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INFORMATIVE CENSORING IN TRANSPLANTATION STATISTICS
by Natalie Dawn Staplin

Observations are informatively censored when there is dependence between the time
to the event of interest and time to censoring. When considering the time to death of
patients on the waiting list for a transplant, particularly a liver transplant, patients that
are removed for transplantation are potentially informatively censored, as generally the
most ill patients are transplanted. If this censoring is assumed to be non-informative then
any inferences may be misleading.

The existing methods in the literature that account for informative censoring are ap-
plied to data to assess their suitability for the liver transplantation setting. As the amount
of dependence between the time to failure and time to censoring variables cannot be identi-
fied from the observed data, estimators that give bounds on the marginal survival function
for a given range of dependence values are considered. However, the bounds are too wide to
be of use in practice. Sensitivity analyses are also reviewed as these allow us to assess how
inferences are affected by assuming differing amounts of dependence and whether meth-
ods that account for informative censoring are necessary. Of the other methods considered
IPCW estimators were found to be the most useful in practice.

Sensitivity analyses for parametric models are less computationally intensive than those
for Cox models, although they are not suitable for all sets of data. Therefore, we develop
a sensitivity analysis for piecewise exponential models that is still quick to apply. These
models are flexible enough to be suitable for a wide range of baseline hazards. The
sensitivity analysis suggests that for the liver transplantation setting the inferences about
time to failure are sensitive to informative censoring. A simulation study is carried out
that shows that the sensitivity analysis is accurate in many situations, although not when
there is a large proportion of censoring in the data set.

Finally, a method to calculate the survival benefit of liver transplantation is adapted
to make it more suitable for UK data. This method calculates the expected change in
post-transplant mortality relative to waiting list mortality. It uses IPCW methods to
account for the informative censoring encountered when estimating waiting list mortality

to ensure the estimated survival benefit is as accurate as possible.
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Chapter 1

Introduction

Survival analysis methods are often used in the analysis of medical data, both designed
clinical trials and observational studies, as the event of interest may not be completely
observed. This could be because individuals drop out of a study, experience a different
event that means it is no longer possible to observe the event of interest, or the event of
interest has not been observed by the end of the study. Any individual for whom the event
of interest is not observed is censored at the time that they are removed from the study.
Kalbfleisch and Prentice (2002) and Collett (2003) both give detailed introductions to the
analysis of data with censored observations, some of which is summarised in this section.

The time from a given origin to the event of interest is represented by the random
variable, T and the time from the same origin to censoring is represented by C'. The time
to event is often referred to as time to failure in the literature. A value of interest in most
survival analysis applications is the marginal survival function of 7', Sr(t) = P(T > t).
This could be either the overall survival function or the survival function for a particular
individual. The factors that affect the survival time are also usually of interest, so where
possible any methods used should allow for the inclusion of covariates. Using suitable
models, the effect of any prognostic factors on the survival time can be estimated.

In this thesis, we shall consider the case where both T and C are continuous. Therefore,
we will not be looking at Type I censoring, where the censoring time of each individual is
fixed in advance.

Due to the censoring, a value of T for each individual may not be observed. This
means some assumption about the association between 1" and C needs to be made before
St(t) or any model parameters can be estimated. The standard assumption used in
survival analysis methods is that of non-informative censoring. This means that T and
C' are independently distributed, so as described in Kalbfleisch and Prentice (2002), the

conditional hazard function satisfies

he(t|T,T > t) = ho(t|T > t), (1.1)



where

he(t) = éltiino { Pt<C< ;t—l— 5t|C > t)}

is the hazard function for censored observations. This means censored observations pro-
vide only the information that the true survival time exceeds the survival time and no
information about the subsequent survival time. This assumption is suitable for some
types of censoring, as long as the censoring occurs randomly. For example, when individ-
uals are censored because they are still at risk at the end of the study, it is reasonable to
assume that this type of censoring is non-informative. Another example of non-informative
censoring occurs when individuals who are removed from the study when they experience
events unrelated to the event of interest, such as being run over by a bus.

However, there are other types of censoring where this assumption may be questioned
and models that allow for dependence between T" and C' need to be used. There are many
issues that are raised when fitting these types of models which will be discussed in the

following section.

1.1 Informative Censoring

If it assumed that there is dependence between T and C and the conditional hazard
function for C' does not satisfy (1.1), then the censoring is called informative. One possible
cause of informative censoring is that the factors that control time to censoring are also
associated with time to event.

There are several situations that have been identified where censoring is likely to be

informative. According to Lagakos (1979), these are

1. when individuals drop out of a clinical trial for reasons that could be related to the

therapy,

2. when individuals are removed from a clinical trial by design and no longer followed

for survival time if they experience a specific critical event, and

3. when individuals in a study experience a failure from a cause of secondary interest

which censors the failure time from the cause of primary interest.

The type of drop-out in situation 1 can generally not be avoided even if measures are put
in place to minimize the number of patients who leave a study before the end. In situation
2, the specific critical event is defined by those designing the study, such as the spread of
disease past a given threshold. So, the difference between situations 2 and 3 is that the

censoring event in situation 2 can be avoided by using different study designs whereas the



censoring event in situation 3 is unavoidable. Situation 3 here is known as the problem of
competing risks which is considered in more detail in Section 1.1.1.

The standard methods used to analyse censored data are based on the assumption
of non-informative censoring and may not be robust to the assumption of informative
censoring. In the non-informative censoring case, we assume that those who are censored
are representative of the individuals who are at risk at the time of censoring. If there is
a positive association between time to event and time to censoring then those who are
censored would have a smaller expected survival time. This could lead to the standard
methods overestimating the survival function. Conversely, a negative correlation between
time to event and time to censoring could lead to underestimation of the survival function
when using standard methods. The robustness of the standard methods would also be
affected by the proportion of observations that are informatively censored. It is found
in Fisher and Kanarek (1974) using simulated data that the more informative censoring
there is in a data set, the stronger the effect of informative censoring on the underlying
survival function. This means that the standard methods would generally be more biased
as the amount of informative censoring in a data set increases.

One possible way of incorporating informative censoring into a model is to use a bivari-
ate distribution for (7°,C') that has independence of 7" and C' as a special case. However, it
is not possible to test which bivariate distribution should be used in a particular applica-
tion due to identifiability issues. The implications of these issues are discussed in Section
1.1.2.

1.1.1 Competing risks framework

It is possible to use a competing risks framework when we have censored data, this is
described in Crowder (2001), which is where the definitions given in this section are taken
from. In a competing risks framework, there are m possible event types that could be
observed. Here, the situation where only one event type can be observed for each individual
is considered. Therefore, for the ith individual in the data set, the observed data are the
event time Y; and the event type J.

The overall hazard function at time ¢ is

h(t) = 1i
(t) = Jim

{P[t§T<t+6t|T2t]}
ot '

To model the competing risks, the sub-hazard function

hijst) = altiglo

{P[t§T<t+5t,J:j\th]} :
6t ) ]:1?"'7m7

is used. This is the hazard rate for event type j at time ¢, in the presence of all the other



types of event. The sub-hazard functions are related to the overall hazard function as
h(t) =Y h(j1).

Jj=1

The literature that uses this framework often defines latent event times for each type

of event, denoted Y7, ...,Y,,. The actual observation time is given by

Y = min(Yy,...,Yn),
and the corresponding event type is J so that Y = Y.
It is often the marginal distribution of one of the latent event times that is of interest.

Generally, it is the marginal hazard functions

that are considered, which are the hazard rates for event type j at time ¢ in the absence
of any other event types. These marginal hazard functions cannot be identified from the
observed data.

The usual strong assumption that is made is that Y7, ...,Y,, are statistically indepen-
dent. This means that the marginal hazard functions now equal the sub-hazard functions
and are therefore identifiable. But the assumption used to achieve this is untestable.

The situation that is being considered here can be set up using the competing risks
framework described here. In this case, there are only two competing events, with latent
event times Y7 = T and Y» = C. The event time that is of interest is 7', and the marginal
distribution of this variable is what needs to be estimated. The observed data will be
Y = min(7, C) and J which denotes the event type. However, as there are only two types

of event, it usual that an indicator variable A = I(Y = T') is recorded instead of J.

1.1.2 Identifiability issues

It has already been mentioned in Section 1.1.1 that the marginal distributions of the latent
event times of m competing risks are not identifiable. This is because there is insufficient
information in the observed data to be able to identify the joint distribution of the latent
event times Y7,...,Y,,. This was first discussed in Cox (1959), who considered the case
with just two random variables that follow a general independent risks model. The random
variables Y] and Y, are independently distributed with continuous distribution functions
Fi(t) and F(t). Cox (1959) stated that “no data of the present type can be inconsistent
with [the general independent risks] model”.

Tsiatis (1975) considers the general case where there are m competing risks acting

on the system. It is shown that for any given joint survivor function where there is



dependence between the variables, a different joint survivor function can be identified
where the variables are independent. Both of these survivor functions give the same
observable functions so it is not possible to distinguish between them.

Crowder (1991) extends the result above to show that each independent risks model has
a class of satellite dependent models with the same observable functions. It is also shown
that this class can be further broken down into sets with the same marginal functions. If
it were possible to have unlimited observation of Y = min(7,C) and the corresponding
indicator along with unlimited observation of T" and C' then we would be able to identify
the subclass. If this subclass did not contain the independent risks models then at least it
can be identified that there are not independent risks. However, for the medical examples
of interest, this unlimited observation is not feasible.

Therefore, in general it is not possible to construct a statistical test for non-informative
censoring with the alternative being informative censoring for the situation that is being
considered here.

These problems of non-identifiability also have implications for any informative censor-
ing models fitted. One of the most popular approaches is to specify a bivariate distribution
for (T, C) for which independence of T" and C' is a special case. The parameters will no
longer be unidentifiable, as long as each point in the parameter space of this joint distri-
bution has a corresponding distinct distribution for the observed data (Y, A). However,
due to the lack of information in the observed data, any joint distribution assumed for

(T, C) cannot be verified using a statistical test.

1.2 Liver Transplantation

Much of the methodology developed in this thesis will be illustrated using data on liver
transplantation candidates and recipients. Accordingly, in this section, an outline of rele-
vant aspects of liver transplantation is given.

Liver transplantation is used as treatment for patients with end-stage liver disease
(ESLD). In the UK, to receive a liver transplant, a candidate must normally be registered
with NHS Blood and Transplant (NHSBT) and meet certain criteria as set out in Sec-
tion 1.2.2. NHSBT are also responsible for the allocation of donor organs which is done
according to the policy described in Section 1.2.3.

There has been an increase in the number of patients waiting for a liver transplant
despite measures introduced with the intention of making a larger number of donor organs
available. These include the use of extended criteria donors (ECD) that would have previ-
ously been rejected and split livers, so that one organ can be used to provide transplants

for both an adult patient and a paediatric patient. Because of the short fall between the



number of donor organs and the number of patients on the waiting list for a transplant,
it is important that any allocation policy should aim to maximise the utility of the organ
whilst reducing the mortality of those on the waiting list. However, it is stated in Neu-
berger et al. (2008) that this may not be possible because “those who are very sick and
thus at greatest risk of death may have a worse outcome and will use more resources”.

There has been much discussion lately of the most appropriate method of allocating
donor organs to transplant candidates. Freeman et al. (2009) compare the current centre-
based policy UK policy, which is described in Section 1.2.3, and the patient-based US
policy for allocating donor liver grafts. Neuberger et al. (2008) discuss the current UK
policy but do say that in the long-term the aim is “to develop a model of allocation based
on the greatest transplant benefit which would take into account both the likelihood of
dying without a transplant as well as the likelihood of dying following a transplant”. An
allocation policy that is based on the idea of the greatest survival benefit from transplan-
tation is discussed in Schaubel (2009a). There will be more discussion of survival benefit
and an associated allocation policy in Section 1.2.6. There has also been a call for more
transparency in the allocation policy in the UK by Elisabeth Buggins, Chair of the former
Organ Donation Taskforce for Department of Health, in an independent report to clarify
the rules on organ transplants for both NHS patients and non-UK EU residents.

If a policy that is based on statistical models is implemented, such as the allocation
policy based on survival benefit, then the models of waiting list and post-transplant mor-
tality used will need to be as accurate as possible. This is why methods that facilitate the
implementation of good models are particularly useful, and this is part of the motivation

behind the research carried out here.

1.2.1 United Kingdom model for End-Stage Liver Disease

A model to predict the severity of a patient’s ESLD for the US was developed in Weisner
et al. (2001), known as the model for end-stage liver disease or MELD. It uses three mea-
surements: serum creatinine at time of registration, serum bilirubin at time of registration
and the international normalized ratio (INR), which gives results of blood clotting tests.
This model gives a score that reflects the measured level of liver dysfunction using the

formula

MELD =9.57 log(creatinine(mg/dL)) + 3.78 log(bilirubin(mg/dL))
+11.210g(INR) + 6.43. (1.2)

This score has also been found to be a significant predictor of mortality on the waiting

list for a liver transplant.



A similar UK model for end-stage liver disease (UKELD) is described in Barber et al.
(2007). Using an analysis of 1103 patients, the formula

UKELD =5{1.51og(INR) + 0.3 log(creatinine(pmol/L))
+ 0.6 log(bilirubin(umol/L)) — 13 log(Na(mmol /L)) + 70} (1.3)

was developed. It uses the same components as the MELD score as well as an additional
component, serum sodium at time of registration. A UKELD score of greater than 49,
calculated using (1.3), predicts a greater than 9% 1-year mortality. As a patient’s UKELD
score increases, their 1-year mortality will also increase. Patients with a UKELD score
below 49 have a 1-year mortality of less than 9%.

The formula for the UKELD score has since been revised as is now given by

UKELD =5.3951og(INR) + 1.485 log(creatinine(pumol /L))
+ 3.130 log(bilirubin(umol /L)) — 81.565 log(Na(mmol /L)) + 435  (1.4)

as detailed in Barber et al. (2011). However, we use (1.3) to calculate the UKELD scores
used in all the analyses in this thesis as the updated formula was not available at the time
that we carried out the analyses. To assess whether our results are likely to be greatly
affected by the use of the original UKELD score, in Section 1.2.5 we compare the values
given by (1.3) and (1.4) for the data set used in this thesis.

1.2.2 Selection criteria for transplant waiting list

Patients who require a liver transplant are either registered for a super-urgent transplant
or an elective transplant. The criteria for registration as a super-urgent transplantation
are detailed in the Protocols and Guidelines for Adults Undergoing Deceased Donor Liver
Transplantation in the UK, which is available on the NHSBT website
(http://www.nhsbt.nhs.uk/indez.asp). These are not considered here as these patients will
not be included in any statistical models as they will always remain the top priority for
any donor organ that becomes available.

Also detailed in the Protocols and Guidelines for Adults Undergoing Deceased Donor
Liver Transplantation in the UK are the criteria for patients to be put on the waiting list
for an elective transplant. To be accepted for an elective liver transplant, the candidate
must have a projected 5-year survival after transplantation of at least 50%. Also, adult
patients awaiting a first liver transplant must meet at least one of the following four

criteria:
e Chronic liver disease or failure (UKELD score of 49 or greater)

e Hepatocellular carcinoma



e A variant syndrome
e Have been accepted through the National Appeals Panel

There are additional criteria for patients to be registered on the waiting list for an elective
transplant other than a UKELD score of 49 or greater as the UKELD score does not always
reflect the need for a liver transplant. For patients with hepatocellular carcinoma, the
severity of this disease is not measured by the UKELD score so they need to be considered
separately. The UKELD score does not incorporate quality of life, so any patients that

need to receive a transplant to improve their quality of life must be considered separately.

1.2.3 Current allocation policy for donor organs

The current UK allocation policy for donor livers is summarised in Figure 1.1. The

flowchart shows the order in which patients are considered when allocating a donor liver.

Super-urgentpatients locally

!

Super-urgentpatients nationally

l

IFALD patients (if critcria met)

!

Split liver?

!

Elective patients locally

!

Elective patients nationally

Figure 1.1: Flowchart showing the order of priority when allocating donor livers in the
UK. (IFALD = Intestinal Failure Associated Liver Disease)

Patients that are registered on the list for a super-urgent transplant are given the

highest priority. Organs are offered to super-urgent patients in the local area first before



being offered to super-urgent patients nationally. These patients are prioritised by the
time spent on the super-urgent list. So, if there are several patients on the list, the organ
will be given to the blood group compatible patient who has waited the longest.

If there are no suitable super-urgent patients or patients with intestinal failure associ-
ated liver disease on the list, then a decision needs to be made whether to split the liver
to maximise the use of the donor organ. Generally, a donor liver is considered for splitting

if the donor

e is less than 40 years old,
e weighs at least 50 kg and

e has been in intensive care for less than 5 days.

Once a decision has been made about splitting the liver, the organ will then pass to a
unit, usually starting with the unit that covers the area where the organ is being retrieved.
It is then the choice of the clinicians at this unit if there are any suitable patients registered
at that unit and which of these patients the organ should be offered to. If there are no
suitable patients at that unit, then the organ will be offered to another unit and so on in

an agreed sequence until a suitable patient is found.

1.2.4 Issues arising when modelling survival of candidates on the waiting

list for a liver transplant

The survival of adult patients on the waiting list for an elective liver transplant is of
interest here. For obvious reasons, death on the waiting list will only be observed for a
small subset of patients as the majority will be removed for transplantation and those
with a deteriorating condition are likely to be removed from the list before death.
Therefore, a large amount of censoring will be observed in this situation. Those who
are removed to receive a liver transplant are potentially informatively censored. The same
can be said of those removed due to deteriorating condition. This is reasonable as patients
who are removed for these reasons are generally the most sick on the list. They would have
a higher risk of death and therefore a lower expected survival time than those who remain
on the waiting list. This means that the estimated survival function may lie above the true
survival function if such censoring is assumed to non-informative. Therefore the estimated
probability of survival time at time ¢ may be larger than the true survival probability at
time ¢, or the the estimated survival function may overestimate the true survival function.
However, if a patient is removed from the list during the study for other reasons or
because they were still active on the waiting list at the end of the study, then it will be
assumed that this censoring is non-informative. This is a reasonable assumption for these

patients as the censoring process is acting randomly here.



1.2.5 Liver Registration data set

A data set has been provided by NHSBT to illustrate the methods developed in this
thesis. It is important to note that this data set is being used to motivate and illustrate
the statistical methods and the results quoted should not be regarded as being definitive
for guiding clinical practice. The data set contains data on all adult patients who were
registered for an elective liver transplant between 1 January 2000 and 31 December 2008,
which is 4594 rows of data. There were 203 patients that had multiple lines of data as they
were re-registered for a liver transplant during this period. For example, they could have
received a donor organ which later failed and were then put back on the waiting list for
a transplant. The two registrations are then treated as two separate observations. This
information was taken from the UK Transplant Registry (UKTR) on 7 April 2009. The
date of registration on the waiting list is given along with the date of removal from the
waiting list, and details of whether this removal was due to death, transplantation or for
other reasons.

Some preliminary investigations of the data found that 39 patients were recorded as
have been transplanted a few days before their time of registration or on the date of
their registration. It was found that these patients received their transplant before their
registration details were sent to NHSBT and entered into the UKTR. Therefore, these
patients are removed from the data used here, as their time from registration to time of
transplant would be recorded as non-positive. There were also two patients who were
recorded as being registered on the list and being removed from the list on the same date,
as well as three patients who were recorded as being registered on the list on the same
day that they died. These five patients were also removed from the data set as they would
have had an observation time of zero. This means that there were 4550 rows of data used
in the analyses here.

Many covariates are also included in the data set, the details of which are given in
Tables 1.1 to 1.9. Some of the earlier registrations in this data set do not have all the
covariates recorded as the data collected at time of registration changed over the period

under consideration.
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Variable Name Description and Details

RECIP_ID Unique patient number
UNIT Anonymised transplant centre (Levels: A (n=260), B (n=725), C
(n=586), D (n=410), E (n=1109), F (n=1033), G (n=417))
ENDSTAT Code denoting the current or final state of a registration (Levels: A

Active (n=165), S Suspended (n=2), T Transplanted (n=3498), R
Removed (n=451), D Died (n=478))

ADATE_ON Date of first active record per registration

SDATE_ON Date of first suspended record per registration
R_DATE Date of removal from the transplant list

TX_DATE Date of liver transplant
D_DATE Date of death

RUN_DATE Date registration dataset run (7 April 2009)

REG_AGE Age at time of registration (Range: 17-78 years, Mean: 51.8 years)
LIV_DIS Primary liver disease at time of registration (See Table 1.3)
PD_CAT Primary liver disease grouped at time of registration (See Table 1.4)

PRIM_COD Primary cause of death (See Table 1.5)

RCOD_GRP Primary cause of death grouped (See Table 1.6)
RHEIGHT Height at time of registration (Range: 62-205 cm, Mean: 169.75 cm,
208 missing)
RWEIGHT Weight at time of registration (Range: 30-178 kg, Mean: 76.44 kg,
80 missing)
RSEX Sex (Levels: 1 Male (n=2881), 2 Female (n=1713))
RBG Blood group (Levels: 0 O (n=2053), 1 A (n=1831), 2 B (n=532), 3
AB (n=178))
RETHNIC Ethnicity (Levels: 1 White (n=4077), 2 Asian or Asian-British

(n=332), 3 Black or Black-British (n=103), 4 Chinese/Oriental
(n=34), 7 Other (n=48))

LIVER Completeness of liver transplanted (Levels: 0 Whole (n=3239), 1
Reduced (n=6), 2 Split (n=253), 1096 missing)

CREAT_REG Serum creatinine at time of registration (Range: 7.6-400 pmol/l,
Mean: 98.1 pmol/l, 1875 missing)

INR_REG INR at time of registration (Range: 1-12, Mean: 1.5, 1902 missing)
BILIRUBIN_REG | Serum bilirubin at time of registration (Range: 1-1270 pmol/l, Mean:
98.7 umol/1, 1871 missing)

SODIUM_REG Serum sodium at time of registration (Range: 105-150 mmol/l, Mean:
135.9 mmol/1, 1887 missing)

UKELD_REG UKELD score at time of registration (Range: 38-83.2, Mean: 55.5,
1924 missing)

Table 1.1: The variables applicable to all patients in the Liver Registration data set and
giving details about the variables. For continuous variables the range and mean are given
and for factorial variables the levels of the factor and the number of observations at each

level are given. The number of observations missing the covariate value is also noted.
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Variable Name

Description and Details

COF Cause of graft failure (See Table 1.7)
FAILDATE Date of graft failure
CREAT_TX Serum creatinine at time of transplant (Range: 27-400 pmol/l,
Mean: 101.1 pmol/l, 1 missing)
INR_-TX INR at time of transplant (Range: 1-18, Mean: 1.5, 161 miss-

BILIRUBIN_TX

ing)
Serum bilirubin at time of transplant (Range: 2-1151 pmol/l,
Mean: 96.4 pmol/1, 11 missing)

SODIUM_TX Serum sodium at time of transplant (Range: 112-150 mmol/l,
Mean: 136.2, 5 missing)
UKELD_TX UKELD score at time of transplant (Range: 40.7-86.5, Mean:
55.0, 173 missing)
DSEX Donor sex (Levels: 1 Male (n=1835), 2 Female (n=1663))
DWEIGHT Donor weight at time of donation (Range: 22-140 kg, Mean:
74.3 kg, 6 missing)
DHEIGHT Donor height at time of donation (Range: 52-208 cm, Mean:

DONOR_TYPE

170.7 cm, 34 missing)
Donor type (Levels: 1 Deceased Heartbeating (n=3321), 2 De-
ceased Non-Heartbeating (n=177))

DBG Donor blood group (Levels: 0 O (n=1511), 1 A (n=1498), 2 B
(n=384), 3 AB (n=105))
DCOD Donor cause of death (See Table 1.8)
DCOD_GRP Donor cause of death grouped (See Table 1.9)

DETHNIC Donor ethnicity (Levels: 1 White (n=3332), 2 Asian or Asian-
British (n=47), 3 Black or Black-British (n=35), 4 Chi-
nese/Oriental (n=8), 6 Mixed (n=15), 7 Other (n=10), 9 Un-
known (n=51))

DAGE Donor age at time of donation (Range: 5-85 years, Mean: 44.8

years, 12 missing)

Table 1.2: The variables in the Liver Registration data set that are applicable only to
patients who are transplanted. Details of these variables given, for continuous variables
these are the range and mean and for factorial variables these are the levels of the fac-
tors and the number of observations with each level of the factor. Also the numbers of

applicable patients who are missing values for these variables are given.
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Code Primary liver disease Code Primary liver disease

410 Chronic liver failure cause 442 Hepatocellular carcinoma -
unknown cirrhotic

411  Primary biliary cirrhosis 443  Cholangiocarcinoma

412 Autoimmune chronic active liver | 445 Secondary hepatic malignancy
disease 447  Other primary hepatic

413 Hepatitis B cirrhosis malignancy, please specify

414  Primary sclerosing cholangitis 448  Benign liver tumour

415  Alpha-1l-antitrypsin deficiency 450  Other metabolic liver disease,

416  Budd-Chiari syndrome please specify
(not code 27) 451  Cystic fibrosis

417  Cryptogenic cirrhosis 460  Polycystic liver disease

418 Secondary biliary cirrhosis 461 Hereditary haemochromatosis

419  Alcoholic liver disease 462  Glycogen storage disease

420  Biliary atresia 471 Acute rejection

421 Congenital hepatic fibrosis 472 Chronic rejection

422 Wilson’s Disease 473 Primary non-function

423 Congenital biliary disease 474  Acute vascular occlusion

424  Hepatitis C cirrhosis (artery plus vein)

425  Paediatric cholestatic liver 475  Non-thrombotic infarction
disease, please specify 476 Ductopenic rejection

426  Non-alcoholic fatty liver disease 477  Recurrent disease

430  Acute hepatic failure - 478  Biliary complications
serologically indeterminate 479 Hepatic artery thrombosis

434 Acute hepatic failure - 480  Early graft dysfunction
Wilson’s disease 482  Acute vascular occlusion -

436  Acute hepatic failure - HBV artery and venous

437  Acute Hepatic Failure - 498  Other, please specify
paracetamol hepatotoxicity 499 Unknown

438 Acute Hepatic Failure - other 888 Not reported
drug toxicity

439 Acute Hepatic Failure - other

441 Hepatocellular carcinoma - non-
cirrhotic

Table 1.3: The codes used for different liver diseases
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Level Primary liver disease group
1 Primary biliary cirrhosis (PBC) (liv_dis=411, n=580)

Primary sclerosing cholangitis (PSC) (liv_dis=414, n=434)

Alcoholic liver disease (ALD) (liv_dis=419, n=1142)

Auto-immune + cryptogenic disease (AID) (liv_dis=412,417, n=>523)

Hepatitis C cirrhosis (HCV) (liv_dis=424, n=686)

Hepatitis B cirrhosis (HBV) (liv_dis=413, n=162)

Cancers (liv_dis= 441,442,443 444,445 447, n=208)

Metabolic liver disease (liv_dis=415,422,426,434,450,456,461,462,466,

467,468, n=196)

9 Other liver diseases (liv_dis=410,416,418,420,421,423,425,427,448 451,
453,455,460,484,486,498,499,888, n=489)

10 Acute hepatic failure (liv_dis=428,430,435,436,437,438,439,471,472,473,
475,476,477,478,479,480,481,482,474,432, n=130)

o N O Ot s W N

Table 1.4: The groupings of the primary liver diseases given in Table 1.3
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Cause of death

Cause of death

Cause of death

0 Recipient still alive

500 Cause of death
uncertain

511 Myocardial ischaemia
and infarction

512 Hyperkalaemia

513 Haemorrhagic
pericarditis

514 Other causes of cardiac
failure

515 Sudden unexplained
cardiac death

516 Hypertensive cardiac
failure

517 Hypokalaemia

518 Fluid overload

519 Elevated
PVR/pulmonary
hypertension

520 Airway dehiscence

521 Pulmonary embolus

522 Cerebro-vascular
accident

523 Gastro-intestinal
haemorrhage

524 Haemorrhage
from graft site

525 Haemorrhage from
vascular access or
dialysis circuit

526 Haemorrhage from
ruptured vascular
aneurysm

527 Haemorrhage from
surgery

528 Other haemorrhage

529 Mesenteric infarction

530 Pulmonary infection
(protozoal)

531 Pulmonary  infection

(bacterial)

532 Pulmonary infection
(viral)

533 Pulmonary infection
(fungal)

534 Infections elsewhere
(except viral
hepatitis)

535 Septicaemia

536 Tuberculosis (lung)

537 Tuberculosis
(elsewhere)

538 Generalized viral
infection

539 Peritonitis

541 Liver - due to
hepatitis B virus

542 Liver -
hepatitis

543 Liver - drug toxicity

544 Cirrhosis - not viral

545 Cystic liver disease

546 Liver failure - cause
unknown

547 Renal failure

548 Recurrent primary
disease - benign

549 Recurrent primary
disease - malignant

551 Patient refused
further treatment

552 Suicide

553 Therapy ceased for
any other reason

554 ESRF treatment
withdrawn for
medical reasons

561 Uraemia caused by
graft failure

562 Pancreatitis

other viral

563 Bone marrow depression

564 Cachexia

566 Lymphoid malignant
disease possibly induced by
immunosuppressive therapy

567 Lymphoid malignant disease
not induced by
immunosuppressive therapy

568 Malignant disease:
lymphoproliferative disorders

569 Dementia

570 Sclerosing (or adhesive)
peritoneal disease

571 Perforation of peptic ulcer

572 Perforation of colon

573 Non-lymphoid malignant
disease possibly induced by
immunosuppressive therapy

574 Non-lymphoid malignant
disease not induced by
immunosuppressive therapy

575 Early graft dysfunction

576 Cardiac tamponade

577 ARDS

578 Respiratory failure

579 Multi-system failure

581 Accident related to treatment

582 Accident unrelated to
treatment

590 Donor organ failure

595 Other identified cause of
death

598 Other identified cause of
death

599 Unknown

888 Cause of death not requested

Table 1.5: The codes for the primary cause of death for patients on the waiting list for a

liver transplant
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Code(s) Cause of death group Code(s) Cause of death group
500 Cause of death uncertain 561 Uraemia caused by
511 Myocardial ischaemia and graft failure
infarction 562 Pancreatitis
512 Hyperkalaemia 563 Bone marrow depression
513-518 Cardiac - miscellaneous 564 Cachexia
519 Elevated PVR 566-567 Lymphoma
520 Tracheal dehiscence 569 Dementia
521 Pulmonary embolus 570 Sclerosing (or adhesive)
522 Cerebro-vascular accident peritoneal disease
523 Gastro-intestinal 571 Perforation of peptic ulcer
haemorrhage 572 Perforation of colon
524-528 Haemorrhage - 573-574  Non-lymphoid malignant
miscellaneous disease
529 Mesenteric infarction 575 Early graft dysfunction
530-533 Pulmonary infection 576 Cardiac tamponade
534,536-539  Infection - miscellaneous 577 Ards
535 Septicaemia 578 Respiratory failure
541-546 Liver disease 579 Multi-system failure
547 Renal Failure (not kidney 581 Accident related to
recipients) treatment
548 Recurrent primary disease 582 Accident  unrelated to
- benign treatment
549 Recurrent primary disease 590 Donor organ failure
- malignant 595,598  Other identified cause of
551 Patient refused further death
treatment 599 Unknown
552 Suicide
553 Therapy ceased for any
other reason

Table 1.6: The grouped causes of death for patients on the waiting list for a liver transplant

Code Cause of graft failure Code Cause of graft failure
0 Graft still functioning 470  Recurrent disease

410 Acute rejection 480 Biliary complications

420  Chronic rejection 490  Recip. died, graft still

430  Primary non-functioning functioning at T.O.D.

440  Acute vascular occlusion 495  Other

441 Vascular occlusion 498 Other, please specify

450 Non-thrombotic infarction 499 Unknown

460 Ductopenic rejection

Table 1.7: The codes for causes of graft failure
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Code

Cause of death

Code Cause of death

10
11
12
13

19

20
21
22
23
29
30

31
39
40
41
42
43
44
45
49

50

Living donor

Intracranial haemorrhage
Intracranial thrombosis

Brain tumour

Hypoxic brain damage - all
causes

Intracranial - type unclassified
(CVA)

Trauma RTA - car

Trauma RTA - motorbike
Trauma RTA - pushbike
Trauma RTA - pedestrian
Trauma RTA - unknown type
Other trauma - known or
suspected suicide

Other trauma - accident
Other trauma - unknown cause
Cardiac arrest

Myocardial infarction
Aneurysm

Ischaemic heart disease
Congestive heart failure
Pulmonary embolism
Cardiovascular - type
unclassified

Chronic pulmonary disease

51 Pneumonia

52 Asthma

53 Respiratory failure

54 Carbon monoxide poisoning

59 Respiratory - type unclassified
(inc smoke inhalation)

60 Cancer (other than brain

tumour)
70 Meningitis
71 Septicaemia

72 Infections - type unclassified

73 Acute blood loss/hypovolaemia

74 Liver failure (not self poisoning)

75 Renal failure

76 Multi-organ failure

7 Sudden Infant Death Syndrome
(SIDS)

80 Alcohol poisoning

81 Paracetamol overdose

82 Other drug overdose

85 Self poisoning - type unclassified

88 Not reported

90 Other identified cause of death

98 Other identified cause of death

99 Unknown

Table 1.8: The codes for donor cause of death

70-77,80-82,85,88,90,98,99
20-23,29
30,31,39

Code Donor cause of death group
0 Live
10-11,19 CVA
12,13,40-45,49,50-54,59,60  Miscellaneous

Miscellaneous (continued)
RTA

Other trauma

Table 1.9: The donor cause of death groups
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Initial data analysis

In this section, some initial data analysis on the Liver Registration data set is carried
out assuming all the censoring in the data set is non-informative. Firstly, Kaplan-Meier
estimates of the survival functions for time to death and time to censoring are obtained.
Then the significant variables for both time to death and time to censoring are identified.

Figures 1.2 and 1.3 are plots of the Kaplan-Meier estimates of the survival functions
for time to death and time to censoring respectively. The estimated median time to death
is 1194 days and the estimated median time to censoring is 97 days. This shows that
patients who are censored tend to spend less time on the list than those who die while on

the waiting list.

Kaplan-Meier estimate of survival function for time to failure
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Figure 1.2: The Kaplan-Meier estimate of the survival function for time to failure

Tables 1.10 and 1.11 contain the results of Cox proportional hazards models for time to
death and time to censoring for the Liver Registration data set. The general proportional

hazards model is given by

hi(t) = exp(Biz1; + Baxai + . .. + Bpapi) ho(l),

where 3 is the vector of parameters of the explanatory variables x1,2,...,z, included
in the model and ho(t) is the baseline hazard function. When fitting the proportional
hazards model proposed by Cox (1972), no assumptions are made about the baseline
hazard function and only B3 is estimated. The variables that are significant for time to

death under the Cox proportional hazards model are

e UKELD score at time of registration,
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Kaplan-Meier estimate of the survival function for
time to censoring
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Figure 1.3: The Kaplan-Meier estimate of the survival function for time to censoring

e primary liver disease category,

age at time of registration,

ethnicity,

e serum sodium at time of registration and

INR at time of registration.

The variables that are significant for time to censoring under the Cox proportional hazards

model are
e UKELD score at time of registration,
e primary liver disease category,
e height at time of registration and
e blood group.

Parametric survival models will also be used in some of the methods reviewed in Chap-
ter 3 so the exponential proportional hazards model is also fitted to the Liver Registration

data set. This model has the form

hi(t) = exp(p + Biz1i + Pawoi + ... + Bpxm),

where p is the intercept parameter. The results of the exponential proportional hazards

model for time to death and time to censoring are given in 1.12 and 1.13 respectively. The
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variables that are significant for time to death under the exponential proportional hazards

model are
e UKELD score at time of registration,
e primary liver disease category,
e age at time of registration and
e ethnicity.

The variables that are significant for time to censoring under the exponential proportional

hazards model are
e UKELD score at time of registration,
e primary liver disease category,
e height at time of registration and
e blood group.

The results from the Cox proportional hazards models and exponential proportional
hazards models are similar, as the models being fitted are both variations of the general
proportional hazards model. The main difference is that the Cox proportional hazards
model for time to death includes serum sodium and INR at time of registration as well.
This suggests that some changes should be made to the UKELD score as these two variables
are components of the UKELD score. But, as discussed in Section 1.2.1, we are using the
original UKELD score which has since been revised, so this is not too surprising.

The four main covariates for time to death, UKELD score, age, primary liver disease
category and ethnicity were examined, and it was found that only 2650 rows of data had
full information for these covariates. If the two additional covariates that are significant
for time to censoring, height and blood group, are also examined, then only 2605 rows of
data had full covariate information. We will ignore any observations that do not have full
covariate information. There are other methods of dealing with missing data that would

be preferable but the aim here is to deal with the issue of informative censoring.

UKELD Score

As discussed in Section 1.2.1, the UKELD score used in our analyses is calculated using
(1.3). However, this UKELD score has since been revised and is now given by (1.4). To
asses how much change this causes in the UKELD score, the original value from (1.3)

and the revised value from (1.4) are plotted against each other for each individual in the
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Parameter Estimate | Standard | p-value | Hazard

Error Ratio
UKELD score 0.25126 | 0.01868 | < .0001 | 1.286
PLD - PBC -0.04365 | 0.34301 | 0.8987 | 0.957
PLD - PSC -0.60813 | 0.38124 | 0.1107 | 0.544
PLD - ALD -0.13828 | 0.32027 | 0.1864 | 0.871
PLD - AID 0.17176 | 0.33786 | 0.6112 1.187
PLD - HCV 0.59734 | 0.33487 | 0.0745 1.817
PLD - HBV 0.02856 | 0.50702 | 0.9551 1.029
PLD - Cancer -1.09539 | 0.77467 | 0.1574 | 0.334
PLD - Metabolic 0.95969 | 0.36540 | 0.0086 2.611
PLD - Other 0.47124 | 0.34028 | 0.1661 1.602
PLD - Acute 0
Age 0.02946 | 0.00587 | < .0001 | 1.030

Ethnicity - White 1.26645 1.00791 0.2089 3.548
Ethnicity - Asian 0.34320 1.04198 | 0.7419 1.409
Ethnicity - Black 1.25277 1.09829 | 0.2540 3.500
Ethnicity - Chinese | -0.41759 | 1.43131 0.7705 0.659

Ethnicity - Other 0
Serum Sodium 0.06060 0.01644 0.0002 1.062
INR -0.22431 | 0.09654 0.0202 0.799

Table 1.10: Results for Cox model for time to death fitted to the Liver Registration data

set assuming non-informative censoring
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Parameter Estimate | Standard | p-value | Hazard

Error Ratio

UKELD score 0.02680 | 0.00471 | < .0001 | 1.027
PLD - PBC -0.05982 | 0.14472 | 0.6793 0.942
PLD - PSC -0.03346 | 0.14420 | 0.8165 0.967
PLD - ALD -0.24277 | 0.13282 | 0.0676 0.784
PLD - AID -0.15159 | 0.14348 | 0.2907 | 0.859
PLD - HCV 0.08462 | 0.13807 | 0.5399 1.088
PLD - HBV 0.05300 | 0.17830 | 0.7663 1.054

PLD - Cancer 0.46530 | 0.15586 | 0.0028 1.592
PLD - Metabolic | -0.04300 | 0.16682 | 0.7966 0.958

PLD - Other -0.32864 | 0.14746 0.0258 0.720
PLD - Acute 0
Height 0.00953 0.00252 0.0002 1.010

Blood Group - O | -0.58504 | 0.11535 | < .0001 | 0.557
Blood Group - A | -0.24982 | 0.11493 0.0297 0.779
Blood Group - B | -0.21245 | 0.12788 | 0.0967 | 0.809
Blood Group - AB 0

Table 1.11: Results for Cox model for time to censoring fitted to the Liver Registration

data set assuming non-informative censoring
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Parameter Estimate | Standard | p-value Hazard
Error Ratio
Intercept -19.9758 | 1.2216 | < 0.0001 | 2 x 107°
UKELD score 0.1854 0.0091 < .0001 1.204
PLD - PBC -0.1346 0.3389 0.6913 0.874
PLD - PSC -0.6234 0.3789 0.0999 0.536
PLD - ALD -0.3441 0.3100 0.2671 0.709
PLD - AID 0.0113 0.3308 0.9727 1.011
PLD - HCV 0.4000 0.3263 0.2204 1.492
PLD - HBV 0.0276 0.5065 0.9566 1.028
PLD - Cancer -1.4751 0.7661 0.0542 0.229
PLD - Metabolic 0.6556 0.3554 0.0650 1.926
PLD - Other 0.3188 0.3368 0.3439 1.375
PLD - Acute 0
Age 0.0287 0.0059 | < 0.0001 1.029
Ethnicity - White 1.1834 1.0082 0.2405 3.265
Ethnicity - Asian 0.2172 1.0445 0.8353 1.243
Ethnicity - Black 0.9603 1.1196 0.3910 2.612
Ethnicity - Chinese | -0.5219 1.4282 0.7148 0.593
Ethnicity - Other 0

Table 1.12: Results for an exponential proportional hazards model for time to death fitted

to the Liver Registration data set assuming non-informative censoring
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Parameter Estimate | Standard | p-value | Hazard
Error Ratio
Intercept -8.1525 0.5266 | < 0.0001 | 0.0003
UKELD score 0.0312 0.0047 < 0.0001 | 1.032
PLD - PBC -0.0115 0.1451 0.9368 0.989
PLD - PSC 0.0080 0.1447 0.9557 1.008
PLD - ALD -0.2159 0.1334 0.1056 0.806
PLD - AID -0.1179 0.1440 0.4129 0.889
PLD - HCV 0.1354 0.1387 0.3288 1.145
PLD - HBV 0.1004 0.1786 0.5741 1.106
PLD - Cancer 0.5487 0.1564 0.0004 1.731
PLD - Metabolic -0.0114 0.1675 0.9460 0.989
PLD - Other -0.3300 0.1485 0.0262 0.719
PLD - Acute 0
Height 0.0108 0.0025 | < 0.0001 | 1.011
Blood Group - O -0.6175 0.1158 | < 0.0001 | 0.539
Blood Group - A -0.2588 0.1156 0.0251 0.772
Blood Group - B -0.2077 0.1287 0.1066 0.812
Blood Group - AB 0

Table 1.13: Results for an exponential proportional hazards model for time to censoring

fitted to the Liver Registration data set assuming non-informative censoring
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Liver Registration data set. This scatterplot can be seen in Figure 1.4. We can see that
apart from a few individuals, the original UKELD score and the revised UKELD score are
almost identical. Therefore our results should not be greatly affected by the use of the
original UKELD score rather than the revised UKELD score.

Comparison of Original and Revised UKELD Scores

Revised UKELD Score
60 70 80
1 1 1

50
1

40

T T T T T
40 50 60 70 80

Original UKELD Score

Figure 1.4: Scatterplot comparing the values of the original UKELD score given by (1.3)
with the values of the revised UKELD score given by (1.4) for all individuals in the Liver

Registration data set for whom the necessary component values are available.

1.2.6 Survival benefit

An important concept for the analysis of transplantation data is that of survival benefit.
This quantifies the difference in survival between patients who received a transplant and
similar patients who remained on the waiting list. From this it is possible to identify the
patients who benefit most from liver transplantation and those that should remain on the
waiting list at the present time. This approach was introduced in the USA by Merion
et al. (2005), and subsequently there have been many analyses that use the concept of
survival benefit.

The majority of the analyses use the covariate-adjusted hazard ratio for transplantation
compared to not receiving a transplant to quantify the survival benefit of liver transplan-
tation. Merion et al. (2005) use a time-dependent Cox regression model to calculate this
hazard ratio. However, all the later analyses use the method of sequential stratification,
introduced in Schaubel et al. (2006), which has been shown to give parameter estimates
which can be more easily interpreted. As stated in Schaubel et al. (2008), sequential

stratification is an “extension of Cox regression for evaluating time-dependent treatments
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in the presence of time-dependent patient characteristics”. This method creates a stratum
each time a patient is transplanted and compares their survival with that of similar candi-
dates who were active on the waiting list at the time. The experience from each stratum

is aggregated to estimate the regression parameters using a Cox model.

The method is extended to deal with issues specific to liver transplantation, such as
dependent censoring, in Schaubel et al. (2009b). This is covered in more detail in Chapter
6 where the method is applied to the Liver Registration data set. The contributions of
each patient are weighted by the inverse of the probability of remaining untransplanted to
account for the under-representation due to dependent censoring. This is one application
of the well-established method known as inverse probability of censoring weighting (IPCW)
which was introduced in Robins and Rotnitzky (1992) and is explained in more detail in

Section 3.1.

It was established that overall, liver transplantation gives a significant survival benefit.
However, patients have different severities of disease, as indicated by the MELD score,
which is given in (1.2). The MELD score quantifies the level of organ dysfunction. A high
MELD score indicates a high level of organ dysfunction. It has been shown by Merion et
al. (2005) that survival benefit is not distributed evenly across subgroups of MELD scores.
Those with high MELD scores have the greatest survival benefit from liver transplantation.
In comparison, patients with fairly low MELD scores have a higher mortality risk post-
transplant compared to remaining on the waiting list, and so they have a negative survival

benefit from liver transplantation.

Donor factors should also be considered when computing the survival benefit as they
effect the post-transplant mortality of recipients. The Donor Risk Index(DRI) can be used
to measure the quality of the donor organ. Schaubel et al. (2008) carried out an analysis
to compute the survival benefit for different levels of MELD scores and DRI. The patients
with the highest MELD scores still receive a significant survival benefit, irrespective of
the quality of the organ received. Those patients with a low MELD score who receive a
high DRI liver have a significantly higher mortality risk than comparable patients who
remain on the waiting list and possibly receive a better quality liver later. These results
are especially worrying when the current organ allocation policy in the USA is considered.
Patients with low MELD scores are generally given high DRI livers, so that the best
quality organs can be given to the patients deemed to be the sickest. As shown by Volk et
al. (2008), this has led to a small but significant decrease in the post-transplant survival

of patients with low MELD scores.

More recently, analyses of the survival benefit for patients with specific diagnoses have
been carried out in Lucey et al. (2009). Also the effect of individual components of the

MELD score on survival benefit is computed in Sharma et al. (2009).
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Using survival benefit to allocate donor livers One of the recent developments
in the survival benefit literature is the application of survival benefit to the allocation
of deceased-donor livers. This was first presented in Schaubel et al. (2009a). Here the
definition of survival benefit is different from that given in the papers considered previously.
This is to allow individual patients to be ranked in order of priority for a donor organ
according to a benefit score. The benefit score is the candidate’s 5-year mean lifetime with
a transplant(from the organ under consideration) minus their 5-year mean lifetime without
a transplant. An individual’s 5-year mean lifetime is the area under the individual’s
survival curve out to 5 years, where the survival curve is found using a Cox model. In
this approach, waiting list survival and post-transplant survival are modelled separately.
Post-transplant survival is modelled using covariate-adjusted Cox regression. The model
for waiting list survival is based on the sequential stratification approach. However, the

paper giving the exact details of this method is yet to be published.

There have also been several articles that provide a critical analysis of the proposal
to use survival benefit for donor liver allocation. The need for a high level of accuracy
in the estimation of both pre- and post-transplant survival is highlighted by Kim and
Kramers (2008). Some ethical questions are raised in Asrani et al. (2009); is it fair to
give all patients with a certain diagnosis a lower priority just because a few will have a
severe recurrence of the disease? Asrani at al. (2009) also discuss the limitations of the
analyses that have been carried out so far. As all the analyses have been carried out on
observational data, it is highly likely that there is a selection bias present in the data.
This is because there are many factors that affect the matching of patients with donor
organs that cannot be quantified in statistical modelling. Therefore even if an allocation
policy that uses statistical models is implemented to assist with the selection of patients
to be transplanted with a particular donor organ, the final decision on the suitability of a

patient must belong to the clinicians.

1.3 Outline of Thesis

Chapters 2 and 3 provide a review of the methods in the literature that have been suggested
to incorporate informative censoring into models. The most relevant methods are applied
to the Liver Registration data set so that the results from the contrasting methods can
be compared. Chapter 2 looks at estimators of the survival function that are used to give
bounds on the possible values of the estimated survival function assuming informative
censoring. The estimators in this chapter are some of the first estimators presented in the

literature to allow for informative censoring. As the estimators in Chapter 2 give bounds
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that are too wide to be of practical use, we review some of the more recent methods from
the literature in Chapter 3. These can be split into two categories: estimators that use
models of the censoring process and sensitivity analyses. The most popular of the methods
in the former category is reweighting the estimators, particularly inverse probability of
censoring weighted estimators. There are sensitivity analyses presented in Chapter 3 for
both the Cox model and parametric survival models. These methods estimate the change
in the parameter estimates in the model if informative censoring is assumed instead of non-
informative censoring. The methods that use parametric models are less computationally
intensive but lack the flexibility of the methods that use the Cox model.

Chapters 4 and 5 show the development of a new sensitivity analysis methodology that
can generally be applied to any situation where there is potentially informative censoring.
It uses piecewise exponential models, which means the method is computationally simple
but more flexible than the method that uses standard parametric models. It is an extension
of one of the sensitivity analysis methods detailed in Chapter 3. The derivation of the
method is shown in Chapter 4, along with its application to the Liver Registration data
set. A simulation study is carried out to test the accuracy of this new methodology and
this is detailed in Chapter 5. This allows us to identify the situations where the sensitivity
analysis is least accurate. An extension of the sensitivity analysis is presented to try and
overcome these identified limitations.

Finally, in Chapter 6, a method that is of interest to NHSBT is detailed, that allows the
survival benefit of groups of patients of interest to be calculated by comparing survival on
the waiting list with survival after transplantation. This method has already been applied
to US data, but we suggest some changes to the method and then apply it to the Liver
Registration data set. The method overcomes any potentially informative censoring in the
data set by using inverse probability of censoring weighted estimators, which are described
in Chapter 3. There will also be a concluding chapter that summarises the main findings

and shortcomings of this work and also describes further work that could be carried out.
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Chapter 2

Bounds on the Marginal Survival
Function under Informative

Censoring

The first approaches that account for potentially informative censoring in data sets derive
estimators that are extensions of the Kaplan-Meier estimator. Because of this they cannot
incorporate covariates unless the variables have a very simple structure. Generally these
estimators are used to provide bounds on the marginal survival function. These bounds
tend to be quite wide despite efforts to derive tighter bounds.

Here a review of these methods is presented, in the order that they were published,
so that it is possible to see the improvements in the methods. The estimators that are
considered suitable are applied to the Liver Registration data set so that results obtained
using the different methods can be contrasted. As this is a review chapter, all the methods
discussed can be found in the literature and are presented here in consistent notation.
Unless otherwise stated, the original work in this chapter is the application of the methods
to the Liver Registration data set.

The estimators here use a variety of assumptions about the conditional distribution of
the failure time variable given the censoring time variable to make the joint distribution
of the two variables identifiable. These range from non-parametric methods to using a
copula to specify the joint distribution of the variables. A section on copulas is included,

detailing some of the more common forms used.

2.1 Measuring Dependence between Variables

When estimators are being compared, it is important that they assume the same amount of

dependence between the time to censoring and time to failure variables so that meaningful
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comparisons can be made. As the estimators use different parameters to control the
dependence then, where possible, the relationship between these parameters and a widely
used measure of dependence between two variables should be established. The measure of
dependence that has been chosen for this is Kendall’s 7 which is a measure of concordance.
The definition presented here is taken from Nelsen (1999). A pair of random variables are
said to be concordant if large values of one variable are associated with large values of
the other variable, and small values of one are associated with small values of the other.
So, if there are two observations (z;,y;) and (z;,y;) from the random vector (X,Y"), then
they are concordant if z; < z; and y; < y;, or if x; > x; and y; > y;. Similarly, they are
discordant if z; < x; and y; > y;, or if ; > x; and y; < y;. If x; = x; or y; = y;, then the
pair is neither concordant nor discordant.

To be able to express the concordance measure, firstly a concordance function, (), needs
to be defined. This is the difference of the probability of concordance and the probability
of discordance between two vectors (X1, Y1) and (X3, Y2) with joint distribution functions

H; and Hs, but common margins. So,
Q(Hl,HQ) = P[(Xl — XQ)(Yl — Yé) > 0} — P[(Xl — XQ)(Yl — YQ) < O] (21)

The population version of Kendall’s 7 for random vectors (X1, Y1) and (X3, Y3), is the
concordance function @, given in (2.1), but assuming the same joint distribution function

H for each of the random vectors. So, 7 can be expressed as
= QULH) =4 [ H(w () -1
%2

as shown in Nelson (1999).

So that sensible values of Kendall’s 7 to be used here can be established, the relation-
ship between this and the parameter §, which we introduce in Section 3.3, will be found.
The parameter ¢ is used here because the sensitivity analysis that uses this parameter is
considered in detail in Chapter 4, so a sensible range of values for ¢ is established. We find
that 7 = §/2 when using an approximation to the joint density function. When fitting the
model that incorporates informative censoring to the Liver Registration data set, the 95%
confidence interval obtained for ¢ is (0.1388,0.4163), so 7 = 0.2 will be used as the upper
limit for Kendall’s 7 here. However, the dependence assumption that was used to obtain
this interval for ¢ cannot be checked so it is possible that a larger value of Kendall’'s
should be used.

For some of the estimators presented here it is not possible to relate their parameter
directly to Kendall’s 7. In these cases a parameter value that gives an estimator with
the same median value as an estimator for which the parameter can be directly related to

Kendall’s 7 is chosen.
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2.2 Fisher-Kanarek Estimator

Fisher and Kanarek (1974) present a non-parametric method that estimates the survival
function without consideration of covariates. The method allows for both informative
and non-informative censoring within the same data set. In the case of no informative
censoring the Kaplan-Meier estimate of the survival curve results.

The following model presented is non-parametric with the exception of the parameter
« which either expands or contracts the residual lifetime after informative censoring. The
assumption of the dependence between survival time 7" and informative censoring time Ct

used is

P(T>tCr=c<t)=P(T>c+alt—2c)|C;>c+alt—c)). (2.2)

If a > 1, then it is the patients with a poorer prognosis who are censored, and v < 1 means
it is the patients with a favourable prognosis who drop out. If &« = 1 then censoring has
no effect on expected survival and corresponds to the independent censoring case. This
means the Kaplan-Meier estimate will be appropriate.

As there are three possible times that can be observed for each of the i = 1,2,...,n

individuals, there are three variables:

e T, the survival time if it is less than the censoring time, which has survival function
P(T > t) = Sz(t)

e (7, the censoring time that shall be considered informative, where individuals are

lost to follow-up, which has survival function P(C; > t) = S¢, (t), and

e (g, the censoring time that will be considered independent of failure time, such as

end of study censoring, which has survival function P(Cg > t) = Sc, ().

The survival function S(¢) of the “true” survival time 7T is the function that will
be estimated here. The survival time, T, will be equal to T if T < Cj, otherwise the
assumption in (2.2) is used. This means that S(t) is related to Sz(t) and Sc,(t) by the

following relationship
S(t)=P(T > t|C; > t)P(Cr > t)
/ P(T > #|Cy = )P(T > |T > ¥, Cy = #')dP(Cy < t')
— S-(1)Sc, (1 / S-( + alt — )d(=Sc, (¢)). (2.3)

So to estimate the survival function S(t), estimates of S7(t) and S¢, (t) need to be obtained

and then substituted into (2.3).
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The data observed are Y; = min(ﬂ-, Cri,Cg;) and the indicator functions

1, if Ty < min(Cy;, Cr;)

Ai,f’ = )

0, otherwise

1, ifCr <T,,Cr < Cp;
Ai,C[ -

0, otherwise

and

1, if Cg; < min(T},Cy;)

Aoy =

0, otherwise.

Let Y(;) be the corresponding order statistics and A(i),T’ Ag),c; and Ay ¢, the indicator

functions relating to these order statistics. The maximum likelihood estimates of Sz (%),

Sc, (t) and Sc,(t) are then given by

sr =11 <niz_—iz—1

i:1727 7

A
where Yy <t <Yy

n—1+1

Awy,cp

A n—i \20c
SCI (t) = H < ) where }/(k) <it< YV(k_H)

. n—i
and S (f) = . H <n—z—i—1
So the maximum likelihood estimate of S(t) is given by
¢
5(0) = 8308, 0+ [ S5t +alt — £))d(~5e, ()
0

where S’T(t) and Sc, (t) are the product-limit estimates defined in (2.4).

where Yy <t < Y1)

(2.4)

(2.5)

As the data give no information about the value of a, assumed values of a should be

used. These can be used to see how robust the assumption of non-informative censoring

is. If a large value of « is used, then the true marginal survival distribution should lie

somewhere in the region between the Fisher-Kanarek estimator and the Kaplan-Meier

estimator. However, this is not guaranteed as this method does not provide true bounds

on the marginal survival function.

2.3 Peterson Bounds on the Survival Function

Methods that give definite bounds on the survival function are now considered, but these

methods only allow for one type of censoring. So even if we have end of study censoring,

it has to be treated as possibly informative censoring in these methods.
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Peterson (1976) gives bounds for a joint survival function G(t1,t2) = P(T > t1,C > t9)
and the marginal survival functions S7(t) and Sc(t). The estimated survival function of
the variable T' is of interest, so the bounds for the marginal survival function Sr(t) are

obtained. These are given by
Sr(t) + 5¢(t) < Sr(t) < Sp(t) + (1 —p1) (2.6)
where

Sr(t)=P(T>t,T <C),
Sa(t)=P(C>t,C<T)
and 1-p=1-PT <C)=P(C<T).

The observed data are Y; = min(7;,C;) and A; = I(Y; = T;) for i = 1,2,...,n. The
empirical estimators of the marginal survival functions are used as they are consistent

estimators, where

Sp) = TS MYz 1A =1
=1

and  Sp(t) = %ZI[YZ- > A =0).
=1

The empirical estimator of (1 — pp) is also used, which is given by

If these terms are substituted into (2.6) then consistent estimators of the bounds for St(t)
can be obtained. After a little algebra they become

1 & 1<
=3 IY; > 4] < Sp(t) < EZI[Y; >+ =Y IV <t, A =0]. (2.7)

=1 =1 =1

2.4 Slud-Rubinstein Bounds on the Survival Function

Slud and Rubinstein (1983) also derive bounds for the survival function St (¢) but their
bounds can be tighter than those given by Peterson (1976). They make a nonparametric
assumption on the joint density f(¢,c) of (T, C),

I Pt<T<t+d|T >t C<t)
11m
0 Pt<T <t+6|T>t,C>t)

— p(t) (2.8)

where p(.) is a known function of ¢. This means that p(t) is the amount that the conditional

death hazard at time ¢ differs by, according to whether the individual is censored before
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or after . So p = 1, corresponds to the independence assumption. If p(t) > 1 for all ¢,
then there is positive dependence between 1" and C' and similarly if p is always below 1,
then there is negative dependence between failure and censoring.

If we assume that p(.) is known, then there is a consistent estimator of the marginal sur-
vival function S7(t) which generalises the Kaplan-Meier estimator. Again Y; = min(7;, C;)
and A; = I(Y; = T;) for i = 1,2,...,n are observed. Let Y{;) < ... < Y{g) be the ordered
failure times, when there are d observations with A; = 1. Let the number of observations
censored between Y(;) and Y{;41) be ¢;, with ¢y censored before the first failure time. The
number of individuals with Y; > Y(j) is defined to be n;.

The product-limit estimator for Sy (t) proposed in Slud and Rubinstein (1983) is

1 ni—l
S,(t) = — t — 3, 2.9
0= gm0+ e TS5 = (2.9)

where
=Y IYi>t), dit)=> IYi<t,A;j=1) and p; = p(Y;).

After some algebra, this becomes

d(t) d(t) d(t)

1 n; — 1
(- D[t (2.10)
}_[ln +pz—1 ; il_{ni—kpi—l
When p(.) =1, S’p is exactly the Kaplan-Meier estimator.

From (2.9), we see that for fixed t, Sp(t) is a decreasing function of p, so as p increases,
the value of S, at time ¢ decreases. Bounds for the function p(.), as defined as in (2.8),
can be assumed and if the true value of the function does lie between the bounds p;(.)

and po(.), then for sufficiently large samples
$a(t) < S(1) < S0 (1) 2.11)

This can be used to give bounds on the survival function which are tighter than those
given in Peterson (1976), which correspond to (2.11) with p; = 0 and pa = co. However,
as there is no information available on the value of p from the observed data, it is not
possible to identify whether the bounds assumed contain the true value of p. This limits

the usefulness of this method in a practical setting.

2.5 Klein-Moeschberger Bounds on the Survival Function

Klein and Moeschberger (1988) also present bounds on the survival function St () that are
tighter than those of Peterson (1976). However they make a different assumption about the
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dependence between the failure and censoring times. As previously, the marginal survival
functions of T' and C are St(t) and Sc(t) respectively. The joint survival function of T'
and C, G(t1,t2) = P(T > t1,C > t9) is expressed as

Glt1,t2) = { [s;tl)] T [Sctw)r_l - 1}911 (2.12)

for # > 1. This model for the joint distribution of 7" and C was first introduced in Clayton

(1978) to model association in bivariate lifetimes. It is also used to model bivariate survival
data in Oakes (1982). The model in (2.12) can be interpreted in terms of the hazard

functions

0

< = >
hT(t\C:c):%in{l}[P(t_T<t+5|C c,T_t)]
_).

and

= >
hT(t|C>C):%ir% [P(tT<t+5|C>c7Tt)].
%

5
Using (2.12), we obtain

hr(t|C = ¢) = 0hp(t|C > ¢). (2.13)
This means that for 6 > 1, the hazard rate of death, if censoring happens at time c, is the
hazard rate of death if censoring had not occurred multiplied by 6. So the hazard rate if
censoring does occur will be greater than the hazard rate if censoring does not occur, as it
has been accelerated by a factor of 8. Therefore this only allows for positive dependence
between T' and C. This is not a problem for the data set under consideration here, as it
is suspected that the dependence between T and C' is positive.
Klein and Moeschberger (1988) show that 7 = (0 —1)/(0+ 1). Since 6 > 1, 7 can only
take values between 0 and 1.
If T and C have joint survival function (2.12), then the observed value Y = min (7', C)

has survival function
—1

o= {[s;m]“ ’ [SS@J“ - 1}9_1‘

This is a reasonable choice for the joint distribution function of T' and C' as it is used to

model bivariate survival data in Oakes (1982). It is also related to the Clayton copula
function given in Table 2.1, which seems to be a reasonable choice of copula family, as we
will discuss in Section 2.10.1. The marginal distribution function of T is also required,
which is defined as

Qi1t)=PY <t, T <C).
These functions are estimated directly from the observed data, Y; = min(7;,C;) and
A, =1Y;=T;) fori=1,2,...,n, using

F(t) :ZI(Yant) and O (1) :ZI(YZ- <t A= 1).

N X n
=1 =1
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Then, if 6 is known and the underlying joint survival of (T,C) is given by (2.12), a
consistent estimator of Sy (t), given in Klein and Moeschberger (1988), is Sp(t) where

( —1

{1+(0—1)/0 ﬁﬁg} i1

t dQl(u)
P [_/0 F(u)

Upper and lower bounds on St (t) can be found by letting 6 — 17 and § — oo

ifo=1.

respectively. This gives an upper bound which corresponds to independence between T
and C and a lower bound which is the same as that of both Peterson (1976) and Slud and
Rubinstein (1983). So,

PO < 5r(0) < exp |- | t P wdi(w)]

It is possible to set up tighter bounds on the survival function using the same method
as Slud and Rubinstein (1983). A possible range of values for 0, (6, 65) is specified. If the
sample size is sufficiently large and 6; < 6 < 6, then Sy, (t) > S(t) > S, (t).

2.6 Applying Methods to Liver Registration
Dataset

Firstly, the Fisher-Kanarek estimator is fitted to the Liver Registration data set. As
it is believed that the transplant candidates with the poorest prognosis that are being
censored, then it is assumed that « is greater than 1 when obtaining an estimate of the
survival function. More specifically, a = 3 is chosen. This is the value of a that gives
the estimator the same median value as the Klein-Moeschberger estimator for this data
set with Kendall’s 7 = 0.2. The estimate for the independent case (o = 1), which is
the Kaplan-Meier estimate of the survival function, is also obtained to see how close the
other estimates are. These are given in Figure 2.1. From this we see that as « increases,
the estimate of the survival function decreases more quickly. This is expected as we are
adjusting for patients who survive for progressively shorter times after censoring. Also,
there can be a rather large difference between the Fisher-Kanarek estimate of the survival

function and the Kaplan-Meier estimate.

Drawbacks of this method When the largest observation time in a data set, t*, is
censored, the Kaplan-Meier estimate of the survival function cannot be defined beyond

this time. As stated in Kaplan and Meier (1958), the estimated survival function beyond
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Fisher-Kanarek estimates of the survival function
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Figure 2.1: Plot of Fisher-Kanarek estimators of the marginal survival function for 7" for
o =1land3

time t* will lie somewhere between S(t*) and 0, but it is not possible to define it any
more precisely. However, Fisher and Kanarek have disregarded this when presenting their
estimates of the survival function. In their simulated data set, they observed 44 deaths
with times between .01 and .58, 34 non-informative censoring times between .01 and .67
and 22 informative censoring times between .03 and .72. Therefore, their last observation
must be censored. So, the product-limit estimate of S7 should not be defined beyond .72.
Fisher and Kanarek do not explicitly state that they assume a value for S; beyond this
time, but they present estimates of S(¢) up until time 1 when o > 1. This means that
they must have defined S; beyond .72 so that the integral in (2.5) can be evaluated.

In the Liver Registration data set, the last observation is a censored one at time 1265.
This means that here S; should not be defined beyond this time. However, we assume
that beyond time 1265, S; remains at the same value that it has at time 1265. This is
why we observe the strange behaviour of the Fisher-Kanarek estimator at around time

400 in Figure 2.1. It is for this reason that use of this estimator is not recommended.

The Slud-Rubinstein bounds for the survival function estimate for the Liver Registration
data set are shown in Figure 2.2. A range of values for p were chosen, with the upper
and lower bounds being p = 0 and p = oo respectively. As these are the same as the
Peterson bounds on the survival function, it was not necessary to produce a separate plot
for these bounds. We chose p = 2.7 as this gives an estimator with the same median as
the Klein-Moeschberger estimator with 7 = 0.2. The estimator with p = 1 is included as

this is the same as the Kaplan-Meier estimator and can be used for comparison. We see
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that the Peterson bounds are extremely wide and the Slud-Rubinstein bounds can indeed
be an improvement on these. However, depending on our confidence about the bounds on
the value of p, the Slud-Rubinstein bounds may still be wide and so are of little practical

value.

Slud-Rubinstein bounds for the survival function
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Figure 2.2: Plot of Slud-Rubinstein bounds on the marginal survival function for 7' and a

Slud-Rubinstein estimator of the marginal survival function for 7" with p = 2.7.

Figure 2.3 shows the Klein-Moeschberger bounds for the survival function for the
Liver Registration data set. Estimators for values of 6 between 1 and oo are presented.
So, the lower bound is the same as that for Peterson and Slud-Rubinstein but the upper
bound corresponds to the assumption of independence. Therefore, the Klein-Moeschberger
bounds are not as wide as those of Peterson. It also means that only positive correlation
between the failure and censoring times is considered. While this is not a problem for this
particular data set, the method may not be suitable for other data sets. The estimator

with 8 = 1.5 corresponds to 7 = 0.2.

2.7 Background on Copulas

Copulas can be used to give the dependence structure between two variables X and Y with
marginal distribution functions F’ and G respectively. All the definitions and information
on copulas given in this section come from Nelsen (1999). It is possible to define either
the joint distribution function H, or the joint survival function H. Firstly, the definition
that uses the joint distribution function which comes from Sklar’s theorem is given.

Sklar’s Theorem If we have a joint distribution function H with margins F' and G, then

38
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Figure 2.3: Plot of Klein-Moeschberger bounds on the marginal survival function for T'

and a Klein-Moeschberger estimator of the marginal survival function for T with 6 = 1.5.

there exists a copula C such that for all x,y in R
H(z,y) = C(F(z), G(y))- (2.15)
This means that the copula is given by
C(u,v) = H(F~Y(u),G71(v)), w,vel0,1],

where F~1 and G~! are inverses of F and G.

2.7.1 Survival copulas

A similar function C, called a survival copula, can be defined. This gives the joint survival
function H in terms of the marginal survival functions F and G. Again from Nelsen
(1999), we have

H(x,y) = C(F(z),G(y)).

This is related to the copula defined in (2.15) by
Clu,v) =u+v—1+C(1—u,1—0).
This relationship is obtained since

H(w,y) =1-F(z) - G(y) + H(x,y)
=F(z)+Gy) — 1+ C(F(2),G(y))
=F(z)+Gy) —1+C(1 - F(2),1-G(y)).
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2.7.2 Archimedean copulas

There is a special class of copula functions known as Archimedean copulas, defined in

Nelsen (1999), where the copula can be expressed as

C(u,v) = o™ (p(u) + p(v)), (2.16)

where ¢ is the generator of the copula. The most well-known one parameter families of

Archimedean copulas are given in Table 2.1.

Name C(u,v) o(t) RS
Clayton max([u=? +v=¢ —1]71/9,0) (0 —1) [—1,00)\{0}
Gumbel- | exp(—[(—logu)? 4+ (—logv)?]'/%) (—logt)? [1,00)
Hougaard

1 (e~ v —1)(e=v—1) e 01
Frank —glog(1+— ") —log(£=5=) | (—00,00)\{0}

Table 2.1: Table showing some of the most well-known families of Archimedean copulas

with their generators and corresponding copula functions as given in Nelsen (1999).

Some of the papers considered in this section refer to a gamma frailty copula, which

is given by

1 —a/(a—1)

1 et -1 . a>0\{1}.

Clu,v) =u+v—1+ (m

2+

1—vw

It is easy to see that this is the corresponding survival copula for the Clayton copula with
0 = a — 1. However, in some papers the domain of « is restricted to (1,00] so that only
positive dependence between the variables is possible.

To visualise the differences between the copula functions considered, the density func-
tion of the copula, c¢(u,v) = %C(u,v}, for the Clayton, Frank, Gumbel-Hougaard and

gamma frailty copulas has been plotted in Figure 2.4.

2.7.3 A dependence measure for copulas

Kendall’s T has already been defined as a measure of concordance and it will be used to
express the amount of dependence between time to failure and time to censoring here. It
will be shown that it can be expressed in terms of copulas, instead of the joint distribution
function. Recall that the population version of Kendall’s 7 for random vectors (X1, Y7)

and (Xq,Ys), each with joint distribution function H is
T = P[(Xl — X2)(Y1 — Yé) > 0] — P[(Xl — XQ)(Yl — YQ) < 0]
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Figure 2.4: Joint density functions for Clayton, Frank, Gumbel-Hougaard and gamma

frailty copulas
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Let X and Y be continuous random variables with copula C, then the population version
of Kendall’s 7 given in Nelsen (1999) is

e =Q(C,C) = 4/112 C(u,v)dC(u,v) — 1.

where the unit square I2 is the product I x T where I = [0, 1]. For an Archimedean copula
with generator ¢, this has a simpler form, given by
1
p(t)
c=1+4 / dt.
o ¢'(1)

The following theorem from Georges et. al. (2001) will be of use when using copulas

that are the corresponding survival copulas of well-known families of copulas.
Theorem The Kendall’s 7 of the survival copula C are equal to the Kendall’s T of the

associated copula C

2.8 Self-consistent Estimators based on an Assumed Copula

In this section, the estimator from Zheng and Klein (1994) is presented, which they call
a self-consistent estimator based on an assumed copula. The idea of self-consistency was
first discussed in Efron (1976), and a summary of this concept is given here.

If both the time to the event of interest T, and the time to censoring C' could be
observed for every individual in a data set, then natural non-parametric estimators of the

marginal survivor functions, S7(t) and Sc(t), of T and C respectively, would be

A 1 A 1 o
= — - > = — i > t|.

Sr(t) =~ ZZ}I[TZ >t and So(t)=- ;1[01 > ]

As we have censored data, these estimators need to be adapted. Let Y7,Ys,...,Y, be the

observation times, where Y; = min(7;,C;). If Y; is a death time then it is known whether

T; is smaller or greater than ¢. If Y; is a censored observation that is greater than or equal

to t, then it is also known that the T; for this individual is greater than ¢. However, if Y;

is a censored observation that is less than ¢, it is not known if T; is greater than ¢ as it

could fall between Y; and ¢. So, Zheng and Klein (1994) state that the estimator for Sr(t)

that comes from the concept of self-consistency given in Efron (1967) is
1 n
Srt) ==Y I(V; > 1)+ Y (1—A)P[T>HT>Y;,C =Y. (2.17)
(O = Y;<t

where A; = I(Y; = T;). A similar argument can be used when obtaining an estimator of

the marginal survival function of C, which gives

So(t) :% M IYizt)+ ) AP[C>HC>Y,,T=Y],. (2.18)
=1 Yi<t
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Zheng and Klein (1994) show that when 7" and C are dependent with copula C, the
estimated probabilities in (2.17) and (2.18) can be written as

1—Co(1 = Sp(t),1— Se (Vi)

P(T > T >Y;,C=Y;) = . .
1=Cy(1 = 5r(Yi),1 = Se(Ys))

and ) )
P(C>tC>Y,T=Y;) = 1-Cu(1 = S7(Yi), 1 — Sc(t)) ’
1=Cu(1=57(Y;),1 = Sc(Y))

where o) o

ckd _ Xl

Cu(a,b) = “ou and Cy(a,b) = Gy

evaluated at the point (u,v) = (a,b).
Thus the estimators in (2.17) and (2.18) become

(1~ Sr(t).1 - Se(¥D)
APRCE P s sey |

and

— 5r(Yi),1 = So(1))
ZIY>t +Y§<:t - 1—ST() S [ (2.20)

An iterative process is used to find the self-consistent estimators S7(t) and Sc(t). The
initial guesses S’r_op(t) and S’g(t) are substituted in the right-hand sides of (2.19) and (2.20)
to give ST.(t) and S} (t). This is repeated with Sk(t) and Sk (t), and so on until the stable
points of the process are found.

This process will converge as the convergence of self-consistent estimators such as those
in (2.17) and (2.18) is established in Tsai and Crowley (1985). They found that the EM
algorithm can be set up so that it converges to estimators that have the property of self
consistency given in Efron (1967), and that convergence is guaranteed as long as the initial

estimator used in the algorithm is a step function with mass at the observed time points.

2.9 Copula-Graphic Estimators

Zheng and Klein (1995) suggest an estimator of the marginal survival function of T, St (¢),
based on an assumed copula C, known as the copula-graphic estimator. It is a step function
with jumps at the distinct event times. They also define a similar estimator for Sc(t),
the marginal survival function of C. This is a step function with jumps at the observed
censoring times, which is needed in the estimation of the copula-graphic estimator, ST(t).

We observe Y; = min(7;,C;) and an indicator function A; = I(Y; = T;) for the ith

individual in the data set. The times t1,...,t,, are the distinct times at which individuals
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experience an event or are censored. Let to = 0 and Sp(ty) = Sc(to) = 1. If the
observation at time t; is a failure time, then S’C(ti_l) is used instead of S'C(ti) when
computing our estimator, as there will be no change in value for Sc at time t; if the

observation is a failure time. Similarly, if at time ¢; there is a censored observation, let
ST(ti) = S'T(ti—l)‘ So if A; =1, then

S’T(ti) + SC(ti—l) —-14C [1 — S’T(ti)a 1—Sc(tioq)

| I
|
~
~—~
o
\%
Sk
\.;/
—~
ro
[\)
—_
S~—

j=1
Similarly, if A; = 0, then
N R R . 1 <&
Sr(tiot) + Sc(t) —1+C [1 ~8p(ti), 1 — sc(tl-)} = =3I > ). (2.22)
7=1

To ensure that these estimators can handle tied observation times, if there are both
failures and censored observations at the time ¢;, it is assumed that the censored times
occur at time t;r after the failure times. This is a standard assumption when there are
ties in the data, and ensures that the estimator S’C(t) does not have any jumps at exactly
the same time as S’T(t). Also any individuals that are censored at t; would be included in
the sum » 7, I(Y; > t;) when computing Sr(t;). However, failures that occur at time t;

would not be included in this summation when computing Sc(t;).

2.9.1 Closed form copula graphic estimators

Rivest and Wells (2001) show that in certain circumstances, it is possible to obtain a
closed form of copula-graphic estimator of the marginal survival function of T, S‘T(t).
They assume that the joint survival function H(t,c) is given by an Archimedean copula,
which is a copula of the form given in (2.16). They present the closed form of the estimator
when there are no ties in the data. However, we extended their closed-form estimator to
data with tied observation times by assuming that if there are both failures and censored
observations at time ¢;, then the censored observations occur at time t;L, just after the
failures.

So, if the joint survival function H(t,c) can be expressed by an Archimedean copula
with generator function ¢(t), it can be shown that the copula-graphic estimator of the

marginal survival function of T is

Sr(t)=¢ " [ D {so (%) — (nl — di)} (2.23)

where n; is the number of individuals at risk at time ¢; and d; is the number of observed

failures at time ¢;.
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2.10 Applying Estimators that use an Assumed Copula to
Liver Registration Data Set

In this section, self-consistent and copula graphic estimates for the Liver Registration data
set are presented, for different families of copulas. Figure 2.5 shows the self-consistent
estimates based on the Gumbel-Hougaard, Frank, gamma frailty and Clayton copulas,
each with Kendall’s 7 of 0.2. Similarly, Figure 2.6 shows the corresponding copula graphic
estimates. In Figures 2.5 and 2.6, the Kaplan-Meier estimate of the survival function is
also plotted for comparison.

In Figure 2.7 the copula graphic estimates using the Gumbel-Hougaard, Frank and
Clayton copulas are presented. However, the estimates here were obtained using the
closed forms of the estimators. This form of the estimator gives different results for some
of the copulas. This is because Zheng and Klein (1995) use the assumed copula to give
the joint distribution function, whereas Rivest and Wells (2001) use the assumed copula
to give the joint survival distribution. So if the corresponding survival copula for the
Archimedean family had been used, then the two estimators would be the same. As we
can see, the closed-form copula graphic estimator for the Clayton copula is the same as the
copula graphic estimator for the gamma frailty copula. This is because the gamma frailty
copula is the corresponding survival copula for the Clayton copula. For some families of
copulas, it does not matter whether the standard copula or the survival copula is used.
This is true of the Frank copula as it gives a symmetric distribution to the dependence

between the two variables.

survival i from self- i il based on an assumed copula
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Figure 2.5: Plot of self-consistent estimates based on different assumed copulas for
Kendall’s 7 = 0.2
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Figure 2.6: Plot of copula-graphic estimates using different assumed copulas for Kendall’s

7=0.2
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Figure 2.7: Plot of copula-graphic estimates with closed form expression using different

assumed copulas for Kendall’'s 7 = 0.2
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Here the estimates for a range of copula families for a given value of Kendall’s 7 have
been plotted in each of the Figures 2.5, 2.6 and 2.7. This is so the differences in the
estimates given by each family can be seen. However, when applying these methods to
data, a copula family that reflects the suspected dependence structure should be chosen.
This is because copulas cannot to be fitted to the data to see which fits best as the failure

and censoring time are not both observed for each individual.

2.10.1 Selecting copula family

Plots of the joint density functions of the Clayton, Frank, Gumbel-Hougaard and gamma
frailty copulas are given in Figure 2.4. These plots should be used to select which of the
copulas is believed to be the most appropriate for the data set under consideration. This
can be done by choosing the copula with the joint density function that seems most the

plausible for our data set.

As the copula C is used to specify the joint distribution of two variables, then the
copula density function c¢(u,v) = 83—2@0 (u,v) gives the joint density function of the two
variables. So a point (u,v) on the surfaces given in the plots in Figure 2.4 corresponds to
f(z,y) where x = S:Fl(u) and y = S&l(v).

As generally the values of T and C observed tend to be fairly small with only a few
individuals having large observations, a copula that has higher density values for low values
of uw and v should be chosen. From Figure 2.4, it can be seen that a sensible choice would be
either the Clayton copula or the gamma frailty copula. As the Clayton copula only gives
large density to very small values of v and v, the gamma frailty copula is recommended

as its density function does not have such a steep slope.

It is not possible to estimate Kendall’s 7 so assumed values of this measure are used.
The estimators given when using these values of Kendall’s 7 can be used as bounds for
the estimated survival function, if it is believed that the true value of Kendall’s 7 lies in
the assumed interval. Figure 2.8 gives the bounds on the survival function for the Liver
Registration data set given by a copula-graphic estimator if Kendall’s 7 lies between -0.2

and 0.2, assuming firstly a Clayton copula and then assuming a gamma frailty copula.

The plots in Figure 2.8 show how different the bounds on the marginal survival function
obtained are when using different copula families. When ¢ < 200 the bounds given by the
estimators using a gamma frailty copula are tighter than those given by the estimators
that use a Clayton copula. Shortly after this time, the bounds given by the estimators
that use a gamma frailty copula become much wider than those given by the estimators

that use a Clayton copula.
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Figure 2.8: Bounds for estimated survival function given by copula-graphic estimators if
Kendall’s 7 lies between -0.2 and 0.2, assuming a Clayton copula and a gamma frailty

copula.

2.11 Inclusion of Covariates

As the estimators considered in this chapter are extensions of the Kaplan-Meier estimator,
they share some of the limitations of this estimator. The main one here being that not
all covariates can be incorporated when using this estimator. In fact, only covariates with
simple structures like factors with only a few levels can be considered. For these variables,
an estimator for each level of the factor or for each combination of levels of several different
factors can be produced. But there is no way of incorporating continuous variables, and

some of the most important covariates in the data set under consideration are continuous.

In Yan (2007), it is detailed how it is possible to incorporate covariates into copulas
in two ways. Firstly, the margins can be modelled using regression models instead of just
a distribution. This means that one of the parameters of the distribution is replaced by
XT3, where X is a vector of covariates and B is a vector of parameters. Similarly the

copula parameters could be replaced by X3 to allow covariates to be incorporated.

However, for the estimators considered here that use an assumed copulas, it is the
marginal distributions used in the copulas that are being estimated so they cannot be
replaced by regression models. Also the value of the copula parameter is used to control
the amount of dependence between 17" and C' so the parameter can not be replaced with
XT 3. So the only way of incorporating covariates in these estimators are those that were

discussed previously for the other estimators in this chapter.
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2.12 Another estimator of the marginal survival function

for failure time variable

There are other estimators that are modifications of the Kaplan-Meier estimator that allow
for informative censoring in a data set. One of these estimators is considered briefly, but
not applied to the Liver Registration data set.

The estimator is given in Link (1989), uses a frailty model to account for informative
censoring. It is assumed that each life time 7" has a random variable Z associated with it,
which is called the frailty. Censoring is then only possible for a subset A of the values of
Z. It is usually assumed that censoring is possible for individuals with either high or low
frailty.

The survival function S(¢|Z = z) is decreasing in Z, so the individuals that tend to
have smaller lifetimes are those with high frailties. So if it is assumed that individuals with
high frailties are those at risk of censoring and A = {z|z > a}, then there will be heavier
censoring on small observations and less censoring on larger observations than under non-
informative censoring. This means the Kaplan-Meier estimator would over estimate the
survival function S(¢) if it was used here.

As before, the observed data are the observation times Y and the indicator function
A = I(Y = T). Here the ordered observation times y(;) will be used along with A,
which is the corresponding value of the indicator function.

The Kaplan-Meier estimator can be written as

S(t) = % {ZI(?J(Z‘) > 1)+ Y (1= Aq)P(T > tY =y, A= 0)} :

i=1
where
P(T > t)Y = yu), A=0)=S(t)/S(yu))-
In the alternative frailty model, proposed in Link (1989), this probability is given by

S(t|Z € A)

P(T > t]Y =y4),|A=0) = S(yw|Z € A)

Then a modified form of the Kaplan-Meier estimator can be obtained by using the algo-

rithm

) (& n S0 (|7 € A)
Skl )y = = Iyp >+ > (1-Ag)= ,
(t) = Z; (Y > 1) ;( ())S(k)(y(iﬂZeA)

and letting k — oo.
This estimator is not applied to the data set under consideration for two reasons.
Firstly, as it just another extension of the Kaplan-Meier estimator then it still has all

the disadvantages associated with this estimator and so does not provide an improvement
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on any of the other estimators considered here. Secondly, and more importantly, the
assumption used here is not a realistic one for the situation being considered. For this
method, it is assumed that censoring is possible for only a subset of the individuals in the
data set. Although there are patients on the waiting list for a liver transplant that have a
greater hazard of receiving a transplant, we do not want to restrict censoring to just these
individuals. This would imply that there are patients on the waiting list who could not

receive a transplant and this is not realistic.

2.13 Discussion

The bounds that are given by the all estimators applied to the Liver Registration data set
in this chapter are not useful in a practical setting as they are too wide. The method used
in both Slud and Rubinstein (1983) and Klein and Moeschberger (1988) of assuming that
the parameter controlling the dependence lay within a restricted region gave bounds that
were tighter than those of Peterson (1976). However, even these were still too wide to be
of use. It is still possible to use the estimators with an assumed value of dependence. But
they still not of much use in a practical application as they do not allow all the important
covariates to be incorporated.

A number of different estimators that extend the Kaplan-Meier estimator to allow for
informative censoring have been presented here. Some of the estimators are preferable to
others. In particular, it is not as easy to specify an interpretable amount of dependence
for the Fisher-Kanarek and Slud-Rubinstein estimators as for the other estimators that
use Kendall’s 7. However, the Fisher-Kanarek estimator does allow for non-informative
censoring as well as informative censoring, unlike the rest of the estimators which only
consider one type of censoring. This means either only the data up until the first non-
informative censoring is used or the non-informative censoring is treated as informative
censoring. Here the latter method is used.

However, use of the Fisher-Kanarek estimator is still not recommended. This is because
when the last observation in a data set is censored we can see some strange behaviour in
the estimate of the survival function when assuming a positive dependence between 1" and
C. The reason for this is discussed in detail in Section 2.6.

Zheng and Klein (1994) present the results of a small simulation study that compares
the self consistent estimator and the copula-graphic estimator. A gamma frailty copula
with exponential margins is used with a value of 6 that gives 7 = 0.5. The parameters of
the exponential margins chosen give P(X < Y) = 0.50, which equates to 50% censoring.
Also a sample size of 20 is used. They calculate the relative biases of the estimators

as the marginal distribution function Fr(t) increases. The relative bias of S is defined
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as (E[S(t,)] — p)/p at time t, where S(t,) = p. Both estimators are biased for large t,
as the size of the risk set becomes smaller. However, the self-consistent estimator has
a significantly larger bias than the copula-graphic estimator. This behaviour is typical
for these estimators as they also carried out further simulation studies for other copulas,
association parameters and sample sizes. The results of these simulation studies are given
in Zheng (1992).

Also the copula-graphic estimator is less computationally intensive as it only requires
one pass through the data to construct the estimator. In contrast the self-consistent
estimator requires a pass through the data at each iteration. For these reasons the copula-
graphic estimator is recommended rather than the self-consistent estimator.

Although the preferred estimator that uses an assumed copula is now known, it is still
not known how it compares to the other estimators in this chapter. Also, it is not known
whether the gamma frailty copula that is recommended here gives estimators that are
closer to the true survival function than the other copulas. However, as these methods
cannot easily be used in practice due to the wide bounds found and the difficulties with
incorporating covariates, it would not be particularly useful to identify the preferred esti-
mator of those detailed in this chapter. Therefore, in the following chapter, we go on to
look at more recent approaches to account for informative censoring that allow the use of

a wider variety of covariates.
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Chapter 3

Estimation when using Regression
Models for the Censoring Process
and Sensitivity Analyses under

Informative Censoring

This chapter continues the literature review that was started in Chapter 2. The estimators
considered previously gave bounds on the estimated survival function but it was found that
these bounds were too wide to be of much use. These estimators also generally did not
allow covariates to included easily.

The methods reviewed in this chapter are of more use in practice than those in Chapter
2 and generally can easily include covariates. They can be split into two categories,
estimators that use regression models for the censoring process and sensitivity analyses.

The estimators that use regression models for the censoring process are described in
sections 3.1 and 3.2. These include one of the most popular methods in the literature on
informative censoring. These are the inverse probability of censoring weighted estimators
that are given in Section 3.1.

The sensitivity analyses in sections 3.3 to 3.6 assess the sensitivity of the results from
standard models to the assumption of informative censoring. Sensitivity analyses for both
standard parametric survival models and Cox’s proportional hazards model are presented.
In Section 3.7, a sensitivity analysis for an estimator that already accounts for informative
censoring is described, that allows us to assess how biased this estimator could be if there
is dependence between T and C that is not explained by its assumed dependence structure.

As this is a review chapter, all the methods discussed can be found in the literature

and, unless otherwise stated, the original work is the application of the methods to the
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Liver Registration data set. Some of the notation used in this chapter may differ from

that in the papers referenced as we present all the methods in consistent notation.

3.1 IPCW estimators

Inverse probability of censoring weighted (IPCW) estimators were first introduced by
Robins and Rotnitzky (1992) and Robins (1993). They have been recognised as a way to
adjust for the bias introduced by dependent censoring, for cases where the same prognostic
factors predict both time to failure and time to censoring.

This method relies on the assumption of no unmeasured confounders for censoring
or the assumption of sequential ignorability of censoring, which states that if the cause

specific hazard of censoring is conditioned on the recorded history,V (¢), of a vector of

possibly time-dependent covariates,V, then it does not further depend on T,
he(t|V(#), T, T > t) = hc(t|V(t), T > t) (3.1)

where V(t) is defined as {V(x);0 < x < t}. If all the prognostic factors are recorded in
V(t) then the IPCW estimators outlined below will adjust completely for the bias due
to dependent censoring. However, in practice, we will not be able to record all possible
prognostic factors, but if the most important factors are recorded then the use of IPCW
estimators will considerably reduce the bias caused by dependent censoring.

Another concept that is necessary to introduce is that of the data being coarsened at
random (CAR). This was introduced by Heitjan and Rubin (1991) as a generalisation of
the concept of missing at random. Censoring is just one example of how a dataset could
be coarsened. Censored data are CAR if the censoring mechanism does not depend on the
values of the outcome, although it is allowed to depend on the values of any covariates.

The CAR assumption can be expressed as

he(t|V(T), T, T > t) = ha(t|V(t), T > t). (3.2)
This is similar to Equation 3.1, except that V(¢) has been replaced by V(T). So CAR
implies (3.1), but (3.1) does not imply CAR.
3.1.1 Constructing IPCW estimators

The IPCW versions of the Kaplan-Meier (KM) estimator and the Cox partial likelihood
score function are given here. The construction of these types of estimators was outlined
in Robins and Finkelstein (2000), who used it to adjust for dependent censoring when
comparing two treatments in an AIDS clinical trial. IPCW estimators can be found by

weighting the contribution of each subject by the inverse of an estimate of the conditional
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probability of having remained uncensored until time t. The effect that this weighting
has on estimators will now be explained, using the KM estimator as an example. The

standard KM estimator is given by

S(t) = 1— di) :
v {iya} ( "

where d; is the number who fail at time Y; and n; is the number at risk at time Y;. For the
IPCW KM estimator, the contributions to these two terms are weighted by the inverse
probability of remaining uncensored until time ¢. Then the numerator of the fraction
estimates the number of individuals who would have been observed to fail at time Y;
in the absence of any censoring. Similarly, the denominator estimates the number of
subjects at risk at time Y; in the absence of any censoring. This means that the IPCW
KM estimator gives an estimate of the survival function in the absence of censoring.

To construct the weights an estimate of the probability of remaining uncensored until
time ¢ given (V(T'),T) is needed, where V(T is the recorded history of a covariate vector
up until time 7. This is given by a KM estimator for time to censoring that has been
extended to include time-dependent covariates. The model for censoring that will be used
is

he(t{V (), T > t) = ho(t) exp {BcV (1)}, (3.3)

where hq(t) is the baseline hazard and B, is a vector of parameters. A Cox proportional
hazards model will be fitted to give the partial likelihood estimate [;C. The observed values
are denoted by Y = min(7, C). Indicator values R(u) = I(Y > u) and A =I(T =Y) are
used to identify those at risk and which observations are failures. Let 1, to,...,t, be the
times of the observations.

In the literature, several different ways of selecting the covariates to be included in V (%)
have been suggested. We consider the ways suggested in Robins and Finkelstein (2000),
Schaubel et al. (2009) and Zhang and Schaubel (2010). These are outlined in more detail
in Section 3.1.3. When we apply the method to our data set, we shall compare the IPCW
estimates given by using each of these ways.

Under CAR and model (3.3), then it is possible to derive the following KM estimator
for censoring

BV = T 1= hotty) exp {BeVilt)}], (3.4)
{jstj<t,A;=0}
where the Cox estimator of the baseline hazard for censoring at observation time ¢; is

given by
. (1-4)
1olli) = 15 oxp BV (L) Rlty))
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The estimator in (3.4) is written as K (t) to show that it depends on V;(t). The usual
KM estimator of the probability of being uncensored at time ¢ is denoted by K? (t). This
will be equal to K,Y (t) when B¢ is the zero vector.

We can define subject specific weights, Vifi(t), which will be used in the IPCW versions
of the KM estimator and Cox partial likelihood. One possible weight is K9(¢)/K. (t) which
will be close to one for all ¢ if and only if V(¢) does not predict the hazard of censoring at
t. So, if we do have informative censoring, W;(t (t) will not be close to one. Another weight
that could be used is 1/KY (t). However, as shown in Robins (1993), using K?(t)/K (t)
as the weight has important efficiency advantages. These will be discussed further in
Section 3.1.2. They suggest that using 1/KV(¢) as the weight may be appropriate when
there is only light or moderate censoring but if there is heavy censoring, this value can
become quite large. Because of this, Robins and Finkelstein (2000) recommend using
KO(t)/KY (t) when there is heavy censoring. From now on, K%(t)/KY (t) will be referred
to as a “stabilised” weight and 1/KY (t) as an “unstabilised” weight.

Now it is possible to define the IPCW Kaplan-Meier estimator for time to failure. It

is shown in Robins and Finkelstein (2000) that the value of this estimate at time ¢ is

: Wi(ti )
Sr(t) = 1— : (3.5)
' {i;tllt} {Zk 1Rk;( Wikt )}

It does not matter whether KO(t)/KY (t) or 1/KV(t) is used for W; in (3.5) as KO(t)
cancels from both the numerator and the denominator. Therefore the merits of using
stabilised weights instead of unstabilised weights only need to be considered when using
the Cox partial likelihood.

The IPCW Cox partial likelihood score for a vector of parameters B, is also derived

in Robins and Finkelstein (2000) and is given by

- S0y Ryt W (ti) ZyePrs
=) AWi(ti) |Z;i -
2 AT | S W e

(3.6)

where Z is a vector of baseline covariates to be included in the model for time to fail-
ure. When fitting a model with weights like this, robust estimates of the variance of the

parameter estimates need to be used.

Weibull model for time to censoring Robins and Finkelstein (2000) only consider
a Cox model for time to censoring, but it is also possible to use a Weibull model for the

baseline hazard for censoring, where

heo(t) = Ant"™ 1,
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and the survival function for time to censoring for individual ¢ can be estimated by

Sci(t) = exp { — exp(Biy Vi) AT} (3.7)

where BW is obtained using the Weibull proportional hazards model. However, this does
mean that it is not easy to include time-dependent covariates in the model. So, when
using these weights to obtain IPCW estimates for the Liver Registration data set, we
will consider only time independent covariates when using a Weibull proportional hazards
model.

Again it is possible to use both “stabilised” and “unstabilised” weights to obtain IPCW
estimates. The unstabilsed weights are 1/ ggz(t) and are comparable to 1/K (t) used
previously. The stabilised weights require the use of Sgi(t), which is the estimated sur-
vival function in (3.7) with V;(¢) replaced by the zero vector. The weight used is then
S2u(6) /S ().

We expect that the IPCW estimates using a Cox model for censoring and a Weibull
model for censoring will be similar for the Liver Registration data set. This is because we
have little information on how the UKELD score changes over time in this data set. How-
ever, if more information on time-dependent covariates is available then it is recommended
that the Cox model for censoring is used, because it can easily incorporate time-dependent

covariates.

3.1.2 Stabilised weights vs. unstabilised weights

In this section, we will discuss whether the stabilised weights K9(t)/ K (t) or the unsta-
bilised weights 1/KY (t) should be used when calculating IPCW estimates. The weights
being considered here are those that use Cox models for censoring as these are the weights
used in Robins (1993a), which established many of the results on the properties of the
estimators that are presented in this section.

Robins and Finkelstein (2000) recommend using K%(t)/ K (t) as the subject specific
weight as this gives important efficiency advantages. In this context, the estimate with
the lowest variance is regarded as the most efficient. Semi-parametric variance bounds for
the semi-parametric models detailed in Section 3.1.1 are given in Robins and Rotnitzky
(1992) and Robins (1993b). These papers rely heavily on the theory of semi-parametric
efficiency bounds given in Newey (1990) and Bickel at al. (1998)?.

Robins (1993a) proves that the solution B to U(B7) = 0 is consistent and asymptot-
ically normal when K?(t)/KY (t) is used for W (t) in (3.6), given that (3.1) holds and the

model for time to censoring is correctly specified. The solution BT to U(Br) = 0 remains

!The publication date of this book is after the publication of the papers by Robins (1993) and Robins
and Rotnitzky (1992) but both papers include an advance manuscript in their bibliographies.
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consistent and asymptotically normal if 1/KY (t) is used for W (t) in (3.6). However, if
KO(t)/KY (t) is used then the estimator B is asymptotically more efficient than the usual

Cox partial likelihood estimator of B, if
he(|V(t),T >t) = he(t,T > t) (3.8)

and (3.1) hold, that is if there is non-informative censoring. This result suggests that we
should use an IPCW estimator with stabilised weights instead of the Cox partial likelihood
estimator of Br, even when the censoring is non-informative. However, many of the results
given in this section rely on the correct specification of the Cox model for time to censoring.
We cannot be sure that the model for time to censoring used is correct and therefore use
of the usual Cox partial likelihood estimator of fr is justified.

As in the liver transplantation setting being considered in this thesis it is unlikely
that (3.8) always holds, then these efficiency advantages are not as important as choosing
weights that reflect the situation under consideration. There will be some individuals
on the waiting list for a liver transplant who are at much greater risk of being censored
than others, so these individuals would need to be more heavily weighted. Therefore, we
recommend that the unstabilised weights should be used in the liver transplant setting

rather than the stabilised weights.

3.1.3 Models for censoring process

There are several models for time to censoring that have been suggested in the literature.
The first model for time to censoring considered here is suggested by Robins and Finkel-
stein (2000), where only the time-dependent covariates that are significant for both time
to failure and time to censoring are included. As the assumption of sequential ignorability
of censoring relies on all the shared prognostic factors being included in the model for time
to censoring, we recommend that this model is used unless there is a good argument for
using one of the following models.

The next model used for time to censoring includes all the baseline variables that are
to be included in the time to failure model plus time-dependent UKELD. This model was
proposed in Schaubel et al. (2009). The final model used includes any baseline covariates
that were found to be significant for time to censoring plus time-dependent UKELD. Use
of such a model was suggested in Zhang and Schaubel (2010).

As all these use Cox models for time to censoring, we can define the models considered

here as

Cox model 1 which uses just time-dependent UKELD,
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Cox model 2 which uses primary liver disease category, ethnicity, age, serum sodium

at time of registration, INR at time of registration and time-dependent UKELD, and

Cox model 3 which uses primary liver disease category, ethnicity, age, serum sodium at
time of registration, INR at time of registration, height, blood group and time-dependent
UKELD.

The baseline covariates that were found to be significant for time to censoring were all
the variables in the model for time to failure plus two additional covariates, so we are
successively adding more covariates in the models considered above.

Weibull models for time to censoring are also considered. So that they are comparable
to the models defined above, the same covariates will be used, except that time-dependent
UKELD will be replaced by the value of UKELD at the time of registration. So we define

these models as

Weibull model 1 which uses just UKELD score at time of registration,

Weibull model 2 which uses primary liver disease category, ethnicity, age, UKELD
score at time of registration, serum sodium at time of registration and INR at time of

registration, and

Weibull model 3 which uses primary liver disease category, ethnicity, age, UKELD
score at time of registration, serum sodium at time of registration, INR at time of regis-

tration, height and blood group.

3.1.4 Application to the Liver Registration data set

Firstly, IPCW KM estimators using each of the models described in Section 3.1.3 are
fitted to the Liver Registration data set. Figures 3.1, 3.2 and 3.3, compare the IPCW KM
estimators using Cox and Weibull models for censoring to the standard KM estimator of
the marginal survival function. We see that all the plots in Figures 3.1, 3.2 and 3.3 give
similar IPCW KM estimators that do not deviate greatly from the standard KM estimator.
This suggests that the potentially informative censoring in the Liver Registration data set
has little effect on the estimate of the survival function. This does not agree with the
estimates of the survival function found in Chapter 2, which suggested that even a small
amount of dependence between T and C' would result in a fairly large change in the
estimate of the survival function.

One possible reason why the IPCW KM estimator does not vary greatly from the
standard KM estimator is that the dependence between T" and C' is not completely due
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Figure 3.1: Plots comparing IPCW KM estimators with unweighted KM estimators, using
Cox Model 1 and Weibull Model 1 for censoring respectively
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Figure 3.2: Plots comparing IPCW KM estimators with unweighted KM estimators, using
Cox Model 2 and Weibull Model 2 for censoring respectively
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Figure 3.3: Plots comparing IPCW KM estimators with unweighted KM estimators, using
Cox Model 3 and Weibull Model 3 for censoring respectively

to shared prognostic factors included in the model for time to censoring. There could be
residual dependence caused by unmeasured prognostic factors. Scharfstein and Robins
(2002) and Rotnitzky et al. (2007) developed methods that allow the effect of residual de-
pendence on an estimator that assumes sequential ignorability of censoring to be assessed.
This is covered in more detail in Section 3.7. Unfortunately, the estimator considered in
Section 3.7 is not the IPCW KM estimator presented in Section 3.1.1, so the effect of
possible residual dependence on the IPCW KM estimate of the survival function cannot

be assessed.

However, this analysis using the IPCW KM estimator is fairly simplistic and does
not allow for adjustment for significant covariates for time to failure. Therefore we fit
IPCW Cox models for time to failure to the Liver Registration data set. These allow us
to assess the effect of informative censoring on individual parameter estimates and also
the estimated survival function for individuals in the data set.

Several IPCW Cox models for time to death are fitted to the data set. The same
baseline covariates will be included in all the models for time for failure. These are
primary liver disease category, ethnicity, age, UKELD score at time of registration, serum
sodium at time of registration and INR at time of registration. However, different models
are used for to time to censoring and the corresponding IPCW estimates for each model
are presented, along with the unweighted estimates obtained by fitting the standard Cox

model. The models for time to censoring that are used were discussed in Section 3.1.3.

Figures 3.4, 3.5, 3.6 and 3.7 give the point estimates and 95% confidence intervals
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obtained by fitting all these models using Cox models for censoring and Weibull models

for censoring using both stabilised and unstabilised weights.
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Figure 3.4: Point estimates and 95% confidence intervals for parameters in time to failure
model, for unweighted Cox model and IPCW Cox model using Cox models 1, 2 and 3 for

time to censoring respectively. All the weights used in IPCW estimates are stabilised.

We find that the IPCW estimates using stabilised weights, which are shown in Figure
3.4, the point estimates are slightly different from the standard point estimates, but gen-
erally significant covariates do not become non-significant or vice versa. This is with the
exception of some of the estimates for the Chinese level of ethnicity. Under the standard
Cox model, this parameter estimate has wide bounds as there are only a small number of
individuals with this ethnicity in the data set. However the use of weights here is anal-
ogous to the use of sampling weights. This means that the number of observations with
this ethnicity is being increased so there is less uncertainty about this parameter estimate.

However, we see that for the IPCW estimates that use unstabilised weights, which
can be seen in Figure 3.5, there are more changes from the standard estimates. Several
different levels of the categorical variables that are significant under the standard model,
become non-significant. However, these changes are likely to be caused by the heavy

censoring in the data set making some of these unstabilised weights quite large.
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Figure 3.5: Point estimates and 95% confidence intervals for parameters in time to failure

model, for unweighted Cox model and IPCW Cox model using Cox models 1, 2 and 3 for

time to censoring respectively. All the weights used in IPCW estimates are unstabilised.
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For the covariates and factor levels that remain significant when using an IPCW Cox
model, we will examine the changes the estimated hazard ratios. There is a slight decrease
in the point estimates of the hazard ratio for patients with metabolic liver disease when
using an IPCW Cox model. This suggests that the standard Cox model slightly overesti-
mates the hazard ratio for these patients. The hazard ratios for age, UKELD score, serum
sodium and INR all also remain significant when using an IPCW Cox model. However,
there is very little difference between the point estimates from the standard Cox model

and the point estimates from the IPCW Cox models.

The IPCW estimates using Weibull models for time to censoring, with both stabilised
and unstabilised weights, can be seen in Figures 3.6 and 3.7 respectively. The results in
these two figures are very similar, suggesting that when using a Weibull proportionals
hazards model for time to censoring it does not matter whether stabilised or unstabilised
weights are used. The changes from the standard estimates are also similar to those
observed in Figure 3.5, with some levels of categorical variables that were significant

becoming non-significant.

Again, we examine the changes in the estimated hazard ratios for the covariates and
factor levels that remain significant when using an IPCW Cox model. The results are very
similar to those for the IPCW estimates given in Figure 3.5. There is slight decrease in the
estimated hazard ratio for patients with metabolic liver disease, suggesting the standard
Cox model slightly overestimates the hazard ratio for these patients. The hazard ratios
for age, UKELD score, serum sodium and INR remain significant, with the exception of a
couple of the estimated hazard ratios for serum sodium. Again there is very little change

in the point estimates for these covariates.

Figures 3.4 to 3.7 show the effects of inverse probability of censoring weighting on the
parameter estimates of the Cox model. We will now look at the effects that these changes
in the parameter estimates can have on the survival functions for individuals in the data

set.

Figure 3.8 compares the estimated survival function under the standard Cox model
with the estimated survival function under the IPCW Cox model for the individual who
had the largest observed value of B%P W', — BA%/ x;. The weights used for the IPCW
estimates were unstabilised weights using Cox model 1 for time to censoring. We can
see that there is a large difference between the two estimated survival functions. The
estimated survival function under the standard model, shown by the solid line in Figure
3.8 does not fall below 0.9, whereas the estimated survival function under the IPCW Cox

model, shown by the dashed line, has a median survival time of approximately 1200 days.

The analyses carried out in this section show that using an IPCW version of the KM

estimate of the survival function has little effect on the value of the estimated survival
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Figure 3.8: Plot comparing the estimated survival function under the standard Cox model
with the estimated survival function under the IPCW Cox model for the individual that
has the largest observed value of B%P CW'x; — B%/ X;. The weights used are unstabilised

weights using Cox model 1 for time to censoring.
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function. However, if an IPCW Cox model is used, which allows for adjustment for
significant covariates, then there can be a large effect on the estimated survival function

for some individuals in the data set.

3.1.5 Other weighted estimators

A similar weighted KM estimator is derived in Satten et al. (2001), but using Aalen’s
additive hazard model instead of the proportional hazards model when calculating K y (t).
Aalen’s model is more flexible than the proportional hazards model as the regression
coefficients for the p covariates, Bci(t),...,Bcp(t), are allowed to change continuously

over time. So, Aalen’s model has hazard function

c(t|Vi(t Zﬁ()k

where Vi (t) is the value of the kth covariate for the ith individual at time ¢ and V;o(t) = 1.

Also the cumulative hazard function of Aalen’s model can be written as
t
HHV.(0) = [ he(ulVi(u)du
0
P t
= Zvik(t)/ Bok(u)du
k=0 0
p
= Vi(t)Ber(t), (3.9)

where By (t) is the cumulative regression coefficient for the kth covariate. It is easier to
estimate the cumulative regression coefficients than the regression coefficients, and Aalen

(1989) uses a least-squares-like estimator of B¢ (t) = (Beo(t), - - ., Bop(t)),
n
=Y I(Y; <1)(1 - A)ATH (V) Vi(Y)) (3.10)

where
n

AW = ST > OV VI(D).
i=1
The estimator in (3.10) can be substituted into (3.9), so that an estimator for Hc (¢ V;(t))
is N
Ho(tVi(h) = 3 1(Y; (1= 8)Vi()AT (V)V,(Y)), <Y,
j=1

and this can be used to obtain an estimate for K (t) as

KY(t) = [[[1 = dHc(s|Vi(s))):

s<t
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There are two possible problems that can arise when using Aalen’s additive hazard
model, which is why it is not generally used in practical situations. The hazard estimates
may be negative and the estimator involves inverting a matrix that may not have full rank.

However, Satten et al. (2001) show that neither of these problems occur when estimating
KY(t).

3.2 Other estimators that use models for the censoring pro-

cess

There are several other estimators that use models for the censoring process when there
is informative censoring in a data set. Wu and Carroll (1988) use a linear random ef-
fects model, Wu and Bailey (1989) use a conditional linear model and Schlucter (1992)
uses a log-normal survival model that is an extension of the linear random-effects model.
However, these papers consider a different situation to the one being considered here. We
want to estimate the marginal survival function of the failure time variable when there is
informative censoring, whereas these papers estimate and compare the rate of change of a
continuous variable measuring physiological function or disease status, when patients that

discontinue from the study are considered to be informatively censored.

Koziol-Green estimators There is also a class of models in Braekers and Veraverbeke
(2001, 2003, 2005, 2008) known as Koziol-Green models, where a censoring variable is
assumed to have a hazard function that is proportional to the hazard function of the
failure time variable. This means that the relationship between the survival functions for
the two variables is

Sc(t) = Sr(t)”

for some p > 0. This assumption is used in Braekers and Veraverbeke (2001,2003) and they
refer to the censoring variable as an informative censoring variable. However, they also
assume that the censoring variable is independent of the failure time variable. Therefore,
this censoring variable is not truly informative. The term “partially informative censor-
ing” used in Braekers and Veraverbeke (2005) is preferred when referring to this type of
censoring.

Braekers and Veraverbeke (2008) consider a Koziol-Green type model when there is
also dependence between the failure time and censoring variables. This is the situation
that is of interest here. They use a copula function (see Section 2.7) to specify the joint
distribution function of 7" and C'. The copula-graphic estimators from Zheng and Klein
(1995), which were considered in Section 2.9, are extended to the fixed design regression

case. This is useful as it allows the incorporation of covariates, but is still not applicable
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to the situation being considered here, as in the fixed design regression case, observations
only occur at the fixed design points x1,...,2z,. This means that covariates can only take

the predefined values z1, s, ..., Ty,.

3.3 Siannis (2004) and Siannis et al. (2005) Sensitivity
Analyses

The methods that will now be considered allow the sensitivity of parameter estimates to
informative censoring to be assessed. Firstly, sensitivity analyses for parametric survival
models will be considered. One such approach is given in Siannis (2004) and Siannis et al.
(2005). They use the same assumption about the conditional distribution of C' given T to
obtain equations for sensitivity analyses using parametric marginal distributions for 7" and
C'. Siannis et al. (2005) give the method for the simplest case where there is only one type
of censoring in the data set and use exponential marginal distributions in their example.
Siannis (2004) gives an extended version of the sensitivity analysis that allows for non-
informative censoring as well as one type of informative censoring. It is necessary to use
this extended version when applying the sensitivity analysis to the Liver Registration as we
have non-informative end-of-study censoring as well as potentially informative censoring.
The method used to derive the sensitivity analysis equations in this section will be given
in more detail in Chapter 4, where the sensitivity analysis is extended to incorporate
piecewise parametric models. In this section, we will only cover enough of the derivation
of the method in the simplest case where there are only scalar parameters to illustrate
how the sensitivity analysis equations were obtained. Weibull marginal distributions are
used when applying this method to the Liver Registration data set.

The marginal density functions of T" and C are given by fr(¢,0) and fo(c,7), where
0 is the parameter of interest and v will be treated as a nuisance parameter. This means
there will also be corresponding hazard and survival functions for both T" and C'. The
score and information functions for the marginal density functions are also required, for
fr(t,0) these are defined by

sr(t,0) = o log fr(t,0) and iy = Varr{sr(T,0)}

We can define s¢(c, v) and i similarly. The C' variable here relates only to the potentially
informative censoring as no parametric form is assumed for the non-informative censor-
ing. As both informative censoring and non-informative censoring could be observed, the
indicator variable Z; = I(Y; = ;) is required as well as A; = I(Y; = T;).

The assumption that is used in Siannis (2004) and Siannis et al. (2005) to make the
joint distribution of T" and C identifiable is that the conditional distribution of C' given T’
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is

felelt;,6,0) = fole,y + 6i /2 B(t,0)), (3.11)
that is it has the same distribution as the marginal distribution of C but with the parameter
dependent on 7' = ¢. The dependence is determined by § and B(t,0), where 0 is a
correlation coefficient and B(t,0) is a bias function. The conditional density function in

(3.11) can be approximated by

folclt,v,9,0) ~ fol(e,) [1 + 52';1/23(;(0, v)B(t,0)] . (3.12)

Let £5(6,7), be the log-likelihood function when 7" and C are dependent as outlined

above in Section 4.1. Then

n

l5(0,7) = {Ai log K1(ti) + Zi(1 — A;) log Ka(t:)
=1

+ (1= A)(1 - Z)log Ks(t:) | (3.13)
where

Kl(ti> = /t‘.oo fT,C(ti; u)du

Kg(ti) = /t‘.oo fT7c(u, ti)du

(3

and Kj(t;) = /t.oo /t.oo fr.c(t,c)dtde. (3.14)

These can be thought of as the likelihood contributions for each of the three types of
observations that may occur in each interval. The joint density function fr (%, c¢) is given
by fr(t)fc(clt,v,d,0) using the approximation of fc(c|t,,d,6) given in (3.12). When
the forms of the contributions in (3.14) using this form of the joint density function are

substituted in (3.13), then the log-likelihood becomes
- 0
€5(0,) ~ Lo(6,~) — 01 ;:1 {AZB(tz, 0) ach(tz,’y)

0

+(1-24)01 - Zz‘)%Hc(tz‘a”y)u(tm 9)

= Zi(1 = Ai)solti, Multi,0) }, (3.15)
where -
/ B(u, 0) fr(u, 0)du
t;,0) = 2t

p(ti, 0) S 0)

For a fixed value of 8, f5 is the value that maximises (3.15). The first term in (3.15),

£y(0,7), is the log-likelihood under the assumption that 7" and C' are independent. This
log likelihood is used to find the maximum likelihood estimates (MLESs), 6o and 0.
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The aim of this method is to approximate the value of é(s — éo, which is done by

rearranging Taylor expansions of the score functions

0

ro(fh) = 550o(0,7)|  and rs(0s) = o5Ls(6,7)] - (3.16)
) 05

The score functions given in (3.16) are expanded about 6 and set equal to zero to give

A~

ro(0o) = ro(8) — (8o — 0)i(6) = 0
0

r5(05) ~ r5(0) — (05 — 0)i(0)

2

(3.17)

where
. 0?
i(0) = —wfo(& y)-

Rearranging the two equations in (3.17) gives
(65 — 60)i(8) ~ r5(8) — ro(6).

So, an approximation of the difference between the parameter estimates is given by

A R - ' _ n 0 t279
05 — 0o ~ 5%1/2(1(‘9)) ! Z {Zi(l B Ai)sC(tiﬁ)Mgﬁ)
i=1
OHc (ti, ) Oulti, 0)
0y 00
OHc(ti,7) 0B(t:,0) }
t 8*}/ 00

—(1—=Z)(1—A4A)

—A

(3.18)

We can see that in (3.18) there are parameter estimates on the LHS of the approximation
and parameters on the RHS. This is a consequence of rearranging the Taylor expansions of
the score functions, which are given in (3.17). So when the sensitivity analysis is applied,
the parameters on the RHS of (3.18) must be replaced by estimated values.

Before the sensitivity analysis can be applied a form of the bias function B(t, ) needs
to be chosen. A detailed explanation of the bias function chosen is given in Section 4.2.1.
The bias function we use is the same as the one used in Siannis et al. (2005). The
expression in (3.18) can also be simplified by assuming a proportional hazards structure.
This is discussed in Section 4.2.2 and the same structure is used in Siannis et al. (2005).

After these changes, the expression in (3.18) becomes

05 — 00 ~ 6i(0)" > {Hr(t:,0)Ho(ti, ) — Zi(1 — Ai)Hy(t:,0) }, (3.19)
=1

where

i(0) = Hr(t:,0).
=1
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Siannis et al. (2005) include covariates in the sensitivity analysis by replacing 6 and
v by the linear predictors w(x) = 6'x and z(x) = v'x. They derive an expression for
the sensitivity analysis that approximates the difference between the vectors of parameter

estimates 95 and éo. The vector 95 maximises the log-likelihood

12 0
05(0,7) ~ £o(0,~) — 5i Z{AiB(ti, 6, )5 Holti, 7, %)

i=1
0
= Zi(1 = Ad)solt, 1, Xt 0,%) |, (3.20)

where
/ B(u, 0,x) fr(u,8,x)du
ts, 97 = =l
plti, 0,x) 51 (t.0.%)
The log-likelihood in (3.20) is the log-likelihood in (3.15) that has been extended to allow

the inclusion of covariates and vectors of parameters. Similarly 6y is the vector of param-

eter estimates that maximises ¢p(8,~). We shall express 65 — 6y using slightly different
notation to Siannis et al. (2005). The equation

05 — 0o ~ 6i(0,x) " (rs(8) — ro(8)), (3.21)

is found by rearranging vectorised versions of the Taylor expansions in (3.17). The kth

component of rs(0) — ro(0) is

> wa{Ho(ti, 0,x:) Ho(ti, v, %i) — Zi(1 — Ai)Hr(ti,0,%:) }. (3.22)
i=1

The information matrix is now (8, x), where the (k,[)th element is given by

0 0
————{y(0 = xprgHr(t;, 0,x;
80, 90, 0(0,7,%) = ziywy Hy ( X;)

However, Siannis et al. (2005) did not use (3.21) when applying the sensitivity analysis
to data. Instead they performed the sensitivity analysis on w(x) rather than 6. However,
when applying the sensitivity analysis to the Liver Registration data set we shall the
perform the sensitivity analysis for € as well as that for w(x).

The sensitivity analysis equation for performing the sensitivity analysis equation on
w(x) is now derived. The quantity of interest is now ws(x) — wo(x) where ws(x) is
the estimated linear predictor using the vector 95 that maximises the log-likelihood in
(3.20). Similarly to(x) is the estimated linear predictor using the vector 8y that maximises

ly(0,7). The linear predictors w(x) and z(x) are treated as scalar quantities so the
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sensitivity analysis can be found by replacing 6 and v in (3.18) by w(x) and z(x). The

sensitivity analysis equation becomes
n
ws(x) — o (x) 2 di(w(x)) "> {Hr(ti, w(x))He(t;, 2(x))
i=1

— Zi(1 = Ay)Hrp(t, w(x)) }, (3.23)

where

n
i) =~ 5 olw), () = > Hr(ts ()

We can see that (3.23) only applies to the covariate vector x, so to estimate the change
in linear predictors for all individuals in the data set, all observed covariate vectors must
be considered. This dependence on the covariate vector x also means that the same
covariates have to be included in both the model for time to death and the model for time
to censoring.

We can see that in (3.21) and (3.23) there is the same issue that was observed in (3.18).
There are parameter estimates on the LHS of the expressions and parameters on the RHS.
This means that the parameters need to be replaced by estimated values when applying

the sensitivity analysis.

3.3.1 Comparison with Scharfstein and Robins (2002)

In this section the assumption in (3.11) will be compared to the assumption used in
Scharfstein and Robins (2002). The aim of this is to make the interpretation of the
assumption in (3.11) easier to understand. Scharfstein and Robins (2002) assume that the
censoring process follows a proportional hazards model, so that the conditional hazard

function for C' can be expressed as
ho(c|T, T > ¢) = heoo(c) exp(q(e, T)), (3.24)

that is the conditional hazard for C' given T is the baseline hazard multiplied by a function
of T. The function ¢(c,T) quantifies the dependence between T' and C' just after time c,
for those who are still at risk at time c¢. This “censoring bias function” determines the
way T enters the proportional hazards model for the cause-specific hazard of censoring.
So that the two assumptions can be compared, the corresponding conditional hazard
function for the conditional density function in (3.11) needs to be found. The form of
this conditional hazard function is given in Siannis et al (2005) and we shall now give the

derivation of this term. Firstly, we use that
Sc(elT,7,6.6) = [ folelT,7.8.0)dc

o 0
~ St~ 8i Bt 0) 5 Ho(e. )
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which means that the conditional hazard can be expressed as

heClT,7,8,6) = —2-log Se(e[T, 1.5,0)

Oc
~ log Sc(e,v) + log (1 dir /= B(t, 9)87}[0(6’ 'y))} (3.25)

The approximation log(1 4+ =) ~ x is used to simplify the second term in (3.25), so that

the conditional hazard becomes

) o) 12 )
Re(elT,7,6.0) =~ o Scle) — 1 = 80 2B(1.0) - Hoe) ).
This can be rearranged to give
ha(e|T, 7, 6,6) ~ he(e,) [1 +6i'2B(t, 9)887 log he (e, v)} : (3.26)

To be able to compare (3.11) with (3.24), the conditional hazard in (3.11) needs to be
expressed as a proportional hazards model, with the baseline hazard function being mul-
tiplied by some function. To do this, the approximation e* ~ 1 + x is used in (3.26), so
that the conditional hazard function is now

he (e, ) exp (5i;1/2B(T, e); log he(c, ’y)) : (3.27)

If (3.27) is compared with (3.24), then we can see the two hazard functions have a
similar form. The baseline hazard in (3.24), has been replaced with a parametric baseline
hazard in (3.27). Also, we see that the specification of ¢(c,T") in (3.24) is the same as
choosing 6B(T,0) in (3.27). This means that 0B(T,0) also quantifies the dependence
between T" and C just after time ¢ and determines the way that 1" enters the proportional

hazards model for censoring.

3.3.2 Application to the Liver Registration data set

This sensitivity analysis is now applied to the Liver Registration data set. Firstly, the
sensitivity analysis will be performed on w(x) and then the sensitivity analysis for 8 will
be applied. Siannis et al. (2005) assumed exponential marginal models for 7" and C' and
Siannis (2004) used Weibull marginal models for 7" and C. When applying this method
to the Liver Registration data set, Weibull marginal models are used as these are more
flexible than exponential marginal models.

When applying the sensitivity analysis to w(x), the marginal density functions are

given by

Fr(t,w(x),nr) = Ot exp(—e09T)  and
folt, 2(x),nc) = e netne=! exp(—e=g1c),
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This means that the integrated hazard functions are

Hy(t,w(x),nr) = e®¢m  and
He(t, 2(x),no) = e*®ne, (3.28)

Here the scale parameters w(x) and z(x) are linear predictors that incorporate the follow-
ing covariates: age at registration, ethnicity, primary liver disease category and UKELD
score at registration. The same covariates need to be included in the models for time to
death and time to censoring for this sensitivity analysis.

The sensitivity analysis will be conducted on the scale parameter for 7', w(x), as this
is the parameter of interest and the shape parameters, 7 and 7¢, are treated as nuisance
parameters. The scale parameter for C, z(x), is also treated as a nuisance parameter. If
the integrated hazards in (3.28) are substituted into (3.23) then the sensitivity analysis

equation becomes
Zn ) {eZ(x)t?T+nC — Z;(1— Ai)t?T}

1=
2imiti”

This can be thought of as § multiplied by a sensitivity index, U. As in (3.23), we have

wg(x) — Wo(x) =6

(3.29)

parameter estimates on the LHS of (3.29) and parameters on the RHS. To overcome this
issue when applying the sensitivity analysis, z(x), 77 and n¢ are replaced by their estimates
from the Weibull proportional hazards model that assumes non-informative censoring. It
is found that /g = 1.03 and 7jcg = 0.9297. The estimate for ny was not found to be
significantly different from one so an exponential model could be used for T', however the
estimate for 1o was significantly different from one so the use of Weibull marginal models
is justified.

As there are many different combinations of the covariates in the Liver Registration
data set, Z9(x) takes a range of values so the sensitivity index needs to be computed over
this range. The easiest way of displaying the results is to plot U over the range of Zy(x),
which is shown in Figure 3.9 for § = 0.2 and 0.3. The range of values for Zy(x) used on the
horizontal axis in Figure 3.9 is the observed range of Zy(x) for the Liver Registration data
set. The largest values of ws(x) — wy(x) are observed for patients with the largest values
of Zp(x). These are the patients which have the greatest hazard of censoring. We see that
for these individuals, the change in the estimated linear predictor seems large enough that
results obtained assuming non-informative censoring could be misleading. However, to be
sure of this the effect on a value of interest, such as the survival function of individuals
in the data set, should be examined. When we apply the sensitivity analysis derived in
Chapter 4 to the Liver Registration data set, this will be investigated.

The sensitivity analysis for @ will now be applied to the Liver Registration data set.

Again Weibull marginal models are assumed for 7" and C'. For simplicity, z(x) will be used
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Figure 3.9: Plot showing § times the sensitivity index, U, over the range of observed values

for Zp(x) for the individuals in the Liver registration data set, using 6 = 0.2 and 0.3.
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as the scale parameter for C', rather than the vector . This means the marginal density

functions are now given by

fr(t,0,x,n7) = €° Xt exp(—eglxt”T) and

fo(t, 2(x),me) = e#Pnet1e™ ! exp(—e*¢1¢).
The integrated hazard functions are now

Hrp(t,0,x,n7) = X4 and
He(t, 2(x),nc) = e*Xtne. (3.30)

It is the vector of parameters for T, 8, that is of interest. So, 7, n¢ and z(x) will again
be treated as nuisance parameters. For notational simplicity, it is assumed that the same
covariate vector is used in both the model for time to death and the model for time to
censoring. However, it is not a requirement for this sensitivity analysis. Therefore, age,
ethnicity, primary liver disease category and UKELD score are used in the model for time
to death and primary liver disease category, UKELD score, height and blood group are
used in the model for time to censoring.

The sensitivity analysis equation in (3.21) will be used to carry out the sensitivity
analysis for 8. When substituting the integrated hazard functions in (3.30) into (3.22),

the expression for the kth component of rs(8) — ro(@) becomes
Oxz X’L) nr+nc _ o HXZ nr
lek{ 6! Zi(1 — Ay)e?it! } (3.31)
and the (k,[)th element of the information matrix i(0,x) in (3.21) becomes

n
Z xikxileelx"t?T :
i=1
We can see that in (3.31) we have the parameter vector 6 as well as z(x), nr and nc.
These all need to be replaced with their estimates from the Weibull proportional hazards
model that assumes non-informative censoring.

Table 3.1 shows the estimated values of the components of 95 — 90 for 6§ = 0.2 and § =
0.3. We see that for some covariates there are positive changes in the parameter estimates,
while others have negative changes in the parameter estimates. Positive values in Table
3.1 mean that the element of 8 for that covariate is larger than the corresponding element
of 8. So, this suggests that the hazard ratio of the covariate is being underestimated by
the model assuming non-informative censoring. Conversely, negative values in Table 3.1
mean that the parameter estimate for the covariate from the model assuming informative

censoring is smaller than the corresponding parameter estimate from the model assuming
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non-informative censoring. Therefore, the sensitivity analysis is suggesting that the hazard

ratio for these covariates are overestimated by the model that assumes é = 0.

So, the sensitivity analysis for 8 suggests the hazard ratio for patients with hepatitis
B virus infection is being underestimated, whereas the hazard ratios for patients with
other levels of primary liver disease are being overestimated. Patients of either white or
black ethnic origin are having their hazard ratios overestimated, whereas the hazard ratios
for patients of asian or oriental ethnic origin are being underestimated. The sensitivity
analysis also suggests that the hazard ratios for UKELD score and age are being slightly

overestimated by the model that assumes non-informative censoring.

The effects that the estimated changes in Table 3.1 have on the parameter estimates
are shown in Table 3.2. The p-values of the estimates are also shown. These are all calcu-
lated using the standard errors of the estimates from the model assuming non-informative

censoring. This can be done as Siannis et al. (2005) show that
{Var(5)}"/? ~ {Var(6p)}"/? + O(6?).

Only linear values of § are considered in the sensitivity analysis so the standard error of the
parameter estimate from the model assuming informative censoring can be approximated
by the standard error of the parameter estimate from the model assuming non-informative

censoring. This approximation should only be used if the value of § is fairly small.

3.4 Zhang and Heitjan (2006) Sensitivity Analysis

An alternative sensitivity analysis for parametric survival models is presented in Zhang
and Heitjan (2006). Again, the marginal density functions of 7" and C' are given by
fr(t,0) and fo(c,v), where 0 is the parameter of interest and ~ will be treated as a
nuisance parameter. Non-informative censoring could also be observed but no parametric
distribution will be assumed for this type of censoring. Therefore, for simplicity we use
C to denote the informative censoring. As there are several types of censoring that can
be observed in addition to the failure time then two indicator variables are required to
distinguish between the events. These are A; = I(Y; = T;) and Z; = I(Y; = C;). The
likelihood function that incorporates one type of informative censoring as well as non-

informative censoring is

Ls(0,7) = [] Ity =7 ey 4 mef 4004 (3.32)
=1
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Parameter 90,2 — éo 90,3 — 90

Intercept 0.5529 0.8293
PLD - PBC -0.0717 | -0.1076
PLD - PSC -0.0815 -0.1223
PLD - ALD -0.0343 -0.0515
PLD - AID -0.0675 -0.1013
PLD - HCV -0.0694 | -0.1040
PLD - HBV 0.1122 0.1683

PLD - Cancer -0.0675 -0.1012
PLD - Metabolic | -0.00001 | -0.00002
PLD - Other -0.1027 | -0.1540

Ethnicity - White | -0.0194 -0.0292
Ethnicity - Asian 0.0325 0.0487
Ethnicity - Black -0.0379 -0.0569
Ethnicity - Chinese | 0.0721 0.1082
UKELD score -0.0046 -0.0069
Age -0.0012 -0.0018

Table 3.1: The results of the Siannis sensitivity analysis for 8 using Weibull marginals.

The table shows each component of the vector 65 — 6 for § = 0.2 and § = 0.3.
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Parameter 90 p-value 90,2 p-value 903 p-value
Intercept -20.6134 | < 0.001 | -20.0605 | < 0.001 | -19.7841 | < 0.001
PLD - PBC -0.2260 0.508 -0.2977 0.383 -0.3336 0.328
PLD - PSC -0.9060 0.022 -0.9875 0.013 -1.0283 0.010
PLD - ALD -0.4644 0.138 -0.4987 0.111 -0.5159 0.099
PLD - AID -0.0141 0.966 -0.0817 0.806 -0.1154 0.729
PLD - HCV 0.2715 0.409 0.2022 0.538 0.1675 0.610
PLD - HBV -0.4724 0.418 -0.3602 0.537 -0.3041 0.602
PLD - Cancer -1.4244 0.062 -1.5019 0.050 -1.5357 0.046
PLD - Metabolic 0.6656 0.063 0.6656 0.063 0.6656 0.063
PLD - Other 0.3657 0.282 0.2630 0.439 0.2117 0.534
Ethnicity - White 0.9596 0.342 0.9401 0.351 0.9304 0.356
Ethnicity - Asian -0.0369 0.972 -0.0044 0.997 0.0118 0.991
Ethnicity - Black 0.9273 0.408 0.8894 0.428 0.8704 0.438
Ethnicity - Chinese | -0.7135 0.619 -0.6413 0.655 -0.6053 0.673
UKELD score 0.1943 | < 0.001 | 0.1898 | <0.001 | 0.1875 | < 0.001
Age 0.0308 < 0.001 0.0296 < 0.001 0.0290 < 0.001

Table 3.2: The approximate values of the vectors of parameter estimates 90,2 and 90.3 ob-
tained using the results of the Siannis sensitivity analysis given in Table 3.1. The parameter
estimates of the model assuming non-informative censoring are included for comparison.

The p-values of the parameter estimates are also included, they were calculated using the

standard errors of the model assuming non-informative censoring.
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where

Intli:/ fr(ti,0) forr(ulti, v, 6)du

t;

Int2i—/ fr(u,0) foir(tilu,y,0)du  and
t;

Tntg; — / fr(u,0) feyr (vlu, 7, 8)dudv.

t Jt

So the conditional distribution of C' given T needs to be specified so that this likelihood is
well defined. As in Section 3.3 this conditional distribution is assumed to be the same as
the distribution of C' but with the parameter allowed to depend on t. However in Zhang
and Heitjan (2006), §t replaces (5@'7_1/2B(t, 0) in (3.11).

To evaluate the sensitivity of an estimate of 6 to small departures of ¢ from zero, the
rate at which 6 departs from 6y as & varies from zero needs to be calculated. Troxel et
al. (2004) gave an index of sensitivity to non-ignorability (ISNI), which is given by

- 00
ISNI(§) = aTsé

06000’ 0006 (3:33)

- [ %45 ]‘1 %45
6=

§=0.50,00
where (5 is the logarithm of the likelihood in (3.32).
As ISNI is the derivative of 6 with respect to 4, the value of 0 for a fixed value of § is

approximately
05 ~ 0 + SISNI(H). (3.34)

When applying the sensitivity analysis described in Section 3.3, the value of g for a given

value of § can be approximated by

05 ~ 6y + 0U, (3.35)

so it is possible to compare the values of ISNI(6) and U.

Zhang and Heitjan (2006) suggest a method to assess whether 0 is sensitive to the
informative censoring. They define the inference to be affected by informative censoring if
the estimate changes by more than 1 standard error (SE) of the parameter estimate under
the model that assumes non-informative censoring. The value of § that causes a change

of 1 SE in @ is R

~ ISNI()

and this is considered to be the smallest value of § that causes a substantial change in

0. They say that the plausibility of * can be checked by plotting t* against a suitable
measure, where t* varies over the range of observed values. A suitable measure is one for
which the plausibility is easily assessed, such as the mean or hazard function of C' given T

If the value of §* is deemed to be plausible, then 6 is sensitive to the informative censoring
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in the data set. However, no criteria are given to establish whether the values of the
measure are indeed plausible or not. For example, in one application considered in Zhang
and Heitjan (2006) they say that the value of §* is plausible because the hazard ratios do
not vary by more than two. However, the choice of this value seems rather arbitrary so
this method does not seem to be that useful when establishing whether 0 is sensitive to

informative censoring.

3.4.1 Application to the Liver Registration data set

Only exponential marginal models for T and C are considered in Zhang and Heitjan
(2006) and the form of ISNT is given just for the situation where there is only informative
censoring considered. As the Liver Registration data set also has some non-informative

censoring, the form of ISNI given in Zhang (2004) is used, which is

n -1
ISNI() = {eéo Zt} x
=1

e~fo [Z(l — A1 = Z)et; — Z;(1 — Ay)(1 — t;e0) (3.36)
=1
where . .
bo_ Lim Dl =Z) g0 2im i1 A
Zi:l ti ZZ‘:1 17}

If (3.36) is used to calculate the ISNI for the Liver Registration data set when assum-

e

ing exponential marginal distributions with scalar parameters, then ISNI(§) = —757.72.
Zhang and Heitjan (2006) observed values of ISNI(f) of a similar magnitude when they

applied the sensitivity analysis to their data. This value of ISNI(#) can be compared to
the value of U obtained when applying the Siannis sensitivity analysis to the data set with

the same marginal distributions assumed, where

U= Y €0 = Zi(1 = Aity)
Z?:l ti ‘

This gives U = 1.05, which gives very different results to ISNI. If a positive value of

¢ is assumed, which assumes positive dependence between T and C, then the value of
ISNI suggests there will be a very large decrease in the parameter estimate, whereas U
suggests there will be a moderate increase in the parameter estimate. The result from
the Siannis sensitivity analysis seems more realistic, as if we assume positive dependence
between T and C and those being censored have a lower expected survival, then a model
that incorporates this dependence should give a value of F(T) = e~ that is lower than
under the model that assumes non-informative censoring. This means an increase in the

parameter estimate under the assumption of informative censoring is expected. Observing
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such unexpected values of ISNI(f) suggests that there could be an error in the method
presented in Zhang and Heitjan (2006). However, we were unable to find any errors in the
derivation of (3.36).

The values of 6* that would give a change in the parameter estimate of one standard
error of  under the non-informative censoring model can also be computed and compared.
For the Zhang and Heitjan sensitivity analysis, this is §* = —0.000028, and for the Siannis
sensitivity analysis, this is 6* = 0.021. While both these values are small, the §* for
the Zhang and Heijtan sensitivity analysis seems unfeasibly small. However, use of this
method to determine whether 6 is sensitive to informative censoring is not recommended
as the method used to determine whether 0* is plausible still seems to be subjective.

Covariates are not incorporated in (3.36), although if 6y and 4 are replaced by wo(x) =
égx and 2p(x) = 4(x then the value of ISNI can be calculated over the ranges of 1y (x) and
20(x). The covariates included in the vector x are the same as those used when applying
the sensitivity analysis for w(x) from Siannis et al. (2005) to the Liver Registration data
set. These are recipient age, recipient ethnicity, primary liver disease category and UKELD
score. The range of values that ISNI takes when including covariates is shown in the plot
in Figure 3.10 for § = 0.2.

In Figure 3.10, we see that for some parameter combinations, the expected increase
in the parameter estimate is observed, but again this tends to have an extremely large
magnitude that does not seem feasible in reality. However, Figure 3.10 looks at all com-
binations of wy(x) and Zp(x) for their observed ranges, when in the Liver Registration
data set only some of these combinations are observed. Figure 3.11 shows the observed
combinations of wy(x) and Zy(x) for all the patients in the Liver Registration data set. We
can see that none of the individuals have the combination of wp(x) and Zy(x) that gives
the largest value of ISNI. However, if the value of ISNI is calculated for each observed
combination in the Liver Registration data set, it is found that it takes values in the inter-
val (-24663436,4102221). The boundaries of this interval still have such large magnitudes

that these values do not seem realistic.

3.5 Huang and Zhang (2008) Sensitivity Analysis

The previous sections 3.3 and 3.4 considered sensitivity analyses for parametric survival
models. In this section and the following section 3.6, sensitivity analyses that use the Cox
proportional hazards model for the marginal distributions are considered.

The model presented in this section extends the copula approach of Zheng and Klein
(1994) to develop an estimation method for the bivariate proportional hazards model for

competing risks. Marginally, each one of the dependent competing risks under study is
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Figure 3.10: Plot showing § times ISNI, over the range of observed values for Z3(x) and
wo(x) for patients in the Liver Registration data set, using § = 0.2
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Figure 3.11: Scatterplot showing the observed combinations of w(x) and Zy(x) for all the

patients in the Liver Registration data set.
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modelled by a Cox proportional hazards model. The dependence between T" and C' is mod-
elled by an assumed copula function. The parameter of this copula function determines
the degree of association that is being assumed. It would be possible to use this model
to conduct a sensitivity analysis for the Cox proportional hazards model by varying the
parameter over a sensible range.

We assume that the marginal hazard functions for 7; and C; are

hri(t1Zi, X;) = hro(t) exp(Z;87),
hei(t|Zi, X;) = heo(t) exp(XBe),

where B and (B, are unknown parameters, Z and X are covariate vectors and hro(t)
and hoo(t) are unspecified baseline hazard functions. Their cumulative hazard functions
are denoted by Hrpo(t) and Heo(t) respectively. We denote their marginal cumulative
distributions functions by Fp;(t) and Fg;(t) and survival functions by Sp;(t) and Sc;(t).
If we suppose that C(u,v;«) is a copula with parameter «, then the joint cumulative

distribution function of T; and C; is given by

P?“(TZ S t,CZ‘ S C) = C{FTi(t),FCZ‘(C),Oé}

3.5.1 Fitting an extended Cox model that allows for informative cen-

soring

To develop an extended Cox model that allows for informative censoring, Huang and
Zhang (2008) use the idea of “redistribution of mass” that is used in Efron (1967) to
derive self-consistent estimators. This idea was briefly explained in Section 2.8, when the
self-consistent estimators that use an assumed copula from Zheng and Klein (1994) were
reviewed, but will be included in more detail in this section.

Assume that y;, i = 1,...,n, are sorted observation times in ascending order without
ties. If y; is a death time then it is known whether 7T; is smaller or greater than t. If y; is a
censored observation time that is greater than or equal to ¢, then it is also known that the
T; for this individual is greater than t. However, if y; is a censored observation that is less
than ¢, it is not known if 7; is greater than t as it could fall between y; and t. Therefore,
some assumption needs to be made about the probability that T; is greater than t.

If the censoring is assumed to be non-informative then it is assumed that a censored
individual has equal chance of failure at all event times after their observed censoring time.
If there is potentially informative censoring in a dataset, then censored individuals would
no longer have equal change of failure at all event times after their observed censoring
time. One way of specifying the probability of failure at the event times after their

observed censoring time is to use a copula function, as in Zheng and Klein (1994).
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Zheng and Klein (1994) show that under the joint distribution assumption specified

by the copula C, if the subject 7 is censored at time y;, then for each time point y; > v;,
the probability that this subject 4 fails at time y; is

Pr(T; > y;,C; = y;)

Pr(T; > vy, C; = yi)

(

(

Pr(T; > yi|T; > v, Ci = yi) =

1-G, {FTZ(yJ) Foi(yi)}
S 1-0G, {Fri(yi), Foi(yi)}

where C,(a,b) = %ku,v):(a,b)- We denote the above conditional survival probability

(3.37)

by P;(y;), so then the mass that subject ¢ loses at time y; is

Di(yj) = Pi(yj—1) — Pi(y;)- (3.38)

Similarly, all the other subjects censored before time y; lose some mass at time point y;.

So we define an extended partial likelihood function as follows:

J / D;(yj)
(T) Pi(yj) exp(Z;Br) !
Loen =11 Sy ttconl S (339

L pr) =] "By

i) Plen@By) P
‘Hg{zk Pu(y) exp(Z ;ﬁﬂ} | (3.40)

Here, L (BT) is the likelihood function for the time point y;. So that the above equation
is well deﬁned, we need to set Py(y;) =1 for k > j. For a failed subject i, set P;(y;) = 1
for j <4, and P;(y;) = 0 and j > i. Also for failed subjects, we do not use (3.38), instead
we set D;(y;) =1, Di(y;) = 0 for j > i. So a failed subject contributes only one term in
this extended partial likelihood function.

When there are tied failure events, then the above equations can naturally handle them
using Breslow’s method of handling ties. Also, if the pieces of mass D;(y;), i = 1,...,7,
are viewed as the number ties at time y;, then we would obtain the form of L (ﬁT)
(3.39) using Breslow’s method.

As well as the extended partial likelihood for the failure events, a similar expression is
needed for the censored events. If subject 7 fails at time y;, then for ¢ > y;, we have
Pr(C; > ¢, T; = y;)

Pr(C; =z yi, T; = i)
1 — Cu{Fri(yi), Fci(c)}

= 1= ClFralw). Fouly)} (3.41)

where Cy(a,b) = ac(“ )\ (uv)=(a,p) We denote the above conditional survival probability

Pr(C; > ¢|C; > yi, Ty = yi) =

by Qi(c), so then the mass that subject ¢ loses at time y; is
Uily;) = Qi(yj—1) — Qi(y;)-
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The extended partial likelihood function for censoring events is given by

nr Qi(y;) exp(X.Bc) Ui(y;)
HH{Zk 1 Qi (y;) exp(X kﬁc)} : (3.42)

So that the above equation well defined, we need to set Qx(y;) = 1 for k > j. For a

censored subject i, set Q;(y;) = 1 for j < ¢, and Q;(y;) = 0 and j > i. Also we set
Ui(y;) = 1, Ui(y;) = 0 for j > i. For an administratively censored subject i, we set
Pi(y;) = Qiy;) = 1 for j < i, Pi(y;) = Qi(y;) = 0 for j > i and D;(y;) = Ui(y;) = 0 for
all j.

We can now estimate the parameters 8 and 3, by maximising the following extended

joint partial likelihood,
L(Br.Be) = LD (Br) L'V (Bc). (3.43)

Because the functions in this likelihood involve unknown quantities, then we have to carry

out the following iterative process:

1. Assuming independent censoring, fit two Cox proportional hazards models to get
initial estimators B§9) and B% for Br and B,. Then use the Breslow method to
obtain the estimators F." )( -) for Hro(-) and f]gg() for Heo(+). Let m = 0.

2. For ¢ =1,...,n, compute
S (1) = exp {1 ) exp(ziBy”)}
SG(1) = exp { G () exp(X3) }
Then for each time point y; such that y; > y;, compute

1= C{ ™ (), FSP (41); o}

i>(m)
B (yy) = o - :
1= Co{ B (), B (yi)s 0}
if subject ¢ is censored;
- 1= Cu{ BN (), ES (y);
O™ (y;) = {Fi " (i), Foi " (y5); o}

1—C.{Fy m)( i) Fé (yi); o}

if subject ¢ is failed;

3. Using the above computation results and other specifications as described earlier,
replace the unknown functions P;, Q;, D;, U; in L) (B;) and L(©)(B,) by their
estimates at step m, and then maximise the likelihood functions in (3.40) and (3.42)
with respect to 87 and B, respectively. The resulting estimators for 87 and B

are denoted by BTmH) nd ﬁ(;n“)
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4. Use BTmH), ﬂénH ]%(m)(‘), ng)(), ﬁz(m)() and Ui(m)(-) to obtain the Breslow

estimators H%LH)(-) for Hro(+) and f[éngﬂ)(-) for Heo(+), as shown below:
Ay(m)
ﬁ(m+1) . Ei:yigyj Dz (yJ)
T0 (t) - Z n ~(m) , (m+1)
dyp<t =1 Py () eXP(ZkIBT )
i (m)
ﬁ(m+1) . Zi:y1<y7 U (y])
co (t) N Z n A(m /
FYiSt Dkt Qk (yj) eXp(XkIB

(m+1), "

)

5. Let m = m + 1, return to Step 2, and iterate until convergence.

After convergence, we get estimators BT, ,BC, JEITO(') and ﬁco(-), respectively, for B,
ﬁo, HT()(-) and HC()(‘).

3.5.2 Applying sensitivity analysis to the Liver Registration dataset

Before using the method presented above to estimate the bivariate proportional hazards
model for competing risks, we fitted Cox proportional hazards models for both time to
censoring and time to death assuming independent censoring. We selected covariates for
these models using a stepwise selection algorithm. We set a p-value of 0.15 as the threshold
for variables both to be entered into and stay in the model. This is larger than would
usually be used, but this is because p-values will change under the model presented here,
and we want to include any variables that might become significant. Also we shall include
covariates that are included in the Cox proportionals hazards models for either time to
death or time to censoring, so that we are including more covariates than used in other
methods.

Table 3.3 compares the results for models for time to death under independent censor-
ing and assuming that the dependence between T" and C' is modelled by a Clayton copula
with Kendall’s 7 = 0.2.

This table shows that we draw roughly the same conclusions under the two models.
All the parameter estimates remain the same sign with the exception those for serum
creatinine and patients with AIDS. However, the p-values show that both of these param-
eter estimates are not significant under either the Cox model or the Huang-Zhang model.
There are only a small number of levels of categorical variables that have gone from be-
ing non-significant under the model assuming independent censoring to significant under
the Huang-Zhang model. These are for patients with AB blood group, patients of black
ethnicity, patients with alcoholic liver disease and patients with liver diseases that are not
included in any of the other main categories.

We can also examine the changes between the parameter estimates in Table 3.3 to see

whether the standard Cox proportional hazards model overestimated or underestimated
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Cox PH model Huang-Zhang model

~

Variable I3 s.e. p value 15} s.e. p value
Age 0.0330 | 0.0063 | < 0.001 | 0.0273 | 0.0031 | < 0.001
Height 0.0039 | 0.0072 | 0.586 | 0.0067 | 0.0039 | 0.091

Blood group - AB | 0.5012 | 0.3225 | 0.120 0.7324 | 0.1359 | < 0.001
Blood group - B | 0.4196 | 0.2013 | 0.037 | 0.4314 | 0.0969 | < 0.001
Blood group - O | 0.1717 | 0.1311 | 0.190 | 0.0510 | 0.0647 | 0.430

Sex - Male -0.0150 | 0.1669 | 0.928 | -0.0140 | 0.0875 | 0.873

Ethnicity - Black | 1.0170 | 0.5938 | 0.087 | 0.5327 | 0.2666 | 0.046
Ethnicity - Other | -0.3268 | 0.7815 | 0.676 | -0.2090 | 0.3176 | 0.511
Ethnicity - White | 1.0974 | 0.3200 | 0.001 | 0.8004 | 0.1360 | < 0.001

INR -0.2862 | 0.1166 | 0.014 | -0.1598 | 0.0527 | 0.002
Bilirubin -0.0010 | 0.0007 | 0.191 | -0.0002 | 0.0003 | 0.643
Sodium 0.0918 | 0.0257 | < 0.001 | 0.0654 | 0.0121 | < 0.001
UKELD 0.2984 | 0.0353 | < 0.001 | 0.2374 | 0.0161 | < 0.001
Creatinine -0.0003 | 0.0012 | 0.771 0.0001 | 0.0007 | 0.868
PLD - AID 0.0289 | 0.3481 | 0.934 | -0.0772 | 0.1690 | 0.648
PLD - ALD -0.4126 | 0.3363 | 0.220 | -0.4593 | 0.1609 | 0.004
PLD - Cancer -1.1880 | 0.7813 | 0.128 | -0.3808 | 0.2310 | 0.099
PLD - HBV -0.4510 | 0.5889 | 0.444 | -0.4160 | 0.2530 | 0.100

PLD - HCV 0.2904 | 0.3457 | 0.401 0.1856 | 0.1669 | 0.266
PLD - Metabolic | 0.8390 | 0.3700 | 0.023 0.7568 | 0.1848 | < 0.001
PLD - Other 0.4295 | 0.3467 | 0.216 0.3359 | 0.1694 | 0.047
PLD - PBC -0.2154 | 0.3634 | 0.553 | -0.2665 | 0.1741 | 0.126

PLD - PSC -1.0029 | 0.4063 | 0.014 | -0.8413 | 0.1809 | < 0.001

Table 3.3: Results from fitting a standard Cox proportional hazards model and the Huang-
Zhang model using a Clayton copula with Kendall’s 7 = 0.2
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the hazard ratios for each covariate. If there is an increase in the value of 3 from the
Cox model to the Huang-Zhang model, then the estimated hazard ratio would also in-
crease. This suggests that the hazard ratio is underestimated by the standard Cox model.
Conversely, if there is a decrease in 3 from the standard Cox model to the Huang-Zhang
model then the hazard ratio is being overestimated by the standard Cox model. The
results in Table 3.3 suggest that the standard Cox model overestimates the hazard ratio
for the following covariates and levels of factors: height, blood groups AB and B, males,
ethnicities that are not one of the main categories, INR, serum bilirubin, and patients
with cancer, hepatitis B virus or primary sclerosing cholangitis. The parameter estimates
in Table 3.3 also suggest that the standard Cox model underestimates the hazard ratio for
the following covariates and levels of factors: age, blood group O, black and white eth-
nicity, serum sodium, UKELD score and patients with alcoholic liver disease, hepatitis C
virus, metabolic liver disease, primary biliary cirrhosis or other liver diseases not included

in the main categories.

3.6 Siannis (2011) Sensitivity Analysis

The sensitivity analysis here uses a similar approach to that of Siannis (2004) and Siannis
et al. (2005) but instead of considering parametric survival models, it uses the Cox
proportional hazards model.

It is still assumed that

fC|T(c‘t7 s 9, 0) = fC(C; v+ 5Z.;1/2B(t7 0))7 (344>

but now this function is written in terms of an unspecified baseline hazard multiplied by a
parametric function instead of a known parametric baseline hazard. The Cox proportional

hazards model assumes that
hr(t,0;) = e’ hro(t),

with 0; usually expressed as 37x; to incorporate the covariates in the vector x;. Therefore
the quantity of interest is now (5. The hazard function for C can be expressed in a
similar form, with the corresponding vector of regression coefficients denoted by B,. For
simplicity, C' is assumed to have the same covariate vector x; as T

To derive a partial likelihood for the proportional hazards model when there is poten-
tially informative censoring, the competing risks set up is used. This means that 7" and C
are seen as two competing causes of failure with the observed time for individual ¢ being
Y; = min(7;, C;). The cause of the failure, J, is also observed. As there are two competing
causes of failure, then J can take values 1 or 2. Let J = 1 denote that the observed time

is a failure time and J = 2 denote that it is a censored observation. The competing risks
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set up considers the sub-hazard function of cause j, which is defined as

< =9 >
h(jt,0) = lim Pt<Y <t+dt,J=jlY >1t,0)
dt—0+ dt

and is the hazard of failure from cause j in the presence of all the other causes. The
sub-hazard function h(T,t,60) will be the same as the marginal hazard function hp(t, ) if
there is no informative censoring.
The competing risks partial likelihood,
L= h(J, ti\&') ,
i1 Zle’Rti h(j,tilx1)

where Ry, is the risk set at time ¢;, uses sub-hazard functions instead of marginal hazard

functions like the ordinary partial likelihood. When the two causes being considered are
Tand C, each death time contributes
(T, t|x;)
> ier, M txq)
to the likelihood, while each censored time ¢ contributes
h(C, c|x;)
> ger, M, clxi)
to the likelihood. The product of the contributions from all the individuals in the data
set gives the modified partial likelihood (MPL),

& (T ti]x -~ h(C,t
=1

_ ZZGRti h(T7 tl|Xl) k=1 ZqERtk h’(c? tq|Xq)
where nr is the number of deaths and n¢ is the number of censored observations. If the
censoring is assumed to be ignorable, then the sub-hazards in (3.45) would be equal to

the marginal hazards and it would become

I nr ePrxi nc eBexi
= H Blx H Blxg’
TX1 cXq
i=1 ZleRti € k=1 quRtk €

which is the product of two ordinary partial likelihoods.
Using the assumption in (3.44), Siannis (2011) show that a first-order approximation

with respect to 0 of the sub-hazard function of T is
AT, 1) == hr(t, Br|x) |1+ 005" ur(t, Brlx)u(tlx) (3.46)

where

17 B(u, Br|x) fr(u, Br|x)du

ST(t,,BT’X) ’
8#(757,3T|X) B Ho(t, ﬁc’x)
—ap — and Y(tx) = ot B

M(t7 IBT‘X> -

MT(t7 ﬁT‘X> -
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Similarly it can be shown that an approximation of the sub-hazard function for C' is
B(C,t]x) = holt, Belx) |1+ 80 2u(t, Brix)] (3.47)

The approximations in (3.46) and (3.47) can be substituted into (3.45) so that the MPL

becomes

- ﬁ ePrxi [1 + 015 P (ts, 5T|Xi)¢(fi|xi)]
i=1 | Zier,, ePrx [1 + iy MT(tl,ﬁT’Xl)w(le)]
nc eBexx [1 + 6% (tk,ﬁﬂxk)}

" kgl >ger,, €P0% [1 +5iy /2 (tq,ﬁT\xq>]

The MPL in (3.48) can be manipulated to obtain an approximation of the difference

(3.48)

between the estimated regression coefficients for T" under the assumption of informative

censoring and under the assumption of non-informative censoring,

Brs — Bro = 4i(Br)} +3 S5t~ Brlx)ll, (349

where

2ler,, P He (ti, Belx)

G = :
' ZlERt- eﬂTXl
qu’Rt eﬂlqu HT(tkv BT‘X(I)
K = k o and
ZQERtk erc™e
. 0%log L
Br) =~ 3B 08,

Equation (3.49) can be used to conduct a sensitivity analysis for B, as ¢ makes small
departures from zero. This involves much more computation than the sensitivity analysis
presented by Siannis (2004) and Siannis et al. (2005). Estimation of the baseline hazard
function is required for use in the cumulative hazard functions in (3.49).

This sensitivity analysis can be extended to the situation where there are several types
of censoring, one of which is potentially informative and one which is ignorable. The
informative censoring process, C7, is allowed to contribute information to the likelihood
as before and the ignorable censoring process C'r contributes only to the definition of the
risk sets. So if there are nc, potentially informative censored observations out of a total

of ng censored observations, then the MPL takes the form,

’nCI

H T t; |Xz) h(C[,tk|Xk)
ZZER h(T, ti|x;) Pt ZQER% h(Cr,tq|xq)

t;

This is similar to (3.45) but with the second product only over the n¢, potentially infor-

matively censored observations, rather than all the censored observations.
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3.6.1 Application to the Liver Registration data set

The sensitivity analysis for the Cox proportional hazards model that was described in
Section 3.6 is applied to the Liver Registration data set in this section. As both potentially
informative and non-informative censoring is observed in this data set, then the sensitivity
analysis that allows several types of censoring is used. This means the sensitivity analysis

equation in (3.49) becomes

) ) TAG . <k OK
— By = 6{i -1 : kL : .
Brs — Bro {i(Br)} {;[GBT] + ;[a/@T X Hr(tg, Br|xk)|} (3.50)

The equation in (3.50) is almost identical to (3.49), but with the second summation only
over those patients who are potentially informatively censored. We see that to apply the
sensitivity analysis, we require estimates of Sy and B¢, as well as the baseline hazard
functions Hp(tg, Br|xk) and Heo(tg, Bolxk).

The parameter estimates substituted into (3.50) will be those from the Cox propor-
tional hazards model assuming non-informative censoring. The estimated values of fr and
Bco when it is assumed that 6 = 0 are given in Tables 3.4 and 3.5. The same covariates
were used in both the model for time to failure and the model for time to censoring. These
covariates were primary liver disease category, ethnicity, UKELD score, age, serum sodium
at time of registration and INR at time of registration. These are the variables that were
found to be significant for time to failure when fitting a Cox proportional hazards model.

The baseline hazard functions in (3.50) are estimated by the Breslow estimate of the

baseline cumulative hazard function. This is a step function where

. i d.
Ho(t) = Z ’ ~7
=1 ZleR(t(j)) exp(8 x)

J

for t) <t <trs1), k=1,2,...,r—1, where d; is the number of events at the jth ordered
event time ¢(;) and r is the total number of events observed.

Table 3.6 shows the estimated values of the components of BT5 — ,@To for 6 = 0.2 and
6 = 0.3. Positive changes in the parameter estimates mean that the hazard ratios of the
covariates are being underestimated by the model assuming non-informative censoring.
Conversely, negative changes in the parameter estimates mean that the hazard ratios for
the covariates are overestimated by the model that assumes § = 0.

From Table 3.6, we can see that the sensitivity analysis for the Cox proportional
hazards model suggests most of the hazard ratios for the levels of primary liver disease
category are being overestimated by the model that assumes non-informative censoring,
with the exception of patients with cancer or hepatitis B infection. The sensitivity analysis

also suggests that the hazard ratios for all levels of patient ethnicity, the UKELD score,
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Parameter Estimate | Standard | p-value | Hazard 95% Confidence
Error Ratio Interval for

Parameter Estimate

PLD - PBC -0.1647 0.3442 0.632 0.848 (-0.839,0.510)
PLD - PSC -0.9295 0.3978 0.020 0.395 (-1.709,-0.150)
PLD - ALD -0.2665 0.3222 0.408 0.766 (-0.898,0.365)
PLD - AID 0.1275 0.3392 0.707 1.136 (-0.537,0.792)
PLD - HCV 0.4138 0.3371 0.220 1.513 (-0.247,1.075)
PLD - HBV -0.4116 0.5820 0.480 0.663 (-1.552,0.729)
PLD - Cancer -1.0664 0.7754 0.169 0.344 (-2.586,0.453)
PLD - Metabolic 0.9208 0.3662 0.012 2.511 (0.203,1.639)
PLD - Other 0.4064 0.3438 0.237 1.501 (-0.267,1.080)
PLD - Acute 0
Ethnicity - White 1.1246 1.0080 0.265 3.079 (-0.851,3.100)
Ethnicity - Asian 0.0538 1.0484 0.959 1.055 (-2.001,2.109)
Ethnicity - Black 1.0239 1.1218 0.361 2.784 (-1.175,3.223)
Ethnicity - Chinese | -0.4562 | 1.4345 0.751 | 0.634 (-3.268,2.355)
Ethnicity - Other 0
UKELD 0.2628 0.0192 < 0.001 1.301 (0.225,0.300)
Age 0.0331 0.0062 < 0.001 1.034 (0.021,0.045)
Sodium 0.0701 0.0169 < 0.001 1.073 (0.037,0.103)
INR -0.2300 0.0986 0.020 0.795 (-0.423,-0.037)

Table 3.4: The parameter estimates, estimated hazard ratios, p-values and 95% confidence

intervals from the Cox model for time to failure assuming non-informative censoring
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Parameter Estimate | Standard | p-value | Hazard 95% Confidence

Error Ratio Interval for
Parameter Estimate

PLD - PBC -0.2282 0.1448 0.115 0.796 (-0.512,0.056)
PLD - PSC -0.1403 0.1447 0.333 0.869 (-0.424,0.143)
PLD - ALD -0.2081 0.1353 0.124 0.812 (-0.473,0.057)
PLD - AID -0.1788 0.1448 0.217 0.836 (-0.463,0.105)
PLD - HCV 0.0545 0.1400 0.697 1.056 (-0.220,0.329)
PLD - HBV 0.1567 0.1815 0.388 1.170 (-0.199,0.512)
PLD - Cancer 0.6728 0.1585 < 0.001 1.960 (0.362,0.983)
PLD - Metabolic 0.0645 0.1705 0.705 1.067 (-0.270,0.399)
PLD - Other -0.4106 0.1492 0.006 0.663 (-0.703,-0.118)

PLD - Acute 0
Ethnicity - White 0.3841 0.2550 0.132 1.468 (-0.116,0.884)
Ethnicity - Asian 0.3081 0.2635 0.242 1.361 (-0.208,0.825)
Ethnicity - Black 0.4820 0.2959 0.103 1.619 (-0.098,1.062)
Ethnicity - Chinese | 0.8348 0.3731 0.025 | 2.304 (0.104,1.566)
Ethnicity - Other 0

UKELD 0.0538 0.0078 < 0.001 1.055 (0.038,0.069)
Age 0.0012 0.0023 0.595 1.001 (-0.003,0.006)
Sodium 0.0316 0.0076 < 0.001 1.032 (0.017,0.046)
INR -0.0405 0.0416 0.330 0.960 (-0.122,0.041)

Table 3.5: The parameter estimates, estimated hazard ratios, p-values and 95% confidence

intervals from the Cox model for time to censoring assuming non-informative censoring
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serum sodium and INR are being underestimated by the model that assumes § = 0.
Finally, the sensitivity analysis suggests that the hazard ratio for age is being slightly
overestimated.

The results of this sensitivity analysis for the Cox proportional hazards model in Table
3.6 can be compared to the results of the sensitivity analysis for a Weibull proportional
hazards model in Table 3.1 in Section 3.3.2. Both of the sensitivity analyses are approxi-
mating the change in parameter estimates if informative censoring is assumed instead of
non-informative censoring. Both models include primary liver disease category, age, eth-
nicity and UKELD score, so the estimated changes in the parameter estimates for these
variables can be compared.

The sensitivity analyses applied in this section and Section 3.3.2 give similar results for
the majority of the parameter estimates. However, the sensitivity analysis from Siannis
(2004) suggests that the hazard ratio for cancer patients is overestimated while the sensi-
tivity analysis from Siannis (2011) suggest this hazard ratio is being underestimated. Also,
the sensitivity analysis from Siannis (2011) suggests that the hazard ratios for all levels
of ethnicity are being underestimated, but the sensitivity analysis from Siannis (2004)
suggests that the hazard ratios for white and black patients are being overestimated. The
two approaches also disagree about the effect of informative censoring on the hazard ratio
for the UKELD score. Siannis (2004) suggests it is being overestimated by the model that
assumes § = 0, whereas Siannis (2011) suggests it is underestimated.

Tables 3.7 and 3.8 show the approximate parameter estimates for Cox proportional
hazards models assuming § = 0.2 and § = 0.3 respectively. These parameter estimates are
obtained by adding the parameter estimates from the model assuming non-informative
censoring in Table 3.4 to the values in Table 3.6. The p-values of the estimates are
also shown. These are all calculated using the standard errors of the estimates from the
model assuming non-informative censoring. The reason that we can do this was discussed

previously in Section 3.3.2. It was shown in Siannis et al. (2005) that

SE(f5) ~ SE(y) + O(6%).

As only linear values of § are considered in the sensitivity analysis then the standard
error of the parameter estimate from the model assuming informative censoring can be
approximated by the standard error of the parameter estimate from the model assuming

non-informative censoring. Again, this only applies if the value of § is fairly small.

3.7 Rotnitzky et al. (2007) Sensitivity Analysis

In sections 3.3 to 3.6, the sensitivity analyses assess the sensitivity of the results under the

assumption of non-informative censoring if informative censoring is assumed instead. The
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Parameter Broa — Bro | Bros — Bro
PLD - PBC -0.0625 -0.0937
PLD - PSC -0.0746 -0.1119
PLD - ALD -0.0483 -0.0724
PLD - AID -0.0604 -0.0906
PLD - HCV -0.0243 -0.0365
PLD - HBV 0.0931 0.1397
PLD - Cancer 0.0172 0.0258
PLD - Metabolic -0.0423 -0.0634
PLD - Other -0.0919 -0.1379
Ethnicity - White 0.0502 0.0754
Ethnicity - Asian 0.0605 0.0908
Ethnicity - Black 0.0505 0.0757
Ethnicity - Chinese 0.2376 0.3564
UKELD 0.0039 0.0058
Age -0.00003 -0.00005
Sodium 0.0028 0.0042
INR 0.0118 0.0177

Table 3.6: The estimated values of Bps — By for 6 = 0.2 and § = 0.3, calculated by
applying the Siannis (2011) sensitivity analysis to the Liver Registration data set
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Parameter Estimate | Hazard Ratio | p-value | 95% Confidence
Interval
PLD - PBC -0.2272 0.797 0.509 (-0.902,0.573)
PLD - PSC -1.0041 0.366 0.012 (-1.784,-0.075)
PLD - ALD -0.3148 0.730 0.329 (-0.946,0.413)
PLD - AID 0.0671 1.069 0.843 (-0.598,0.853)
PLD - HCV 0.3895 1.476 0.248 (-0.271,1.099)
PLD - HBV -0.3184 0.727 0.584 (-1.646,0.822)
PLD - Cancer -1.0493 0.350 0.176 (-2.603,0.470)
PLD - Metabolic 0.8786 2.408 0.016 (0.161,1.681)
PLD - Other 0.3145 1.370 0.360 (-0.359,1.172)
PLD - Acute 0
Ethnicity - White 1.1749 3.238 0.244 (-0.901,3.151)
Ethnicity - Asian 0.1143 1.121 0.913 (-2.062,2.169)
Ethnicity - Black 1.0744 2.928 0.338 (-1.225,3.273)
Ethnicity - Chinese | -0.2186 0.804 0.879 (-3.506,2.593)
Ethnicity - Other 0

UKELD 0.2667 1.306 < 0.001 (0.221,0.304)
Age 0.0331 1.034 < 0.001 (0.021,0.045)
Sodium 0.0729 1.076 < 0.001 (0.034,0.106)
INR -0.2300 0.804 0.027 (-0.435,-0.025)

Table 3.7: The parameter estimates, estimated hazard ratios, p-values and 95% confidence
intervals for the Cox model assuming informative censoring with 6 = 0.2. These values
were found using the estimates from the Cox model assuming non-informative censoring

and the estimated differences from the Siannis (2011) sensitivity analysis.
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Parameter Estimate | Hazard Ratio | p-value | 95% Confidence
Interval

PLD - PBC -0.2584 0.772 0.453 (-0.933,0.604)
PLD - PSC -1.0414 0.353 0.009 (-1.821,-0.038)
PLD - ALD -0.3389 0.713 0.293 (-0.970,0.437)
PLD - AID 0.0369 1.038 0.914 (-0.628,0.883)
PLD - HCV 0.3774 1.458 0.263 (-0.283,1.111)
PLD - HBV -0.2719 0.762 0.640 (-1.692,0.869)
PLD - Cancer -1.0407 0.353 0.180 (-2.612,0.479)
PLD - Metabolic 0.8575 2.357 0.019 (0.140,1.702)
PLD - Other 0.2685 1.308 0.435 (-0.405,1.218)

PLD - Acute 0
Ethnicity - White 1.2000 3.320 0.234 (-0.927,3.176)
Ethnicity - Asian 0.1446 1.156 0.890 (-2.092,2.200)
Ethnicity - Black 1.0996 3.003 0.327 (-1.251,3.298)
Ethnicity - Chinese | -0.0998 0.905 0.945 (-3.624,2.712)
Ethnicity - Other 0

UKELD 0.2686 1.308 < 0.001 (0.219,0.306)
Age 0.0331 1.034 < 0.001 (0.021,0.045)
Sodium 0.0743 1.077 < 0.001 (0.033,0.108)
INR -0.2123 0.809 0.031 (-0.441,-0.019)

Table 3.8: The parameter estimates, estimated hazard ratios, p-values and 95% confidence
intervals for the Cox model assuming informative censoring with 6 = 0.3. These values
were found using the estimates from the Cox model assuming non-informative censoring

and the estimated differences from the Siannis (2011) sensitivity analysis.
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sensitivity analysis presented in this section has a different aim from all the sensitivity
analyses considered so far. Rotnitzky et al. (2007) derive a sensitivity analysis that as-
sesses the sensitivity of an estimator that accounts for informative censoring by adjusting
for measured prognostic factors to different levels of residual dependence. The estima-
tor accounts for potentially informative censoring by assuming sequential ignorability of
censoring which means that after adjusting for all the measured prognostic factors, the
time to event variables and time to censoring variables are independent of each other.
However, it is possible that some of the dependence between the two variables could be

due to unmeasured factors, which is called residual dependence.

A semi-parametric model was used in Scharfstein and Robins (2002) to allow for resid-
ual dependence between the two variables after incorporating a vector of covariates. How-
ever, this model only allowed one censoring mechanism. This meant that either all the
censoring in a data set would have to be treated as informative, even if is administrative
censoring, or any data after the first occurrence of administrative censoring is disregarded.
Scharfstein and Robins (2002) adopt the latter strategy. An extension of this model was
presented in Rotnitzky et al. (2007) that allowed for multiple causes of censoring. This is
the model that will be used here as there is administrative censoring as well as possibly
informative censoring in the Liver Registration data set.

In Section 3.7.1 all the necessary notation for the model is presented and the form of
the model that will be used is given. This model will then be used to conduct a sensitivity
analysis for the assumption of sequential ignorability of censoring for the Liver Registration

data set.

3.7.1 Notation

All of the variables defined in this section come from Rotnitzky et al. (2007), although in
some cases the notation used has been changed slightly so that it is consistent with the
notation used in the rest of this chapter.

Let T and C* be the times from entry into the study to the time of death and time
of censoring, respectively. The maximum follow-up time that will be used when applying
this method is x. As it is possible that either of these events could occur after time x, we
define ' = min(7™, k) and C' = min(C*, k). However, Y = min(T, C) is actually observed.

The maximum possible follow-up time for any patient is x*. However, for a technical
reason, any data that was recorded after time x = k* — ¢, where € is a small positive

number, needs to be disregarded. The technical reason is that the condition

hej(ulVH (u), T, T > u) < K with probability 1, (3.51)
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where
hej(ul-, T >u) = dlimO{Pr(u <C<u+du,J=jC>uT>u,-)/du},
U—

has to hold for all u € (0, k) and some constant K. Condition (3.51) will be false when
k = k" since all patients who are uncensored just before x* will be censored when the
study ends at this time. Therefore kK = k* — € for some € > 0 is used instead.

A vector of covariates V(t) is recorded at either predetermined or random times. The
history of this covariate vector is defined as V(¢) = {V(u);0 < u < t}. The vector of
baseline covariates is V(0), and for v > 0, V(u) is the vector of covariate values at time
u, if it happened to be a measurement time, or the last values recorded before u if it was
not a measurement time.

As we are allowing several types of censoring within the model, a variable that dis-
tinguishes between the different types is needed. Let J € {1,2,...,j*} denote the cause
of censoring, where j* is the number of different censoring types. There is also the event
indicator A = I(T < C), and we let J =0if A = 1.

So, the observed data are the independent and identically distributed Oq,..., Oy,
where O; = (A;,Y;, J;, V(Y;)). These will be used to estimate Sp(t*) = Pr(T > t*) for
any t* € (0, k).

We will consider estimators of Sp(¢*) under the following assumption about the cen-

soring variables, for j = 1,...,7* and u € [0, k),
hc,j{u]V(u),T, T>u} = hojj{u,V(u)}exp[qj{u,V(u), T} (3.52)

where hq_j{u, V(u)} is an unknown non-negative function of both « and V(u). The func-
tions g;{u, V(u), T}, are known functions of u, V(u) and T, that are called cause-specific
censoring bias functions. They measure the dependence on the hazard ratio scale between
T and censoring due to cause j at time u, after adjusting for the measured prognostic
factors in V(u). If g; is set to zero, then for censoring cause j, sequential ignorability of
censoring is being assumed. This is the assumption used in Robins and Finkelstein (2000)
when constructing IPCW estimators. This assumes that time to death and time to censor-
ing are independent after adjusting for covariates that are prognostic factors for both the
time to death and time to censoring variables. If no prognostic factors are included in the
model and g; is set to zero, then this is equivalent to the assumption of non-informative
censoring.

The model presented in (3.52) is referred to as model A,. Is is only possible estimate
Sr(t*) under this model when V(u) is low dimensional, such as equal to a single base-

line discrete covariate V' for all w. This is because estimation of St (t*) under this model
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requires estimation of
Ho j{u,V(u)} = / hoj{s,V(s)}ds, forj=1,...,5"
0

This is not feasible when V(u) is high dimensional, so when this is the case the dimen-
sionality of the unknown functions hg ;{u, V(u)} needs to be reduced. This can be done

by assuming a semi-parametric model of the form
hoj{u, V(u)} = hoj(u) expvjwi{u, V(u)}] j=1,....5" (3.53)

where hg ;(+) is an unknown function, w;{u, V(u)} is a specified vector function of V(u)
and v; is a vector of unknown parameters.
When the additional restriction in (3.53) is imposed on model A,, then the resulting

model is called model B,.

3.7.2 Estimation identities

This section outlines the identities that are required to construct the estimator of St (t*),

all of which are given in Rotnitzky et al. (2007). The fundamental identity used is

m{ulV (w), T Ho}
{TIV (), T Ho}

E|A V(u),T,T>u,YZu] =1 forallue(0,k]. (3.54)

where

t
m{u|V(u),T; Hy} = exp {—/ he{u|V(uw), T, T > u}du]
0
J* - -
= H H (1 — explgj{u, V(u), T} dHoj{u, V(u)}).
j=10<u<t
This identity implies that S (¢*) is the solution of the population moment equation

A
b [W{T|V<T>7T; ho

{L(T >1t") - ST(t*)}] =0. (3.55)
We shall impose the condition that for all u € (0, k) and some constant K,

hej{ulV(u), T,T >u} < K with probability 1
so that under this condition and model By, (3.54) implies that Hp j{u, V(u)} satisfies

Ho j(u) =

/“ ] hej(s|T > s)ds . (3.56)
0 F (A% exp I/;-'LU]‘{S,V<S)} + qj{s,V(s),T}} ‘C > s, T > s)
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It also follows from identity (3.54) that, under model B, when v and Hj are set at

their true values,
E{dMc¢ ;(u; Ho, V)|V (u), T, T > u,Y >u} =0

where

m{u|V(u), Tsv, Ho}

C,J(u7 0, V) C’](u) {T|V(T),T;v,Ho}

dHo j(u)ri{u, V(u),T;v;}, (3.57)

ri{u, V(u),T; v} =exp [V;wj{u, V(u)}+ g;i{u, V(u), T}}

and
Ncj(u) =1(C <u,J =j).

The functions 7{-|V(-),T;v, Ho} in (3.57) are defined like 7{-|V(-),T;Ho} but with
explg;{u, V(u), T} and Ho{u, V(u)} replaced by rj{u, V(u),T;v;} and Hp(u) respec-
tively.

However, we shall construct estimating equations from E{m(O;v, Hy,a)} = 0, where

for any collections of functions a = {a;{-,V(-)} : i =1,...,5*}, we have
J* -
m(Ov, Hya) =) / M, (s Ho, v)a; {u, V(T > w, Y > u). (3.58)
j=1

This equation is used to construct estimating equations as it depends only on observables

and is satisfied at the true values of v and Hy.

3.7.3 Parameter estimation under model B,

In this section, the estimating equations used to find estimates of Hy, v and finally Sp(¢)*
are given. Again all these equations come from Rotnitzky et al. (2007).
Under model By, v has to be estimated before an estimator of S7(t*) can be found. If

Hy were known, then v could be estimated using
Z m(O’w v, HO) d) = 07
i

where d;j{u, V(u)} are user-specified functions. Rotnitzky et al. (2007) say that a natural
choice is
dj{u, V(u)} = (0, w;(u, V(u))',0"),

where the first and last 0 are zero vectors with Z{;ll dim(v;) and Z*;: i1 dim(vy) rows
respectively. This form for d;{u, V(u)} is also used here.
As Hj is unknown, then it has to be estimated. Equation 3.56 cannot be used to

construct an estimator for Hy as the RHS of the equation still depends on v. However,
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a profile estimator IEI& j (u) can be computed by solving the empirical version of (3.56) for

each fixed v, using that (3.56) is equivalent to

—dFxa—0,7=;(8)Pr(A=0,J = j)

H(’]/’](u):/ w{s|V(s),T;v,H¥ — :
0 F [AI(T > 8)W{{T}ng)j’f;l;;g}}Tj{s,V(S), Tiv;}

So, ilﬁ,j (u) = 0 if w is not a censoring time, and at each Cp,, iL(),j is the solution to

ﬁg,j(cm) =
_ - —1
) n — . =T HY _
2 (VL) Tiv, )

where, for each v,

j*
rlulV), Tiv iy =T TT |1 =B (Comi{Ce, V(Co), Tivs}]
Jj=1 Cg‘0<Cg§u
and 7{u~|V(u™), T;v, H¥} is defined as 7{u|V (u), T; v, H¥ } but with the second product
ranging over all Cy strictly less than u. The estimator iL&j(Cm) needs to be computed
recursively.

Now that we have an estimator H{', we can obtain an estimator & of v using

> m(Osv, HY ,d) = 0.

i=1

Finally we can compute Sp(t*) using

n
A
= ——{I(T; > t*) — Sp(t")} =0,
;W{Tlvl(n))ﬂauv (I)j} '
which is based on (3.55).
It is also possible to derive equations to give the variance but they are not presented

here. The full derivation of equations for the variance is given in Rotnitzky et al. (2007).

3.7.4 Application of sensitivity analysis to the Liver Registration data

set

In the Liver Registration dataset, we want to estimate Sp(t*) = Pr(T > t*) for any
t* € (0,k), where T'= min(7T*, k), k = 1260 and T™* is the time from registration on the
waiting list until death. So, k = 1260 is used as the maximum follow up time observed
was 1265 days as we do not want to discard too much data just to satisfy a technical
issue. The choice of kK = 1260 is fairly arbitrary and we could have easily used k =

1261,1262,1263, or 1264 instead.
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In our dataset, there are two competing censoring mechanisms, so j* = 2. The first
censoring time, 5 = 1, is the time to administrative censoring, which is assumed to be
non-informative so ¢ is set to zero. The second censoring time j = 2, is the time to

transplant and
e{t, V(t), Tiw, ¢} =w{I(T <) (T =) + (T > ) (¢ — 1)}

is the censoring bias function for this cause of censoring. It is assumed that w is known and
takes values in the set {—1,—0.7,—0.5,—0.3,0,0.3,0.5,0.7,1}. These values are chosen as
w is the assumed amount of residual dependence and we need a reasonable number of
values ranging from 1 to -1 to assess the sensitivity of the estimator to different amounts
of residual dependence. We set ( = 1335 days and this represents roughly the expected
time until the event for subjects who have not experienced the event by 1260 days.

Negative values of w are equivalent to assuming that, among patients who are at risk
at time t and with the same covariate history up to t, those who would experience the the
event earlier are more likely to be censored at time t than those who would experience the
event later. Also when w < 0, the term I(T > t)(¢ — t) is equivalent to assuming that,
among subjects who at risk at time t and with the same covariate history up to time t,
the hazard of censoring at time t for whose who would experience the event after time & is
exp{w(¢ — k)} times smaller than the hazard of censoring for those who would experience
the event just before time k.

The covariates that are included in V(u) are time-dependent UKELD and age. There
are only two UKELD observations for patients who receive a transplant, these are taken
at time of registration and time of transplant. Therefore linear interpolation is used to
obtain values of UKELD at time values between these two points. For all other patients,
there is only the UKELD score at time of registration, so this value is used at all times.

These two covariates are the only ones included in the model as the other possible
covariates that could have been included were ethnicity and primary liver category, both of
which are categorical variables with several levels. The dimensionality that these covariates
add to the model would have made estimation of ;z under the semi-parametric model much
more computationally intensive.

The programs used to carry out the sensitivity analysis given in Rotnitzky et al. (2007)

are available online from
http://www.blackwellpublishing.com/rss.

The programs available from this website are used here and amended slightly so that the
sensitivity analysis could be carried out on the Liver Registration dataset.
The plot in Figure 3.12 shows the results of the sensitivity analysis. The thicker solid

line is S’T(t*) when it is assumed that gz = 0. This is the model that assumes sequential
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ignorability of censoring after adjusting for time-dependent UKELD and recipient age.
The Kaplan-Meier estimate of the survival function is included for comparison, this is
given by the thinner solid line. The dotted lines on the plot are the estimates of the
survival function when there is some negative residual dependence between time to event
and time to censoring after adjusting for the covariates in V(u). Similarly, the dashed
lines are the estimates of the survival function when we assume the residual dependence

is positive.
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Figure 3.12: Plot showing estimated survival functions when fitting model B, to the Liver
Registration dataset for various values of a. The bolder solid line is the estimated survival
function when fitting model B, to the Liver Registration data set for o = 0. The other

solid line is the Kaplan-Meier estimate of the survival function.

The dashed and dotted lines on the plot show that the estimate of the survival function
could change considerably if some of the values of the residual dependence that have been
assumed are feasible. However, the covariates that have been included, particularly time-
dependent UKELD, are significant predictors of time to death and time to censoring. So it
is reasonable to assume that after adjusting for these covariates there can only be a small
to moderate amount of residual dependence. Therefore it can reasonably be assumed

that the residual dependence is likely to be in the interval [—0.3,0.3], which gives tighter
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bounds on the estimate of the survival function. However, even these tighter bounds are
too wide to be of much use in a practical application.

The estimator that assumes g2 = 0, which is the assumption of sequential ignorability is
not similar to the IPCW estimators fitted in Section 3.1.4, despite using a similar weighted
approach. This is not just due to different covariates being used in the models for time to
censoring for each of the estimators. It is because the estimator used here is not the KM

estimator, instead it is

sy - Di 173 < COICT, > 1)/m{T|VA(T). Ty . i)
T(t") = - = —
21':1 I(Tz < Ci)/W{Tz"Vz‘(E’)yTiSVa 0}

)

which is the number of failures yet to occur weighted by ©{T;|V;(T}), Tj; &, HY }, over the
total number of failures weighted by ©{T;|Vi(T}), T;; &, HY}. In comparison, the IPCW

KM estimator derived in Section 3.1.1 is

A AW (t:)
S (t) = - )
' {i;gt} {Ezzl Ry (ti) Wy (ti)}

If the weight used is W;(t) = 1/KY (t) where

~ ~t
E¥Y@) = I 11— hoty) exp {BcViltj)},

{jstj<t,A;=0}
then it appears that similar weights are used for the IPCW KM estimator and the estimator
presented in this section when w = 0. However, the IPCW KM estimator uses Breslow’s
estimator of the hazard function, which is not used by Rotnitzky et al. (2007) when

estimating the hazard function.

3.8 Summary

In Chapter 2, estimators that could be used to give bounds on the estimated survival
function were reviewed. In this chapter, alternative approaches that can be used when
there is potentially informative censoring in a data set are reviewed. These include ap-
proaches that use regression models for the censoring processes and sensitivity analyses for
the parameters of non-informative censoring models. Generally, the methods presented in
this chapter allow covariates to be incorporated much more easily than the estimators con-
sidered in Chapter 2. A summary of the advantages and disadvantages of the estimators
that use models for the censoring process is given in Table 3.9. Also, the advantages and
disadvantages of the sensitivity analyses reviewed in this chapter are summarised in Table
3.10. All the approaches given in this chapter share a disadvantage that is not included in
Tables 3.9 and 3.10. This is that they all rely on some untestable assumption about the
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nature of the dependence between T and C, due to the identifiability issues described in
Section 1.1.2.

The most widely used approach that uses a regression model for the censoring process
weights the contribution of individuals in the data set by the inverse of the probability of
the individual remaining uncensored under this model. If these weighted contributions are
used in the standard methods, such as the KM estimate of the survival function or Cox’s
proportional hazards model, then estimates of the survival function or parameters in the
absence of any censoring can be obtained. The various models that are considered for
the censoring process are Cox’s proportional hazards model, Weibull proportional hazards
model and Aalen’s additive hazard model. We recommend use of a Cox proportional
hazards model as it can be easily fitted using standard software and can also incorporate
time-dependent covariates fairly easily. These inverse probability of censoring weighting
methods use the assumption of sequential ignorability of censoring. This means that if all
the prognostic factors for both T" and C are adjusted for in the model for censoring, it can
be assumed that C' would then be independent of T'. However, it is possible that some of
the dependence between T and C' is due to unmeasured factors, which is called residual

dependence.

In Sections 3.3 to 3.6, methods are described that assess the sensitivity of parameter

estimates from standard models to the assumption of informative censoring.

Firstly, two sensitivity analyses that use parametric survival models are considered.
Both of these methods are computationally simple but cannot be used for a wide range of
data sets as they use only standard parametric survival models. The change in parameter
estimates for both of these sensitivity analyses can be expressed in the same form, which
is the correlation coefficient of T" and C' multiplied by a sensitivity index, which allows
direct comparison of the two methods. We recommend using the sensitivity analysis
given in Siannis et al. (2005) and Siannis (2004) for parametric survival models as it
allows estimation of the change in individual parameter estimates for covariates unlike
the sensitivity analysis from Zhang and Heitjan (2006) which only allows use of a linear
predictor. Also the sensitivity analysis in Zhang and Heitjan (2006) gives values of the

sensitivity index that seem unfeasibly large.

Then, two sensitivity analyses for the Cox proportional hazards model are given. These
approaches are much more computationally intensive than those for parametric models but
can be applied to a greater number of data sets as the Cox proportional hazards model
is more flexible than standard parametric survival models. The sensitivity analysis in
Siannis (2011) is more computationally intensive than the sensitivity analysis in Siannis
et al. (2005) and Siannis (2004) as it requires estimation of the baseline hazard function.

However, the sensitivity analysis in Huang and Zhang (2008) is much more computationally
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intensive than that in Siannis (2011). It also requires more untestable assumptions as a
copula function needs to be specified as well as the level of dependence between T and C.
It is for these reasons that we recommend use of the sensitivity analysis in Siannis (2011)
for the Cox proportional hazards model.

Finally, a sensitivity analysis for an estimator that already accounts for informative
censoring is considered. This is derived in Rotnitzky et al. (2007) and considers the
sensitivity to residual dependence of an estimator that assumes sequential ignorability
of censoring. Unfortunately, this estimator is not the same as the inverse probability of
censoring weighted estimators considered previously. A semi-parametric model containing
prognostic factors for T" and C' is used for C. Weights using the survival function from
this semi-parametric model are used when deriving estimators of the marginal survival
function for T'. This approach can then be used to give bounds on the estimator that
assumes sequential ignorability of censoring for different amounts of residual dependence.
The drawbacks of this method are that the bounds derived are often too wide to be of use
in a practical setting and it is so computationally intensive that it is not easy to include
lots of covariates or factors with many levels.

The literature review carried out in this chapter has several important conclusions. The
first is that the inverse probability of censoring weighted estimators presented in Section 3.1
are the most appropriate estimators for use in practical applications that we have found in
the literature. Therefore, similar weights will be used when developing the survival benefit
methodology in Chapter 6. Secondly, the sensitivity analyses described in Sections 3.3 to
3.6 are the most useful methodologies in the literature for assessing the sensitivity of results
from standard models to the assumption of informative censoring. However, each of these
methodologies have disadvantages that affect its usefulness is a practical setting. This is
our motivation for the sensitivity analysis for piecewise parametric survival models derived
in Chapter 4, which has the flexibility of the sensitivity analyses for Cox’s proportional
hazards model while retaining the computational simplicity of the sensitivity analyses for

standard parametric survival models.
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Advantages Disadvantages
IPCW e Uses sequential ignorabil- | e It is not possible to es-
estimators ity of censoring assumption | tablish whether the correct
which is fairly easy to un- | model for censoring has been
derstand and it seems intu- | used.
itive that dependence would | ¢ There may be residual de-
be caused by shared prognos- | pendence that is not ex-
tic factors. plained by shared prognostic
e The Cox model for time to | factors, which would result
censoring can be fitted us- | in IPCW estimates being bi-
ing standard software and it | ased.
does not require much com-
putation to obtain weights.
e Most standard software can
easily incorporate weights
into Cox models.
Weighted e Uses sequential ignorabil- | ¢ It is not possible to es-
estimators ity of censoring assumption | tablish whether the correct
using which is fairly easy to un- | model for censoring has been
Aalen’s derstand and it seems intu- | used.
additive itive that dependence would | ¢ There may be residual de-
hazard model be caused by shared prognos- | pendence that is not ex-
tic factors. plained by shared prognostic
e Uses Aalen’s additive haz- | factors, which would result
ard model which is more flex- | in IPCW estimates being bi-
ible than Cox’s proportional | ased.
hazards model. e [t is more difficult to
fit Aalen’s additive hazard
model than Cox’s propor-
tional hazards model using
standard software.

Table 3.9: Summary of the advantages and disadvantages of the estimators that use models

of the censoring process that are reviewed in Chapter 3.
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Advantages

Disadvantages

Sensitivity
analysis in

Siannis et al.

e Computation of sensitivity anal-
ysis equations is fairly simple.

e Allows estimation of change in

e Only allows use of standard
parametric survival models, which

means it can only be applied to a

analysis in

ysis equations is fairly simple.

(2005) and individual parameter estimates as restricted number of data sets.
Siannis well as a linear predictor.

(2004)

Sensitivity e Computation of sensitivity anal- | e Only allows use of standard para-

metric survival models.

analysis in
Huang and
Zhang (2008)

model, which is more flexible
than standard parametric survival
models.

e Allows estimation of the change

in individual parameter estimates.

Zhang and e Can only be carried out on scalar
Heitjan parameters or linear predictors.
(2006) e Gives values of the sensitivity in-
dex that seem unfeasibly large.
Sensitivity e Uses Cox’s proportional hazards | e Very computationally intensive,

much more than the sensitivity
analysis in Siannis (2011).

e Requires more untestable as-
sumptions than other methods re-
viewed in Chapter 3, as a copula
needs to be chosen as well as the

level of dependence.

Sensitivity

analysis in

e Uses Cox’s proportional hazards

model, which is more flexible

e More computationally intensive

than the sensitivity analyses in

analysis in
Rotnitzky
et al. (2007)

ity to residual dependence of an
estimator that assumes sequential

ignorability of censoring.

Siannis than standard parametric survival | Siannis et al.  (2005), Siannis
(2011) models. (2004) and Zhang and Heitjan as
e Allows estimation of the change it requires estimation of the base-

in individual parameter estimates. line hazard function.
Sensitivity e Allows assessment of the sensitiv- | ¢ The estimator used is not the

same as the IPCW estimator,
which is more widely used.

e Very computationally intensive,
it is not possible to include lots
of covariates or factors with many
levels.

e The bounds on the estimate of
the survival function found are of-
ten too wide to be of use practi-

cally.

Table 3.10: Summary of the advantages and disadvantages of the sensitivity analyses

reviewed in Chapter 3.

113




114



Chapter 4

Sensitivity Analysis for
Informative Censoring in

Piecewise Exponential Models

Sensitivity analyses that estimate how the results from fitting standard models would
change in the presence of informative censoring are useful, due to the identifiability issues
that we face. It is for this reason that here we present a sensitivity analysis method
that is not only suited to our particular setting, but could also be applied to many other

situations.

The method allows us to estimate the change in the parameter estimates for a piecewise
exponential model when we assume a small amount of informative censoring instead of
non-informative censoring. This extends the sensitivity analysis in Siannis et al. (2005)
and Siannis (2004), which only considered standard parametric models. The method they
present is appealing as it is easy to apply, but it could be improved by extending the
range of models to which it applies. We chose to work with piecewise exponential models
as by using sensible cutpoints to split the study time into intervals and assuming constant

hazards in each interval, we can approximate a wide range of baseline hazard functions.

A sensitivity analysis that uses the same assumption for the association between T and
C'is given in Siannis (2011). However, this sensitivity analysis is for the Cox proportional
hazards model instead of a parametric model. The sensitivity analysis presented here
retains the computational simplicity of the parametric analyses of Siannis (2004) and

Siannis et al. (2005) whilst enjoying the flexibility of the approach of Siannis (2011).

We will first outline the sensitivity analysis for a piecewise exponential model with a
scalar parameter in each interval. The sensitivity analysis will then be extended so that

covariates can be included.

115



4.1 Notation and Model Specification

We are interested in the joint distribution of 7', the time to failure variable and C, the
time to censoring variable, so we can assess the dependence between the two. However,
we only observe Y = min(7', C') along with an indicator function I = 1if 7' < C and I =0
otherwise. This means that we must make additional assumptions before we can identify

the joint distribution.

A piecewise exponential model will be used for the marginal distributions of both T’
and C. We split the study time into intervals and assume a constant hazard in each
interval. This approach was introduced in Breslow (1974); it is what is now called the
piecewise exponential model. This should give us greater flexibility than the standard

exponential and Weibull models, as we can approximate most hazard functions.

As we have introduced intervals into the model, we use a piecewise approach to ob-
tain the log-likelihood. We only have the observation time, y;, for each individual and
the piecewise approach requires a time variable corresponding to each interval for each

individual. Therefore we define the exposure time for individual ¢ in interval j, which is

yij:aj—aj_l j:L...,Ni—l

Yij = Yi — AN;—1 Jj =N,

where a; is the upper endpoint of the jth interval. The lower endpoint of the first interval
is ag = 0. Here N; denotes the number of the interval in which individual 7 experiences
either failure or the censoring of interest at time y;. Once having experienced one of these

events, individual ¢ has no further exposure in later intervals.

Therefore, there are now three possible times that may be observed for each individual
at risk in any of the intervals. These are T, the failure time, Cy, the censoring that occurs
within an interval, and Cg, the censoring at the end of an interval. We will treat the
censoring at the end of each interval, which has been introduced by the use of a piecewise
model, as independent of any censoring that takes place in the intervals. This censoring
is similar to end of study censoring, which is also usually treated as non-informative
censoring.

Two indicator variables are needed, first to distinguish between a failure time and a
censored time and then to distinguish between the two different types of censoring. These

indicator variables are

I 1, if ¢th individual fails in jth interval
ij =
0, if ¢th individual does not fail in jth interval
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and, when I;; = 0,

7 1, when individual ¢ censored before the end of interval j
U 0, when individual ¢ censored at the end of interval j.

As we are using a piecewise exponential model, we can take advantage of the lack of
memory between the intervals. If we condition on T" > a;j_1, then the survivor function
St(t|T > aj—1) = Str(t —aj—1) for the jth interval depends only on the parameter associ-
ated with that interval, 6;, and the mean of the distribution in the jth interval is given by
Hj_l. Let t; =t —aj_1 be the amount of time passed in the jth interval, then the survivor
function can be denoted by Sr(t;,0;). For the ith individual, the survivor function for the
jth interval would be St (yij;,0;). The density, hazard and integrated hazard functions for
T in the jth interval,

d d
Jr(t,0;) = = 25r(t5,05), hr(t;,0;) = —— log Sr(t;,65),

and HT(tj,Hj) = —log ST(tj,Hj),

also only depend on ;. The score and information functions for the density function
fr(tj,0;) are defined by

0 ,
ST(t, 9j) = % log fT(tj, 0]‘) and Zg]. = VarT{sT(T, 9])}
J

Similarly, if we condition on C' > a;_; then the survivor function Sc¢(c|C > a;j—1) for Cr in
the jth interval only depends on the nuisance parameter, ;. For ease of notation, without
ambiguity subscript C' will be used for functions relating to Cr. Let ¢; = ¢ — aj—1 and
the survivor function for C7 in the jth interval can be denoted Sc(cj,7;). There are the
corresponding functions fo(cj,v;), he(cj,v;), Ho(cj, Vi), scle,v;j) and iy, for Ct.

It is now necessary to make an assumption concerning the conditional distribution of
Cr given T, so that we can identify the joint distribution of 7" and C7. As in Siannis et
al. (2005), Siannis (2004) and Siannis (2011), we assume that the conditional distribution
of C given T has the same parametric distribution as the marginal distribution of C7.
However, the parameter of the conditional density is allowed to depend on T'. Therefore,

the conditional density in the jth interval can be written explicitly as

ferr(elt, v, 6,05) = folej v + 6, /2 B(t;,6;)),

where iv; 18 the information function for C;. The dependence between T and C7 is defined
by 0 and B(t;,6;). These can be thought of as a correlation coefficient, that quantifies
the amount of dependence between the two processes, and a bias function which gives a

form to this dependence. More specifically, B(t;,6;) quantifies the dependence between T

117



and censoring just after time t, for those who remain at risk at time t, as discussed in 3.3.
The choice of the form of the bias function that we will use in this method is discussed in
Section 4.2.1.

As we will let the parameters vary between the intervals, we will have the vectors 6
and v with 0; and 7; being the scalar parameters in the jth of the m intervals in our

model.

4.2 Development of Sensitivity Analysis

Here we describe the development of a sensitivity analysis that can be applied to piecewise
data. This is an extension of the approaches set out in Siannis et al. (2005) and Siannis
(2004). At first it will not incorporate covariates but it will be shown that it can be
extended to do so in Section 4.2.3.

Let £5(8,~), be the log-likelihood function when T and C; are dependent as outlined

above in Section 4.1. Then

n

m
> {I,] log K1(yi;) + Zij(1 — Iij) log K2 (yij)
i=1 j=1

+ (1= L) (1 = Zyy) long(yz'j)}, (4.1)

where

Kl(yij):/ fr.c(yij, u)du

Yij
Ks(yij) = fr.c(u, yij)du
Yij
and Kg(yij)—/ fr.c(t, c)dtde. (4.2)
Yij Yij

These can be thought of as the likelihood contributions for each of the three types of
observations that may occur in each interval. To avoid having integrals in the above
contributions that cannot be evaluated analytically, the joint density for T" and Cy in the

jth interval is written

fro(ty,c;) = fr(ty, 0;) folcj, v, + 6i5 /> B(t;,6;))
~ fr(t;,0;) fo(cs 1)L + 005 %sclcs,v;) Bty 05))- (4.3)

Now that the model has been fully specified, it is possible to find approximations of
the contributions in (4.2). Once these have been substituted into (4.1), the log likelihood
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becomes:

n m

. 0
(5(6,7) ~ to(0,7) =6 lel/Q{fijB(yz’ja ej)aify.HC(yiﬁVj)
i=1 j=1 7

0
+ (1= I;)(1 - Zij)ai,y'HC(yija'Yj)ﬂ(yija 6;)
j

= Zig(1 = Iy)sc(wegs 13)n(uis: 05) | (4.4)
where -
| B0 (. 6;)du
yzag =
(yi»05) St(yij, 05)
and
lo(8,7) =) Z{fij log h(yij, 05) + Zij(1 — Iij) log he (yij, 75)
i=1 j=1
— Hr(yij, 05) — Ho(vij, ’Yj)}~ (4.5)

For a fixed value of 4, 85 is the vector of values that maximises (4.4). Note that the first
term in (4.4), ¢p(8,7), is the log-likelihood in the non-informative censoring model.

To be able to assess how much the parameter estimates change under the assumption of
dependent censoring, an estimate of the difference between them is needed. The estimate
of 6; under the assumption of dependent censoring in the jth interval is denoted by égj.
Similarly the estimated value of the parameter under independent censoring in the jth
interval is denoted as éoj. To be able to obtain an approximation of the difference between
these two values, it is necessary to use Taylor expansions about 6; of the score functions
iﬁg(@,v) and  75(05;) =
00, 5

90]'

7‘0(90]') = 6s(0,7)| - (4.6)

G5

96,

These are the score functions for the jth interval under the assumption of independent and
dependent censoring respectively. Therefore they are the score functions for the likelihoods
given in (4.4) and (4.5) respectively.

The score functions given in (4.6) are expanded about §; and set equal to zero to give

0
r5(0s;) = r5(0;) — (055 — 0;)i;(6) = 0 (4.7)

where
2

) 0
Zj(‘g) = —ﬁeo(eﬂ’)'
J

Rearranging the two equations in (4.7) gives
(égj — éoj)lj(e) ~ r(;(ej) — TO(Hj)-
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So, an approximation of the difference between the parameter estimates is given by
s o _ Op(yiz. ;)
055 — bo; ~ 5(i;(0)™" > Z»yjl/Q{Zij(l = fij)SC(yijﬁj)#
iERj J

OHc(yig, i) Op(yig, 05
— (1= Zij)(1 = L) ¢ (Wi,75) Onlyig. b;)

;i 90,
OHc (yij,vj) 0B(vij,05)
— I;; 4.8
J a’)/j 89j } ( )

for the jth interval, where R; is the set of individuals who are at risk in the jth interval.
We see that in (4.8) there are parameter estimates on the LHS and parameters on the
RHS of the expression. This is a result of rearranging the two equations in (4.7). It means
that when the sensitivity analysis is applied, sensible estimates of the parameters must be
substituted into the RHS of (4.8).

4.2.1 Choice of B(t,0)

The argument presented in this section gives a general method for choosing the bias func-
tion B(t;,6;) in the jth interval. This is adapted from the argument that was presented
in Siannis et al. (2005) as justification for the choice of bias function. For simplicity, we
will look at the case where there are just scalar parameters, ; and v; in each interval. We
shall assume that non-ignorability comes from the correlation between individual-specific
random effects in the distributions of T" and C'. Then for a given patient, T' and C' would

be independent given the random effects with density functions given by
—1/2 .
gT(tj, 9]' + eTzej / ) and gc(C, v + 607,_\/]_1/2)’

where e and €c are random effects with mean zero, variances J% and U% and covariance
orc. We shall assume that all three of these second moments are fairly small, with the
same order of magnitude. This will allow the use of Taylor expansions around ey = 0 and
ec = 0, where we ignore terms that are above second order. These can be used to gain

approximations to the marginal distributions of 7" and C' where

fr(t;,0;) = E gr(0; + GTZE;/Q)}

2 a2
og 0°gr(t;,0;)
~ gr(t;,0;) + L —>—2 00
and similarly
ot Pgo(cjj)
Qi’ﬁ 87]2‘

folei,vs) ~ golej, ;) +

Also, an approximation of the joint distribution can be found from
—1/2 .
ijc(tj, Cj) =F |:gT(tj, 9j + 6T7,9j / )gc(C, v + Gclel/Q) .
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Once the Taylor expansions have been multiplied out and we have used the fact that we

can write
0% 0?2
fr(t;,05) fc(cj,vi) = gr(ty, 05)gc(cj, ;) + TQT(tj, 9;’)877290(03',%)
¥j j
2 2
o7 0
i) = g7 (L, 0
+2i9j gc(C] 'VJ)aejng( J j)
then the joint density can be written as
fro(ty,cg) = fr(ty, 0;) fo(cj. )L + orc iy iy,) ™ 2s7(ty,05)s0(cj, 7). (4.9)

If we compare (4.9) to (4.3), then we can see that with ¢ appropriately defined, the two
equations will be equal if
B(t;,0;) = iy sr(t;,0;).

Other justifications for choosing this form of B(t;,6;) may be given. The two justi-
fications given here are from Siannis (2011). Firstly, the form of the dependence here is
completely unknown so any assumptions made about it should be as weak as possible as
far as information about 6; is concerned. There is also a nice symmetry in the competing
risks set-up if this B(t;,0;) is used. It means the conditional distribution of C' given T

has the same form as the conditional distribution of T given C.

4.2.2 Proportional hazards structure

As in Siannis et al. (2005) and Siannis (2004), we use a proportional hazards structure to

simplify our model so that the hazard functions of T" and C have the form
hr(ty, 05) = "hi(t;) and  heleg, ;) = €7hg(ey),
where h}(t;) and h(c;) are baseline hazard functions. Consequently,
sr(ty,0;) = 1— Hr(t;,0;), sclcj,v;) =1—Heo(e,vy) and dg, =i, = 1. (4.10)

If we take B(t;,0;) to be the standardized score function, the reasoning for which was
outlined in Section 4.2.1,
B(t;,05) =iy *s1(t;5,0;) (4.11)

then we can combine (4.10) and (4.11) to give
B(t;,0;) =1 — Hr(t;,0;)  and  u(t;,0;) = Hr(ty, 05). (4.12)

This proportional hazards structure also allows us to give simple expressions for the partial
derivatives in (4.8) as

0

0
%HT(tj,ej) = HT(tj,Hj) and 7HC<Cj>’Yj) = HC(Cja'Yj)- (4.13)
J

;i
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If we now apply the proportional hazards structure to (4.8), it will simplify greatly to
give
05 — Ooj ~ 6i;(0)™" > {Hr(yij, 0))Ho(yij, i) — Ziy(1— Lij) Hr(yij, 0;) ), (4.14)
iGRj
which applies to the jth interval, where
2

ij(0) = —55t0(0,7) = > Hr(y, 0). (4.15)
J

i€R;

Notice that it is necessary to perform the sensitivity analysis separately on the parameters
for each interval. We are justified to use the proportional hazards structure as long as the
proportional hazards assumption holds within each interval. The piecewise exponential
model satisfies this as the hazard functions for 7" and C} are piecewise constant. These
piecewise constant hazards can provide a fair approximation to most hazard functions
provided sensible cut-points for the intervals are identified. Large intervals may be used
when the hazard function is changing slowly. When it is changing rapidly small intervals
would capture this better. This gives more flexibility than the Weibull model assumed
in Siannis (2004) because the hazard for a Weibull distribution has to be monotonic, and

there is no such restriction when using a piecewise constant hazard.

4.2.3 Inclusion of covariates

Siannis et al. (2005) also show how covariates can be included in the sensitivity analysis
approach. This has been briefly discussed previously in Section 3.3. A similar approach
is used in this section to incorporate covariates into the sensitivity analysis for piecewise
parametric models. Siannis et al. (2005) derive an equation that approximates the value
of 95 — 90, where 0 is the vector of parameters for the covariate vector x that replaces
the scalar parameter . However, when applying their method to data they only consider
the change in the linear predictor w(x) = @’x as it is computationally simpler. In this
section, we will consider both approaches and derive equations for a sensitivity analysis
for @ and a sensitivity analysis for w(x).

In order to incorporate covariates in the sensitivity analysis for piecewise parametric
models, we replace the scalar parameters 6; and v; in the jth interval by 9;-x and 'y;-x.
However, « is a nuisance parameter so we will introduce the scalar 7; = ’y}x. It is due
to its dependence on «,, that 7 is also dependent on j. The use of piecewise exponential
models with covariates is described in Friedman (1982). The hazard function of the ith

individual in the jth interval is defined to be

p
hij = exp(a; + > Brin)- (4.16)
k=1
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This is the same as splitting Hg»x into an intercept for each interval, a;, and a component
for the p covariates included in the model, given by Y %_, Bra;, which remains constant
over the intervals.

Firstly, we derive the sensitivity analysis for the function w;(x) = 0;X rather than 6;.
This is done using a method similar to that used in Section 4.2 but with expansions of the

score functions

ro(woj(x)) = awoaj(x)ﬁo(wj(x), zj(x)), and
P () = 5ty (). 5 0)

Note that the function z(x) = 7 does not contain the parameter of interest. Then the
difference in the linear predictors would be given by:

> Hr(yij, 0,%)[He(yig, mij) — (1= Lij) Zij
1€ER;

Ws(X) — Wo(x) ~ 0

) (4.17)
> Hr(yij, 0,%)
i€R,
using (0, %) = > 21" 37" Hr(yij, 0,%x) and where R; is the risk set in the jth interval.
Deriving a sensitivity analysis for 8 is much simpler if the model is expressed as a vector
of parameters that stays constant over all the intervals. This is possible for the piecewise
exponential model and we will now show how to reformulate the parameter vector.
When including covariates there is a vector of parameters 6; for each interval. Only
the intercept component changes across intervals. If we consider the case without other
covariates, then this means we can express the log-hazard of failure for the ith individual
in the jth interval as

log hT(t) = 9j

It is possible to fit the same model with a vector of parameters @, that remains constant
over all the intervals. This is achieved by specifying a constant intercept over all intervals,
0o, along with a factor, v;, that indicates the interval under consideration. The log-hazard

defined above can then be expressed as
log hp(t) = 0y + 0'v;

The parameter estimates of this factor correspond to the contrasts between the intercept
in a given interval and the baseline intercept. As this approach means that we will always
have a vector of parameters, it is trivial to consider standard covariates as well. However,
we now need to make clear the dependence of the vector of covariates on both ¢ and j. So
to remain consistent with previous notation we define x;; to be the vector of covariates

for individual 7 in interval j.
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We define the model for the censoring time variable, Cy, in the same way. We will
continue to consider the scalar 7;; = v4'x;; for the ith individual in the jth interval, as v
is a nuisance parameter.

The lack of memory between intervals is still being used so the functions for T" and Cf
are still conditioned on the individual surviving beyond time a;_1.

In a sample of n observations with m intervals, X is the array containing the x;; vectors
and 7 is the matrix with the 7;; as its elements. So the log-likelihood when we include
covariates becomes:

& 0
(5(60,m,%) ~ lo(0,m,%) — 5> > i;ii/z{fijB(yij, 0. %i5) 5 —He (yij, 1ij)

=1 j—1 i

0
+ (1= I;;)(1 - Zi')WHC(yij,nij)N(yijv 0, xi;)
]
= Zig(1 = Tiy)sc(wegs s )iy, 0, %5) b, (4.18)

where

/ fT(u,B,xij)B(u,H,xij)du

Yij

’L"aaa ij) —
/‘L(yj X]) ST(sz,B,ng)

The log-likelihood for the model where T and C are independent is given by

lo(6,m,%) = Z{Iz’j log h(yij, 0,%i5) + Zij(1 — Iij) log he (g, mij)
i=1 j=1

— Hr(yij,0,xi5) — Hc(yz‘jﬂh'j)}- (4.19)

The derivation of a sensitivity analysis for 6 requires use of the Taylor expansions

about 0 of the vector score functions

. 0 - P 0 -
”’0(00) = 8700%(97777?{) and 7’6(96) = 879656(977%}{)

to obtain an approximation to the change in the estimated parameters. The expansions

ignoring any quadratic terms or higher are

1R

’l"o(éo)
r5(05)

ro(8) — (8o — 0)i(6,%) = 0, and
r5(0) — (05 — 0)i(0,%) =

12

(4.20)

An expression for the difference in the vector of parameter estimates can be obtained by

rearranging the linear expansions in (4.20). This is given by
05— 0y~ i(6,%) " (rs(0) —r0(0)), (4.21)
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where the kth component of r5(6) — r¢(0) is

0> ngl-/Q{Zz‘j(l — Iij)sc(yij, mj)afekﬂ(ym 6, xi;)

i=1 j=1

0 0
- (1= 1)1 - Zi‘)%ﬂc(yijvmj)%ﬂ(yz’j, 0,x;5)

0 0
_ Iijaing(yij) evxij)anHC(yij,nij)}a (4.22)

ij
and the (k,[l)th element of the information matrix i(8,X) is

62

_W&)(e’ 777X)-

Again (4.22) can be greatly simplified by assuming a proportional hazards structure. This
is done using equations similar to those in Section 4.2.2, except that the derivative of the
integrated hazard function for 7" is now

- Hr(yij, 0,%i5) = zije Hr (Y35, 0, %ij).
00y,

So, the expression for the kth component of r5(6) — r,(6) becomes:

(5 Z Z xiijT(yija 0, Xz’j) [HC(yija nij) — (1 — Il])ZzJ] y (423)
=1 j=1

and the (k,[)th element of i(0,X) is

n

m
ZinjkxileT(yij,B,xij). (424)

i=1 j=1

We can then use the parameter estimates found using the sensitivity analysis in (4.21)
to obtain an approximation to the change in the linear predictors, ws(x;;) and wo(x;;)
for the ith individual in the jth interval in the data set with covariate vector x;;. The

equation used to do this is
~ ~ ~/ ~
ws(xij) — wo(xij) = O5%i5 — Opxij.

This approach that gives a sensitivity analysis for € is much more computationally time
consuming carrying out the sensitivity analysis on w(x). However, it is useful as it allows
the effect of informative censoring on individual parameters to be estimated. Therefore,
a sensitivity analysis for 8 will be applied to the Liver Registration data set using the

expression in (4.21).
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4.3 Application to the Liver Registration Data set

We will now apply the sensitivity analyses derived in Section 4.2 to the Liver Registration
dataset. We assume that the lifetime and censoring variables each have piecewise expo-
nential marginal distributions. Starting values for the cut points were chosen by splitting
the time period into intervals with roughly equal numbers of observations in each interval.
Then, the models with the intervals that give the largest value of the likelihood were found
for 3 and 4 intervals. The log-cumulative hazard plots were then examined to check if the
assumed model is appropriate. The 3-interval model was found to be appropriate and
the 4-interval model did not seem to give any improvement. Therefore in the interest of

parsimony, we used the 3-interval model with cut points at 40 and 165 days.

To determine whether this chosen model gives a significantly better fit than the corre-
sponding standard Weibull models, the differences in —2 Iogﬁ for the models were found.
If the true hazard is Weibull, then the difference in —2 log L for the Weibull model and the
piecewise exponential model should be approximately X72n72' The piecewise exponential
model was significantly better than the Weibull for time to censoring (p < 0.0001) but
not for time to death (p=0.85). As the same form of model must be used for both time
to death and time to censoring when applying the sensitivity analysis, then the use of
piecewise exponential models for the marginal distributions of the failure and censoring

variables is justified for the Liver Registration data.

These models can be fitted using standard statistical software packages (such as PROC
LIFEREG in SAS) as long as the data have been correctly formatted in a counting process
format that gives both a start and stop time for the observation. There are multiple lines
of data for an individual if they are at risk in multiple intervals. The exposure times that

were defined earlier are used along with the indicator variables, I;; and Z;;.

4.3.1 Sensitivity analysis for scalar parameters

Firstly, the sensitivity analysis is applied to the Liver Registration data set assuming that
T and C have piecewise exponential marginals distributions with scalar parameters in
each interval. The derivation of this method was given in Section 4.2, with the simplified
sensitivity analysis equation given in Section 4.2.2. The parameters of interest here are
the scalar parameters for 7" in each interval. The scalar parameters for C' in each interval

are treated as nuisance parameters

When we assume that 7" and C' have piecewise exponential marginals distributions
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with scalar parameters in each interval, then the hazards and associated functions are

hc(cj, ) = €%,
He(cj, ) = €Viey,

St(t;,0;) = exp(—eit;), and Sc(cj, ) = exp(—€Vcj). (4.25)

The form of the functions in (4.25) can be substituted into (4.14) to give the sensitivity

analysis equation

D Ayl — (1 - 1) Zis)

iGRj
M
E Yij

1€ER;

05j — (90]' ~§ (426)

for the jth interval. We can see that (4.26) has no dependence on the parameter of interest
in the jth interval, 6;, but does require a value of the nuisance parameter 7; to be used.
The value of ~; that will be used is the estimate found using the likelihood in (4.5), which

assumes non-informative censoring. The maximum likelihood estimate of «; is

> Zi(1 - Iy)

1€ER;

V= S 0

1ER;

The values of 4; found for the Liver Registration data set are -4.9189, -5.2320 and -5.5695
for intervals 1, 2 and 3 respectively.

Table 4.1 shows the approximate values of égj — éoj found by applying the sensitivity
analysis equation in (4.26). We can see that the sensitivity analysis suggests that the

largest changes in parameter estimates occurs in the final interval for the Liver Registration

data set.
Interval (j) éo.gj — éoj éo‘gj — é(]j
1 0.0274 0.0411
2 0.0607 0.0911
3 0.1343 0.2015

Table 4.1: Table showing the estimated change in the parameter estimates for each interval

from the sensitivity analysis using 6 = 0.2 and § = 0.3.

Table 4.2 shows the parameter estimates for time to death assuming non-informative

censoring, along with the approximate parameter estimates for § = 0.2 and § = 0.3. The
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values éoj are the maximum likelihood estimates given by
> L
iERj

Zyij'

iERj

The values éo,gj and éo,gj are the approximate parameter estimates found by adding the

values from the sensitivity analysis in Table 4.1 to éoj.

k éOk p-value éO.Zk p-value éo.gk p-value
11]-6.7799 | < 0.0001 | -6.7525 | < 0.0001 | -6.7387 | < 0.0001
21 -6.9056 | < 0.0001 | -6.8448 | < 0.0001 | -6.8145 | < 0.0001
3| -7.6375 | <0.0001 | -7.5031 | < 0.0001 | -7.4360 | < 0.0001

Table 4.2: Table showing the parameter estimates for time to death assuming non-
informative censoring, along with the approximate parameter estimates for § = 0.2 and

0 = 0.3 found using the results in Table 4.1.

4.3.2 Sensitivity analysis including covariates

We will now apply sensitivity analyses that include covariates to the Liver Registration
data set. There are two methods of doing this, either a sensitivity analysis for w(x) or a
sensitivity analysis for 6, both of which are detailed in Section 4.2.3. We shall apply both
methods to the data set so that the results from each can be compared. The sensitivity
analysis for w(x) is applied first, followed by the sensitivity analysis for 6.

In the initial data analysis for the Liver Registration data set, it was found that primary
liver disease category, recipient ethnicity, age and UKELD score are significant for time
to death and primary liver disease category, UKELD score, recipient height and recipient
blood group are significant for time to censoring. Therefore, these covariates should be
included in the models used in the sensitivity analysis.

If we let w;(x;) = 0)x; and z;(x;) = vx;, then the hazards and associated functions

for T and C' with piecewise exponential marginal distributions can be expressed as:

hr(ty, 05, %;) = e3> ho(cj, vy, %) = 700
HT(tj, 9]', Xi) = ewj(xi)tj Hc(cj, ")/j, XZ‘) = ezj(xi)Cj
Sr(tj, 05,%;) = exp(—ewj(xi)tj) Sc(cj,'yj,xi) = exp(—ezi(xi)cj) (4.27)

These can now be substituted into (4.17) to approximate ws;(x) —wo;(x). To calculate

this we need Zo;(x), which is the estimated linear predictor for time to censoring assuming
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Figure 4.1: Boxplots showing the distribution of Zy;(x) in each of the three intervals for

the Liver Registration data.

non-informative censoring. The distributions of Zyj(x) for the Liver Registration data are
shown by the boxplots in Figure 4.1. We see that the median value of Zy;(x) decreases
across the intervals, which shows that the hazard of censoring is generally smaller in the
later intervals. We also see that the majority of patients have values of Zp;(x) that fall in
the middle of the observed range for each interval, with only a small number at either of
the extremes.

The approximation for 1s;(x) — wo;j(x) when conducting a sensitivity analysis on w(x)

is obtained by substituting the functions from (4.27) into (4.17). This then gives:
D ANyl — i (1= L) Zis}

i€R;
Z Yij

iER]'

ﬁ)(sj (X) — lf]()j (X) ~ 6 (4.28)

The equation in (4.28) requires the same covariate vector to be used in both the models

for time to death and time to censoring. Therefore, we include age, recipient ethnicity,
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primary liver disease category, UKELD score, recipient height and recipient blood group

as covariates in the models for time to death and time to censoring.

The sensitivity analysis in (4.28) only considers an arbitrary vector of covariates x,
when we want to assess the change in parameter estimates for all individuals in the dataset.
Therefore we need to plot the estimated value of ws(x) — wo(x) against the entire range
of values that Zy;(x) takes across all the individuals in jth interval, which is shown for
all 3 intervals in Figure 4.2. This figure shows the plot for § = 0.2 and 0.3. It can be
seen from Figure 4.2 that the second and third intervals have larger estimated values of
Ws;(x) — wo;(x) than the first interval. The largest values of w;;(x) — wo;(x) are observed
for the patients with the largest values of Zy;j(x) or the highest hazards of censoring.
However if we consider the distributions of Zp;(x) shown in Figure 4.1, then we can see
that only a small number of individuals will have these large changes in s;(x) — wo;(x).
This means the effect of informative censoring is small for the majority of patients in the
Liver Registration data. However, as some individuals have a large estimated change in
the linear predictors, then any inferences may be misleading if non-informative censoring
was assumed, and there is even a moderate amount of dependence between the time to

death and time to censoring variables.

Interval 1 Interval 2 Interval 3

r ~ -
— defta=02 | — deta=02 | — deta=02
-~ deta=03 --- deta=03 --- deta=03

;
/
;

ns 06 o7

04
L

Delta*Sensitivity Index
Delta*Sensitivity Index
Delta*Sensitivity Index

03
1

2(x) 2(x) 2(x)

Figure 4.2: Plot of sensitivity analysis expression in (4.28) for observed values of Zy;(x) for
the Liver Registration data in each of the three intervals with § = 0.2, 0.3, when applying

the sensitivity analysis for w(x)

Now the sensitivity analysis for 0 is applied to the Liver Registration data set. This
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allows the change in individual components of the vector of parameter estimates to be
estimated, instead of just looking at the change in the linear predictor w(x). The equations
for this sensitivity analysis were also derived in Section 4.2.3.

The hazards and associated functions for 7" and C' are now given by

hT(t]agaXZ]> — QOIXij) hC(Cjavvxij) — eZ(Xij))
HT(tj, 9, xij) = eelxijtj Hc(Cj, “, xij) = ez(xij)Cj,

St(t;,0,%x5) = exp(—eelx”tj), and Sc(cj, v, xij) = exp(—ez(x”)cj), (4.29)

where the value of interest is the parameter vector 8, with z(x) again being treated as a
nuisance parameter. The expressions in (4.29) can be substituted in (4.23) from Section
4.2.3 to give
n m
0 Amigee® ™yl ™y, — (1 - L) Zi]}, (4.30)
i=1 j=1
for the kth component of r5(0) — ro(0). The (k,l)th element of the information matrix
i(0,%) also becomes
n m
> wignine® Xy (4.31)
i=1 j=1
when the form of the integrated hazard function for T in (4.29) is substituted into (4.24)
in Section 4.2.3. The expressions in (4.30) and (4.31) can then be used in

05 — 00 ~i(0,%) ' (rs(0) — ro(9)),

to conduct a sensitivity analysis for 6.

We can see that, unlike the previous expressions for the sensitivity analyses for scalar
parameters and w(x), (4.30) and (4.31) contain the parameter vector of interest, 6, as
well as the nuisance parameter, z(x). This means that values of 8 will need to substituted
into (4.30) and (4.31) along with values of z(x) to carry out the sensitivity analysis. The
values used are the MLEs from the piecewise exponential model assuming non-informative
censoring.

Also, although it is assumed, for notational simplicity, that the models for T and
C use the same covariate vector xjj, it is possible to use separate models for the two
variables. Therefore, primary liver disease category, recipient ethnicity, recipient age and
UKELD score will be included in the model for time to death and primary liver disease
category, UKELD score, recipient height and recipient blood group in the model for time
to censoring.

Table 4.3 shows the estimated values of the components of 95 — 90 for 6 = 0.2 and § =
0.3. We see that for some covariates there are positive changes in the parameter estimates,

while others have negative changes in the parameter estimates. Positive values in Table
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4.3 mean that the element of 8 for that covariate is larger than the corresponding element
of . So, this suggests that the hazard ratio of the covariate is being underestimated by
the model assuming non-informative censoring. Conversely, negative values in Table 4.3
mean that the parameter estimate for the covariate from the model assuming informative
censoring is smaller than the corresponding parameter estimate from the model assuming
non-informative censoring. Therefore, the sensitivity analysis is suggesting that the hazard
ratio for these covariates are overestimated by the model that assumes § = 0.

The sensitivity analysis for 8 suggests that the majority of the hazard ratios for the
levels of primary liver disease category are overestimated by the model that assumes non-
informative censoring, apart from patients with hepatitis B infection, cancer or metabolic
liver disease, whose hazard ratios are being underestimated. Similarly, most of the hazard
ratios for the levels of recipient ethnicity are being overestimated with the exception of pa-
tients of oriental ethnic origin, whose hazard ratio is being underestimated. The sensitivity
analysis also suggests that there should be small alterations made to the parameter esti-
mates for the UKELD score and recipient age from the model assuming non-informative
censoring. However, the parameter estimate for recipient age should be reduced while the
parameter estimate for the UKELD score needs to be increased.

Table 4.4 shows the approximate parameter estimates for piecewise exponential models
assuming 6 = 0.2 and § = 0.3 respectively. The parameter estimates for the model
assuming non-informative censoring are also shown. These parameter estimates assuming
6 = 0.2 and 9 = 0.3 are obtained by adding the values of 6 in Table 4.4 to the values in
Table 4.3. The p-values of all the estimates are also shown. These are calculated using
the standard errors of the estimates from the model assuming non-informative censoring.

This can be done as Siannis et al. (2005) show that
{Var(05)}"/% = {Var(6o)}'/* + O(5*).

Only linear values of § are considered in the sensitivity analysis so the standard error of the
parameter estimate from the model assuming informative censoring can be approximated
by the standard error of the parameter estimate from the model assuming non-informative
censoring. This approximation should only be used if the value of § is fairly small.

The approximate values of 90,2 and 90.3 given in Table 4.4 can be used to find the
change in the estimated linear predictor for 7" under this sensitivity analysis. This is done

for each individual in the data set using the expression
N R ~/ ~/
Ws(Xij) — Wo(Xij) = O5%ij — Opxij.

The largest value of this change that is estimated by the sensitivity analysis is 0.2289 for
0 = 0.2 and 0.3434 for § = 0.3. These values are much smaller than the corresponding
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Parameter é0.2 — 90 90_3 — 90

Intercept 0.18243 | 0.27364
PLD - PBC -0.03830 | -0.05746
PLD - PSC -0.01971 | -0.02956
PLD - ALD -0.02469 | -0.03703
PLD - AID -0.02944 | -0.04416
PLD - HCV -0.01639 | -0.02458
PLD - HBV 0.02421 | 0.03631

PLD - Cancer 0.04255 | 0.06383
PLD - Metabolic 0.01421 | 0.02132
PLD - Other -0.04777 | -0.07165
Ethnicity - White | -0.02683 | -0.04025
Ethnicity - Asian | -0.00012 | -0.00018
Ethnicity - Black | -0.03322 | -0.04983
Ethnicity - Chinese | 0.00443 | 0.00665

UKELD 0.00020 | 0.00029
Age -0.00013 | -0.00020

j - Interval 1 -0.10709 | -0.16063
j - Interval 2 -0.08191 | -0.12286

Table 4.3: Table showing the components of 95 — 0, approximated by the sensitivity
analysis for 6 = 0.2 and § = 0.3.
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Parameter éo p-value 90,2 p-value 90_3 p-value

Intercept -20.54993 | < 0.0001 | -20.36750 | < 0.0001 | -20.27629 | < 0.0001
PLD - PBC -0.23181 0.49682 -0.27011 0.42849 -0.28926 0.39649
PLD - PSC -0.93303 0.01862 -0.95274 0.01627 -0.96259 0.01520
PLD - ALD -0.46799 0.13534 -0.49268 0.11592 -0.50502 0.10707
PLD - AID -0.02429 0.94191 -0.05373 0.87194 -0.06845 0.83729
PLD - HCV 0.23191 0.48051 0.21553 0.51206 0.20733 0.52823
PLD - HBV -0.44046 0.44924 -0.41626 0.47455 -0.40415 0.48749

PLD - Cancer -1.46458 0.05627 -1.42203 0.06381 -1.40075 0.06789
PLD - Metabolic 0.64451 0.07151 0.65872 0.06548 0.66583 0.06262
PLD - Other 0.36075 0.28898 0.31298 0.35759 0.28910 0.39545

Ethnicity - White 0.97872 0.33155 0.95189 0.34498 0.93848 0.35182
Ethnicity - Asian -0.02734 0.97917 -0.02746 0.97908 -0.02752 0.97904
Ethnicity - Black 0.92243 0.41008 0.88921 0.42715 0.87260 0.43583
Ethnicity - Chinese | -0.72652 0.61251 -0.72209 0.61468 -0.71987 0.61577

UKELD 0.19145 < 0.0001 0.19164 < 0.0001 0.19174 < 0.0001
Age 0.03019 < 0.0001 0.03005 < 0.0001 0.02999 < 0.0001

j - Interval 1 0.21283 0.22803 0.10574 0.54923 0.05220 0.76750
j - Interval 2 0.47753 0.00265 0.39562 0.01279 0.35467 0.02562

Table 4.4: Table showing the parameter estimates for the model assuming non-informative
censoring, along with the parameter estimates approximated by the sensitivity analysis for
0 = 0.2 and 6 = 0.3. The p-values are also shown, these are all found using the standard

errors from the model assuming non-informative censoring.
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values estimated by the sensitivity analysis for w(x). Therefore an investigation into which

of these two sensitivity methods is more accurate would be useful.

4.4 Summary

In this chapter, we present a general method that allows us to estimate the change in
parameter estimates for piecewise parametric models if we assume a small amount of
informative censoring instead of non-informative censoring. The method is first derived
assuming only scalar parameters in each interval in the models for time to death and time
to censoring. It is then extended to include a vector of covariates. To include covariates
we need to use piecewise parametric models that can be expressed in terms of parameter
vectors that remain constant over all intervals, as the parameter estimates in all the
intervals need to be estimated at the same time.

The method presented in this chapter is a compromise between the sensitivity analysis
given in Siannis et al. (2005) and Siannis (2004) and the sensitivity analysis in Siannis
(2011). Our method has the flexibility of the Cox model that is used in Siannis (2011), but
it computationally simpler like the methods in Siannis et al. (2005) and Siannis (2004).

When including covariates in the method, it is possible to apply a sensitivity analysis
for either a linear predictor or a vector of parameters. The sensitivity analysis for a linear
predictor is computationally simpler but the sensitivity analysis for a parameter vector
allows us to examine the effect on individual parameter estimates not just the overall effect.
These two methods give very different values of the estimated changes in the parameter
estimates, therefore an investigation into which method is more accurate would be useful.
This is why the model that assumes informative censoring that can be approximated using

the sensitivity analysis will be fitted to the Liver Registration data set in Chapter 5.
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Chapter 5

Evaluating and Extending
Sensitivity Analysis

Having developed and applied the sensitivity analysis, we now investigate its properties.
Firstly, we will assess how close the approximation is for the dataset of interest. However,
we also want to be able draw some more general conclusions about the behaviour of
the sensitivity analysis. Therefore, simulations will be used to test the accuracy of the
sensitivity analysis for many different combinations of the parameters. Based on the
results of these simulations, we will make recommendations on possible ways to improve
the sensitivity analysis.

To find the true difference between the parameter estimates, it will be necessary to
fit the dependence model that does not approximate the form of the joint distribution.
Thus we consider a slightly different change in the parameters than is approximated by
our sensitivity analysis equation. We do this because it is more useful to know how
accurate the sensitivity analysis is at estimating the change in parameter estimates from
the independence model to the dependence model that does not make any simplifying
assumptions. These assumptions were necessary in the last chapter to get a closed form of
the likelihood to work with. The fitting of the dependence model will be detailed below,
including a brief description of some of the numerical methods that need to be used to fit
the model.

The dependence model is fitted to our example dataset and compared to the results
obtained for the sensitivity analysis in the previous chapter. Then a simulation study
will be used to assess the accuracy of the sensitivity analysis in a variety of situations.
All these investigations will consider the alternative sensitivity analysis as it is easier to
apply when using piecewise exponential models. Finally, a possible way of improving the
sensitivity analysis to overcome some of the issues that are raised by the simulation study

will be outlined.
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5.1 Fitting dependence model

We write the joint density of T" and Cfj, as

fro(ty, c;) = fr(t;, 0;) forr(cilty, v, 6, 05) (5.1)

As in Section 4.1 we assume that

Ferr(eilts, 71,0,05) = foleg, vy + 6i5 2 B(t;,0;)), (5.2)

with iy, = 1 and B(tj,6;) = ig,sr(t;,0;) = 1 — €%t under our proportional hazards
structure, given in Section 4.2.2.

In addition, we assume piecewise exponential marginal models for both 7" and C7, so
fT(tj, G,Xj) = eeij'e— exp(0'x;)t and fC(C7 77) =elie” exp(n]-)c’

where the linear combination y'x; is replaced by a scalar parameter n;, as it is just
a nuisance parameter. The vector 6 here is set up in the same way as the vector of
parameters in Section 4.2.3. It has a common intercept for all the intervals which is
adjusted for each interval by a factor giving the contrast between the baseline intercept
and the interval under consideration.

If we combine (5.1) and (5.2), and then substitute the exponential forms into the

resulting equation, then we obtain:

fro(ty,c;) = e9'%i o= exp{0'x;}t; onj+0(1—exp{0'x;}t;) ,— exp(n;+o(1—exp{0'x}t;))c; (5.3)

The parameter estimates for the full model will be obtained by finding the maximum

likelihood estimates of the likelihood detailed below
n m
0,7,% ZZ{I@J log K1 (yij) + Zij(1 — Ij) log Ko (yij)
l: :

+ (1= L) (1 - Zij) log Ks (i) }. (5.4)
where

K, (yw) Ox”e exp{6’ Xij Yyij o~ exp(n;+6(1— exp{0'xi;}yii))vis

00
Ko (ylj) _ / e@'xij e exp{0'x;; }uenj +6(1—exp{0'xs; }u) e exp(n;+6(1—exp{0’x;; }u))y;; du

Yij
and
x
K3(yij) = / ee’xij e exp{B’x}ue— exp(nj+8(1—exp{0'x;; }u))yi; du. (5.5)
Yij

These were obtained by substituting the form of the joint distribution given in (5.3) into

(4.2). From now on we will define 65 as the vector of values that maximises the likelihood
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in (5.4). This should be close to the value of 85 defined in the previous chapter if the
approximation used in (4.3) is a good approximation of the joint distribution in (5.3).
The two integrals in (5.5) cannot be evaluated analytically. We use Gauss-Laguerre

quadrature as it will be easy to transform the integrals in (5.5) into the form

/0 N e Yg(y)dy

so we can approximate the integral by

N
Z w]g(vj)7
j=1

where w; and v; are respectively the set of weights and abscissas for the integer N. Here
N = 32 is used. We can then find the maximum likelihood estimates using the downhill
simplex method of Nelder and Mead. This is inefficient but robust for functions where we
can compute function evaluations but not derivatives. Both of these methods are outlined

in greater detail in Press et al.(1992).

5.1.1 Fitting the dependence model to the Liver Registration data set

To be able to assess the accuracy of the sensitivity analysis developed in Chapter 4, it is
necessary to fit the dependence model described in Section 5.1 to the Liver Registration
data set. Firstly, this will be done assuming only scalar parameters in each interval
for the model for time to death and time to censoring. This will allow the accuracy of
the sensitivity analysis applied in Section 4.3.1 to be assessed. Covariates will then be
included to allow the accuracy of the sensitivity analyses applied in Section 4.3.2 to be
assessed. This should indicate whether a sensitivity analysis for the linear predictor w(x)
or a sensitivity analysis for the parameter vector € is more accurate.

The parameter estimates obtained by fitting the dependence model to the Liver Reg-
istration data set with scalar parameters in each interval for the model for time to death
and time to censoring are given in Table 5.1. The parameter estimates obtained by fitting
the corresponding independence model are included for comparison.

The sensitivity analysis from Section 4.3.1 which uses scalar parameters will now be
reapplied using § = 0.2698, which is the fitted value from the dependence model. The
results of this sensitivity analysis are given in Table 5.2. The estimated values of 9A02698k —
0oy, found using the sensitivity analysis are compared to the observed values of 02698k — o
found by taking the difference of the values in Table 5.1. We can see that the sensitivity
analysis overestimates the change in the parameter estimates for the first interval, but
underestimates the change in the parameter estimates in the second and third intervals.

The dependence model including covariates will now be fitted to the Liver Registration

data set. The explanatory variables for time to death used are age at registration, recipient
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Parameter | Estimate from the | Estimate from the
independence model | dependence model

) - 0.2698

01 -6.7799 -6.7571

02 -6.9056 -6.8206

03 -7.6375 -7.4458

Y1 -4.9189 -4.9137

Yo -5.2320 -5.1008

3 -5.5695 -5.2806

Table 5.1: The parameter estimates obtained by fitting the dependence model to the Liver
registration data set assuming scalar parameters in each interval for the models for time

to death and time to censoring. The parameter estimates from the independence model

are also given for comparison.

k | Estimated value of | Observed value of
00,2698k — Ook 002698k — Ook

1 0.0370 0.0228

2 0.0819 0.0850

3 0.1812 0.1917

Table 5.2: The estimated values of é0.2698k — éok found using the sensitivity analysis from

4.3.1 and the observed values of ég.gﬁggk - éOk found using the values in Table 5.1.
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ethnicity, primary liver disease category and UKELD score at registration. These are the
same covariates included in the model for time to death in Section 4.3.2 when applying the
sensitivity analysis for 8. However, only a scalar parameter is used for the model for time
to censoring. This is because the model is already has a fairly large number of dimensions
and including covariates for time to censoring would add enough extra dimensions to make
the convergence of the algorithms in Section 5.1 too slow. This means that the results
from this dependence model cannot be compared directly to the sensitivity analyses in

Section 4.3.2, as they use covariates in their models for time to censoring.

The estimates for the dependence model obtained are given in Table 5.3. To see how
much these vary from the estimates given by fitting the independence model, 6o is also
included in Table 5.3. The sensitivity analyses for w(x) and 6 are carried out using
6 = 0.2769, which is the fitted value from the dependence model. This allows the direct
comparison of the results of the sensitivity analyses with the results of the dependence
model in Table 5.3.

The sensitivity analysis for w(x) requires the same vector of covariates to be used
in the model for time to death and the model for time to censoring. This means that
the sensitivity analysis that is used for comparison with the results of the fitted depen-
dence model includes primary liver disease category, recipient age, recipient ethnicity and
UKELD score as covariates in the models for time to death and time to censoring. The
plot in Figure 5.1 shows the estimated change in the linear predictor over the range of
Z0;(x) observed in each of the intervals for the data for several values of §. The solid line
is the sensitivity analysis for 6 = 0.2769, which is the fitted value from the dependence
model. The dashed lines are the sensitivity analyses for § = 0.1377 and § = 0.4162 which
are the limits of 95% confidence interval for § given in Table 5.3. These are included to
show how the change in estimated linear predictor is greatly affected by the value of 0

used.

The maximum change in the linear predictor estimated by the sensitivity analysis using
6 = 0.2769 is 0.6248, but the dashed lines suggest that this change could be anywhere
between 0.3107 and 0.9391. However, when calculating the difference between w;s(x) and
wp(x) using the parameter estimates in Table 5.3, the largest difference observed was
0.3868.

This result shows that for the Liver Registration data, the sensitivity analysis tends to
overestimate the change in the estimated linear predictors. However, only a small number
of the patients in the data will have a discrepancy that is large. We already know that the
sensitivity analysis gives the largest changes in ws(x) and wp(x) for the patients with the
largest values of Zg;(x). From Figure 4.1, we know that only a small number of patients

have values of Zp;(x) that are that large. So, for the majority of individuals in the Liver
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Parameter Estimate Estimate Standard 95% Confidence
from from Error Interval
independence | dependence
model model
1) - 0.2769 0.0711 (0.1377,0.4162)
n - -5.0981 0.0221 (-5.1415,-5.0548)
0 Intercept -20.5499 -20.0591 1.2500 (-22.5092,-17.6090)

Age 0.0302 0.0298 0.0061 (0.0180,0.0417)
Ethnicity - White 0.9787 1.0762 1.0105 (-0.9044,3.0568)
Ethnicity - Asian -0.0273 0.0598 1.0495 (-1.9972,2.1169)
Ethnicity - Black 0.9224 0.9775 1.1223 (-1.2221,3.1771)
Ethnicity - Chinese -0.7265 -0.5046 1.4260 (-3.2994,2.2903)

Ethnicity - Other 0 0
PLD - PBC -0.2318 -0.2548 0.3363 (-0.9140,0.4045)
PLD - PSC -0.9330 -0.9391 0.3927 (-1.7089,-0.1694)
PLD - ALD -0.4680 -0.4741 0.3083 (-1.0785,0.1302)
PLD - AID -0.0243 -0.0693 0.3288 (-0.7137,0.5751)
PLD - HCV 0.2319 0.1965 0.3248 (-0.4401,0.8331)
PLD - HBV -0.4405 -0.4647 0.5793 (-1.6001,0.6707)
PLD - Cancer -1.4646 -1.5034 0.7639 (-3.0007,-0.0062)
PLD - Metabolic 0.6445 0.6279 0.3518 (-0.0616,1.3174)
PLD - Other 0.3608 0.2560 0.3357 (-0.4019,0.9139)

PLD - Acute 0 0
UKELD 0.1914 0.1858 0.0099 (0.1664,0.2053)
j - Interval 1 0.2128 0.0241 0.1755 (-0.3198,0.3679)
j - Interval 2 0.4775 0.3317 0.1575 (0.0231,0.6403)

j - Interval 3 0 0

Table 5.3: Parameter estimates, standard errors and 95% confidence intervals for the
dependence model when fitted to the Liver Registration data set. The parameter estimates
obtained when fitting the independence model to the Liver Registration data set are

included for comparison.

142



Interval 1 Interval 2 Interval 3

— estimated deka
--- 85% Cllmts

08

08
I

08
I

Detta"Sensitivity Index
Detta"Sensitivity Index
Detta*Sensitivity Index

o0

Figure 5.1: The results of the sensitivity analysis for the linear predictor for time to failure

using the value of é estimated by the dependence model

Registration data the discrepancy between the results of the sensitivity analysis and the
change in ws(x) and wy(x) using the results of the dependent model is small.

The results of the sensitivity analysis for @ are given in Table 5.4. The estimated
values of 90,2769 - 90 found using the sensitivity analysis are compared to the observed
values of 90,2769 - ég found by taking the difference of the parameter estimates in Table
5.3. We can see from Table 5.4 that we have mixed results concerning the accuracy of the
sensitivity analysis. For most parameters the sensitivity analysis does correctly identify the
direction of the change in the parameter estimates. However for patients with metabolic
liver disease and white, Asian or black patients this is not the case. Even if the sensitivity
analysis correctly identifies the direction of the change, then it may either overestimate or
underestimate the magnitude of the change.

Approximate values of 90.2769 can be found by adding the estimated values of 90_2769 —
90 given in Table 5.4 to the values of @0 from Table 5.3. These values of 90,2769 can then
be used to find the change in the estimated linear predictor for 7" under this sensitivity

analysis. This is done for each individual in the data set using the expression
. . N N
Wo.2769(Xi5) — Wo(Xij) = Oy .2760%i5 — OoXij-

The largest value of this change that is estimated by the sensitivity analysis for @ is
0.3869. This is very close to the observed change in the estimated linear predictor which
was 0.3868. These results suggest that the sensitivity analysis for € is more accurate
than the sensitivity analysis for w(x). Therefore, the sensitivity analysis for 8 should be
used when we wish to apply a sensitivity analysis to a piecewise exponential model with

covariates.
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Table 5.4: Comparison of the estimated values of 90,2769 — 90 found using the sensitivity

analysis from 4.3.2 with the observed values of 90_2769 — 90 found using the values in Table

5.3.

Parameter Estimated values of | Observed value of
B0.2760 — 0o B0.2760 — 0o

Intercept 0.6085 0.4908
PLD - PBC -0.0317 -0.0230
PLD - PSC -0.0161 -0.0061
PLD - ALD -0.0110 -0.0061
PLD - AID -0.0280 -0.0450
PLD - HCV -0.0300 -0.0354
PLD - HBV -0.0279 -0.0242
PLD - Cancer -0.0303 -0.0388
PLD - Metabolic 0.0096 -0.0166
PLD - Other -0.0192 -0.1048
Ethnicity - White -0.0647 0.0975
Ethnicity - Asian -0.0402 0.0871
Ethnicity - Black -0.0901 0.0551
Ethnicity - Chinese 0.0019 0.2219
UKELD -0.0036 -0.0055
Age -0.0005 -0.0004
j - Interval 1 -0.2617 -0.1887
j - Interval 2 -0.2198 -0.1458
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5.2 Simulations

To investigate the accuracy of the sensitivity analysis for the difference in the parameters
from the independence and dependence models, over a range of parameter values, a simu-
lation study was conducted. The main aim is to establish whether the actual difference in
the parameter estimates is generally overestimated or underestimated by the sensitivity
analysis. We also wish to assess the accuracy of the sensitivity analysis as a function of
dependence. This would give us some idea of when the use of this method is appropriate.

To keep the computation simple, we shall generate data from a piecewise exponential
distribution with no other covariates. The sensitivity analysis will be carried out on the
simulated data along with fitting the dependent model so the accuracy of our method can
be assessed. This will be done for a wide range of the parameters 6, v and §, so we can
identify the situations where use of the sensitivity analysis is appropriate. The models
fitted to the simulated dataset will assume the same distribution that the dataset was
simulated from. This allows us to assess the accuracy of the sensitivity analysis when we

have fitted the correct model.

5.2.1 Simulation study set-up

The different combinations of these parameters used in the simulations are given in Table
5.5. Each of these combinations was combined with ¢ values of -0.4, -0.3, -0.2, -0.1, 0.1,
0.2, 0.3 and 0.4. For each different combination of 6, v and § we simulated 500 replicates.
In all the simulations, we assume n = 2000. For each scenario in Table 5.5, we simulate

9 as the hazard of

observations from a 2-interval piecewise exponential model. We use e
failure in the second interval, and 171 as the hazard of failure in the first interval. The
hazard of censoring in the second interval is €7, with the hazard in the first interval being
e’t72. An arbitrary cut-point for the 2-interval piecewise exponential model is chosen to
give approximately equal numbers of events in the two intervals. These are also given in
Table 5.5.

The dependent model will be fitted and the sensitivity analysis will be applied to each
simulated data set. When fitting the dependent model, the value of § will be fixed. This is
because there is very little information about § in the data, even after identifying assump-
tions have been made, and consistent estimates of § cannot be obtained. This would make
it difficult to make meaningful comparisons between different parameter combinations.
Therefore we used a profile likelihood approach when estimating the other parameters in
the model. Similarly, the amount of dependence assumed in the sensitivity analysis is the

fixed value of é used when fitting the dependent model.

~(d
For each replication the parameter estimates from the dependent model, 0((; ), were
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Part | 0 | j1 | v | Jj2 | Cut-point used
1 -21-1]-3|-05 15
2 -41-1|-3|-05 30
3 -6 |-1|-3|-05 30
4 21-1]-41-05 15
5 41-1]|-41|-05 50
6 6 |-1|-4|-05 75
7 2 |-1|-5]-05 15
8 -41-1|-5|-05 70
9 6|-1|-5|-05 150
10 |-81]-11]-5]-0.5 150
11 2 1-11]-6]-05 15
12 | -41]-1]-6]-0.5 90
13 |-6]-1|-61|-05 300
14 | -81]-1]-6]-0.5 400

Table 5.5: Table showing the combinations of 6, v and cut points used in the simulation
study. For each scenario, § values of -0.4, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3 and 0.4 will be

investigated.

found along with the parameter estimates approximated by the sensitivity analysis, égS).
The value D = (éf;d) — ) — (é((;s) — 0p) is of interest. The element of D with the largest
magnitude is found as this corresponds to the largest discrepancy between the results of
the dependent model and the results of the sensitivity analysis. If this term is negative,

then the sensitivity analysis overestimates the change in the parameter estimates.

Generating from a piecewise exponential distribution

For the sake of simplicity, we shall consider only the piecewise exponential distribution
with 2 intervals in our simulations. Zhou (2001) gives an algorithm to transform standard
exponential random variables into piecewise exponential random variables,
if [Y < ajA1] return Y/ )\
[Generate Y ~ exp(1l)] = (5.6)
if [Y > a1 1] return a1 + (Y — a1 A1)/ A,
where a1, is the endpoint of the first intervals and A\; and Ay are the rates in the first
and second intervals respectively. As standard exponential random variables can be easily
generated using standard software packages, this algorithm is easy to implement.
For the failure time distribution, we will let the rates in the two intervals be ¢t and
% respectively and simply apply the above algorithm. Simulating the observations from

the conditional distribution for the censored observations is a little tricky, due to the
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dependence on the failure time distribution. As defined earlier, the parameter for the

conditional distribution is vy + di, 12p

(t,6). Under the structure we are using, i, = 1
and B(t,0) = 1 — Hp(t,6). Under the piecewise exponential model, we can write the

cumulative hazard function as
J(t)
Hp(t,0) =Y tje"
j=1

where j(t) is the interval number in which the failure occurs and ¢; is the time experienced
in the jth interval. This means that the rates used to generate observations from the

censoring time distribution are

3(t) 3()

expe i+ |1— theej and expqye+d|1-— theej
J=1 J=1

5.2.2 Results

The mean values of the largest element of D were calculated along with a 95% confidence
interval for the mean using the set-up described in Section 5.2.1. Table 5.6 gives these
results for the simulations. These results are also summarised graphically in Figure 5.2.
The plots in Figure 5.2 show the effect of # on the mean observed as § increases, at each
different level of ~.

The majority of the means observed in Table 5.6 are negative, which means that
generally the sensitivity analysis overestimates the change in the parameter estimates.
From the plots in Figure 5.2, it can be seen that generally we observe the larger means
when ¢ is greater than 0.3, and v and 6 are similar in size or v > 6. The greater the
difference between v and 6, the bigger the mean difference we observe. As the size of
v relative to 6 increases, the hazard rate of censoring is also increasing relative to the
hazard rate for failure. So the simulated data sets would generally contain an increasing
proportion of censored observations. Therefore we observe the largest changes in the mean
of D when there is a relatively large proportion of censored observations in the data set.
Also as the magnitude of § increases, the size of the mean also increases, especially in the

situations with relatively large amounts of censoring.

Analysis of Variance

To establish the effects of the individual parameters on the simulation results, an analysis
of variance model that included all the main effects and interactions between 6, v and 0
was fitted. The ANOVA finds that there is a significant 3 factor interaction between 4, 8
and 7y, as we can see in Table 5.7. As 6 increases the mean observed generally decreases,

but the 3 factor interaction means that the values of § and v will affect the rate at which
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-0.0278(-0.0283,-0.0273)
-0.0163(-0.0166,-0.0159)
-0.0084(-0.0086,-0.0082)
-0.0032(-0.0033,-0.0031)
-0.0017(-0.0018,-0.0016)
-0.0023(-0.0024,-0.0022)
-0.0027(-0.0029,-0.0025)
-0.0030(-0.0032,-0.0029)

-0.0806(-0.0815,-0.0798)
-0.0537(-0.0543,-0.0531)
-0.0316(-0.0320,-0.0312)
-0.0134(-0.0136,-0.0132)
-0.0094(-0.0095,-0.0092)
-0.0152(-0.0155,-0.0149)
-0.0183(-0.0187,-0.0178)
-0.0204(-0.0208,-0.0200)

-0.1093(-0.1107,-0.1080
-0.0836(-0.0844,-0.0827
-0.0562(-0.0567,-0.0556
-0.0276(-0.0279,-0.0274
-0.0250(-0.0253,-0.0246
-0.0415(-0.0426,-0.0405
-0.0506(-0.0526,-0.0487
-0.0606(-0.0641,-0.0571

)
)
)
)
)
)
)
)

0=-8 v=—5

0=-2~v=-6

0=—4,v=—6

-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4

-0.0913(-0.0928,-0.0898)
-0.0735(-0.0747,-0.0724)
-0.0502(-0.0510,-0.0494)
-0.0262(-0.0267,-0.0258)
-0.0226(-0.0231,-0.0221)
-0.0339(-0.0350,-0.0328)
-0.0579(-0.0655,-0.0502)
-0.2225(-0.2677,-0.1773)

-0.0108(-0.0111,-0.0105)
-0.0060(-0.0062,-0.0058)
-0.0030(-0.0031,-0.0029)
-0.0011(-0.0012,-0.0011)
-0.00060(-0.00065,-0.00056)
-0.00096(-0.00103,-0.00089)
-0.0012(-0.0013,-0.0011)
-0.0014(-0.0015,-0.0013)

-0.0477(-0.0483,-0.0470
-0.0301(-0.0306,-0.0297
-0.0167(-0.0170,-0.0164
-0.0067(-0.0069,-0.0066
-0.0040(-0.0041,-0.0038
-0.0057(-0.0059,-0.0055
-0.0062(-0.0065,-0.0060
-0.0069(-0.0072,-0.0067

)
)
)
)
)
)
)
)

0=—-6,7v=—-6

0=-8,v=-6

-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4

-0.0966(-0.0976,-0.0956
-0.0704(-0.0711,-0.0697
-0.0442(-0.0446,-0.0438
-0.0203(-0.0205,-0.0201
-0.0174(-0.0177,-0.0172
-0.0329(-0.0336,-0.0323
-0.0426(-0.0437,-0.0415
-0.0508(-0.0521,-0.0494

= = = = = = = =

)
)
)
)
)
)
)
)

-0.0907(-0.0923,-0.0891
-0.0732(-0.0746,-0.0719
-0.0518(-0.0526,-0.0509
-0.0266(-0.0270,-0.0262
-0.0227(-0.0232,-0.0223
-0.0358(-0.0369,-0.0347
-0.0567(-0.0613,-0.0521
-0.1441(-0.1558,-0.1325

~ o~~~ o~~~
NI NI NN SN

Table 5.6: The mean of largest element of D (with 95% confidence intervals) for each

combination of parameters given in Table 5.5 and each value of é.
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Figure 5.2: Effect of 8 on mean of largest element of D as § varies between -0.4 and 0.4
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the mean decreases. There is a greater rate of decrease for larger values of v when §
is negative. This is because as 0 increases there is a greater decrease in the proportion
of censored observations in the simulated data sets with larger values of . Conversely,
for positive §, the decrease in the proportion of censored observations as 6 increases is
greatest for the simulated data sets with smaller values of -, so these values have the
greatest rate of decrease in the mean. The rate of decrease in the mean is also affected
by the magnitude of §. For larger magnitudes of §, the rate of decrease in the mean as
f increases is larger. This makes intuitive sense as the effect of censored observations on

the results of the sensitivity analysis increases as the magnitude of § increases.

Parameter DF | Type I SS | Mean Square | F Value p
delta 8 48.4913 6.0614 1523.82 | < 0.0001
theta 3 23.2965 7.7655 1952.22 | < 0.0001
gamma 3 7.7221 2.5740 647.10 | < 0.0001
delta*theta 24 19.2382 0.8016 201.52 | < 0.0001
delta*gamma 24 8.7563 0.3648 91.72 < 0.0001
theta*gamma 7 0.6545 0.0935 23.51 < 0.0001
delta*theta*gamma | 56 5.7415 0.1025 25.77 | < 0.0001

Table 5.7: Significance levels of parameters and interactions in analysis of variance

There are a handful of situations that are found to have means that are significantly
different from most of the other means. These are when § = —6 and v = —3, § = —8 and
v= —band § = —8 and v = —6, all for § = 0.4. It is easy to identify these cases in Figure
5.2.

Further investigations revealed that in these cases, some of the data sets had large
outlying values that caused a large increase in the value of the sensitivity index, U. This
meant that the sensitivity analysis performed particularly badly for these data sets, result-
ing in an increased mean for D. This tells us that the accuracy of the sensitivity analysis
is affected by the size of the observations included in each interval. This was observed
in Sections 4.3.1 and 4.3.2 as the widest interval had the largest estimated changes in
the parameter estimates both when applying the sensitivity analysis for scalar parameters
and when including covariates. So the accuracy of the sensitivity analysis for piecewise
exponential models can be improved by dividing the time into a larger number of small
intervals.

The results of the simulation study carried out in this section suggest that the sensitiv-
ity analysis is not a good approximation of the change in parameter estimates when there
is heavy censoring and § becomes large. This could help to explain why the sensitivity

analysis overestimated the actual change in parameter estimates for the Liver Registra-
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tion dataset. In this dataset there is heavy censoring, with 71.7% of patients having a
potentially informatively censored time and a further 12.4% having a non-informatively
censored time. Also the dependent model fitted suggests that § is around 0.3, although
with a wide confidence interval because even after our assumptions to identify the joint

distribution of 7" and C we have little information about the dependence parameter.

However, even though some situations have been identified where the sensitivity anal-
ysis does not give a good approximation to the dependent model, the simulation study
in this section shows that there are many situations when the sensitivity analysis does
provide a reasonable approximation to the dependent model. This means that while the
sensitivity analysis was not as accurate as we would have hoped for the Liver Registration

data, it is still suitable for application in other situations.

5.3 Inclusion of Extra Terms in Approximations used in

Sensitivity Analysis

There are several Taylor expansions that are used in the derivation of the sensitivity
analysis described in Chapter 4. The accuracy of the sensitivity analysis may be improved
by including extra terms in any of these expansions. However, it is still necessary that
there is a closed form equation for the difference in the parameter estimates. Because of
this restriction we found that it is possible to include extra terms in the approximation in
(4.3), but not those in used in (4.7).

Here, an equation for the sensitivity analysis is derived when using an additional
quadratic term in the approximation for the conditional density function of C'. Hence
(4.3) is replaced by

. 0
fro(ts,cj) =fr(t;,0;) [fo(%%') +6i 2 B(t;, 9]')87,fc(6j7%‘)
J

1 .—1/2 2 62
+ 5(52%' B(t],QJ)) 87’}/2.][‘0(0]77])
felejs )
%fc(%ﬂj)

=f1(tj,05) fecj, ) | 1+ 6052 B(t;, 05)

15,
+ 5521%,13@]', 9]')2

If this approximation of the joint density function is used in the likelihood in (4.1), then
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the likelihood becomes

65(07 7) = 60(9’ ’7)
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fe (i, v5) 27 fe(yij, vj)
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p(yij, 0;) == St(yiz, 05) o
B(u,0;)* fr(u,6;)du
p) =Y
l/(yljﬁej) ST(yzguej)

The method used to derive the sensitivity analysis equation is similar to that for the
sensitivity analysis for @ in Section 4.2.3. This means that covariates will be included in
the sensitivity analysis. So 6 and v will be replaced by the parameter vectors 8 and =
respectively. However the linear predictor 7 = 4'x To obtain an expression for ég — 90,
Taylor expansions of the vector score functions

0
765(97 7, X)‘

o «
TO(GO) = *50(97777}() and T5(05) = 00

00

need to be used. As in Chapter 4, these expansions will only include the linear terms, so

that

where the (k,[)th element of the information matrix (0, x) is

82

m&)(& 7, X)-

The expressions in (5.8) can be rearranged to give
é& - éO = 1(07 X)_l(ré(a) - 7“0(0)), (59)
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using the likelihood in (5.7) to obtain the kth component of 75(8) — 7¢(0), which is

0
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82
n (5 —10v(yij,0,%i5) %fjfc(yij’mj)}
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(5.10)

It is possible to apply the proportional hazards structure that was outlined in Section
4.2.2. As before, if this structure is assumed, i, = 1, B(t;,0,x;) = 1 — Hrp(t;,0,%;)
and w(t;,0,x;) = —Hp(t;,0,%;). The form of v(t;,0,x;) is 1 + Hr(t;,0,%x;)?. Using
de Hr(t;,0,x;) = xHr(t;,0,%x;) and Hc(c],nj) Hc(cj,n;), then the derivatives of

B(t},0,x;), B(t;,0,%;)%, u(t;,0,x;) and v(tj,0,x;) are

iB(ifj, 0, Xj) = —-%'kHT(tja 0, Xj)a

00,
82 B(t;,0,%x;)* = —2xpHr(t;,0,%;) + 22, Hr(t,0,%,)?,

k

i,u,(tj, 0, Xj) = —.’L'kHT(tja 0, Xj) and

o0,

O t,,0,%,) = 20 Hr (1, 0,%;)°

a0y,

It can also be shown that

Bz(x]) Sc (CJ’ Z(Xj))

Sc(c], o) = —Hc(cj, 2(x5)),
az<S>C (ij,(cé;;)(;(j)) = Hel(cj, 2(x5))(He(cj, 2(x5)) — 1)
72 f;(ii(cz}’(j)(;(j)) = 11— 3He(cj, 2(x5)) + Helej, 2(x5))2.

If these terms are substituted into (5.10), then a simplified version of the kth component
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of 75(8) — r¢(0) is obtained, which is

5y injk{HT(yija 0, xi5)He (yij, mig) — Zig(1 — Lij) Hr (yig, 97Xij)}
i=1 j=1

+6%> injk{(HT(yij7 0,%ij) — Lij)Hr (yi5, 0, %ij) He (yij, mij) (Ho(ig, mig) — 1)
i=1 j=1
+ Zij(1 = Lij) Hr (yij, 0, %) (1 — QHC(yz‘jmz‘j))}- (5.11)

5.3.1 Application of sensitivity analysis that uses additional terms in

approximations to the Liver Registration data set

The sensitivity analysis using (5.9) is applied to the Liver Registration data set to see
if it gives an improvement on the sensitivity analysis presented in Chapter 4. Again,
it is assumed that the lifetime and censoring variables each have piecewise exponential
marginal distributions, each with three intervals with cut points at 40 and 165 days. Age,
recipient ethnicity, primary liver disease category and UKELD score at time of registration
were also included as covariates in the model for time to death. The model for time to
censoring only included an intercept term so that the results of this sensitivity analysis
can be compared to the observed values from the fitted dependence model.

The hazards and associated functions for 7" and C with piecewise exponential marginal

distributions can be expressed as:

hr(t5,0,%;) = €7 hel(ej ) = €
Hr(t;,0,x;) = ”*t; He(cjmy) = eVe;
Sr(t;,0,%;) = exp(—e? 1)) So(ejim;) = exp(—€lie;)  (5.12)

If the forms in (5.12) are substituted in (5.11), then the final form of the kth component
of 75(0) — ro(0) that shall be used in (5.9) is

n m
03> wigne?™u {emiyl — Zii(1 - Lij)yi; }

i=1 j=1

n m
" 62{ D> wigre? ™ (e — L)yl (M yi; — 1)
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+ Zij(1 — Ij)e® ™y (1 — 26"“%]')}}’ (5.13)

with the (k,)th element of the information matrix i(6,x) becoming
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The first term in (5.13) is the same as (4.30) in Section 4.2.3. So this sensitivity analysis
can be viewed as the original piecewise sensitivity analysis with a correction term. To see
if having this correction term in the sensitivity analysis improves its accuracy, the results

of the sensitivity analysis in Table 5.8 are compared to the values in Table 5.4.

Parameter 90,2769 - 90
Intercept 0.6953
PLD - PBC -0.0757
PLD - PSC -0.0526
PLD - ALD -0.0489
PLD - AID -0.0709
PLD - HCV -0.0597
PLD - HBV -0.0805
PLD - Cancer -0.0641
PLD - Metabolic 0.0415
PLD - Other -0.0597
Ethnicity - White -0.0623
Ethnicity - Asian -0.0465
Ethnicity - Black -0.0944
Ethnicity - Chinese 0.0035
UKELD -0.0033
Age -0.0008
j - Interval 1 -0.3241
j - Interval 2 -0.2793

Table 5.8: The results of the sensitivity analysis that includes extra terms in the approx-

imations used, for 6 = 0.2769.

The piecewise sensitivity analysis that uses extra terms overestimates more of the
changes in the parameter estimates than the original sensitivity analysis. Also, any values
that were already overestimated by the original piecewise sensitivity analysis are overesti-
mated even more by the piecewise sensitivity analysis that uses extra terms, particularly
the values corresponding to the intercepts in each interval. Therefore, the sensitivity
analysis that uses extra terms is not an improvement on the original piecewise sensitivity

analysis.

155



5.4 Summary

The aim of this chapter is to assess how accurate the sensitivity analysis is overall and to
identify any situations where it performs particularly badly.

We detail how to fit the model that includes dependence before any simplifying as-
sumptions. Although it is possible to fit this model, it is not simple and can be very time
consuming, especially if there are a large number of parameters. Also the dependence
assumption used can not be checked. This highlights why we need the sensitivity analysis
as we do not wish to fit these complex models if it is not necessary. When this model was
fitted to the Liver Registration data set, we found that the sensitivity analysis for w(x)
overestimated the change in parameter estimates. However, there were mixed results for
the sensitivity analysis for 6, although it did overestimate the change in the parameter
estimates corresponding to the intercepts in each interval. Overall the sensitivity analysis
for 8 was found to be more accurate than the sensitivity analysis for w(x).

To assess the general accuracy of the piecewise sensitivity analysis, a simulation study
was carried out across a range of parameter combinations, that correspond to a variety of
different situations. However, for simplicity, these simulations only consider models with
intercepts in each interval for both time to death and time to censoring. The sensitivity
analysis does tend to overestimate the change in these parameter estimates, although it is
worst when there are large outlying observations in the data set. The sensitivity analysis
also tends to overestimate the difference in the parameter estimates corresponding to
the intercepts in each interval when a data set has a large amount of censoring and the
correlation coefficient between T and C' is assumed to be greater than 0.3.

A sensitivity analysis that uses an extra quadratic term in one of its Taylor expansions
was derived, as it was hoped this might be able to correct the overestimation seen when
there is heavy censoring in the data set. However, it was found for the Liver Registration
data set that this sensitivity analysis overestimated the change in the parameter estimates

even more than the original piecewise sensitivity analysis.
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Chapter 6

Comparing Waiting List and
Post-transplant Mortality in

Presence of Informative Censoring

We have reviewed the current methods for accounting for informative censoring in Chapters
2 and 3. We have also established that there is a change in parameter estimates in our
data set of interest when we assume informative censoring instead of non-informative
censoring that is large enough to be of concern. This was done using the sensitivity
analysis methodology developed in Chapters 4 and 5. So we will now consider a subject
of interest to NHSBT, which is whether patients are expected to receive a benefit from
transplantation at all values of the UKELD score. We present a method that answers this
question by making use of one of the methods previously considered and apply it to the
Liver Registration data set. We also describe how this method can be extended to assess
whether patients receive a benefit from alternative therapy transplants, such as using a
split liver or a liver from an extended criteria donor. However, this is not applied to the

Liver Registration data set.

It is important to be able to show that patients generally have an improvement in
their expected survival after transplantation. This becomes especially important when
we are considering some of the policies that have been adopted to increase the number
of donor livers available such as split livers or extended criteria donor livers. This can
be assessed using a concept known as survival benefit, which uses the covariate-adjusted
hazard ratio for transplantation compared to not receiving a transplant, to quantify the
expected change in post-transplant mortality relative to waiting list mortality. If this ratio
is less than 1 then the expected survival of a patient after a transplant is greater then

their expected survival if they were to remain on the waiting list.
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Here we shall calculate the survival benefit for different groups of UKELD scores to
see which patients get the most survival benefit, or if there are any patients that do not
experience a significant difference between waiting and post-transplant mortality. This
shall be done using a method known as sequential stratification, which sets up experiments
to compare the survival of each transplanted patient with similar candidates who were on
the waiting list for at least the same amount of time as the transplanted patient. It
also uses weights similar to the inverse probability of censoring weights to account for
informative censoring.

Firstly, we will introduce the notation required for this method and discuss covariates
and the models necessary for the UKELD score before describing the method in more
detail. We will then describe the weight function that needs to be used to account for
the informative censoring in the data set. An estimating equation for this method is then
derived. Finally, we apply the method to our data set to produce estimates of the survival

benefit for individuals in different UKELD groups.

6.1 Notation and Covariates

There are many different events that could be observed for each individual transplant
patient. Those include D;, time of death and C}, time to censoring due to end of study or
lost to follow up. 7; will be used define time to transplantation. The observed endpoint
for all individuals will be ¥; = min(D;, C;). Therefore a death indicator, A; = I(D; < C;),
will be necessary along with an at-risk indicator, R;(t) = I(Y; > t). Ideally any patients
removed from the waiting list will be followed up after this removal. This was possible
in Schaubel et al.(2009b) using additional information from the Social Security Death
Master File. It is not possible for us to do something similar, as we have incomplete
death information for patients who are removed. However we do know whether they
were removed due to deteriorating condition or for other reasons. So if an individual was
removed because their condition had deteriorated, we assumed that they died on the date
of removal. Individuals that were removed for other reasons were censored at the time of
removal.

The counting process format will be used in this approach. This means that counting
processes for both death and transplantation are set up. These being NP (t) = I(D; <
t,A; = 1) and NI(t) = I(T; < min(t,Y;)) respectively. These remain at zero until
the patient either dies or receives a transplant, at which point they jump to one. The
increments of these processes are given by dNP(t) = NP (¢t~ +dt)— NP (t7) and dN] (t) =
NI (¢t~ +dt) — NF(t) respectively.

Counting processes for the deaths and transplantations in the entire sample can also
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be defined as NP(t) = Y | NP(¢) and NT(t) = >_% | NI (). These count the number
of deaths or transplantations in the sample at or before time ¢t. The increments in these
processes can also be found in a similar way to those outlined above.

There will also be the vector V (¢) that contains the values of all the covariates identified
as being a significant predictor of time to death for patients on the transplant waiting list
at time t. One of the major components of this vector will be the UKELD score. As this

score will change over time then will we need the recorded history, V(t), of the vector
V().

6.2 Models for UKELD score

Ideally, we have measurements of the UKELD at several different times whilst the patient
remains on the waiting list. Unfortunately in the data set we have the UKELD score at
registration for all the patients that will be included in this analysis, and only a second
reading at time of transplantation for those who receive a transplant. So we have to choose
a method of modelling the UKELD scores at interim time points.

For the patients where we have two data points, we consider using linear interpolation
to compute the value of the UKELD score at intermediate time points. However, this
is probably not the best method to use as UKELD scores do not tend to vary linearly
with time. They tend to stay roughly constant until there is a fairly sudden deterioration
in the condition of the patient. But we do not have enough UKELD values to capture
this behaviour, so the two choices we have are linear interpolation or carrying forward the
UKELD values recorded at the time of registration on the waiting list.

Some of the patients with recorded UKELD values at the time of transplant have
UKELD values at time of transplant that are lower than their recorded values at time of
registration. If we use linear interpolation for these patients, then we would have decreasing
values of UKELD at the intermediate times. This would suggest that the patient’s liver
function is improving over time, which would make it unlikely that they would be given
a liver transplant. There is obviously something happening to these patients that the
recorded values of UKELD we have for them does not capture, therefore it would be
better to assume that their UKELD values remain constant at the value recorded at time

of registration.

UKELD Model 1 For patients with UKELD values at time of transplant that are
larger then those at time of registration, we use linear interpolation to find intermediate
values. For patients who are not transplanted, or have a value of UKELD at transplant

that is lower than that at time of registration, we assume that the UKELD value remains
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constant at the value recorded at time of registration.

UKELD Model 2 For this model, we assume that the UKELD scores remain constant

at the value recorded at time of registration for all patients.

More information on how a patient’s UKELD score changes over time is now being
collected, so in future applications of this method, these values can be used instead of

either of the models we have presented here.

6.3 Sequential Stratification Method

The sequential stratification method allows the comparison of waiting list mortality and
post-transplant mortality for liver transplant patients, from which the survival benefit
of transplantation can be derived. There are np ordered times to transplantation from
registration on the list, ¢; where j = 1...np. At each of these transplant times an
“experiment” is initiated that compares the mortality of the patient being transplanted
with the mortality of similar patients who were still on the waiting list at time ¢;. In
Schaubel et al.(2009b), similar patients were considered to be those in the same geographic
region and the same MELD category, who are still at risk. For the NHSBT data that will
be analysed, geographic region does not have the same effect on survival as in the United
States so there will be no need to condition on this. Also the UKELD score will be used
instead of the MELD score.

Schaubel et al. (2009b) classify patients who are still at risk as those who are alive,
untransplanted and active on the waiting list at time ¢;. This means that min(7;, Y;) > ¢;.
So, the patient’s time to transplantation or some other endpoint from time of registration
is greater than ¢;. This is what we shall refer to as patients being matched by time from
registration. We also consider the case where patients are matched by date of transplant,
where patients are only considered to be at risk if they are alive and untransplanted and
active on the list on the date of transplant j. Figure 6.1 illustrates some of the differences
between these two methods of deciding whether a patient should be included in control
group. The dashed arrows in these plots show how long the patients have been on the
waiting list before the time of the jth transplant.

When matching by time from registration, each individual has spent the same amount
of time on the waiting list prior to being entered into the experiment. This means time
from registration can be used in the models that we fit. It is not as simple as that when
matching by date of transplant. As we can see from the right hand plot in Figure 6.1,
individuals will have been active on the waiting list for different lengths of time. This

means that to be able to make meaningful comparisons between the individuals in an
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Figure 6.1: Plots showing possible differences between patients included in control groups

when matching by time from registration to transplant and by date of transplant.

experiment we need to measure from a time different from time of registration. We use
time from the date of the jth transplant and include previous time spent on the waiting
list as a covariate in our model.

Therefore we need to define some new variables to be used when fitting a model that
matches by date. These include DATE7,, DATEp, and DATE¢,, which are the date of
transplant, date of death and date of censoring, respectively, for patient . From these we
define DATEy;, which is the earliest date out of DATE7,, DATEp, and DATE,. We also
require DATE 4, which is the date that the ith patient becomes active on the waiting list.
A variable is also needed that gives the amount of time patient ¢ spent on the waiting list
before the date of the jth transplant. We define this to be p;;.

To show whether a patient is included in a particular experiment when matching by

time from registration, an experiment entry indicator will be defined as,
eij = H{min(T;,Y;) > t5, ui(t;) = u;}

for the ¢th patient with respect to the jth experiment. Here u; is the UKELD score for the
patient undergoing the jth transplant and w;(t;) is the UKELD score for the ith patient
at time ¢;.

To show whether a patient is included in a particular experiment when matching by

date, the experiment entry indicator will be defined as,
eij = I{DATEr, € [DATE,,, DATEy,], u;(t;) = u;}
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for the ith patient with respect to the jth experiment.

We will treat patients who are subsequently transplanted or removed from the waiting
list in the same way for both methods. Patients will be censored from an experiment if
they were to receive a transplant. This is because they will have triggered an experiment
of their own and will no longer be contributing to mortality on the waiting list. Ideally
we would follow up removals after their time of removal. However this information is
not available to us, we only know whether they were removed because their condition
had deteriorated or not. Therefore we will assume that any that were removed due to
deteriorating condition would have died shortly after, so we assume they died on the date
of removal. For individuals who were removed for other reasons, we will censor them on
the date of removal, as we have have no further information about their expected survival.

Considering each individual experiment, there will be an “experimental” group and a
“control” group. The patient j, who received the transplant that triggered the experiment
will be the only observation in the experimental group. We can define the contributions
towards the model for each type of matching method using the standard counting process
format of (start, stop, event indicator).

When matching by time from registration, the patient in the experimental group will
give a contribution of (¢;,Y; = min(Dj;,C;),A;). The individuals in the corresponding
control group will contribute (¢;, min(Y;, T;), A;I(D; < T;)).

We can also define the contributions when matching by date, after restarting the time
scale at the date of transplant. For the individual in the experimental group, this will be
(0,Y; —pjj, Aj), where p;; is the amount of time the individual in the experimental group
spends on the waiting list before their transplant. Similarly, the patients in the control
group will contribute (0, min(7; — pyj, Y; — pij), Aid (D; < T3)), where p;; is the amount of
time the ith individual spends on the waiting list before the jth transplant.

The model that corresponds to this proposed method of sequential stratification when

finding the survival benefit for different groups of UKELD scores is
)\g(t; 00) = )\()D](t) exp{egzij}, (6.1)

where 0y = (07,02)" and Z;; = (Z%,,ZT,). Here the parameter vector of interest is

i1 Hij2
0, = (01,...,0,)T, while Z;;1 is the p x 1 covariate vector with kth component I{T; =
tj}{u; € UKELDy}, where UKELDy, is the kth of the p groups of UKELD scores. The
estimates of the vector 8; will give the UKELD-category-specific hazard ratios of post-
transplant mortality versus wait-list mortality. The vector Z;j» contains any additional
adjustment covariates.

It is possible to generalise the above model to any situation. If we have a covariate

X for which we wish to calculate the survival benefit of the patients at each level of the
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covariate, then we could still use the model in (6.1). However, Z;;; would become the p x 1
covariate vector with kth component I{T; = t;}I{z; € X;} where X}, is the kth group of

the covariate of interest. The experiment entry indicators would be redefined as
eij = IH{min(T;,Y;) > tj, xi(t;) = ;} and
€ij = I{DATET] S [DATEAZ, DATEYZ], l‘i(tj) = CCj},

when matching by time from registration and date of transplant respectively, with x;(t;)

being the value of the covariate X for the ith patient at time ¢;.

6.3.1 Calculating the survival benefit of alternative transplant therapies

If we want to find the survival benefit of an alternative therapy, such as using a split
liver or a liver from an extended criteria donor, relative to a standard transplant, then
we need to set up the model to be used in the sequential stratification method slightly
differently from that given previously. Instead of an experiment being generated by every
transplant observed, only the alternative therapy transplants will initiate an experiment.
This would then allow us to estimate the ratio of the hazard function of the alternative
therapy relative to that of remaining on the waiting list and possibly receiving a standard
transplant in the future.

We would still be able to write the model used as
A (t;80) = Mg (1) exp {63 Zi; },

but with 8y = (0 a7, 05) and Z;; = (Zij1, Zij2) where 047 is the parameter of interest and
Zij1 =1 {TZ-AT =t;}, where TZAT is the time that an alternative therapy transplant, such
as a transplant using a split liver or an organ from an extended criteria donor, occurs for
the ¢th patient. To be included as a control for an experiment, a patient would need to be

on the waiting list at the time of transplant, so the experiment entry indicators would be
e;j = I{min(T;,Y;) > t;} and
€ij = I{DATET]. S [DATEAWDATEYi]},

when matching by time from registration and date of transplant respectively. If necessary,
additional constraints could be placed on the patients included as controls for a exper-
iment so that only patients comparable to the patient who initiates the experiment are

considered.

6.4 Estimating the Weight Function

The contributions of all subjects will need to be weighted to adjust for the bias introduced

by the dependent censoring of transplanted patients. This will be done using weights that
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are similar to inverse probability of censoring weights, which are described in detail in
Section 3.1. The probability of remaining untransplanted from time ¢; to time ¢ will be

given by an estimate of
t
Gij(t) =expq — dAT(s) ¢, t>t,
2

which can be expressed as the ratio g i((tt_)) where
i(lj

ity =exp - [ anTs)}.

is the survival function for time to transplantation. The inverse of G;;(t) is used in the

weight function and this is equivalent to using the unstabilised weights defined in Section
3.1. However the probability of remaining untransplanted starts from time ¢; instead of
time 0. This is why the inverse of G;;(t) has G;(t;) as the numerator rather than 1.

Liver transplantation will be assumed to follow the proportional hazards model,
A (tlew) = A3 (t) exp { g Vi(t) }, (6.2)

where AJ(t) is the baseline transplant hazard. This model implies that the transplant
hazard for an individual only depends on the current values of vector of covariates. This
is realistic as waiting list priority will be given to those who seem sickest at a particular
time, as indicated by current covariate values, not their historic values.

The Cox proportional hazards model will be used to estimate the parameter vector
«. The covariates that will be included in this model are all the covariates that are to
be included in the model for time to death.

We will use a Kaplan-Meier estimate that has been extended to include the covariates
used in the model for liver transplantation given in (6.2) as an estimate for Gy;(t). It is
not clear whether Schaubel et al (2009b) use this estimate. It is possible that they may

. . exp(&/Vi(t))
have used S;(t) = {So(t)}
in G;;(t). However, this should not be used when we have time-dependent covariates in

the model.

to find the estimates of the survival functions used

Although we do not know which estimate for G;;(t) was used by Schaubel et al.
(2009b), in a different paper (Zhang and Schaubel (2010)) that used similar weights,
the estimate S;(t) = {S’Q(t)}exp(d/w(t))
is likely that this may have been used in Schaubel et al. (2009b) as well.

was used with time-dependent covariates. So, it

Now using this model we can calculate estimates of the weighted risk set indicators,
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where

Rij(s) = Ri(s){I(T; = t5) + I(Ti > t;)I(Ti > s)}

which is the risk set indicator for the jth experiment and & is the vector of parameter
estimates from the Cox model for transplantation. This modifies the ordinary risk set at
time s to include only those who were at risk when the experiment was initiated and have

not since crossed over into the transplanted set.

6.5 Deriving an Estimating Equation

It is now necessary to derive an equation that can be used to obtain estimates for the
parameters of interest. The approach used here will be slightly different from that outlined
in Schaubel et al(2009b), but it is equally valid when using a counting process format for

the data.
The profile likelihood for our transplantation data will be given by

n ei-Wi-(t;a )le(t)
ﬁ H H eijWij(t; ap) exp {67 Z;;} FE
J=1 i=1 ) Z GZJsz(taQO)eXp{a ZU}

From this we can easily obtain the log profile likelihood, which is given by

(o.a0)=3 3 / €1 Wiy (t; o) [bg(e”%( ) +067"2;
7j=11:i=1
— log (Z ez] 2] eXp {OTZZJ}> ] (t)
where 7 = max{Xi,...,X,}. The estimating equation can be obtained using the score

function which can be found by differentiating the log profile likelihood with respect to 6.
This gives

Np n .

S €3 Wij (83 o) Zij exp(0” Z;

0 aO / e’LJ ij S aO) [ZZ] Zle] ](8 ao) ]eXp(T J)] dNZ(S),
=i > €iiWij(s; a) exp(0° Zij)

which can be written more compactly if we let
n
S](-d)(s; 0,00)=n"" Z eiWij(s; ao)Z?}d exp{07Z;;} for d=0,1,2
i=1
where z®° = 1 and z®! = z for any vector, z and

E;(s;0,00) = S](.l)(s; 0, ao)/Sj(O)(s; 0, ).
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In the final estimating equation, an estimate of the weight function is needed, which was
discussed in Section 6.4. Thus the final form of the necessary estimating equation is

Nr n

UO,a0) =3 % / e Wi (55 0) (2 — B (5:0, 60)} NP (). (6.3)

j=1i=1"1

This is the form of the score equation for a weighted, stratified proportional hazards
model, that can be fitted using standard statistical software packages, such as PROC
PHREG in SAS. The only thing to note is that, as we are using weighted data, we should
use the robust sandwich estimate of the covariance matrix to find the standard errors of
the parameter estimates. This will give standard errors that tend to be slightly more

conservative than those found using the inverse of the information matrix.

6.6 Results

The sequential stratification method is now applied to the Liver Registration data set
so that estimates of 07 to 05 can be found. These are the parameters for the covariate
vector Z;j1, which was defined in Section 6.3, which contains the indicators of whether the
observations are equal to the jth transplant time and which UKELD group they belong
to. However the values that are interest are exp (6) to exp (f5). They are the ratios of
the estimated hazard functions for patients who create experiments (those that receive
transplants) to control patients (those that remain on the waiting list). If they have a
value of less than 1 then those who receive transplants have a lower hazard of death. We
can then use these values to determine the groups of UKELD scores in which the patients
have the greatest survival benefit.

We did not include UKELD score as a covariate in the models because it had been
used to match similar patients in the sequential stratification method. We split UKELD
score into 5 groups when doing this. The boundaries for these groups were chosen by
examining the 20%, 40%, 60% and 80% quantiles of the distribution of UKELD score
and using similar values to these so that the groups contain roughly the same number of
patients.

We included other covariates in these models: age at registration, primary liver disease
category, ethnicity, serum sodium at time of registration and INR at time of registration.
We also included previous time spent on the waiting list in the model where we matched
patients by date. We do not present the parameter estimates for these covariates.

Tables 6.1 and 6.2 contain the hazard ratios for post-transplant mortality in contrast
to mortality on the waiting list for 5 different levels of UKELD score when matching by
time from registration. Also given are the 95% confidence intervals and p-values. The

same results when matching by date can be seen in Tables 6.3 and 6.4.
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k | UKELD Scores | exp{6z} | 95% Confidence Interval | P-value
1 u < 950.5 0.265 (0.177,0.398) < 0.0001
219505 <u<b3.5 0.150 (0.103,0.218) < 0.0001
3| 53.5<u<b6.5 0.211 (0.146,0.305) < 0.0001
4| 56.5<u<60 0.121 (0.085,0.171) < 0.0001
5 u > 60 0.169 (0.129,0.222) < 0.0001

Table 6.1: UKELD category specific hazard ratios (post-transplant versus wait-list) when

controls are matched using time from registration with UKELD model 1

k | UKELD Scores | exp{f} | 95% Confidence Interval | P-value
1 u < 50.5 0.276 (0.195,0.393) < 0.0001
2 1505<wu<b535| 0171 (0.120,0.244) < 0.0001
3(535<u<b56.5| 0.194 (0.138,0.273) < 0.0001
4| 56.5<u <60 0.146 (0.104,0.205) < 0.0001
5) u > 60 0.150 (0.108,0.209) < 0.0001

Table 6.2: UKELD category specific hazard ratios (post-transplant versus wait-list) when

controls are matched using time from registration with UKELD model 2

k | UKELD Scores | exp{fz} | 95% Confidence Interval | P-value
1 u < 50.5 0.346 (0.230,0.519) < 0.0001
2| 50.5 <u<33.5 0.171 (0.115,0.256) < 0.0001
3] 5835 < u<56.5 0.228 (0.157,0.331) < 0.0001
4| 56.5<u<60 0.127 (0.088,0.182) < 0.0001
5 u > 60 0.206 (0.153,0.277) < 0.0001

Table 6.3: UKELD category specific hazard ratios (post-transplant versus wait-list) when
controls are matched using date of transplant with UKELD model 1

k | UKELD Scores exp{ék} 95% Confidence Interval | P-value
1 u < 50.5 0.322 (0.221,0.468) < 0.0001
2505 <wu<535| 0.193 (0.134,0.277) < 0.0001
3 |535<u<b6.5| 0.184 (0.125,0.270) < 0.0001
4| 56.5<u<60 0.156 (0.108,0.224) < 0.0001
5 u > 60 0.134 (0.091,0.196) < 0.0001

Table 6.4: UKELD category specific hazard ratios (post-transplant versus wait-list) when
controls are matched using date of transplant with UKELD model 2
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Tables 6.1 to 6.4 show that generally UKELD groups 4 and 5 have the lowest hazard
ratios, although occasionally group 2 has a fairly low hazard ratio. This means they
have the greatest difference between waiting list and post-transplant mortality, with post-
transplant survival expected to be much greater than waiting list survival. In terms of
survival benefit, this means that the patients in UKELD groups 4 and 5 generally have
the highest survival benefit from liver transplantation, under these models. Also, UKELD
group 1 always has the highest hazard ratio, which means the patients with the lowest

UKELD scores have the lowest survival benefit.

These results make intuitive sense as UKELD score is a good predictor of mortality,
we know that as the UKELD score increases, the expected survival on the waiting list
decreases. So the contrast between waiting list and post-transplant mortality should in-
crease as long as post-transplant mortality does not also decrease rapidly as UKELD score

increases.

The results also suggest that the transplants being carried out on patients with high
UKELD scores are not futile, as they can expect a significant improvement in their survival
after transplant. However, we should be aware that the data we are considering are
observational data. So, any patients with high UKELD scores that receive liver transplants
have been deemed as suitable for transplant by a surgeon. Therefore the result we see

here may be a consequence of this selection bias in our data.

In addition to these fitted models, we also produced bootstrap confidence intervals
to assess the robustness of the results from these models. We carried out B bootstrap
replications, each time sampling from our dataset with replacement and then applying the
sequential stratification method to the new dataset. The distributions of the bootstrap
estimates for exp(f1) to exp(fs) were then examined and the 2.5 and 97.5 percentiles of

the distributions were used to find 95% confidence intervals for these parameter estimates.

Tables 6.5 and 6.6 give the bootstrap confidence intervals when matching by time from
registration using UKELD model 1 and UKELD model 2 respectively. The bootstrap
confidence intervals for the same models, but matching by date instead, can be seen in
Tables 6.7 and 6.8. The histograms of the bootstrap estimates for exp(6;) to exp(fs)
for each of these models were examined to ensure that the estimates were approximately
normally distributed. The histograms were roughly bell shaped, with the majority being
roughly symmetric, although there was occasionally some skewness, particularly in the
distributions of the bootstrap estimates for UKELD group 1.

There is considerable overlap between the bootstrap confidence intervals in each of
these tables. However, the intervals for exp(él) do tend to be much wider than those for
the other four parameters. These results suggest that a UKELD score of greater than

50.5 is all that is needed for patients to receive a significant benefit from transplantation.
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Hazard Ratio | Bootstrap 95% Confidence Interval
exp(61) (0.126,0.946)
exp(6s) (0.057,0.370)
exp(fs) (0.088,0.404)
exp(6y) (0.056,0.208)
exp(6s) (0.085,0.301)

Table 6.5: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by time from registration. The UKELD model being used here is UKELD model
1.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(61) (0.137,0.959)
exp(6y) (0.070,0.413)
exp(63) (0.087,0.371)
exp(6y) (0.070,0.246)
exp(fs) (0.073,0.271)

Table 6.6: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by time from registration. The UKELD model being used here is UKELD model
2.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(0;) (0.151,0.976)
exp(62) (0.086,0.354)
exp(f3) (0.118,0.423)
exp(fy) (0.055,0.214)
exp(fs) (0.096,0.319)

Table 6.7: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by date. The UKELD model being used here is UKELD model 1.
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Hazard Ratio | Bootstrap 95% Confidence Interval
exp(61) (0.159,0.975)
exp(6s) (0.097,0.390)
exp(63) (0.100,0.331)
exp(6y) (0.076,0.278)
exp(fs) (0.064,0.220)

Table 6.8: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by date. The UKELD model being used here is UKELD model 2.

However, different numbers of intervals and boundaries for these intervals need to be
investigated before we can be certain of this.

When the confidence intervals in Tables 6.5 to 6.8 are compared to those in Tables 6.1
to 6.4, we see that the bootstrap confidence intervals are always wider than the those from
the fitted models. However, for the final two UKELD groups, the bootstrap confidence
intervals tend to be fairly close to the confidence intervals from the fitted models. This
suggests that the results for these two groups are fairly robust to changes in the individuals
included in the data set.

Figure 6.2 gives a graphical representation of all the results for the models considered
so far. For each UKELD group we show the hazard ratios and confidence intervals from
the fitted models using each of the UKELD models, alongside the bootstrap confidence
intervals for the same models. This allows easy comparison of the results from each of the
models much more easily. The horizontal line on the plots corresponds to a hazard ratio
of value 1. If a confidence interval crosses this line then the difference between waiting list
and post-transplant mortality is not considered to be significant.

Generally, we see that the hazard ratios and the upper limits of the confidence intervals
tend to decrease as the UKELD score increases. However, under UKELD model 1 there
is a slight increase in the hazard ratios and 95% confidence intervals for UKELD group 5
compared to UKELD group 4. This increase in the 95% confidence interval means there
is more uncertainty about the estimate of the hazard ratio for UKELD group 5.

From the plots, we see that the bootstrap confidence intervals for UKELD group 1
are much wider than those for any of the other groups. They are also close to including
a hazard ratio of 1, suggesting that difference between waiting list and post-transplant
mortality is only just significant.

It is also much easier to see just how much overlap there is between the confidence
intervals, particularly between UKELD groups 2 and 3 and UKELD groups 4 and 5.

For this particular data set, the results suggest that there is very little difference be-
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tween using time from registration to match controls and using date of transplant to match
the control patients. However, if the survival benefit of a fairly new alternative transplant
therapy is being calculated, where we could expect to see a noticeable improvement in the
survival of patients over time, then matching control patients by date of transplant may

give more realistic results.

Results when matching control patients by time

. y Results when matching control patients by date
from registration
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Figure 6.2: Plots showing the hazard ratios and 95% confidence intervals of post-transplant

mortality versus waiting list mortality from both the model and bootstrap when matching

control patients by time from registration and when matching control patients by date
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6.7 Using Additional Criteria when Matching Control Pa-

tients

So far we have included as controls for the experiments any patients who were still on the
waiting list either at the time of transplantation or on the date of the transplant. However,
in reality, only patients who are deemed suitable for the donor organ would be considered
for transplant. Thus we should incorporate some of these additional criteria into our
model, so that we only use patients that are comparable to the experiment generating
patient as controls.

One of the most important criteria when deciding if a patient is suitable for a transplant
is whether he is blood group compatible with the donor of the organ. If the donor has
blood group O, then any patient can have the organ. If the donor has blood group A,
then the organ can only be given to a patient with blood group A or AB. If the donor has
blood group B, then the organ can only be given to a patient with blood group B or AB.
If the donor has blood group AB, then only patients who also have blood group AB can
receive the organ.

If we only include patients who are blood group compatible when matching by time

from registration, then the experiment entry indicator would be

eij = I{min(T3,Y;) > t;,u;(t;) = uj,rbg; = Aor AB if dbg; = A,
rbg; = Bor AB if dbg; = B,rbg; = AB if dbg; = AB}

for the ith patient with respect to the jth experiment. Here rbg; is the blood group of the
ith potential recipient and dbg; is the blood group of the donor of the organ that is used
in the jth transplant. Similarly the experiment entry indicator when matching controls

by date of transplant and blood group would become

€ij = I{DATETJ S [DATEAZ,DATEYZ],UZ(%) = Uj, rbg; = Aor AB
if dbg; = A, rbg; = Bor AB if dbg; = B,rbg; = AB if dbg; = AB}

for the ith patient with respect to the jth experiment.

As blood group compatibility is so important when choosing a recipient for a donor
organ, it should be included in the final model that we use to find the survival benefit for
the different groups of UKELD scores.

Another criterion that is considered when selecting recipients for a donor organ is
the difference between the weight of the recipient and the weight of the donor. If this
difference is too large, then the donor organ could be the wrong size. Therefore patients
are usually only considered if their weight is within 10kg of the weight of the donor.

However, this is not strictly adhered to, as we found by looking at the differences in
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weights for the patients who were transplanted. So it is not as important to include this in
the model as the previous criterion. For this reason we will incorporate it in a model that
already considers blood group compatible patients, and compare the results to a model
that incorporates only blood group compatibility.

If we include patients who are both blood group and weight compatible when matching

by time from registration, then the experiment entry indicator would be

eij = I{min(T3,Y;) > tj,u;(tj) = uj,rbg; = Aor AB if dbg; = A,rbg; = B
or AB if dbg; = B,rbg; = AB if dbg; = AB, |dw; = rw;| < 10kg}

for the ¢th patient with respect to the jth experiment. Here rw; is the weight of the ith
patient and dwj; is the weight of the donor of the organ that is used in the jth transplant.
Similarly the experiment entry indicator when matching controls by date of transplant,

blood group and weight would become

eij = I{DATE, € [DATE4,, DATEy; |, u;(t;) = uj, vbg; = Aor AB if dbg; = A,
rbg; = Bor AB if dbg; = B,rbg; = AB if dbg; = AB, |dw; = rw;| < 10kg}

for the ith patient with respect to the jth experiment.

6.7.1 Results

Here we apply the sequential stratification method to our data set but also incorporate
some of the additional criteria described in the previous section. Firstly, we consider
models that match by time from registration and blood group for both UKELD models.
The results for these models are given in Tables 6.9 and 6.10. Then models that match
by time from registration, blood group and weight are presented, again using each of the
UKELD models considered. Tables 6.11 and 6.12 contain the results for these models.

The decreasing patterns in the hazard ratios and the limits of the confidence intervals
are even more evident in these tables than in previous results. Again those in UKELD
groups 4 and 5 have the largest survival benefit and those in group 1 tend to have the
lowest survival benefit.

We have also produced 95% confidence intervals based on the percentiles of the dis-
tribution of the bootstrap estimates for exp(f;) to exp(f5). The aim here is to produce
some more robust confidence intervals for the hazard ratios that are of interest. These are
given in Tables 6.13 to 6.16.

As seen previously, the bootstrap confidence intervals are always wider than those from
the fitted model. There is also much overlap between the bootstrap confidence intervals
given in each table. However, the confidence intervals do tend to get tighter for each

successive UKELD group and the upper limit of the confidence interval tends to decrease.
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k | UKELD Scores | exp{f;} | 95% Confidence Interval | P-value
1 u < 50.5 0.264 (0.173,0.402) < 0.0001
2| 505 <u<535| 0234 (0.154,0.354) < 0.0001
31535 < u<56.5 0.194 (0.132,0.287) < 0.0001
4| 56.5 <u <60 0.132 (0.093,0.189) < 0.0001
5 u > 60 0.113 (0.085,0.152) < 0.0001

Table 6.9: UKELD category specific hazard ratios (post-transplant versus wait-list) using

UKELD model 1, when controls are matched using time from registration and blood group.

k | UKELD Scores exp{ék} 95% Confidence Interval | P-value
1 u < 50.5 0.259 (0.179,0.376) < 0.0001
2| 50.5<wu<b535| 0278 (0.189,0.407) < 0.0001
3] 53.5<u<b56.5| 0.191 (0.135,0.270) < 0.0001
4 56.5 < u < 60 0.162 (0.115,0.227) < 0.0001
5 u > 60 0.104 (0.072,0.149) < 0.0001

Table 6.10: UKELD category specific hazard ratios (post-transplant versus wait-list) using

UKELD model 2, when controls are matched using time from registration and blood group.

k | UKELD Scores | exp{fz} | 95% Confidence Interval | P-value
1 u < 50.5 0.358 (0.234,0.548) < 0.0001
2 1580.5<u<d3.5 0.276 (0.178,0.428) < 0.0001
319535 <u<56.5 0.178 (0.117,0.271) < 0.0001
4| 56.5 <u <60 0.139 (0.097,0.200) < 0.0001
5 u > 60 0.109 (0.079,0.150) < 0.0001

Table 6.11: UKELD category specific hazard ratios (post-transplant versus wait-list) using

UKELD model 1, when controls are matched using time from registration, blood group

and weight.
k | UKELD Scores | exp{f;} | 95% Confidence Interval | P-value
1 u < 50.5 0.353 (0.240,0.518) < 0.0001
2 1505<u<b35| 0.349 (0.233,0.523) < 0.0001
31 835<u<56.5 0.182 (0.126,0.263) < 0.0001
4| 56.5 <u <60 0.160 (0.113,0.227) < 0.0001
5 u > 60 0.107 (0.073,0.157) < 0.0001

Table 6.12: UKELD category specific hazard ratios (post-transplant versus wait-list) using
UKELD model 2, when controls are matched using time from registration, blood group

and weight.
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There are two bootstrap confidence intervals for UKELD group 1 that suggest the
estimated hazard ratio is not as significant as was suggested under the fitted model. In
Table 6.15, the confidence interval for UKELD group 1 includes the value 1, which suggests
there is no significant difference between waiting list and post-transplant mortality here.
In Table 6.16, the confidence interval for UKELD group 1 does not include the value 1,
but the upper limit of the interval is close to it, which suggests the estimated hazard ratio

here is only just significant.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(6;) (0.119,0.816)
exp(6s) (0.087,0.542)
exp(fs) (0.085,0.373)
exp(6y) (0.061,0.251)
exp(05) (0.056,0.253)

Table 6.13: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by time from registration and blood group. The UKELD model being used here
is UKELD model 1.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(6) (0.121,0.794)
exp(6) (0.116,0.600)
exp(63) (0.081,0.358)
exp(fy) (0.079,0.300)
exp(fs) (0.046,0.238)

Table 6.14: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and

matching by time from registration and blood group. The UKELD model being used here
is UKELD model 2.

Figure 6.3 gives a graphical representation of all the results for models that match
controls by time from registration and use additional criteria when matching. For each
UKELD group we show the hazard ratios and confidence intervals from the fitted models
using each of the UKELD models, alongside the bootstrap confidence intervals for the
same models. As before, the horizontal line on the plots corresponds to a hazard ratio of
value 1.

These plots provide a summary of all the results in Tables 6.9 to 6.16, they can be used

to interpret the results of models that match controls by time from registration and use
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Hazard Ratio | Bootstrap 95% Confidence Interval
exp(61) (0.154,1.046)
exp(62) (0.107,0.623)
exp(fs) (0.065,0.359)
exp(64) (0.064,0.258)
exp(fs) (0.053,0.261)

Table 6.15: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by time from registration, blood group and weight. The UKELD model being
used here is UKELD model 1.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(0;) (0.158,0.949)
exp(62) (0.142,0.756)
exp(6s) (0.072,0.347)
exp(64) (0.073,0.291)
exp(05) (0.046,0.256)

Table 6.16: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by time from registration, blood group and weight. The UKELD model being
used here is UKELD model 2.
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at least one of the additional criteria when matching. We see that the downward trend in
the hazard ratios and the upper limits of the confidence intervals is more pronounced here
than in Figure 6.2. We can also see that there is a lot of overlap between the confidence

intervals, particularly between groups 1 and 2 and groups 3 and 4.

In the plot for models that match controls using time from registration and blood
group, we see that the bootstrap confidence intervals for UKELD group 1 are not as
wide as those in Figure 6.2. This would be the model that is recommended for use as it
incorporates what is considered to be the most important additional criteria without the
size of the control groups appearing to be too greatly reduced. It does not matter which of
the UKELD models is used as the results seem to be fairly robust to the choice of UKELD

model.

From the plot for models that match controls by time from registration, blood group
and weight, we can see that the bootstrap confidence interval for UKELD group 1 using
UKELD model 1 suggests the difference between waiting list and post-transplant mortality
is not significant. It is also possible to see that for UKELD groups 1 and 2 there is much
more uncertainty in the estimates. This could be due to a reduction in the size of the

control groups caused by using the weight matching criterion.

We now apply the sequential stratification method with the additional criteria to mod-
els that use date of transplant to match control patients. Firstly, we considered models
that matched by date and blood group for both UKELD models. The results for these
models are given in Tables 6.17 and 6.18. Then models that matched by date, blood group
and weight are presented, again using each of the UKELD models considered. Tables 6.19

and 6.20 contain the results for these models.

The patterns that we see in the results in Tables 6.17 to 6.20 are not as clear as those
in the results for matching controls by time from registration. UKELD groups 4 and 5 still
tend to have the lowest hazard ratios and therefore the greatest survival benefit, although
this is not always the case. For example, in Table 6.18 the hazard ratio for UKELD group
3 is lower than that for UKELD group 4. The groups with the lower UKELD scores still
have the higher hazard ratios and so the lower values of survival benefit. However, here it
is often UKELD group 2 that has the highest hazard ratio rather than UKELD group 1.
However, there is a substantial overlap in all of the confidence intervals.

Again we have produced bootstrap confidence intervals for these models, and they are
given in Tables 6.21 to 6.24. The confidence intervals in these tables are all wider than those
for the fitted model, as expected from previous results. As before, there is considerable
overlap between the confidence intervals shown in each table. But the confidence intervals
do get tighter and have lower upper limits for the models that use UKELD model 2.
For the models that use UKELD model 1, there seems to be more uncertainty about the
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Results when matching control patients by time
from registration and blood group
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Results when matching control patients by time
from registration, blood group and weight
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Figure 6.3: Plots showing the hazard ratios and 95% confidence intervals of post-transplant

mortality versus waiting list mortality from both the model and bootstrap when matching

control patients by time from registration and using additional criteria

k | UKELD Scores | exp{fz} | 95% Confidence Interval | P-value
1 u < 50.5 0.288 (0.190,0.437) < 0.0001
21 50.5 <u<53.5 0.272 (0.171,0.432) < 0.0001
319535 <u<56.5 0.186 (0.119,0.291) < 0.0001
4| 56.5<u<60 0.154 (0.105,0.228) < 0.0001
) u > 60 0.157 (0.113,0.218) < 0.0001

Table 6.17: UKELD category specific hazard ratios (post-transplant versus wait-list) using

UKELD model 1, when controls are matched using date of transplant and blood group
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k | UKELD Scores | exp{6z} | 95% Confidence Interval | P-value
1 u < 50.5 0.264 (0.178,0.390) < 0.0001
2| 50.5 <u<33.5 0.274 (0.179,0.419) < 0.0001
3] 835 < u<56.5 0.191 (0.129,0.283) < 0.0001
41 56.5<u<60 0.208 (0.142,0.305) < 0.0001
) u > 60 0.113 (0.074,0.173) < 0.0001

Table 6.18: UKELD category specific hazard ratios (post-transplant versus wait-list) using
UKELD model 2, when controls are matched using date of transplant and blood group

k | UKELD Scores | exp{6z} | 95% Confidence Interval | P-value
1 u < 50.5 0.343 (0.213,0.554) < 0.0001
2| 50.5 <u<33.5 0.392 (0.240,0.637) < 0.0001
3] 835 < u<56.5 0.278 (0.178,0.436) < 0.0001
41 56.5 <u<60 0.154 (0.102,0.232) < 0.0001
) u > 60 0.176 (0.125,0.249) < 0.0001

Table 6.19: UKELD category specific hazard ratios (post-transplant versus wait-list) using
UKELD model 1, when controls are matched using date of transplant, blood group and

weight

k | UKELD Scores | exp{0i} | 95% Confidence Interval | P-value
1 u < 50.5 0.322 (0.207,0.500) < 0.0001
21505 <u<b3.5 0.383 (0.248,0.591) < 0.0001
3| 53.5 < u<56.5 0.223 (0.150,0.331) < 0.0001
4| 565<u<60 | 0217 (0.146,0.321) < 0.0001
5 u > 60 0.157 (0.104,0.237) < 0.0001

Table 6.20: UKELD category specific hazard ratios (post-transplant versus wait-list) using
UKELD model 2, when controls are matched using date of transplant, blood group and

weight
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hazard ratio for UKELD group 5, than that for UKELD group 4.

Most of the confidence intervals here suggest that there is not a significant difference
between waiting list and post-transplant mortality for UKELD group 1. The confidence
interval for UKELD group 1 in Table 6.22 suggests that it is only just significant. The
confidence intervals for this group are so wide here which suggests that the control groups

are too small to make precise inferences about the hazard ratio.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(6) (0.114,1.039)
exp(6y) (0.102,0.624)
exp(6s) (0.071,0.410)
exp(f4) (0.059,0.299)
exp(fs) (0.070,0.343)

Table 6.21: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by date and blood group. The UKELD model being used here is UKELD model
1.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(61) (0.115,0.950)
exp(6s) (0.109,0.620)
exp(63) (0.074,0.391)
exp(fy) (0.085,0.395)
exp(fs) (0.045,0.275)

Table 6.22: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by date and blood group. The UKELD model being used here is UKELD model
2.

Figure 6.4 gives a graphical representation of all the results for models that match
controls by date of transplant and use at least one of the additional criteria when matching.
As before, we show the hazard ratios and confidence intervals from the fitted models using
each of the UKELD models, alongside the bootstrap confidence intervals for the same
models, for each UKELD group.

Figure 6.4 provides a summary of the results in Tables 6.17 to 6.24 and can be used
to interpret the results of models that match controls by date of transplant and also use

at least one of the additional criteria when matching. We see that generally there is still
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Parameter | Bootstrap 95% Confidence Interval
exp(6;) (0.113,1.511)
exp(62) (0.116,0.986)
exp(63) (0.100,0.614)
exp(6) (0.056,0.310)
exp(05) (0.066,0.381)

Table 6.23: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by date, blood group and weight. The UKELD model being used here is UKELD

model 1.

Hazard Ratio | Bootstrap 95% Confidence Interval
exp(61) (0.133,1.382)
exp(62) (0.122,0.893)
exp(63) (0.078,0.471)
exp(6y) (0.083,0.423)
exp(05) (0.052,0.360)

Table 6.24: Table showing 95% confidence intervals for the UKELD group specific hazard
ratios based on percentiles of the distribution of bootstrap estimates when B=1,000 and
matching by date, blood group and weight. The UKELD model being used here is UKELD
model 2.
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a decreasing trend in the hazard ratios and the upper limits of the confidence intervals,

although it is not as clear to see as in Figure 6.3.

In the plot for models that match control patients by date and blood group, the
bootstrap confidence interval for UKELD group 1 using UKELD model 1 suggests that
there is not a significant difference between the waiting list and post-transplant mortality.
The difference is only barely significant if we consider the bootstrap confidence interval
for this UKELD group using UKELD model 2. We can also see that there is much overlap
between the confidence intervals for UKELD groups 1 and 2 and UKELD groups 3 and 4.

In the plot for models that match control patients by date, blood group and weight,
both the bootstrap confidence intervals for UKELD group 1 suggest that there is no sig-
nificant difference between waiting list and post-transplant mortality. Also the bootstrap
confidence interval for UKELD group 2 under UKELD model 1 suggests that the difference
here is only just significant. It is likely that the additional criteria that have been applied
here have made the control groups too small, which is why we see so much uncertainty in

the estimated hazard ratios.

Results when matching control patients by date Results when matching control patients by date,
and blood group blood group and weight
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Figure 6.4: Plots showing the hazard ratios and 95% confidence intervals of post-transplant

mortality versus waiting list mortality from both the model and bootstrap when matching

control patients by date and using additional criteria
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6.8 Summary and Recommendations

In this chapter, we describe the sequential stratification method which creates a stratum
each time a patient is transplanted and compares his/her survival to those of similar
candidates who were active on the waiting list at the time. This method was presented in

Schaubel (2009b), although we have made a few alterations to the method.

We use this to derive the survival benefit for different UKELD score groups using
covariate-adjusted hazard ratios for transplantation compared to not receiving a trans-
plant. We found that the groups with the highest UKELD scores have the lowest hazard

ratios and so have the greatest survival benefit.

We present two methods for selecting the patients that are used as comparisons for the
experimental patient. The first is the one used in Schaubel (2009b), where the comparison
patients are those that have been on the waiting list for at least the same amount of time
as the experimental patient. We have developed the second method, where the patients
used for comparison are those that are registered as active on the waiting list on the date

of the transplant of the experimental patient.

Here, the results of the two methods are similar, suggesting that it does not matter
which one is used. However, if there is likely to be a change in the expected survival of
patients receiving a particular therapy over time, then using patients that are registered

as active on the date of transplant for comparison may give more realistic results.

We also describe how the same method could be used to compare the hazard function
for an alternative transplantation therapy, such as a split liver or a liver from an extended
criteria. donor, with the hazard function of remaining on the waiting list and possibly

receiving a standard transplant at a later date.

We also considered using additional criteria when choosing patients to be included
in the comparative group, which were blood group compatibility and a suitable weight
relative to the weight of the donor. The results of these models showed the same trends as
the results of the models without these additional criteria, so that those with the highest
UKELD scores have the greatest survival benefit from liver transplantation.

However, we recommend using a model that ensures patients that are included in the
comparative group are also blood group compatible, as this makes our model more realistic
and there is also less uncertainty about the estimates produced by this model.

When applying the method outlined in this chapter, we must be aware that we are
using observational data and therefore there may be bias in our results because of this.
One particular example is selection bias. All of the patients in the data set have been
chosen by clinicians for transplantation, which means they were considered suitable for

the particular organ and well enough to undergo the procedure. Therefore the results from
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the sequential stratification method may not be representative of all patients in the group,

particularly for those with high UKELD scores as they are the most sick on the list.

184



Chapter 7

Discussion and Future Work

The aim of this thesis is to develop suitable methodologies for analysing data from patients
on the waiting list for a liver transplant, where patients who are censored due to trans-
plantation are suspected to be informatively censored. These methodologies should allow
the survival function to be estimated as well as any significant covariates to be identified.
Ultimately, they should be able to be developed into methods that can calculate other
values that are of interest to NHSBT, such as survival benefit.

A detailed discussion of how this thesis meets these aims is given in Section 7.1. A
summary of the main strengths and weaknesses is given in Section 7.2. Many of the
methods discussed in Chapters 2 and 3 and the method developed in Chapter 4 can be
applied to other situations instead of the liver transplantation setting considered in this
thesis. Therefore, Section 7.3 gives recommendations on how to analyse general data
with potentially informative censoring. We also explain in Section 7.4 how the methods
developed in this thesis are of use to NHSBT, which provided the funding for this project.
Finally, extensions of the methods developed and possible future work are discussed in

Section 7.5.

7.1 Discussion

Estimators that can be used to give bounds on the estimated survival function are re-
viewed in Chapter 2. All these estimators are applied to the Liver Registration data set,
but it is found that they give bounds that are too wide to be of use. Slud and Rubinstein
(1983) and Klein and Moeschberger (1988) suggest restricting the values that the depen-
dence parameters can take to provide tighter bounds on the estimated survival function.
However, even these bounds are too wide to be useful.

Even though the bounds on the estimated survival function are not useful, these estima-

tors can still be used to estimate the survival function if a suitable value of the dependence
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parameter is specified. As we cannot identify the amount of dependence between 71" and
C from the observed data, then this approach is not recommended. These estimators also
do not allow all covariates to be incorporated, which is another reason why we would not
recommend their use in practice. However, we will still discuss the properties of these es-
timators so that we can identify which is most suitable for use in the liver transplantation
setting.

We would not recommend use of either the estimator in Fisher and Kanarek (1974)
or the estimator in Slud and Rubinstein (1983), as it is not easy to specify an amount of
dependence between T' and C' that can be interpreted easily using standard measures of
dependence. All the other estimators considered in Chapter 2 use Kendall’s 7 to specify
the amount of dependence between T" and C. Use of the Fisher-Kanarek estimator is
also not recommended due to some strange behaviour that can be observed when the last

observation is censored.

We recommend that the copula-graphic estimator is used instead of the self-consistent
estimator, when using an estimator with an assumed copula, as it is less computationally
intensive. Also, it is found in a simulation study in Zheng and Klein (1994) that the
self-consistent estimator has a significantly larger bias than the copula-graphic estimator.

It is not known how the other estimators in Chapter 2 compare to the copula-graphic
estimator. However, as these methods cannot easily be used in practice due to the wide
bounds found and the difficulties with incorporating covariates, it would not be particularly

useful to identify the preferred estimator of those in Chapter 2.

The literature review is continued in Chapter 3, where methods that can incorporate
covariates and are generally of more use practically are considered. These methods can
be split into two categories: estimators that use models of the censoring process and

sensitivity analyses.

The most widely used approaches in the literature are estimators that use a regression
model for time to censoring. These estimators are known as inverse probability of censoring
weighted (IPCW) estimators. These estimators are weighted versions of the standard
methods, with the weights being the inverse of the probability of the individual remaining
uncensored under the chosen regression model for time to censoring. This allows us to find
the KM estimate of the survival function or the parameter estimates for the Cox model
in the absence of any censoring. The models for time to censoring that are considered
are Cox’s proportional hazards model, Weibull proportional hazards model and Aalen’s
additive hazard model. We feel that Cox’s proportional hazards model is the best model
to use as it can easily incorporate time-dependent covariates and can also be fitted easily

using standard software.

For IPCW estimators to be unbiased, the assumption of sequential ignorability of
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censoring needs to hold. Consequently, if all the prognostic factors for both 7" and C are
adjusted for in the model for censoring, then C' is independent of 7. This assumption
is more restrictive than some of the other assumptions used in the methods discussed in
Chapter 3. The assumption that is used in Siannis (2004), Siannis et al. (2005) and
Siannis (2011) can be related to the semi-parametric model in Scharfstein and Robins

(2002), which has the assumption of sequential ignorability of censoring as a special case.

However, the assumption of sequential ignorability of censoring is an intuitive choice
as it seems likely that dependence between T' and C' would be due to shared prognostic
factors. But it is possible that some of these prognostic factors are unmeasured and
there would be residual dependence between T' and C' that is not explained by the shared
factors included in the model for time to censoring. If there is residual dependence then
the IPCW estimates would be biased. Although if the most significant shared prognostic
factors are included in the model for time to censoring, then this bias should be fairly small.
Scharfstein and Robins (2002) and Rotnitzky et al. (2007) develop a sensitivity analysis
that can be used to see how sensitive an estimator that assumes sequential ignorability
of censoring is to differing amounts of residual dependence. Unfortunately, this method
cannot be used on IPCW estimators as they used a different estimator that assumes

sequential ignorability of censoring.

Despite this, the sensitivity analysis from Rotnitzky et al. (2007) is still applied to the
Liver Registration data set. It is found that the bounds on the estimator that are derived
are too wide to be of use practically. The method is also so computationally intensive that

it is not easy to include many covariates or factors with many levels.

The other sensitivity analyses presented in Chapter 3 assess the sensitivity of the
results from standard methods to the assumption of informative censoring. Sensitivity
analyses for both parametric survival models and the Cox proportional hazards model are

included.

The sensitivity analyses for parametric survival models are computationally simpler
but cannot be applied to every data set as they require the marginal distributions of T’
and C to be one of the standard parametric survival distributions, such as the exponential
of the Weibull. The sensitivity analysis in Siannis (2004) and Siannis et al. (2005) is our
preferred sensitivity analysis for parametric survival models as it gives values that seem
more feasible than the sensitivity analysis in Zhang and Heitjan (2006). However, the
sensitivity analysis in Siannis (2004) and Siannis et al. (2005) does use several simplifying

approximations which may affect the accuracy of the method.

The sensitivity analysis in Siannis (2011) uses a similar assumption about the depen-
dence between 7" and C' as Siannis (2004) and Siannis et al. (2005) and some of the same

simplifying approximations but for the Cox proportional hazards model. It is more com-
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putationally intensive as it requires the estimation of the baseline hazard functions but

can be applied to a greater number of data sets.

The sensitivity analysis in Huang and Zhang (2008) is also for the Cox proportional
hazards model but uses the same assumption as Zheng and Klein (1994), where the joint
distribution of T" and C is specified using a copula function. This is much more computa-
tionally intensive than Siannis (2011) and also requires additional untestable assumptions.
This is because we have to specify the copula family to be used as well as the amount
of dependence between T" and C. It is for these reasons that the sensitivity analysis in

Siannis (2011) is our preferred sensitivity analysis for the Cox proportional hazards model.

All of the estimators and methods described in the literature review in Chapters 2 and
3 rely on untestable assumptions to make the joint distribution of 7" and C' identifiable.
This means that we are unable to say which of the methods has the most realistic model
for the liver transplantation setting. So any recommendations about which methods to
use when analysing data are based on the properties of the methods and the intuitiveness

of the assumption made about the dependence between T and C.

There are two main conclusions that can be drawn from the literature review: sensi-
tivity analyses are useful for assessing the sensitivity of standard results to the assumption
of informative censoring and IPCW estimators are the preferred estimators when carrying
out analyses on a data set where we know the standard methods are sensitive to infor-
mative censoring. These conclusions have influenced the work in Chapters 4 and 6. In
Chapter 4, we develop a new sensitivity analysis that overcomes some of the weaknesses
of the sensitivity analyses discussed in Chapter 3. In Chapter 6, we use weights similar to

those used for IPCW estimators to adjust for the informative censoring in the data set.

As discussed in Chapter 3, when applying a sensitivity analysis to the data set, we have
to choose between using parametric models or Cox proportional hazards models for the
marginal distributions of T" and C. Using parametric models allows us to use a sensitivity
that is simpler to apply but these models are not suitable for all data sets. Conversely,
proportional hazards models are more flexible and so can be used for a wider range of data
sets but the sensitivity analysis that has to be used is more computationally intensive. The
new sensitivity methodology that we derive in Chapter 4 is a compromise between the two
types of sensitivity analysis considered previously. We use piecewise exponential models
for the marginal distributions of both 7" and C, which are more flexible than standard
parametric survival models but allow us to retain the computationally simplicity of the
sensitivity analysis.

There is only one drawback to using piecewise exponential survival models for the
marginal distributions of 7" and C. To specify the distribution, suitable cut points for the

intervals need to be specified. However, there is no preferred method for doing this in the
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literature.

The sensitivity analysis in Chapter 4 is derived first for scalar parameters in each
interval and is then extended to include covariates as well. There are two possible ways
of incorporating covariates into the sensitivity analysis, using either a linear predictor
or considering a vector of parameters. The sensitivity analysis for a linear predictor is
simpler but the sensitivity analysis for a vector of parameters is more useful as the change
in individual parameter estimates can be assessed. These two methods also give very
different values of the estimated changes in parameter estimates, therefore the model that
accounts for informative censoring is fitted to the Liver Registration data set to assess
which is the more accurate method. The sensitivity analysis is used to approximate the
parameter estimates for this model as it is time consuming to fit this model. It is found
that the results from the sensitivity analysis for the vector of parameters are closest to
those from this fitted model. Therefore this is our preferred method of incorporating

covariates into the sensitivity analysis.

Another issue with this sensitivity analysis is that only small values of the parameter
specifying the dependence between 17" and C' can be used due to the approximations that
are required to obtain the form of the sensitivity analysis equation. It is also useful to
know how these approximations affect the accuracy of the sensitivity analysis. This is
why a simulation study is conducted in Chapter 5. The simulation study uses a range of
different parameter combinations so that the general applicability of the sensitivity analysis
can be assessed. For simplicity, only models with scalar parameters in each interval are
considered in the simulation study. Also, we only assess the accuracy of the sensitivity
analysis when the piecewise parametric models are correctly specified. It is found that
the sensitivity analysis tends to overestimate the change in the parameter estimates, but
it is least accurate when there is a large amount of censoring in the data set or any
individuals with particularly large observation times. Both of these are observed in the
Liver Registration data set, so the sensitivity analysis should be more accurate in other
applications than it is for the situation under consideration in this thesis. As expected, the
sensitivity analysis also becomes less accurate as the value of the dependence parameter

is increased.

The results of the simulation study are used in an attempt to improve the accuracy
of the sensitivity analysis derived in Chapter 4. It is possible that including more terms
in some of the approximations may improve the accuracy of the sensitivity analysis so a
separate sensitivity analysis that uses a quadratic term in one of its Taylor expansions is
also developed. However, it is found that for the Liver Registration data set this sensitivity

analysis is not more accurate than the original sensitivity analysis.

Finally, in Chapter 6, a method that is particularly useful to NHSBT is considered.
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The sequential stratification method allows the survival benefit of groups of patients on
the waiting list for a liver transplant to be calculated. This is achieved by comparing
the survival of each transplanted patient in the data set with the survival of suitable
control patients. We amend an existing method so that the method used to match control
patients is more realistic and the method is suitable for UK data rather than the US data
for which it had originally been designed. The original method matched control patients
by the length of time spent on the waiting list and we revised the method so that patients
who were on the waiting list on the date of a transplant were used as control patients.
However, it is found that the results for the Liver Registration data set are robust to the
method of matching control patients used. We also consider using only patients that are
blood group compatible with the donor organ as control patients and recommend using this
criterion when applying the sequential stratification method to UK data. An additional
criterion that can be used is to ensure that control patients have a suitable weight relative
to the weight of the donor. However, it was found that this made the groups of control
patients for each transplant too small so we recommend that this is not used.

The sequential stratification method can also be used to calculate the survival benefit
of alternative transplantation therapies, such a split liver or a liver from an extended
criteria donor. However, we only discuss this briefly and do not apply this to the Liver
Registration data set.

As the survival benefit of the groups of patients on the waiting list is found using
observational data, then we need to be aware that there may be bias in the results as a
consequence of this. One particular example is selection bias. Any patients in the data
set who were transplanted had been selected by clinicians as suitable for transplantation.
Therefore, the results for each group of patients may not be applicable for every patient

in that group.

7.2 Summary of strengths and weaknesses

There has not previously been a comprehensive review of the most recent literature on
informative censoring, which we have carried out in Chapter 3. This is useful even if we
are considering only the liver transplant setting as many of the findings also apply more
general settings.

The main strength of the sensitivity analysis method derived in Chapter 4 is that it can
be applied to a wide range of datasets whilst still being computationally simple due to the
flexibility of piecewise exponential models. However, there are a couple of drawbacks for
this method. The first is that it can only be applied for fairly small values of dependence

between T' and C' due to the approximations necessary to derive the sensitivity analysis
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equation. Secondly, we have to fit a piecewise exponetial model to the data and there is
no preferred method for identifying the correct cut points to use.

Another strength of the thesis is that a simulation study has been carried out for the
sensitivity analysis developed in Chapter 4 to assess its accuracy in a range of situations.
This has not been done for the sensitivity analysis in Siannis et al. (2005) and Siannis
(2004), which our method is based on. It is found that the sensitivity analysis using scalar
parameters performed worse when there is a large amount of censoring or particularly large
observation values, both of which are present in the liver transplantation setting. But the
simulation study also demonstrates the general applicability of the sensitivity analysis as
it was shown that it is fairly accurate for a wide range of parameter combinations.

The survival benefit methodology described in Chapter 6 has not been applied to UK
data before. Some modifications of the method are also made to make it more suitable for
this data. However, the drawback of this survival benefit methodology is that it is only

suitable for the transplantation setting and cannot be applied in more general settings.

7.3 Suggestions for general data with potentially informa-

tive censoring

A flowchart summarising the process that we recommend should be followed if there is
potentially informative censoring in a dataset is given in Figure 7.1.

We can see that in Figure 7.1, the first decision to be made is whether there is a
convincing argument for potentially informative censoring in the data set. Unfortunately,
due to the identifiability issues described in Section 1.1.2, it is not possible to develop a
test to establish whether there is informative censoring in a data set. Therefore, the best
alternative is to see whether there is a good argument for informative censoring and then
conduct a sensitivity analysis to establish whether the assumption of informative censoring
affects the results of the standard models.

When applying a sensitivity analysis to assess the sensitivity of the results from stan-
dard models to the assumption of informative censoring, we recommend using the sen-
sitivity analysis we developed in Chapter 4. This is because it is flexible enough to be
applied to most data sets whilst still being computationally simple. To establish whether
the results of the standard models are sensitive to informative censoring for the application
being considered, then the change in values of interest should be investigated. The values
of interest that are used will depend on the application being considered. For example,
in the liver transplantation setting the individual survival functions are assessed as ulti-
mately we will be calculating survival benefit which is affected by changes in individual

survival. It is not possible to develop a test of whether the changes in the values of interest
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Figure 7.1: Flowchart showing the process to be followed if there is potentially informative

censoring in a data set.
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are significantly large. Therefore, the decision of whether the changes are considered to
be large will again depend on the particular application that is being considered and is
subjective.

If it is determined using the sensitivity analysis that the change in the values of interest
are indeed considered large, then the analyses for this data should be carried out using
IPCW versions of the required estimators. If the changes in the values of interest are

found to be fairly small, then the standard methods of analysis can be used.

7.4 Summary of value of work to NHSBT

Chapters 2 and 3 provide a comprehensive review of the informative censoring methods in
the literature for the liver transplantation setting. We identify the most suitable estimators
and sensitivity analyses to be used in this setting. The results of this literature review
are also applicable to the analysis of patients on the waiting list for transplants for other
organs, with the exception of those waiting for a kidney transplant.

In Chapters 4 and 5, we develop an improved sensitivity analysis and establish its
general applicability. Its flexibility and computational simplicity mean that it can be
easily applied to any data set in the transplantation setting where there is potentially
informative censoring.

The survival benefit methodology derived in Chapter 6 is particularly useful for NHSBT
as it allows the survival benefit of groups of patients on the waiting list to be calculated.
Modifications were made to the method presented in Schaubel et al. (2009b) to ensure that
it is suitable for UK data, rather than the US data for which it was originally developed.
It can also be easily amended to give the survival benefit of patients that receive new or
alternative transplant therapies. This is useful to NHSBT as they have introduced the use

of split livers and extended criteria donor to increase the number of donor livers available.

7.5 Extensions and Future Work

When developing the sensitivity analysis in Chapter 4, only piecewise exponential models
are considered. Omne possible extension of this work is to make it suitable for use with
piecewise Weibull models.

The simulation study for this sensitivity analysis that is carried out in Chapter 5
could also be extended. We only consider the accuracy of the sensitivity analysis when
the piecewise parametric models for the marginal distributions are correctly specified.
However, it is likely that we will not identify the exact piecewise parametric distribution

present in a data set, so it would be useful to investigate the robustness of the sensitivity
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analysis to the misspecification of the models for the marginal distributions.

There is also more work that could be done on the survival benefit methodology derived
in Chapter 6. The method could be applied to the transplantation of other organs as it
is likely that there will be the same issues with informative censoring. We could also look
into calculating the survival benefit of alternative therapies, mentioned briefly in Section
6.3.1, in more detail and develop programs to implement this.

Finally, we observe a large amount of missing data in our data set so another area
of possible future work is to develop an multiple imputation method for large medical
databases. This would prevent us from having to disregard large numbers of observations

due to missing data.
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