 

3.3.1 Data entry 

The aim of the database was to include a comprehensive summary of each piece of evidence, 

taken from a third party perspective that, in addition to providing a useful overview, would 

allow easy querying for specific information by users.  

3.3.1.1 Molecules 

In order to maintain comprehension and uniformity the data was limited to several variables 

which were identified before and during data entry. As the dataset was selected with a 

preference for molecular evidence; genes and proteins were the primary focus. This later 

expanded to include other molecules and chemicals, either intrinsic biological chemicals or 

externally derived pharmacological agents. To limit duplication and confusion genes were 

converted to proteins and the common name linked to the UniProt accession number used to 

identify the molecule. The chemicals were linked to the PubChem database accession numbers 

which are unique from the UniProt accession numbers. This process is not without caveats, as 

genetic mutants are not always a direct effect on the protein and thus linkage between what was 

actually studied and information in the database may be misinterpreted. To overcome this 

information about the change and the type of evidence, such as an up-regulation in an 

experiment from transcript levels were also recorded so that such information is not lost.  



45 
 

There were also problems associated with multiple subunit proteins and complexes, which are 

referred to as single entities in the mined information, but are recorded as separate proteins in 

the UniProt accession database. This was overcome by either citing the alpha subunit in 

homomeric complexes or not recording an accession number in multimeric complexes.  Indeed 

this problem extended into data interpretation whereby authors would refer to a single protein as 

a specific entity, when several isoforms were present with specific functions and local. This 

again was overcome by either inferring subunit specificity in the dataset with clarification or 

deduction from the article at hand or simply not recording the information because of 

ambiguity. In addition this information was aided with the original author nomenclature 

recorded in the database such as to reduce error, or to correct at a later date when presented with 

further information. 

3.3.1.2 Source organisms, tissue and cell type 

Input data was restricted to that for one of five pre-selected organisms. Information from other 

organisms were rejected and not input into the database. If the organism information was not 

clear, as was the case with some of the papers on rodent studies, then the information was also 

not incorporated.  

The tissue type and cell type were recorded also. These were not a problem except in one case 

where there was a mixed rat/human cell line used. This was input but did not have an organism 

input into its respective table field.  

3.3.1.3 Treatment details 

The treatment type tried to identify which type of treatment paradigm the research evidence was 

investigating. It was restricted to acute, chronic withdrawal and undefined. It was recorded if the 

publication specified the interest area, and was not assumed from the treatment duration. This 

was to avoid confusion between standardising between publications. Any assumptions that can 

be made on the does and time can be made from the raw data, where available, as to which 

paradigm in which organism was used. This is analogous to the recording of the proteins 

common name whilst still recording a unique protein accession number.  

The value and duration of the treatment course were recorded in separate fields as to keep 

numerical and text data separate. Values were overlapping, e.g. 24 hours and 1 day, as to keep 

data entry quick, as conversions between values would have been lengthy. This process can still 

be applied later, which also makes examining individual records simpler at a later date. 

Treatment duration always focuses on the length of ethanol exposure. This is true for 

withdrawal treatment paradigms, but is complicated by the duration from ethanol before 

reintroduction in complex behavioural paradigms. Duration of abstinence is not recorded. For in 

utero based experiments assessing the risk of prenatal exposure to ethanol, the duration of 

alcohol was standardised to 21 days, the average period of gestation for the rodents. For human 
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in utero studies, no time data was included. Where ethanol concentration was given in the paper, 

it was recorded as described. Values were not standardised, and because of the complex nature 

of the values the data was stored as a text field. Some of the values were given as a 

concentration range, to avoid unnecessary data duplication. 

3.3.1.4 Types of experiment 

The method is a brief indication of the type of experiment done. The majority were in vivo 

experiments directly on an organism. Cell culture experiments were recorded as in vitro, 

although strictly speaking they are ex vivo. In utero describes the experiments done on ethanol 

exposure to pre-natal organisms. In silico was used to annotate which data was pulled from 

online databases. The experiments themselves may not be computer generated.  

3.3.1.5 Ethanol effects 

The change is a large set of different outcomes as a result of scientific scrutiny of a particular 

molecule. The list of changes was decided on from the information provided by data entry and 

was a rolling and adapting process of change type entry. Initial focus was placed purely on the 

proteomic level of change, with the hope of simply including up and down regulated molecules. 

This was quickly replaced by a need to include change not direct attributable to a regulation 

state of a single molecule, and started to incorporate more complex changes and phenotypes. 

The final adaptation was to include behavioural phenotypes of particular organisms under 

controlled situations. This has complicated the implications of how this data is analysed. 

3.3.1.6 Evidence Code Ontology 

The evidence field is based on the ontological system devised by the evidence code ontology. It 

lists a large number of evidence types in a hierarchical system to encompass the majority of 

molecular biology. It is this system that has been used to populate the evidence field. Not all 

evidence types were covered in the ontology, those that were not available as options were 

either excluded or labelled as a more baseline identifier.  

3.3.1.7 Data sources 

The source of the evidence was included as a PubMed ID pointing to the reference article. The 

data obtained from the GO database was kept in its original form of a unique organism database 

reference ID. Some of these were multiple articles separated by a pipe, they were not duplicated. 

The paper was labelled as read or unread to track changes in data entry. A final memo line was 

included to give an indication of why the original source was included in the dataset, again in 

order to track changes in data entry and database management. 

3.3.2 Additional visualisation 

As a resource for further investigation, orthology-mapped human proteins were visualised as a 

set of hyperlinked web pages using HAPPI (http://bioware.soton.ac.uk/software/happi/) for 



47 
 

further data exploration. These pages can be accessed at: 

http://bioware.soton.ac.uk/research/bendb/. 

3.4 Discussion 

The current work represents a pilot study, with further work needed to complete information 

entry into the database. Integration of information in to the database was the slowest, rate 

determining step. Manual data mining from the reference articles was an arduous task 

complicated by the variation in information presentation and nomenclature. Information 

gathering and input is a time- and labour-intensive task, which may benefit from a more 

community-driven “wiki” approach in future. Additional developments in the realm of text 

mining might also be of benefit to this project; the current setup can incorporate data with 

different degrees of confidence, which might enable to the visualisation of larger trends. Such 

data sources might also help overcome the inevitable ascertainment bias that arises when relying 

on review articles that have invariably been prepared with certain conscious or subconscious 

biases. 

The current database structure is functional but could benefit from the integration of further 

biological ontologies; these should allow better visualisation of information output and 

advanced query function. As information was added to the database, the design itself had to be 

updated. Although undesirable, and potentially creating some inconsistency in the data stored, 

such changes are inevitable in this kind of project. It also became apparent that the degree of 

detail hoped for in terms of both ethanol treatments and effects was often absent, particularly 

from review papers. Given the difficulty in measure precise concentrations or durations for 

certain experiments, the inherent ambiguities and sometimes subjective reporting associated 

with behavioural responses, and the difficulty in conclusively linking responses to specific 

molecules, these limitations were to be expected but the scale of them was still a little 

disappointing. 

3.5 Future Work 

To fulfil the initial goals of the database, data from additional papers needs to be added to the 

database. Once all the information has been input then effort can be concentrated on data output 

and visualisation. The database requires the use of several ontological structures to manage 

information. One goal for future work is to integrate the ontologies into the structure of the 

database so that information can be queried and filtered through the ontological hierarchies. 

Another aim is to create a database front end so that information can be retrieved by users or so 

that information can be both retrieved and integrated by users.  

http://bioware.soton.ac.uk/research/bendb/
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4 The Unfolded Protein Response and Ethanol 

4.1 Introduction 

4.1.1 Ethanol as an agent of stress 

Stress is an important component of the psychological and molecular response to ethanol. 

Ethanol intoxication, particularly at higher doses, engages regimes that are recognized as 

cellular stresses. Classic among these are the heat shock systems in which cellular stress of heat 

shock induces several molecular pathways including HSP-90, 70 60 and 40 and a number of 

small heat shock proteins. These routes are often engage additionally as response to cellular 

stressor including oxidative stress protein misfolding and toxicological activation. This is 

recognized by several studies that identify robust stress responses upon ethanol intoxication. 

Less is known if the reactive responses that underlie withdrawal and tolerance engage such 

pathway. Nonetheless, the induction of these pathways during the intoxication regimes that lead 

to withdrawal and tolerance makes this formally possible. Indeed, the Heat shock responses are 

often associated with protective pathways that operate during preconditioning protection. These 

stress pathways are known to modulate cellular stresses of the nervous system and potentially 

underpin cells and pathways implicated in ethanol effects. One such pathway that is poorly 

understood with respect to ethanol is the Unfolded Protein Response (UPR).  

4.1.2 The Unfolded Protein Response (UPR) 

The UPR is an evolutionary conserved mechanism for the homeostatic response to an increase 

in perturbed secretory and transmembrane proteins. Increases in protein load, dysregulation of 

calcium levels, altered endoplasmic reticulum redox environment, malfunctioning protein 

degradation and immune insult all trigger the UPR. An array of chaperone proteins, proteins 

linked to the secretory pathway and scavenging proteins all work to normalise stress condition 

within the endoplasmic reticulum. If ER stress remains unaltered then programmed cell death is 

triggered. Chronic ethanol conditioning has been shown to induce an UPR in several organisms 

including Caenorhabditis elegans. It is unclear, however, whether ethanol triggers an unfolded 

protein response at concentrations that cause behavioural responses to ethanol, and whether the 

UPR modulates these behavioural phenotypes.  

The UPR was first recognised as an adaptive response to nutrient deprivation and misfolded 

protein load in the organism Saccharomyces cerevisiae (Kozutsumi et al., 1988). Identification 

of the processes triggering the UPR, the proteins involved in regulating transcriptional events 

and the identification of a consensus regulatory sequence upstream of target genes allowed for 

the characterisation of this separate response (Cox et al., 1993; Cox and Walter, 1996; Dever et 

al., 1992; Yoshida et al., 1998). Parallel work identified and characterised the S. cerevisiae 
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pathway in mammalian cells and demonstrated the conservation and importance of the UPR 

(Harding et al., 1999; Haze et al., 1999; Wang et al., 1998).  

Typically the UPR response is triggered by an increase in misfolded protein load within the ER 

(Kohno et al., 1993); sequestering chaperone proteins and straining the protein degradation 

process. An increase in misfolded proteins can be caused by a perturbed folding system, 

glycosylation system or ER homeostasis mechanisms which act to keep the endoplasmic 

environment as favourable to protein folding as possible; such examples include calcium levels 

(Bonilla et al., 2002; Hojmann Larsen et al., 2001) and redox conditions (Trotter and Grant, 

2002). Aggravation of endoplasmic reticulum associated degradation (ERAD), the process of 

removal and destruction of misfolded proteins, also triggers the UPR (Mouysset et al., 2006; 

Sasagawa et al., 2007; Tcherpakov et al., 2008). Other triggers of the UPR include infection 

with pathogens (Bischof et al., 2008; Haskins et al., 2008), nutrient deprivation (Fernandez et 

al., 2002a; Kozutsumi et al., 1988), heavy metal toxicity (Liu et al., 2006; Yokouchi et al., 

2007) and perturbed ER protein trafficking (Higashio and Kohno, 2002; Sato et al., 2002). 

In addition to moderating environmental responses components of the UPR are constitutively 

activated at basal levels to help control protein synthesis, development and cell differentiation 

(Sharkey et al., 2008; Sugiura et al., 2009). Failure of the UPR to maintain normal levels of 

misfolded proteins activates apoptosis (Hetz et al., 2006). The UPR is also seen as an important 

survival switch for tumourgenesis, allowing the extended life of cancer cells beyond detrimental 

conditions.  

The unfolded protein response has also been implicated in the physiological pathogenesis of 

several diseases including chronic alcohol consumption, playing an important role in the 

development of liver damage, possible neurodegeneration, glucose/insulin dysregulation and 

alcoholic cardiomyopathy. Work done in the model organism C. elegans has shown a link 

between the UPR and ethanol exposure (Kwon et al., 2004; Uccelletti et al., 2004). C. elegans 

presents a useful platform for studying the effects of ethanol on the UPR because of the genetic 

tractability of the organism and the wealth of work already acquired on both ethanol exposure 

and the unfolded protein response. This review outlines the current knowledge of the unfolded 

protein response, similarities in C. elegans, the link between ethanol and the UPR and the use of 

C. elegans to dissect the role of the UPR in ethanol consumption. In addition the link between 

ethanol and the unfolded protein response in C. elegans is investigated, exploring the role the 

UPR may have in mediating the behavioural responses to ethanol. 

4.1.3 Overview of UPR activation in humans/mammals 

Primary initiation of the UPR is through the increased binding of Binding immunoglobulin 

Protein (BiP) to unfolded proteins in the ER (Fig 4.1). Binding of BiP to unfolded proteins 

sequesters it away from its alternate residency on ER membrane bound proteins 



50 
 

Serine/threonine-protein kinase/endoribonuclease 1 (IRE1α), Cyclic AMP-dependent 

transcription factor 6 (ATF6α) and PRKR-like endoplasmic reticulum kinase (PERK) whose 

activation are repressed by bound BiP (Bertolotti et al., 2000; Sommer and Jarosch, 2002). 

These three transmembrane proteins represent the three main pathways of the UPR; although 

there is current work to highlight the less well understood areas of UPR activated pathways 

(Caruso et al., 2008).  

Upon increase in ER misfolded proteins BiP dissociates away from membrane bound PERK, 

binding the misfolded proteins. Dissociation of BiP then allows for subsequent dimerisation, 

and trans-auto phosphorylation of the membrane bound PERK protein (Ma et al., 2002). 

Activation of PERK initiates a kinase function in which it phosphorylates serine residue 51 on 

eukaryotic translation initiation factor 2 subunit alpha (eIF2α) (Harding et al., 1999). 

Phosphorylation of eIF2α allows for an attenuation of general protein translation through 

disruption of the 43S translation-initiation complex (Kimball et al., 1998), and an initiation of 

selective translation of UPR regulated transcripts. This may be mediated through internal 

ribosomal entry sites (IRES) or upstream open reading frames (uORF) within the 5’-

untranslated region of specific mRNAs (Fernandez et al., 2002b; Lee et al., 2009). In addition 

PERK can also phosphorylate the transcription factor Nrf2, disassociating Nrf2 away from a 

complex with Keap1, and activating transcription of proteins involved in redox homeostasis 

(Cullinan and Diehl, 2004; Cullinan et al., 2003). 

The release of BiP from membrane bound IRE1α also allows for dimerisation and trans-auto 

phosphorylation, activating its cytosolic domain which has ribonuclease activity (Tirasophon et 

al., 2000). The ribonuclease activity of IRE1α allows it to cleave the mRNA transcript of xbox-

binding protein (XBP1). IRE1α ribonuclease removes a 26 nucleotide intron from the mRNA; 

causing a frame shift in the XBP-1 transcript and a change in size from 261 to 376 amino acids 

(Yoshida et al., 2001). IRE1α cleavage of xbp1 mRNA leads to selective translation by the 

aforementioned phosphorylated eIF2α. XBP1 is a potent transcription factor that binds the 

consensus sequence CCAATN9CCACG, known as the ERSE sequence. ERSE is located 

upstream of many of the UPR regulated genes involved in protein folding, chaperone function 

and ER homeostasis (Yoshida et al., 1998). XBP1 may also bind the unfolded protein response 

element (UPRE) [TGACGTGG/A], which also lies upstream of UPR associated proteins (Wang 

et al., 2000; Yoshida et al., 2003). IRE1α may also use its ribonuclease activity to degrade 

specific mRNAs, relieving the strain on peptide folding and translation (Hollien and Weissman, 

2006). 

ATF6α release from the ER membrane is promoted by BiP dissociation. Upon release ATF6α 

relocates to the Golgi apparatus where it undergoes cleavage and processing by two membrane-

bound proteases; S1P and S2P which remove an N-terminal 50kDa peptide sequentially. This 

cleavage allows p50ATF6α to bind the CCACG portions of the ERSE and ERSE II sequences 
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[ATTGG-N-CCACG] with the help of NF-Y binding the CCAAT region, promoting 

transcription of UPR associated genes (Kokame et al., 2001). 

The promotion of UPR specific genes is associated with an increased need to allow for protein 

degradation through ERAD, protein secretion, amino acid synthesis and cell cycle associated 

proteins. A great number of proteins are differentially regulated and have been characterised in 

several organisms. 

4.1.4 The UPR and disease 

The unfolded protein response is a complex mechanism for maintaining cellular homeostasis 

and is prone to disruption and malfunction. A wide range of insults can trigger the UPR, making 

the likelihood of its involvement in disease pathology quite high. Some of these triggers and 

diseases are explored in more detail below.  

4.1.4.1 Hyperhomocysteinemia  

Hyperhomocysteinemia and lipid metabolism perturbations are both risk factors for 

atherosclerosis. Hyperhomocysteinemia can trigger the UPR (Outinen et al., 1999) and lead to 

problems in lipid regulation and cholesterol synthesis (Hamelet et al., 2007; Werstuck et al., 

2001). Hyperhomocysteinemia also contributes towards liver steatosis, large vacuoles of lipids 

developing within hepatic tissue. Homocysteine is believed to regulate lipid synthesis and 

scavenging through the protein SREBP and the UPR (Kaplowitz and Ji, 2006).  

Excess exogenous and endogenous sources of saturated fatty acids have been shown to trigger 

the UPR in S. cerevisiae (Pineau et al., 2009). There may be a link between the UPR and the 

pathology of diseases associated with a high fat diet, such as cardiovascular disease and 

diabetes. It has been shown that cholesterol overloading has the ability to induce the UPR, and 

that atherosclerotic plaque growth and macrophage apoptosis may be an impact of this (Devries-

Seimon et al., 2005; Tabas et al., 2007). The apoptosis regulator CHOP is thought to play a 

positive role in late stage atherosclerosis plaque growth and necrosis (Thorp et al., 2009). 
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Figure 4.1. The unfolded protein response. 
A. Repressed state of the UPR. Proximal sensors ATF6, PERK and IRE1 remain inactivated on the 
endoplasmic reticulum membrane whilst bound to the ER chaperone BiP. Increases in misfolded 
proteins, red shapes, promotes BiP disassociation from membrane proteins. B. Activation of the 
unfolded protein response. Increases in misfolded proteins cause the disassociation of BiP away from 
the proximal sensors on the ER membrane. IRE1 and PERK dimerise and auto-phosphorylate on 
activation. IRE1 can then cleave xbp-1 mRNA. PERK phosphorylates the transcription factor Nrf2 and 
translation control protein eIF2α, purple circles. eIF2α attenuates general translation whilst activating 
translation of UPR specific transcripts such as ATF4 and XBP1. ATF6 translocates away from the ER and 
is cleaved by S1P and S2P proteases on the Golgi. ATF6 50kDa fragment then activates transcription 
with NF-Y. Transcription activates UPR specific genes controlling ER homeostasis and protein folding 
control, such as BiP. 
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4.1.4.2 Diabetes 

Diabetes is caused by a lack of, or lack of response to, insulin. Insulin is secreted from β-islet 

cells to increase cellular glucose uptake. Long and short term changes in glucose availability 

and subsequent insulin demand require plasticity in the β-cells. This demand is placed on the 

ER for maintaining efficient levels of insulin peptide for secretion. Any changes in the UPR 

homeostasis mechanism may lead to dysfunction. Wolcott-Rallison syndrome is a condition in 

which sufferers develop type 1 diabetes, growth retardation and neurological disorders (Iyer et 

al., 2004). It has been mapped to mutations in the PERK gene (Delepine et al., 2000). The 

inability of PERK to function as an activator of translational repression leads to a continual 

translation of peptides despite the inability to fold them. This activates apoptosis and leads to β-

cell death and diabetes (Zhang et al., 2002). Interestingly mice with eIF2a S51A mutations, the 

phosphorylation site in response to stress, also show diabetic phenotypes on a high fat diet. 

Homozygous mice die in embryogenesis due to β-cell deficiency whilst heterozygotes are prone 

to obesity and developing type 2 diabetes (Scheuner et al., 2001; Scheuner et al., 2005).In 

addition UPR markers have been shown to be upregulated in obese, type 2 diabetic patients 

(Boden et al., 2008). 

Insulin resistance may be mediated through converging pathways with ER stress. Insulin 

receptor (IRS1) gets phosphorylated by JNK (Aguirre et al., 2000; Lee et al., 2003). JNK is a 

target of IRE1 mediated activity on ER stress (Urano et al., 2000). Hyperphosphorylated PERK 

and eIF2α have been found in the liver and adipose tissue of obese mice, and have been shown 

to induce JNK activation (Ozcan et al., 2004). Activation of the JNK pathway increases insulin 

resistance.  XBP1 deficient mice develop similar phenotype to type 2 diabetes. These findings 

implement the UPR in the development of Type 1 and 2 diabetes and a link to obesity. 

Seipinopathy describes a range of neurological disorders caused by the misfolded, ER resident, 

glycoprotein Seipin. Seipin is a transmembrane protein of unknown function (Lundin et al., 

2006). Mutations in the N-glycosylation regions of Seipin can lead to misfolding and 

aggregation (Windpassinger et al., 2004). ER stress may be the process which eventually leads 

to neuronal cell death. Mutant protein expression induces apoptosis, and expression of mutant 

Seipin causes upregulates UPR markers (Ito and Suzuki, 2007). They also form cell inclusion 

bodies in vitro (Ito et al., 2008), although this has not been demonstrated in vivo.  

4.1.5 The UPR in C. elegans  

Although the components and regulation of the unfolded protein response remain highly 

conserved between organisms, there are differences that are specific to C. elegans and processes 

that have been further examined using this model organism. These extra details are addressed in 

the following sections. An overview of the C. elegans UPR is given below (Figure 4.2). 
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Figure 4.2. The UPR network of protein interactions in C. elegans. 
Schematic network representation of the events controlling the UPR based on evidence from C. 
elegans studies. Proteins given in blue circles with black (non-lethal on KO) or red (lethal on KO) 
outline. Mitochondria highlighted in pink, nucleus in light blue, Golgi in yellow and ER in green. Dotted 
line representative of membrane lipid bilayer. Arrows indicative of interaction events. Blue rectangles 
in nucleus indicate transcription events. Scissors indicate splicing or modification event.   

4.1.6 Endoplasmic Reticulum-Associated Degradation (ERAD)  

On activation of the UPR one of the initial responses is to remove and recycle the offending 

misfolded proteins from the ER. The process of ERAD works to remove proteins from the ER 

by retrotranslocation before targeted destruction by the proteasome. Misfolded proteins are 

targeted by chaperones and localised to the ER membrane where SEC61 and accessory proteins, 

such as Derlin and p97, can transport the peptide out by retrotranslocation (Vembar and 

Brodsky, 2008). Removal by SEC61 initiates targeted ubiquitination by membrane bound 

proteins such as gp78, parkin, RNF5/RMA1 and HRD1. 

The ERAD protein JNK-associated protein (JAMP) promotes proteasome localisation to the ER 

and links the removal of misfolded proteins to their subsequent destruction (Tcherpakov et al., 

2008).  JAMP is a membrane bound protein with its N-terminal in the ER lumen interacting 

with ERAD components, whereas the C-terminal remains cytosolic, associating with 

proteasome subunits RPT4 & RPT6. JAMP associates with proteasomal subunits during both 

normal and stressed conditions. Proteasome binding is negatively regulated by RNF5 

ubiquitination of JAMP (Tcherpakov et al., 2009). In addition JAMP interacts with JNK and 
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modulates its activity (Kadoya et al., 2005). JAMP mutants have delayed development on 

exposure to ER stressors and are hyper sensitive to tunicamycin. Mutants also show higher basal 

levels of ER stress; similar to Sel1, Derlin and Ero1 mutants (Tcherpakov et al., 2008). 

When misfolded proteins are retrotranslocated from the ER via SEC61 they are subjected to 

ubiquitination, ready for proteasomal degradation (Kostova et al., 2007). C. elegans contain 

three E3 ubiquitin ligases HRD1, HRDL-1 and MARC-6. These are transmembrane, ring finger 

proteins that share homology to ubiquitin ligases in yeast and humans. HRD1, HRDL-1 and 

MARC-6 double and single mutants affect growth and share phenotypes that suggest a role in 

protein folding. It is believed that these proteins play a role in ERAD mediated ubiquitination 

(Sasagawa et al., 2007). Of the E3 ligases only HRD1 interacts with HSP-3 and HSP-4 (C. 

elegans homolog of BiP) and p97. C. elegans contains two homologs of p97 (cdc-48.1 & cdc-

48.2). p97 forms a homo-hexamer pore at which its N-terminal domain interacts with regulatory 

proteins (Mouysset et al., 2006). The interaction between p97, BiP and HRD1 may help 

coordinate the protein removal with targeted destruction, although the role of the homologs in 

this process remains unclear. These interactions may be of specific importance during 

development, HSP-3 is involved in intestinal development and HSP-4 in gonad formation 

(Sasagawa et al., 2007)  

4.1.6.1 UPR Stress Responses in C. elegans 

The ire-1:xbp-1 arm of the UPR is consistently needed to activate response genes to stress and 

can be seen in C. elegans to be one of the main, yet remarkably diverse transcriptional 

activators. Shen et al. looked at the changes in mRNA in UPR mutants, identifying 202 genes, 

of which 84% of these genes regulated by ire-1 and xbp-1 (Shen et al., 2005). Interestingly the 

same paper identifies a novel bZIP transcription factor CREBh, which shares homology with 

CREB and ATF family members, under the control of the ire-1:xbp-1 arm. The role of CREBh 

in response to unfolded proteins is of interest and has been discussed earlier. 

Calreticulin is a calcium ion binding protein localised in the ER and which is essential for 

normal physiological conditions. Calreticulin is upregulated on heat stress and 7% ethanol 

treatment (Park et al., 2001). Calreticulin functions to maintain protein folding and calcium 

homeostasis in the ER, and its function is partially redundant with calnexin (Lee et al., 2005). 

Calreticulin (crt-1) mutants are hypersensitive to tunicamycin, and CRT1 is induced by both 

tunicamycin and heat stress.  The promoter region of crt-1 contains two XBP1 binding sites and 

an ERSE sequence. RNAi analysis suggests that crt-1 regulates its own expression in a negative 

feedback mechanism, and in addition regulates levels of pdi-2 and pdi-3, disulfide bond forming 

chaperones (Lee et al., 2007; Lee et al., 2006). 

Calcium levels are an important factor in ER homeostasis.  Store operated calcium entry 

(SOCE) is activated on ER calcium depletion and is an essential to refill ER calcium stores and 
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aide calcium signalling. Human STIM1 and STIM2 have been identified as mediators SOCE 

and function to differentially modulate calcium channels (Liou et al., 2005; Soboloff et al., 

2006). A STIM1 homolog is present in C. elegans. Efflux of calcium out of the ER can trigger 

the UPR as well as RNAi of calcium pumps that restore ER calcium levels. Knockout of STIM1 

does not trigger the UPR and is unlikely to play a role in refilling the ER calcium stores (Yan et 

al., 2006). 

Small GTP binding proteins of the RAS super-family may also have a role in ER stress. 

Knockout of SAR1 by RNAi induces the UPR. CDC42 and CRP1 are required for UPR 

activation as RNAi knockdown leads to reduced levels of ER stress on tunicamycin treatment 

(Caruso et al., 2008). CDC42 has been implemented in Golgi to ER vesicle trafficking, whilst 

CRP1 has a role in membrane trafficking in epithelial cells (Jenna et al., 2005; Luna et al., 

2002). Interaction analysis for CRP-1 using GST pull downs with mass spectrometry 

identification revealed interactions with C. elegans p97 (CDC48.1/2) ATM1, HIM6 (BLM 

homolog) and WRN. This suggests that the function of CRP-1 might be involved in 

transcriptional activation through chromatin remodelling. Mutants in crp-1, atm-1 and cdc-48.1 

all show hyper-sensitivity to tunicamycin (Caruso et al., 2008). 

The UPR may not be limited to purely ER mediated activation, and may be triggered separately 

in the mitochondria (mtUPR). The mitochondrial stress response activates genes responsible for 

chaperone and folding proteins independent from ER stress response (Zhao et al., 2002). 

Mitochondrial stress is regulated separately from ER stress by the AP-1 promoter (Aldridge et 

al., 2007). This stress response is also present in C. elegans (Yoneda et al., 2004). DVE1 and 

UBL5 are found in the nucleus of mitochondria rich cell types and are required for the 

activation of the UPR independently of ER stress. The C. elegans ClpP homolog (clpp-1) 

controls the translocation of DVE1 to the nucleus independently of UBL-5. clpp-1 RNAi 

knockout stops activation of UBL-5 and subsequent DVE1/UBL5 complex formation (Haynes 

et al., 2007). In bacteria ClpP is responsible for proteolysis of a repressor of the stress response 

(Frees et al., 2007), and it is possible that this mechanism may have been conserved in 

eukaryotic mitochondria. The activation of DVE1 and UBL5 by ClpP may represent a signal 

transduction pathway for mitochondrial protein stress. 

4.1.6.2 UPR influences on behaviour 

It is not currently clear whether the UPR influences or outputs any behavioural response, 

although it appears that perturbed pathways that activate the UPR may lead to behavioural 

changes.  

Hereditary spastic paraplegia (HSP) is an inherited neurological disorder characterised by 

spasticity in the lower limbs. The NIPA1 gene is implicated in HSP onset and disease 

progression (Rainier et al., 2003). The C. elegans homolog of NIPA1 shares ~45% identity with 
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the human homolog and, importantly, shares the disease causing site giving rise to the HSP 

phenotype in humans (Zhao et al., 2008). Using mouse cells Zhao et al. were able to show 

mutant NIPA1 retention in the ER due to protein misfolding. Expression of mutant NIPA1 in C. 

elegans gave a phenotype comparable to human HSP.  Mutant worms were fully paralysed by 

day 9, with paralysis progressing from the posterior to anterior. Expression of mutant NIPA1 in 

xbp-1
-/-

 background produced a complete rescue of paralysis and of longevity, indicating a role 

of the UPR in the progression of this disease.   

AMPA-type glutamate receptors are one of the main types of excitory signalling components in 

the CNS. The function of these receptors relies on the correct subunit assembly and processing, 

which is mediated by the ER (Greger et al., 2007). Neurons in C. elegans require the UPR 

components to move receptor subunits through the ER.  

ire-1/xbp-1 mutations are associated with a defective localisation of GLR-1 resulting in 

increased ER retention (Shim et al., 2004). GLR-1 is required for mechanosensory neurons 

(Maricq et al., 1995), and ire-1/xbp-1 mutants are deficient in nose touch response in much the 

same way as glr-1 mutants (Shim et al., 2004). This supports the hypothesis that the UPR can 

impact processing and expression of major determinants of neuronal function and has the 

potential to respond to a modified environment and/or pharmacological inputs. 

 

4.1.7 Ethanol and the UPR 

4.1.7.1 Acute effects 

Ethanol is believed to be an inducer of endoplasmic reticulum stress and a cause of the UPR. It 

is unknown whether ethanol directly causes the UPR or triggers it as a secondary consequence 

of differential targets.   

Several studies have shown HSP4 (GRP78) the sensor of unfolded protein in the ER and an 

indicator of UPR activation are upregulated in response to ethanol treatment. These studies have 

monitored transcript expression increases on ethanol treatment. NG108-15 neuroblastoma x 

glioma cells grown in the presence of 100mM ethanol for 24 hours caused a 2-fold increase in 

the abundance of hsp-4 mRNA (Miles et al., 1994). In a follow up study the group shows that 

ethanol also potentiates an upregulation of hsp-4 mRNA by thapsigargin, tunicamycin and 

brefeldin A (Hsieh et al., 1996). Increases in hsp-4 mRNA after 100mM ethanol treatment were 

seen at 24h in SH-SY5Y cells, and in week 1 of an 8 week chronic treatment protocol. This 

increase was not observed at a protein level on acute and chronic ethanol treatment (Muhlbauer 

and Rommelspacher, 2003). Ethanol treatment of SH-SY5Y cells with 400 mg/dl over 12 hours 

showed no increase in ER stress proteins such as HSP4 and CHOP. Ethanol could however 

potentiate an ER stress response to tunicamycin and thapsigargin treatment by means of ROS 

production. Potentiation by ethanol could be lost on co-treatment with anti-oxidants (Chen et al., 
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2008). Increases in both hsp-4 mRNA and protein were observed in the liver and brain of rats 

fed a 5g / kg diet, although this was not observed in rats fed 2g / kg diet (Tunici et al., 1999). 

The upregulation of HSP4 a marker for ER stress and UPR induction is likely to be induced 

with chronic, high concentration ethanol treatment. The mechanism of induction may be 

translationally regulated as whilst hsp-4 mRNA is upregulated on ethanol treatment, this affect 

is only seen at a protein level on high concentration and chronic treatment. 

Chronic ethanol use has been implicated in the pathology of several diseases through activation 

of an unfolded protein response. Hyperhomocysteinemia is a condition of increased serum 

homocysteine and has been shown to trigger the UPR on chronic alcohol feeding (Kaplowitz 

and Ji, 2006). Hyperhomocysteinemia is a risk factor in a number of disorders such as 

atherosclerosis and hepatosteatosis. Hyperhomocysteinemia is believed to play a role in lipid 

dysregulation through the protein SREBP. Triggering the UPR hyperhomocysteinemia activates 

the cleavage of SREBP through S1P and S2P, similar to ATF6. Ethanol is believed to increase 

homocysteine levels by down regulating methionine synthase. Ethanol mediated liver toxicity 

and steatosis can be prevented by supplementation of diet with betaine (Esfandiari et al., 2005). 

The conversion of homocysteine to adenosylmethionine by methionine synthase is a folate 

dependent process. ER stress may also be exacerbated by the activation of CYP2E and oxidative 

stress through ethanol metabolism and ROS generation.  

4.1.7.2 UPR, ethanol and C. elegans 

Ethanol has also been shown to trigger the unfolded protein response in C. elegans. Using a 

concentration of 7% ethanol (1.4 M) C. elegans is completely paralysed until recovery on 

treatment withdrawal, from which 50% of worms survive. Using 7% ethanol microarray data 

revealed that several groups of transcripts were upregulated; amongst them were several 

indicators of an unfolded protein response (Kwon et al., 2004). It has also been shown that 7% 

ethanol at 16°C for 6 hours is able to trigger an unfolded protein response using the reporter 

system phsp-4::GFP (Kwon et al., 2004).  

The unfolded protein response is implicated in a range of disorders and is activated on a number 

of stresses. The unfolded protein response is an evolutionary conserved mechanism for coping 

with stress which extends to the model organism C. elegans. The effects of ethanol on C. 

elegans, discussed in Chapter 1, exhibit differential behavioural responses depending on the 

method of conditioning. These are both time and dose dependent, with the severity of the 

behavioural response increasing with dose and time conditioned. Ethanol has been shown to 

induce a stress response both in mammals and in C. elegans (Kaplowitz and Ji, 2006; Pandol et 

al., 2010; Uccelletti et al., 2004). The aim of this research is to investigate whether the ethanol 

conditioning paradigms used to elicit a behavioural response also activate physiological stress 

response. If a stress response is activated whether this modulates the behavioural response to 

ethanol in C. elegans. 
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4.1.7.3 Motivation for current work 

Provoked by published information and our own proteomic investigation pointing to a modified 

ER response during ethanol conditioning led us to investigate using the hsp-4 (BiP/GRP78) 

promoter linked GFP reporter array in C. elegans as a mechanism for monitoring. In addition, 

we took advantage of the established behavioural assays to investigate if the hsp-4 induced 

pathways are involved in the behavioural consequence of withdrawal. This allowed us to 

integrate aspects of existing data to test potential for new pathways to be involved in ethanol 

induced behaviours. 

4.2 Methods 

4.2.1 Nematode strains.  

As detailed in 2.2.2.2 

4.2.2 Worm preparation.  

As detailed in 2.2.2.3 

4.2.3 Escherichia coli OP50 culture.  

As detailed in 2.2.2.1 

4.2.4 Worm race assay.  

As detailed in 2.2.3.1 

4.2.5 Ethanol test.  

As detailed in 2.2.2.4 

4.2.6 UPR assay.  

Culture plates (3cm) hand poured with 4.5 ml of NGM agar and left 24h to set. Tunicamycin 

(Sigma-Aldrich) was diluted to 100x solution in DMSO before being added to molten NGM 

media plates to give a final concentration of 5 μg ml
-1

 or 30 μg ml
-1

. Comparative amounts of 

DMSO (0.01%) were added to molten NGM control plates. Dried plates were seeded with 50 μl 

of Escherichia coli OP50, standard nematode food, at 0.8A [OD600] and left 24h. Selected 

seeded plates were treated with ethanol (99.9%) to give final concentrations as indicated. Plates 

were left 24h for the ethanol to equilibrate across the agar. Larval stage 4, zdIs4 worms were 

separated 1 day before treatment and incubated 24h at 20°C. L4+1 day worms were transferred 

to treatment plates for 24 hours. Images were recorded using a CCD camera mounted to a 

fluorescent microscope at described intervals. Image contrast was normalised to tunicamycin, 

GFP positive samples. 
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4.2.7 GFP fluorescence in vivo.  

6cm plates were seeded with 50 μl of E. coli OP50 at 0.8A [OD600] and left 24h to settle. Plates 

were treated with either M9 buffer 100ml, Ethanol [250mM] or iso-propanol [250mM] at a plate 

ratio of 4:1:1 respectively. Larval stage 4, pmyo2::GFP (slo-1 neuronal rescue) worms were 

separated 1 day before treatment and incubated 24h at 20°C. L4+1 day worms were transferred 

to M9 plates for 5 min. Images were recorded using a CCD camera mounted to a fluorescent 

microscope after 5 min. Worms were then transferred to test plates of either M9, ethanol or iso-

propanol for 5 min before photographing.  

4.2.8 eGFP fluorescence in vitro.  

EtOH solutions of various concentrations were made by serial dilution in MQ H2O. The 

different solutions of EtOH were added 1:1 to a solution of soluble eGFP (purified from GST-

eGFP diluted in MQ H2O) in a 1.5ml reaction tube. Three 100µl aliquots of this were 

transferred to the wells of a black-walled, clear-bottomed 96-well plate. The plate was read in a 

Tecan-Sapphire fluorescence plate reader using FITC excitation/Emission settings (Ex485, 

Em535, 20nm bandwidth). Each point is the mean of the three wells. The 1st scan (black line) 

was done initially @ 15:56, the other scans were made subsequent to this (@ 16:47, 16:49 and 

16:50 respectively) using the same plate-reader settings after pipetting out the 2nd experiment 

(the plate was not kept in the dark). These were provided by Tom Carter and Matthew Hannah, 

Molecular Neuroendocrinology, Mill Hill. 

4.3 Results 

Ethanol has been shown to be a source of ER stress in both mammals and C. elegans. Unfolded 

protein response was monitored in C. elegans using the feedback mechanism of HSP4/BiP 

induction on ER stress. This was done using a GFP tagged HSP4 protein ER stress increases 

HSP4 protein levels and the level of fluorescence in vivo. This line is an integration of a HSP-4 

promoter that drives expression of GFP upon ER production. Under control conditions the level 

of expression in well fed worms is too low to produce a detectable signal. In contrast growing 

worms on plates laced with tunicamycin shows a rapid and sustained induction of expression. 

These preliminary observations indicate that this reporter can be used to investigate if ER stress 

(see Figure 4.3 for example worms).  

4.3.1 Treatment of worms with ethanol show no induction of an UPR 

Fifty larval stage 4 worms + 1day worms were treated with tunicamycin 30 μg ml
-1 

positive 

control
 
ethanol 450mM, DMSO vehicle control and no treatment for 24 hours and then 

withdrawn from treatment. Treatment with the N-glycosylation inhibitor Tunicamycin at 30 μg 

ml
-1

 activates increased GFP fluorescence compared to the basal levels of no treatment and 

DMSO vehicle controls. Ethanol intoxication showed no detectable increase in fluorescence 
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activate the unfolded protein response above the basal levels of controls at the 6 (Fig 4.3 (A)) 

and 24 h time limits (Fig 4.3 (B)). Ethanol treatment also fails to induce a response on treatment 

withdrawal (Fig 4.3 (C)). Tunicamycin treatment does induce or retain a persistent UPR on 

withdrawal from the pharmacological insult.  

Ethanol intoxication shows a behavioural phenotype (Figure 4.4). This is manifest in the 

withdrawal response when the worms were removed from ethanol and tested in a food race. The 

removal from treatment by ethanol, tunicamycin and controls continue to show a behavioural 

phenotype consistent with expected results when assayed in a food race paradigm. Control 

Worms show 87% and 81% of the population reaching the food after a 2 hour period 

respectively consistent with previous data (see chapter 2). In contrast worms treated with 

ethanol for 24h and then withdrawn show 17% of the population reaching the food reward after 

2 hours. Tunicamycin treated worms also show a deficit in the percentage of the population 

reaching the food when subsequently tested in the food race in the absence of tunicamycin after 

2 hours at 46%.  This is less than control worms but better than the ethanol withdrawn worms. 

This suggests that the worms under unfolded protein stress may exhibit a behavioural 

phenotype.  
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Figure 4.3. zdIs4 (phsp4::GFP) worms after ethanol conditioning at 6 hours, 24 hours and 1 hour post 
treatment withdrawal. 
zdIs4 (phsp4::GFP) worms photographed under 484 nm fluorescent light at 35x magnification. (A) 
Worms at 6 hours after treatment with ethanol 450mM (EtOH), tunicamycin 30 μg ml

-1
 (TUN),

 
DMSO 

0.01% (DMSO) and no treatment (Control). (B) Worms at 24 hours after treatment with ethanol 
450mM (EtOH), tunicamycin 30 μg ml

-1
 (TUN),

 
DMSO 0.01% (DMSO) and no treatment (Control). (C) 

Worms at 1 hour 10 min post 24 hour treatment with after treatment with ethanol 450mM (EtOH), 
tunicamycin 30 μg ml

-1
 (TUN),

 
DMSO 0.01% (DMSO) and no treatment (Control).  
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Figure 4.4. zdIs4 (phsp-4::GFP) worms raced over 5 cm towards a food reward. 
Population reaching food is recorded every 10 min for 2 hours. Worms conditioned for 24 hours and 
withdrawn from treatment of: ethanol 450mM, tunicamycin 30 μg ml

-1
, DMSO (0.01%) and no 

treatment (control) before race. 87% untreated worm population, 81% DMSO treated worms, 46% 
tunicamycin treated worms and 17% ethanol treated worms reached the food reward after 2 hours.  

4.3.2 Treatment of worms with ethanol and tunicamycin does not potentiate an 

UPR 

Initial results suggested that the addition of ethanol to C. elegans at 450mM was insufficient to 

trigger an unfolded protein response (Fig 4.3). It was investigated whether ethanol was enough 

to prime a stress response on dual treatment with tunicamycin. It was also investigated whether 

ethanol at higher concentrations than previously used was enough to trigger an unfolded protein 

response.  

20 larval stage 4 + 1 day worms were treated with either ethanol (450mM, 900mM, 1.35M) 

ethanol (450mM)and tunicamycin (5 μg ml
-1

) or a DMSO vehicle control, DMSO. The worms 

were investigated for fluorescence after 6 hours (Fig 4.5) and 24 hours (Fig 4.6). Ethanol at 

450mM alone was unable to induce a GFP positive stress response beyond basal levels of 

controls after 6 hours (Fig 4.5 (A)) and 24 hours (Fig 4.6 (A)). Treatment with ethanol and 

tunicamycin showed no increased GFP linked stress response beyond controls at both 6 hours 

(Fig 4.5 (C)) and 24 hours (Fig 4.6 (C)). This suggests that ethanol is unable to potentiate a 

stress response by tunicamycin treatment for 24 hours.  

Treatment of worms with increased ethanol concentrations 900mM and 1.35M showed no HSP-

4 induction at the 6 hour time period (Fig 4.5 (B)). At 24 hours 1.35M ethanol may induce a 

slight increase in GFP and may indicate a low level stress response (Fig 4.6 (B)).  
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Figure 4.5. zdIs4 (phsp4::GFP) worms after conditioning for 6 hours with increasing ethanol 
concentrations and dual tunicamycin treatment. 
zdIs4 (phsp4::GFP) worms imaged under 484 nm fluorescent light at 35x magnification. (A) Worms at 6 
hours after treatment with ethanol 450mM (EtOH), tunicamycin 30 μg ml

-1
 (TUN),

 
DMSO 0.01% 

(DMSO) and no treatment (Control). (B) Worms at 6 hours after treatment with ethanol 450mM 
(EtOH), 900mM (EtOHx2), 1.35M (EtOHx3) and tunicamycin 30 μg ml

-1
 (TUN). (C) Worms at 6 hours 

after treatment with ethanol 450mM (EtOH), tunicamycin 5 μg ml
-1

 (TUN), ethanol 450mM and 
tunicamycin 5 μg ml

-1
 (EnT), ethanol 450mM and DMSO 0.01% (EnD). 
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Figure 4.6. zdIs4 (phsp4::GFP) worms after conditioning for 24 hours with increasing ethanol 
concentrations and dual tunicamycin treatment. 
zdIs4 (phsp4::GFP) worms photographed under 484 nm fluorescent light at 35x magnification. (A) 
Worms at 24 hours after treatment with ethanol 450mM (EtOH), tunicamycin 30 μg ml

-1
 (TUN),

 
DMSO 

0.01% (DMSO) and no treatment (Control). (B) Worms at 24 hours after treatment with ethanol 
450mM (EtOH), 900mM (EtOHx2), 1.35M (EtOHx3) and tunicamycin 30 μg ml

-1
 (TUN). (C) Worms at 24 

hours after treatment with ethanol 450mM (EtOH), tunicamycin 5 μg ml
-1

 (TUN), ethanol 450mM and 
tunicamycin 5 μg ml

-1
 (EnT), ethanol 450mM and DMSO 0.01% (EnD). These results are representative 

images from three independent experiments with 20 worms per treatment. 
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4.3.3 Investigating the time dependent effects of ethanol treatment on the UPR 

Treatment with ethanol 450mM failed to produce an assayable unfolded protein response at the 

6 hour and 24 hour time points (Fig 4.3). Treatment with ethanol and tunicamycin combined 

also failed to potentiate an unfolded protein response at 6 hours (Fig 4.5) and 24 hours (Fig 4.6). 

It was the investigated whether the UPR is induced on acute ethanol and ethanol and 

tunicamycin combined treatments over a 6 hour period (Fig 4.7).  

L4 +1 worms were treated with ethanol 250mM, tunicamycin 5 μg ml
-1

, DMSO vehicle control, 

heat shock (28°C), ethanol 250mM and tunicamycin 5 μg ml
-1

, ethanol 250mM and DMSO 

0.01% control and no treatment for 24 hours. Samples were photographed at 1 hour intervals for 

6 hours (Fig 4.7) and then again at 24 hours and 1 hour post treatment withdrawal (Fig 4.8). 

Heat shock was stopped at 6 hours  

Consistent with previous results ethanol showed no induction of GPR and, by extension, the 

UPR at 1 hour intervals for 6 hours, or at 24 hours. In addition there was no induction following 

a 1 hour post withdrawal. Tunicamycin showed an induction of GFP/UPR at 4 hours onwards. 

Ethanol and tunicamycin combined treatment also showed induction at 4 hours onwards and 

was indistinguishable from tunicamycin only treatment. Induction remained constant on 

withdrawal from treatment for both ethanol and tunicamycin and tunicamycin only samples. 

Heat shock treatment induced the UPR from the 2 hour time point until the 6 hour as indicated 

by the relative increase in the organism’s fluorescence. After removal from the heat shock the 

increased florescence had dissipated by the 24 hour time point. An induction of the UPR by heat 

shock treatment confirms that the strain is not specific for tunicamycin treatment only and that 

ethanol fails to induce an unfolded protein response and potentiate ER stress induced by 

tunicamycin. 

Withdrawal from treatment induces a behavioural response in worms (Fig 4.9). 68% worms 

receiving no treatment (control) reached the food reward after 2 hours. Tunicamycin, DMSO 

and heat shock treated worms had slightly less of the population reaching the food reward at 

51%, 54% and 54% respectively. This is in contrast to ethanol treated worms which only 7% of 

the population reached the food after 2 hours. Ethanol and DMSO combined treated worms had 

4% of the population reach the food similar to ethanol only treatment. Worms treated with 

ethanol and tunicamycin treatment had no worms make the food reward after 2 hours which 

suggest that the reduced locomotory phenotype is additive and produced through distinct 

mechanisms.  
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Figure 4.7. zdIs4 (phsp4::GFP) worms at 1 hour intervals for 6 hours with ethanol and dual tunicamycin 
treatment. 
zdIs4 (phsp4::GFP) worms photographed under 484 nm fluorescent light at 35x magnification. Worms 
treated with ethanol 250mM (EtOH), tunicamycin 5 μg ml

-1
 (Tun),

 
DMSO 0.01% (DMSO), ethanol 

250mM and tunicamycin 5 μg ml
-1

 (EnT), ethanol 250mM and DMSO 0.01% (EnD), heat shock 28°C 
(28°C) and no treatment (Con) for 6 hours. Samples analysed every 1 hour for 6 hours representative 
photos shown in rows from left to right (1h, 2h, 3h, 4h, 5h and 6h). Representative of 2 independent 
experiments with 20 worms 
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Figure 4.8. zdIs4 (phsp4::GFP) worms conditioned with ethanol and dual tunicamycin treatment for 24 
hours and 1 hour post treatment withdrawal. 
zdIs4 (phsp4::GFP) worms photographed under 484 nm fluorescent light at 35x magnification. Worms 
treated with ethanol 250mM (EtOH), tunicamycin 5 μg ml

-1
 (Tun),

 
DMSO 0.01% (DMSO), ethanol 

250mM and tunicamycin 5 μg ml
-1

 (EnT), ethanol 250mM and DMSO 0.01% (EnD), heat shock 28°C 
(28°C) and no treatment (Con) for 24 hours (24) and withdrawal, 1 hour after 24 hour treatment 
(With). 
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Figure 4.9. Food race of zdIs4 worms after 24 hours ethanol conditioning. 
zdIs4 (phsp-4::GFP) worms raced over 5 cm towards a food reward. Population reaching food is 
recorded every 10 min for 2 hours. Worms conditioned for 24 hours and withdrawn from treatment 
of: ethanol 250mM (EtOH), tunicamycin 5 μg ml

-1
 (tunicamycin),

 
DMSO 0.01% (dmso), ethanol 250mM 

and tunicamycin 5 μg ml
-1

 (EtOH + Tun), ethanol 250mM and DMSO 0.01% (EtOH + DMSO), 6 hours 
heat shock 28°C (HeatShock) and no treatment (control). 68% of the control worm population made 
the food reward after 2 hours. 51% tunicamycin, 54% DMSO and 54% heat shock treated worm 
populations made the food. Ethanol treated worms had 7% of the population reach the food. Ethanol 
and DMSO treated worms had 4% of the population reach the food and ethanol and tunicamycin 
treatment had no worms make the food reward after 2 hours. 

 

4.3.4 Investigating the quenching of GFP by ethanol 

The results from the zdIs4 (phsp-4::GFP) suggest that ethanol does not play a role in triggering 

the unfolded protein response in C. elegans in behaviourally relevant treatments. It also plays no 

role in potentiating an UPR response to tunicamycin treatment. These results may have been 

due to a role of ethanol in changing the fluorescence of GFP through altered protein 

conformation or misfolding, masking a positive result. Previous literature has highlighted 

problems using a GFP reporter construct similar to the zdIs4 strains and suggested that ethanol 

may interfere with the protein. To investigate the likelihood of false negative results the 

fluorescence of pmyo2::GFP tagged C. elegans were compared under ethanol and non-ethanol 

conditions. Worm strains used were neuronal rescue slo-1 mutants in the reporter background. 

slo-1 should not alter GFP fluorescence, and ethanol has not been reported to alter expression of 

the GFP construct array. The pmyo2::GFP array is expressed solely in the pharynx of C. 

elegans.  
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larval stage 4 + 1 day worms were treated with M9 saline buffer control, 240mM ethanol or iso-

propanol for 5 min after transfer from 5 min incubation in M9 saline buffer. Iso-propanol 

controls were included as an indicator of solvent effect on fluorescence. Samples were 

photographed before and after transfer to detect obvious changes in GFP fluorescence (Fig 

4.10). The experiment was repeated twice under different cameras, hence the change in colour. 

No obvious change in fluorescence can be detected between the samples in any of the three 

treatment conditions.  

 

 M9 EtOH PrOH 

5min 

BEFOR

E 

      

5min 

AFTER 

      

Figure 4.10. Visual comparison of GFP expressing worms before  and after ethanol and iso-propanol 
treatment. 
pmyo2::GFP worms photographed under 484 nm fluorescent light at 35x magnification. Two sets of 
worm groups were treated with either M9 control (M9), 240mM ethanol (EtOH) or iso-propanol 
(PrOH) for 5 min after 5 min incubation in M9 buffer. Worms after 5 min M9 (BEFORE) and 5 min 
treatment (AFTER) photographed.  No difference is observed in fluorescence on control, ethanol or 
iso-propanol treatment. Repeated experiments differ in camera type only.   

 

4.3.4.1 In vitro GFP quenching by ethanol 

An investigation into the changing fluorescence of eGFP in vitro on increasing ethanol 

concentrations was carried out by the team at Mill Hill (unpublished, Personal correspondence). 

Increasing concentrations of ethanol made by serial dilution were mixed 1:1 with eGFP and 

sampled three times. Samples were read from a black-walled, clear bottomed 96 well plate and 

read with a Tecan-Sapphire fluorescence plate reader (Fig 4.11). 

Initial ethanol concentrations reduce the fluorescence of eGFP by approximately 10-20% until 

recovery at ~250mM. Fluorescence then increases progressively by approximately 70% to 

100% on ethanol concentrations up to 2.8M. The difference between scan results is likely due to 

photo bleaching between scan runs. The 1st scan was done initially at 15:56, whilst the other 

scans were made subsequent to this at 16:47, 16:49 and 16:50 respectively.  
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Figure 4.11. Fluorescence of eGFP on increasing concentrations of ethanol as read by a Tecan-Sapphire 
fluorescence plate reader. 
Each point is the mean of three samples. Ethanol concentrations below 250mM cause a slight 
reduction on fluorescence by 10-20%, with a progressive increase in fluorescence of ~70-100% up to 
2.8M ethanol. Difference between scans is likely photo bleaching between scan run times. Ethanol 
alone gives no fluorescence under the same settings.  

4.3.5 Behavioural responses to ethanol in hsp-4
-/-

 worms 

Initial investigation shows that hsp-4 is not induced on ethanol treatment and it is unlikely that 

the UPR mediates ethanol withdrawn behavioural phenotype. To confirm the role of the UPR 

marker HSP4 in ethanol mediated behaviour gk514 worms, which possess a mutant inactive 

copy of the hsp-4 gene, were investigated for effect on ethanol response phenotypes. Initial 

results suggest that hsp-4 mutants do not show any difference in ethanol mediated behaviour 

when compared to N2 wildtype worms (Figure 4.12).  
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Figure 4.12. Food race of gk514 and N2 worms on 50mM ethanol, 300mM ethanol and ethanol 
withdrawal. 
gk514 hsp-4

-/-
 and N2 worms raced over 5 cm towards a food reward. Population reaching food is 

recorded every 10 min for 2 hours. gk514 (GK) and N2 (N2) worms treated with either ethanol 50mM 
(Low), 300mM ethanol (High), or conditioned for 6 hours prior to race with 300mM ethanol and raced 
on no ethanol (Withdrawn) or with no treatment (Control). Each point is the mean of 6 repeats ±SE.  

4.4 Discussion 

The unfolded protein response is an adaptive mechanism for coping with cellular stress. Its wide 

acting, plastic response is implicated in the pathology of several diseases. The implication of 

whether the UPR is a consequence or a cause of disease is still to be elucidated. It has been 

implicated in the underlying problems associated with chronic ethanol consumption, particularly 

in hepatic steatosis and the development of fatty liver disease. The down regulation of 

methionine synthase by ethanol is believed to be a trigger for a condition known as 

hyperhomocysteinemia. Hyperhomocysteinemia has been shown to be a trigger for the unfolded 

protein response and can lead to a number of conditions including atherosclerosis. Whilst the 

link between chronic ethanol use and the UPR is being forged, little is known about whether the 

unfolded protein response is an initial cellular response to ethanol stress. Whilst several 

components of the UPR have been shown to be transcriptionally upregulated on ethanol 

treatment, a direct link between acute ethanol response and the UPR is still contentious. The 

model organism C. elegans has been used to dissect the roles of both ethanol treatment and 
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separately the UPR. It has been shown that treatment with ethanol at 7%, enough to cause 

complete paralysis of the worm and LD50 on withdrawal, can trigger the UPR. More subtle, 

behavioural phenotypes can be observed on ethanol treatment in the worm at lower 

concentrations such as intoxication, withdrawal, relief from withdrawal and tolerance. The 

molecular mechanism underpinning these behaviours is of importance in both medical and 

neurological research. If ethanol stress can trigger an unfolded protein response in C. elegans 

then the molecular mechanism may underpin aspects of these the behavioural phenotypes. Much 

of this is likely to arise through homeostatic plasticity which in turn involves molecular 

remodelling of the nervous system. In several models of synaptic plasticity the processing of 

neuronal receptors is important and events at the level of the ER appear salient. This reinforces 

the potential for the ER stress to underpin functional and dysfunctional plasticity associated 

with adaptive states including those that arise in response to ethanol and other addictive drugs. 

4.4.1 Ethanol treatment fails to elicit an hsp4::GFP response in C. elegans  

Evidence from treatment of C. elegans suggests that the unfolded protein response is not 

triggered by treatment with ethanol at behaviourally relevant concentrations.  Treatment with 

ethanol at 450mM for 24 hours failed to induce an hsp-4 promoter driven GFP positive response 

when compared to controls. Withdrawal from ethanol also did not induce a phsp-4::GFP 

response. Withdrawal after 24 hours still elicited a behavioural response as measured by the 

food race assay. Only 17% of ethanol withdrawn worms made it to a food reward after 2 hours 

in comparison to 87% and 81% of the population in negative controls. Interestingly worms 

treated with an insult of tunicamycin at 30 µg ml
-1

, which did trigger an unfolded protein 

response, also produced a behavioural response. Only 46% of tunicamycin withdrawn worms 

made it to the food reward after 2 hours, a larger number than the ethanol withdrawn worms. 

The deficit in locomotion of the tunicamycin withdrawn worms may be a result of the unfolded 

protein response, which was still activated post treatment. Ethanol withdrawn worms which did 

not induce an UPR, showed an inability to commute towards the food reward to a greater degree 

than tunicamycin withdrawn worms. This suggests that the UPR does not play a role in ethanol 

withdrawal mediated behaviour. 

Ethanol does not potentiate a stress response to tunicamycin treatment. Worms treated with 

450mM ethanol and tunicamycin 5 µg ml
-1

 show no increased stress response at 6 and 24 hours 

when compared to separate tunicamycin 5 µg ml
-1

 treatment. If ethanol induced a stress 

response that was at a level too low to detect with the phsp-4::GFP array or worked in a stress 

pathway independent of hsp-4 induction, then ethanol treatment might be expected to prime a 

tunicamycin response. Comparison with tunicamycin 5 µg ml
-1

 control showed no increased 

fluorescence suggesting that it is unlikely that 450mM ethanol induces a UPR. This is also 

repeated in the solo 450mM ethanol treatment. Ethanol treatment at higher concentrations for a 

duration of 24 hours may have induced a small phsp-4::GFP response. 1.35M ethanol shows a 
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slight increase in fluorescence beyond control samples at the 24 hour time point. This ethanol 

concentration is approaching the reported level used to induce an UPR in C. elegans (Kwon et 

al., 2004; Uccelletti et al., 2004). Caution is noted as the concentrations of ethanol used were 

not experimentally verified in this experiment.  

The unfolded protein response is not triggered over a 6 hour time course on 250mM ethanol 

treatment and does not potentiate a UPR in tunicamycin stressed worms. Investigating whether 

an initial early stress response is induced which is missed at the 6 hour time point; treatments 

were monitored every 1 hour for 6 hours, then again at 24 hours and 1 hour post withdrawal. 

Ethanol fails to induce a UPR over 24 hours and at early time points.  

 

4.4.2 Ethanol fails to potentiate an hsp4::GFP response in C. elegans 

Adding weight to earlier results 250mM ethanol also fails to potentiate an UPR to tunicamycin 

induced stress at early, 1-6 h and late, 24 h, time points. Tunicamycin treatment activated the 

UPR at 4 hours which was similarly seen in ethanol and tunicamycin treatment with no 

difference in the level of response. Ethanol and ethanol and tunicamycin treatment combined 

also fail to induce and to prime a stress response on treatment withdrawal. Induction of the UPR 

may have been tunicamycin specific. 6 hours heat shock at 28°C induced a stress response from 

2 hours up until 6 hour point of treatment withdrawal. The UPR failed to persist in the heat 

shocked worms up to the 24 hour time point. Result indicates that phsp-4::GFP response is not 

tunicamycin specific. Worms withdrawn from treatment were assessed in a food race assay. 

68% worms receiving no treatment reached the food reward after 2 hours. Tunicamycin, DMSO 

and heat shock treated worms had slightly less of the population reaching the food reward at 

51%, 54% and 54% respectively. This is in contrast to ethanol treated worms which only 7% of 

the population reached the food. Ethanol and DMSO combined treated worms had 4% of the 

population reach the food, similar to ethanol only treatment. Worms treated with ethanol and 

tunicamycin treatment had no worms make the food reward after 2 hours.  

Worms in this assay had lower population numbers make the food reward after the 2 hours than 

previous race assay. This is likely due to the increased starting population size of the initial 

assay. Of the 150 worms for each treatment, the mean starting the race was 97 worms, a transfer 

efficiency of 65%. For the second assay 60 worms averaged a total population size of 40, 66% 

transfer efficiency. The large numbers of worms increases the worm density at a single spot 

beginning each race. Worms react by a backwards motion and omega turn in response to body 

touch. Increasing the worm density at a specific place may increase the time spent in a 

locomotory response to repel away from the population spot beginning the race. This suggests 

caution when comparing the two assays. We do see a similar range of phenotypes between the 

two data sets; with tunicamycin withdrawn worms having a larger population reaching the food 
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after 2 hours than the ethanol treated worms. Again the UPR is still active in tunicamycin 

treated worms compared to inactive in ethanol withdrawn worms. Worms treated with both 

ethanol and tunicamycin combined did not reach the food reward at all. Whilst the result 

suggests that the use of the two insults is additive, more repeats is needed to confirm that the 

results differ significantly and are not due to random variation. If ethanol withdrawn behaviour 

shares a common molecular pathway with tunicamycin withdrawn worms then dual insult 

would be expected to behaviourally redundant and show the same level of incapacitation as 

ethanol treatment. If the results are additive however it would suggest a separate molecular 

pathway underscoring the behavioural phenotypes.  

4.4.3 GFP fluorescence is unlikely affected by ethanol presence 

The treatment of ethanol on phsp-4::GFP worms fails to induce an increase in fluorescence and 

indicate an unfolded protein response. Treatment of ethanol may induce a response but remain 

undetected due to quenching of the fluorophore. Using worms that express GFP independently 

of ethanol treatment it was investigated whether ethanol could cause a change in fluorescence 

that would lead to a depression of a GFP mediated response. Using myo2 promoter GFP is 

expressed solely in the pharynx of worms. A change in conditions from control buffer to ethanol 

treatment would reveal if ethanol had any quenching effect on GFP in vivo. Include was an iso-

propanol control to counter for any change in solution properties which may affect fluorescence. 

Worms treated with 240mM ethanol did not show any obvious difference in fluorescence 

output. This suggests that ethanol does not play a role in GFP quenching and that the results 

from UPR assays are not the result of false negatives. The quenching of GFP was also 

confirmed using in vitro GFP fluorescence. Using a fluorescent plate reader on GFP increasing 

concentrations of ethanol were tested for the effect on fluorescence. Initially ethanol decreases 

GFP slightly up to 100mM which increases to normal levels on 200mM ethanol. The results 

picked up by the UPR assays are unlikely to be quenched by ethanol and help confirm that the 

results are not false negatives. Beyond 200mM GFP fluorescence increases on treatment with 

molar concentrations of ethanol. This suggests that the increase in fluorescence that was seen on 

worms treated with 1.35M ethanol may be a false positive. Quantification of all samples is 

needed to determine whether the link between in vitro and in vivo ethanol on GFP is constant.  

Investigating the link between the UPR and ethanol mediated behaviour was also looked at the 

role of HSP-4 on ethanol intoxication. Preliminary data also suggests that the UPR does not 

play a role in ethanol mediated behavioural responses. Worm race assays on gk514 hsp-4
-/-

 

shows no difference in response to low levels of ethanol than that of matched paired controls. 

Work is currently ongoing to elucidate the role that the UPR sensor hsp-4 plays in ethanol 

mediated behaviour.   
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The investigation has shown that the induction of a stress response by ethanol is unlikely and 

that the UPR does not underlie the behavioural phenotypes seen on ethanol treatment. Ethanol 

fails to induce a phsp-4::GFP response at 250mM and 450mM when conditioned for 24 hours 

and on withdrawal. Ethanol also fails to potentiate a stress response induced by tunicamycin 

treatment under the same conditions. The lack of an UPR is likely due to ethanol not triggering 

ER stress rather than quenching of the reporter GFP. Ethanol withdrawal fails to induce an UPR 

and exhibits a behaviour resulting in locomotory deficit in food race paradigm. Tunicamycin 

sustains an UPR on treatment withdrawal and exhibits a less pronounced depression in 

locomotory function. Preliminary results from gk514 hsp-4
-/-

 show no difference in behavioural 

phenotype on low ethanol doses. These results suggest that the UPR is unlikely to regulate 

behavioural responses seen on ethanol treatment.  

The use of the pshp-4::GFP to monitor UPR induction is a widely used and validated reporter 

system. The results from the UPR assays show clear positive responses from the tunicamycin 

treated control samples. The negative controls also show a clear stable level of basal GFP with 

definitive contrast to an induced response. Whilst clear that ethanol does not induce a response 

to a similar degree as tunicamycin, and that this is not specific to pharmacological insult but to 

ER stress, samples need to be quantified in a defined region of interest for fluorescence 

intensity. This would help confirm that ethanol plays no role in triggering an UPR. It can also 

confirm the link between GFP fluorescence in vitro and in vivo on ethanol treatment. If the in 

vitro samples show an increase in fluorescence in ethanol conditions that show an in vivo 

positive response, this may be attributed to ethanol’s effect on the fluorophore, rather than an 

activation of an UPR.  

Whilst the phsp-4::GFP array is integrated into all cells the UPR response does show increased 

reporter activity in the endothelial cells of the gut. Endothelial cells are responsible for 

producing high numbers of secretory proteins and are predominantly affected on ER stress. 

Whilst able to monitor global UPR induction, an indication of cell type specific UPR induction, 

such as in neurons, is limited. This is partially covered by investigating the behavioural 

phenotype of UPR component mutants, in which all cells have a mutant copy.  

C. elegans possess a paralog of hsp-4 with 98% identity, hsp-3. HSP3 is believed to play a 

redundant role in sensing the UPR but diverges in its role in development (Sasagawa et al., 

2007). It is unclear how the presence of hsp-3 affects the reporter construct and the ability to 

sense low levels of ER stress. As both of the proteins converge through ER sensors and 

transcription factors to up regulate hsp-4 it is unlikely that the reporting of the UPR is 

compromised. HSP3 may pose problems in trying to use gk514 hsp-4 
-/-

 worms as its function is 

likely to be redundant. Double mutants are reported to be embryonic lethal and are essential for 

development. Over expression of hsp-4 and RNAi of hsp-3 in an hsp-4 background may provide 

a better insight into the role HSP4 plays in ethanol behaviours.  
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The results of these experiments suggest that ethanol is not acting as an ER stressor directly or 

with tunicamycin treatment. Previous literature has reported that transcriptional upregulation of 

UPR elements is observed under ethanol treatment and that chronic ethanol use in mammals 

triggers the UPR with pathological outcomes. Ethanol concentrations that are lethal to 50% of C 

.elegans in experiments have been shown to trigger the UPR. Whilst these findings suggest that 

such a high concentration may trigger an UPR, they also may be affected by ethanol on the level 

of fluorescence detected. This needs to be further validated in vivo before extrapolating to other 

work.  

Work in cell lines suggests that whilst UPR markers might be transcriptionally upregulated this 

does not translate to a proteomic response on acute ethanol exposure. Higher concentrations of 

ethanol and chronic ethanol treatment have shown to induce a protein based UPR response 

suggesting that the UPR may lie in the extremes of ethanol conditioning. Using C. elegans we 

failed to see a HSP4 driven UPR on ethanol treatment which causes behavioural responses. It 

may be that whilst ethanol may up regulate UPR transcripts, this is not seen at the translational 

level. If this is replicated in C. elegans it may represent a novel mechanism for translational 

control or a mechanism of action for ethanol. eIF2α controls general translation repression and 

selective translation of UPR transcripts. It is tempting to hypothesise that ethanol may modulate 

activation of eIF2α. 

 

4.5 Future work 

The results presented here although clear need further evaluation to confirm beyond doubt. 

Levels of fluorescence need to be quantified and evaluated to ensure a high level of certainty 

that ethanol does not trigger a low level phsp-4::GFP response. The link between high 

concentrations of ethanol that have been reported in the literature and an increase in eGFP 

fluorescence on increasing ethanol concentration in vitro could also be verified. RNAi 

knockdown of hsp-3 in a gk514 hsp-4
-/-

 background and its role in ethanol mediated behaviour 

could also confirm the lack of an UPR role in behavioural phenotypes. This could also be 

investigated with dual tunicamycin ethanol treatment withdrawal on locomotion. An additive 

depression on locomotion would suggest separate pathways whilst a redundant response would 

point to a common, downstream pathway. The xbp-1/ire-1 pathways have been shown to control 

around 80% of UPR transcripts including hsp-4 induction. Investigation of the behavioural 

effects of ethanol on this pathway would also be good confirmation of a role for the UPR. 

Several reports have highlighted a number of transcripts upregulated by ethanol that 

corresponds to an induction of the UPR. Evidence that the UPR is not activated at the 

transcription level by ethanol could further validate this work. If ethanol does modulate UPR 
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mediated transcription then a proteomic analysis would shed light on why the response is not 

seen in phsp-4::GFP worms and may indicate potential sites of action for ethanol.  
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5 Discussion 

Ethanol mediated behaviour can be modelled in the organism C. elegans. The behavioural 

phenotypes displayed by the worms reflect the conditioning paradigm, ethanol concentration 

and exposure time; simply paralleling the behaviours of other organisms. Although not directly 

analogous to the complex behaviours of human-ethanol interaction, C. elegans demonstrates the 

basic depression with increased exposure time or dosage treatment, and subsequent 

improvement on treatment cessation. Other more subtle behaviours of relief from withdrawal 

and tolerance have been shown elsewhere. It is possible too that the effects of a lower 

concentration of ethanol treatment have been touched upon by this study, although results 

warrant further investigation. 

It is clear from this study that relatively high concentrations of ethanol are enough to depress 

activity in both locomotory output and pharyngeal pumping. This depression of activity is 

limited to 300mM ethanol treatment with an exposure time of 6 hours. Lower concentrations of 

ethanol fail to elicit a clear response in either locomotory or pharyngeal measures. Worms show 

a clear recovery from ethanol exposure as measured by locomotion, showing an increased but 

not fully recovered ability for a population to taxi towards a food stimulus. The withdrawal 

behaviour is, in part, governed by a change in bend type and turn frequency, shown elsewhere. 

This behaviour is more efficient at allowing worms to chemotax than the depressed, shallow 

movements of the 300mM ethanol intoxicated worms. 

Although the effects are pronounced with higher concentrations of ethanol, the picture is far less 

clear with decreasing ethanol concentration. Investigating how ethanol concentration effects 

pharyngeal pumping, an interesting observation was noted. The worm’s initial reaction to the 

presence of the food stimulus is affected by the presence of ethanol. Worms exposed to ethanol 

will move from a food rich area to a food sparse area. Experiments were adjusted to control for 

the presence or absence of food; as there is a higher pharyngeal pumping rate when food is 

present and movement off food may have affected results. Depression of pharyngeal activity on 

exposure to 300mM ethanol remains independent of food availability, as does the lack of effect 

at lower ethanol concentrations (<300mM). On both food present and food absent test 

environments, higher ethanol concentrations depress pharyngeal pumping, whereas lower 

ethanol concentrations have no significant affect. 

Environment preference does change with ethanol concentration, with worms exposed to 

increasing concentrations of ethanol moving from food-present to food-absent areas. Lower 

concentrations of ethanol, down to 25mM, are still enough to stimulate this behaviour. Either a 

secondary interaction of ethanol with the environment is being sensed by the worms or a direct 

behavioural change as a result of ethanol is causing this phenotype. Preliminary experiments 
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controlling for bacteria-ethanol interaction point to a possible effect on the worms rather than a 

change in the food environment. Heat-killed bacterial food, and bacteria transferred from 

exposed and non-exposed environments suggest that there is little change in the bacteria that is 

sensed by the worms on ethanol exposure. More work is needed to unravel the complexity of 

this phenotype. 

Whilst the worm race assay provides a foundation for studying the distinct ‘states’ that arise 

with worm intoxication and conditioning, it is unable to pick up more subtle phenotypes that 

arise outside the spectrum of gross movement changes that perturb  locomotion. The 2 hour 

experimental time fails to account for changes within that spectrum and initial changes that 

occur on ethanol intoxication. The race assay provides a useful tool for characterising the 

mechanisms behind locomotory and chemotaxis behaviour affected by ethanol, but is unable to 

provide a platform for identifying behavioural changes on lower ethanol intoxication. The 

pharyngeal pumping rate offers a new angle to explore that can move away from movement and 

co-ordination behaviour. It also has the advantage of being able to explore more direct 

measurements of a simplified, yet still complex, neuronal network at the cellular level and relate 

this back to pharyngeal behaviour. It is unfortunate that initial experiments failed to show any 

correlation between behavioural change and sub 300mM ethanol treatments, although 

experiments off food hint at future possibilities. 

Whilst pharyngeal pumping was unable to show a distinct clear phenotype on low ethanol 

intoxication, it did lead to the observation of environmental dispersal in ethanol treated worms. 

This observation was able to show worms respond to an ethanol environment by either 

increased movement, at least initially, or an aversion/attraction behaviour. The role of the 

bacterial lawn is unclear, but initial experiments at least suggest that dispersal is a response to 

the ethanol. The mechanism behind this phenotype may help understand mechanisms of low 

dose ethanol intoxication. 

All of the phenotypes studied in C.elegans provide a useful and descriptive insight in to worm-

ethanol interaction. It is through the use of these techniques that the basic mechanisms of 

ethanol interaction can be dissected to shed light on the molecular basis of behaviour.  

5.1 Bioinformatic identification of genes involved in ethanol 

response 

Given the number of studies that show the many ways in which ethanol interacts to control 

behaviour, and yet the specificities of a distinct pathway still elude researchers after many years 

of study, it is unsurprising that the database of these molecules is enormous and eclectic. The 

current collection of information harvested from papers between 2006 and 2009 on 5 organisms 

contains over 3500 entries on 900 biologically important proteins and molecules. As it stands, 

the database is a work in progress; the information still needs to be analysed and mined for 
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specific trends and correlates. There is also scope for the addition of more information and data 

from other projects. As it stands there is no clear conclusive evidence of one particular pathway 

contributing to ethanol mediated behaviour, but without proper analysis the question is still 

open.  

The difficulty in managing an information source of this size in part comes from two important 

facets; when mining data from one source to another the transition of data without adding or 

losing information, but manipulating the data in such a way that it can be easily used as a 

resource. The other is the process of manually finding and integrating the data out of the 

original sources, the slowest and rate determining step in the construction of the database. The 

first was controlled by the use of an ontological vocabulary. The second by due diligence. 

An ontology is a system of controlled terms each with a predefined meaning that may have a 

hierarchical structure of parent and child terms each with a broader or more specific scope of 

meaning respectively. By controlling the vocabulary to scientifically defined terms and 

structures there was an automatic control over how words were interpreted and more 

importantly loss of data fidelity. The use of a hierarchical vocabulary also has the added bonus 

of aiding future manipulation and mining of data.  

The current database will need to be properly analysed for any possible evidence of linkage 

between ethanol treatment and behavioural outcomes. One of the difficulties that arise from this 

task is the interpretation of the data fields. Each field within the database is a line of evidence 

specifically from a referenced and recorded paper. Whilst this evidence may be data that the 

paper has presented first hand, it may be a reference of other work in the field. Papers tend to 

reference similar papers to their field of study so many of the entries within the database will be 

redundant lines of evidence referencing the same experiments. There must, when analysing 

trends, be some consideration given to reported bias. A simple choice would be to weigh the 

evidence fields with respect to the number of papers cited in the original document, in order to 

counterbalance this problem. 

While the database provides an excellent source of material to direct future experiments, it 

requires a substantial effort to complete and refine to ensure clear evidence can be sourced from 

it to pursue and support future hypothesis. 

5.2 The unfolded protein response and ethanol 

The induction of a stress response by ethanol in Caenorhabditis elegans is unlikely to result in a 

UPR that underlies the behavioural phenotypes seen. A phsp-4::GFP response used as a marker 

to indicate unfolded protein stress pathways did not show any evidence of induction on ethanol 

treatment. This response was absent over a range of ethanol concentrations and treatment time 

points, as well as on treatment withdrawal. Worms treated with ethanol for a protein stress 
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response behaved as expected when challenged with a food race paradigm; confirming that 

whilst the UPR is not elicited by ethanol, the behavioural response is still present. 

Worms treated with tunicamycin, a chemical that disrupts protein folding, did respond 

positively showing an induction of the UPR marker phsp-4::GFP. Worms co-treated with both 

tunicamycin and ethanol failed to induce a response beyond that of tunicamycin alone, 

suggesting that ethanol is unlikely to potentiate a protein stress response. To ensure that the 

phsp-4::GFP marker responds to other initiators of protein stress, worms were also heat 

shocked. Heat shocked worms did show an induction of the phsp-4::GFP marker all be it with a 

quicker response time. To ensure ethanol was not interfering with the phsp-4::GFP marker and 

quenching the fluorescence of the GFP, both in vivo and in vitro experiments were used to show 

there is no change in overall fluorescence. GFP tagged worms were treated with photographed 

before and after ethanol treatment and compared for gross changes in fluorescent output. In 

addition eGFP fluorescence was measured in vitro on increasing ethanol concentrations using a 

Tecan-Sapphire fluorescent plate reader. Both experiments showed no noticeable change in GFP 

fluorescence for the range of concentrations used in the protein stress response assays. 

The pshp-4::GFP assay is a widely used and validated system used to monitor UPR induction. 

The positive induction of a protein stress response and the basal levels of a response absence are 

in clear dichotomy; allowing for a definitive contrast between treatment states. It is clear on a 

whole worm level that ethanol fails to induce a protein stress response, and it is not confounded 

by concentration time or intensity. Whilst the binary nature of the experiments suggest a lack of 

a response on ethanol treatment alone, a region of interest (ROI) intensity computation analysis 

of fluorescence would further support the case for the lack of a potentiated response when co-

treating with ethanol and tunicamycin. An analysis on specific cell types could also help detail a 

clearer picture of ethanol response in neuronal tissues, as whole worm responses are dominated 

by the secretory cells of the gut endothelium which show clearer responses because of their 

higher protein throughput. 

Worms mutant for the UPR response protein HSP-4 showed no significant difference in 

behavioural response to ethanol. Behaviours consistent with ethanol intoxication and 

withdrawal in non-mutant worms were observed in the race assays used.While HSP-4 mutant 

worms show no difference in ethanol mediated behaviour, it is worth noting that C. elegans do 

possess a paralog of hsp-4 with 98% identity, hsp-3. HSP3 is believed to play a redundant role 

in sensing the UPR but diverges in its role in development. It is unclear how the presence of 

hsp-3 affects the reporter construct and the ability to sense low levels of ER stress. As both 

proteins converge through ER sensors and transcription factors to up regulate hsp-4 it is unlikely 

that the pshp-4::GFP assay is compromised. HSP3 may pose problems in trying to use gk514 

hsp-4 
-/-

 worms as its function is likely to be redundant. Double mutants are reported to be 

embryonic lethal and are essential for development. Over expression of hsp-4 and RNAi of hsp-
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3 in an hsp-4 background may provide a better insight into the role HSP4 plays in ethanol 

behaviours.  

Overall it appears that ethanol does not play a role in triggering or potentiating an unfolded 

protein stress response. Several experiments show that ethanol does not itself trigger a UPR, and 

an UPR is not needed for ethanol mediated behaviour. In addition the molecular controls for the 

UPR are not needed for ethanol mediated behaviour. 

5.3 Conclusions 

C. elegans provides a useful tool for studying the different aspects of ethanol intoxication and 

ethanol mediated behaviour. It provides a platform in which to understand how the different 

paradigms of ethanol conditioning influence behaviour and in turn how this behaviour is 

controlled. This investigation has showed how C. elegans can be used to study the different 

conditioning paradigms of ethanol treatment and that there is still further scope for investigation 

into the controls underpinning ethanol behaviour. 

Documentation of key molecules underpinning the ethanol response from across several species 

should provide a background for further investigation in C. elegans. Whilst incomplete, the vast 

amount of data collected in the database should provide an essential, complementary lead on 

behavioural mechanisms controlling both worm and ethanol behaviour. Analysis and further 

information integration will only add to and aide an essential resource for future studies. 

Documentation of the limitations of the database should allow for relevant trends to be filtered 

accordingly and for any future restructuring and cleaning of the data.  

Whilst several lines of evidence may point to a possible link between mechanism across species, 

conservation is not always guaranteed. Resources such as the ethanol database hope to eliminate 

potential false leads with future analysis. The UPR was a mechanism that had been linked to 

ethanol treatment, but failed to show any signs of response to ethanol or involvement in ethanol 

behaviour. The investigation showed no link between protein stress and ethanol treatment. 

Future database analysis will hopefully lead to similar clear results on both responsive and non-

responsive pathways in ethanol and worm behaviour. 
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