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either selling their item directly or through a priced option. In our model, the seller fixes the

exercise price for this option, and then sells it through a first-price auction. We analyze this
model from a decision-theoretic perspective and we show, for a setting where the competition is
formed by local bidders (which desire a single item), that using options can increase the expected
profit for both sides. Furthermore, we derive the equations that provide minimum and maximum

bounds between which the bids of the synergy buyer are expected to fall, in order for both sides of
the market to have an incentive to use the options mechanism. Next, we perform an experimental
analysis of a market in which multiple synergy buyers are active simultaneously. We show that,

despite the extra competition, some synergy buyers may benefit, because sellers are forced to set
their exercise prices for options at levels which encourage participation of all buyers.
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1. INTRODUCTION

Online auctions play an important role in electronic commerce, as a method for allocating
goods or services between self-interested agents. Single item auctions have been studied
extensively in existing auction theory [Klemperer 1999], and several auction formats are
known in which bidders can achieve their optimal utility by using simple, dominant bidding
strategies. However, this property is generally true only for single-item, one-shot auction
mechanisms, whereas in reality many of the auctions observed on the Internet today take
place independently and sequentially, in the sense that they are run by different sellers
and have different closing times. Furthermore, a buyer participating in a sequence of such
auctions may desire a combination of items, rather than a single one. Whenever a buyer
can obtain a synergy value5 between several goods sold sequentially, she faces an exposure
problem.

The exposure problem has been studied before [Boutilier et al. 1999; Sandholm and
Lesser 2002; Osepayshvili et al. 2005; Wellman et al. 2008; Greenwald and Boyan 2004]
(among others). Informally, the problem occurs whenever anagent may buy a good at a
higher price than what that good, by itself, is worth to her, in the hope of obtaining extra
value through synergy with another good, which is sold later. However, if she then fails to
buy this other good at a profitable price, she ends up with a loss. In this paper, we call such
a global bidder asynergy buyer6.

The problem appears frequently on the Internet, under different forms. In retail elec-
tronic commerce, many goods sold on large online auction platforms (e.g. eBay) have
complementary values to the bidders. For example, a buyer bidding on an expensive mon-
itor may count on getting a corresponding configuration for the computer (and sound) sys-
tem in a later auction. In the travel reservations domain, buyers need to reserve their flight,
hotel and entertainment tickets as a package, and have little value for the different parts
taken individually (this also being the setting of the Trading Agents (TAC) Travel Compe-
tition). The exposure problem also appears in business-business electronic commerce. For
example, in transportation logistics, online freight exchange companies such as Teleroute
(www.teleroute.com) list up to 150,000 transportation loads daily for different destinations
across Europe, which are allocated on a competitive, auction-like basis7. However, the
value of bidding for a transportation load for a carrier often depends on the probability of
acquiring a return order, made available in a later auction.

Finally, another web domain where this problem appears is the dynamic allocation of
web services, such as grid services, especially in domains where such services can be
acquired from competing suppliers. A problem in this case isthe co-location problem: two
web services need to be acquired simultaneously, in order for an agent to extract value from
them [Czajkowski et al. 1999; Stein et al. 2009]. For example, if a research lab secures
a time slot to obtain observation data from an expensive telescope or reactor, it needs to

5The value of a combination of goods is super-additive with respect to the sum of the values of the goods, taken
individually.
6Note that, since in the auction settings we consider in this paper, we always model a set of buyers bidding to
acquire a good from a set of sellers (who conduct the auctions), we can use the terms “synergy buyer” or “synergy
bidder” interchangeably, without loss of generality.
7In practice, allocation mechanisms used in multi-party logistics are not always strictly auctions, as the agent
offering the order may decide which carrier bid to accept based on other criteria than just the lowest price offered
(e.g. trust in that carrier, previous business relationship etc.).
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ensure that the computing capacity required to process thisdata will be available at the
required time.

In this paper, we use the generic term “goods” for the set of indivisible items to be
allocated in a sequence of auctions. Without loss of generality, these can be thought of
as either physical goods (such as computers or monitors) or virtual goods (such as web
services, processing capacity, user attention space in online advertising etc.).

Some solutions for this problem have looked at designing thebidding strategies of in-
dividual agents participating in such a sequential auctionmarket [Boutilier et al. 1999;
Greenwald and Boyan 2004; Reeves et al. 2005; Vetsikas and Jennings 2008; Robu and
La Poutŕe 2007; 2010]. Different classes of the TAC competition [Wellman et al. 2007]
also require, among other capabilities, efficient sequential bidding from the participants.
However, an automated bidding strategy participating in such a sequence of auctions faces
a high degree of uncertainty, as its final utility depends on the outcome not only of the cur-
rent, but also of future auctions. It is possible that bidding agents facing an exposure prob-
lem may choose not to participate in the market, because their optimal, decision-theoretic
bidding policy does not give them a positive expected utility from the auction sequence.
Furthermore, agents with an exposure problem may shade their bids, which reduces further
both auctioneer revenues and market allocative efficiency.

For this reason, another important line of work takes the mechanism design point of
view, and replaces sequential allocation with one-shot mechanisms, such as combinatorial
auctions [Cramton et al. 2006; Sandholm 2002]. This approach, while it has been shown
to be successful in theory and in practice for a range of settings, does have some important
disadvantages. It typically requires a central point of authority, which receives the bids
and computes the optimal allocation and payments, a processwhich can be computation-
ally expensive. However, even assuming that the computational side of the combinatorial
allocation problem can be addressed (and considerable workhas focused in this direction,
e.g. [Sandholm 2002]), many allocation problems occurringin practice are inherently de-
centralized and sequential, and cannot be mapped into one-shot, centralized mechanisms.
Possible examples range from items sold on eBay by differentsellers in auctions with
different closing times, loads appearing over time from different shippers in distributed
transportation logistics, to power allocation in dynamic electricity grids with competing
suppliers.

In this paper, we consider a different approach, which preserves the sequential nature of
the allocation problem, and propose a mechanism that involves auctioningoptionsfor the
goods, instead of the goods themselves.

1.1 Options: basic definition

An option can be seen as a contract between the buyer and the seller of a good, subject to
the following rules:

—The writer or seller of the option undertakes theobligation to sell the good for a pre-
agreedexercise priceon the demand of the buyer.

—The holder or buyer of the option gets theright to buy the good for the agreedexercise
price, but not the obligation to do so.

Since the buyer gains the right to choose in the future whether or not she wants to buy
the good, an option comes with anoption price, which she has to pay regardless of whether
she chooses to exercise the option or not.
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Options can thus help a synergy buyer reduce the exposure problem she faces. She still
has to pay the option price, but if she fails to complete her desired bundle, then she does not
have to pay the exercise price as well and thus she limits her loss. So part of the uncertainty
of not winning subsequent auctions is transferred to the seller, who may now miss out on
the exercise price if the buyer fails to acquire the desired bundle. At the same time, the
seller can also benefit indirectly, from the participation in the market by additional synergy
buyers, who would have otherwise stayed out, because they faced a high risk of exposure
to a potential loss.

1.2 Related work

In existing multi-agent literature, to our knowledge, there has been only limited work to
study the use of options to address the exposure problem.

The first work to introduce an explicit option-based mechanism for sequential-auction
allocation of goods to the multi-agent systems (MAS) community was by Juda & Parkes
[Juda and Parkes 2009]. They create a market design in which synergy buyers are awarded
free (i.e. zero-priced) options, in order to cover their exposure problem and, for this set-
ting, they show that truth-telling is a dominant strategy. In this case model, the exposure
problem is entirely solved for the synergy buyers, because they do not even have a possible
loss consisting of the option price. Having a dominant bidding strategy for the buyers is
a crucial property from a game-theoretic perspective, although in practice most real-life
online markets do not exhibit this property.

However, the mechanism proposed by Juda & Parkes relies on some assumptions that
could limit its applicability in some real-life markets. Inparticular, market entry effects
may not always be sufficient to motivate the sellers of the items to use options. Because
the options are designed to be offered freely (zero-priced), there are cases in which sellers
do not have a sufficient incentive to offer free options, because of the risk of remaining
with their items unsold. The sellers could, however, demanda premium (in the form of the
option price) to cover their risk. In such cases, only positively-priced options can provide
sufficient incentive for both sides of the market (buyers andsellers) to prefer an options
mechanism over direct auctions. Moreover, while their mechanism guarantees that truth
telling is a dominant strategy for the buyers, this propertymay come at a loss of efficiency
for some settings, and sellers are assumed to be willing to wait in the market (and get their
payments marked downwards) until the buyers of their options leave.

Priced options have a long history of research in finance (see[Hull 2003] for an overview).
However, the underlying assumption for all financial optionpricing models is their depen-
dence on an underlying asset, which has a current, public value that moves independently
of the actions of individual agents (e.g. this motion is assumed to be Brownian for Black-
Scholes models). This type of assumption does not hold for the online, sequential auctions
setting we consider.

Another line of research in the business literature focuseson real options [Amram and
Kulatilaka 1998; Smith and McCardle 1999], which do not relyon the price of an underly-
ing, publicly traded asset. Most of the literature on real options we are aware of focuses on
modeling long-term business investment decisions.A relevant work that studies the use of
options in online auctions is [Gopal et al. 2005]. They discuss the benefits of using options
to increase the expected revenue of a seller of multiple copies of the same good. In [Gopal
et al. 2005], however, it is the seller that fixes both the option price and the exercise price
when writing the option, which requires rather strong assumptions on the knowledge of the
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seller and on the behaviour of the bidders.
There is also a connection between options and leveled commitment mechanisms [Sand-

holm and Lesser 2002; 2001; ’t Hoen et al. 2005]. In the leveled commitment mechanism
proposed by Sandholm and Lesser, both parties have the possibility to decommit (i.e. uni-
laterally break a contract), against paying a pre-agreed decommitment penalty. However,
as [Sandholm and Lesser 2002] show, setting the level of the decommitment penalty can be
hard, due to the complex game-theoretic reasoning required. There are situations in which
both parties would find it beneficial to decommit but neither does, hoping the other party
would do so first, in order to avoid paying the decommitment penalty. This differs from
option contracts, where the right to exercise the option is paid by one party in advance. In
our model, this right is sold through an auction, thus the option price is established through
an open market.

An alternative direction of research that aims to tackle a similar challenge is online
mechanism design [Friedman and Parkes 2003; Parkes 2007; Gerding et al. 2011; Robu
et al. 2011]. However, the online mechanism design literature we are aware of is mainly
concerned with the problem of declaring truthful entry and exit times in a market, and does
not deal with complementary valuations or bidder exposure to risk.

Finally, recent work by Robu, Vetsikas, Gerding & Jennings [Robu et al. 2010a; 2010b]
(which appeared after the publication of our initial paper [Mous et al. 2010]) starts from
the priced options mechanism developed in this work, and proposes a more complex and
flexible model for pricing options. The starting assumptions considered by the two lines
of work are somewhat different, because this work considersa model with first priced
options and hidden reservation values (following the transportation logistics business case
that initially motivated the work), while Robu, Vetsikas, Gerding & Jennings consider a
model with a sequence of complementary second-price auctions and no reservations. We
refer interested readers to [Robu et al. 2010a; 2010b] for a detailed comparison of the two
approaches.

1.3 Outline and contribution of our approach

The goal of this paper is to study the use of priced options to solve the exposure problem
and to identify the settings in which using priced options benefits both the synergy buyer
and the seller.

An option contract specifies two prices, so an adjustment needs to be made to the stan-
dard auction with bids of a single price. In this study, in order to make the analysis
tractable, we have a fixed exercise price and a flexible optionprice. The basic way our
mechanism works is that the seller determines the exercise price of an option for the good
she has for sale and then sells this option through a first-price auction. Buyers bid for the
right to buy this option, i.e. they bid on the option price. Wenote that this mechanism has
the attractive property that direct auctioning of the itemsappears as a special case. If the
seller fixes the future exercise price for the option at zero,then a buyer actually bids for
the right to get the item for free. Since such an option is always exercised (assuming free
disposal), this is basically equivalent to direct auctioning of the item itself.8

8An alternative would be to let the sellers fix the option prices, and the exercise prices be determined by the
market. A potential downside of such a mechanism may be that, if the option price is set too low, bidders could
hoard options without any intention of exercising them, justto block other bidders from competing in future
auctions.
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Based on the above description, we provide both an analytical and an experimental in-
vestigation of the setting. Our analysis of the problem can be characterized as decision-
theoretic, meaning both buyer and seller reason with respect to expected future prices.
There are both advantages and disadvantages to a decision theoretic approach. The dis-
advantage is that, unlike the existing game-theoretic approach to options [Juda and Parkes
2009] or related online mechanism design approaches [Parkes 2007], one cannot guaran-
tee that bidders have a dominant bidding strategy. On the other hand, using a mechanism
design approach often requires additional assumptions, such as the assumption in Juda &
Parkes that sellers would be interested to provide options,in order to keep buyers truthful.
Unlike such approaches, decision-theory tries to model directly the reasoning and bidding
behaviour of agents acting in real life markets (in most real-life sequential auction mar-
kets, no dominant bidding strategy exists anyway). While forgoing some of the strong,
game theoretic rationality concepts, this has the advantage that it makes the analysis com-
putationally tractable for larger settings.

To summarize, our contribution to the literature can be characterized as twofold:

First, we consider a setting in whichn goods (or options for them) are auctioned se-
quentially. In our setting, there is one synergy bidder witha complementary valuation over
these goods, the rest of the competition being formed by local bidders desiring only one
good. For this setting, we show analytically (under some assumptions) when using priced
options can increase the expected profit for both the synergybuyer and the sellers, com-
pared to the case when the goods are auctioned directly. In order to provide a rigorous
formal characterization of these settings, we derive the equations that provide minimum
and maximum bounds between which the bids of the synergy buyer are expected to fall, in
order for both sides to have an incentive to use options.

In the second part of the paper, we consider market settings in which multiple synergy
buyers (global bidders) are active simultaneously, and study it through experimental sim-
ulations. In such settings, we show that, while some synergybuyers loose because of the
extra competition, other synergy buyers may actually benefit, because sellers are forced to
fix exercise prices for options at levels which encourages participation of all buyers.

We note also that, while both parts of the paper study decision theoretic bidding be-
haviour, we consider different levels of information aboutthe future available to the syn-
ergy bidder. In the analytical case, the exact order of the auctions is assumed to be known,
and we consider a bidder that wants a bundle of all the items tobe auctioned. In the ex-
perimental part, where the synergy bidder wants only a sub-bundle of the goods from a
potentially large sequence, we assume that bidding agents know only the number of future
buying opportunities for an item of each type, not their exact order. This is actually more
realistic for the application scenarios we consider. For example, when bidding to acquire a
part-truck order in transportation logistics, it is more realistic to assume that a carrier can
approximate the number of future opportunities to buy a complementary load, but not the
exact auction order in which future loads will be offered forauction.

The structure for the rest of this paper is as follows. Section 2 lays the foundation for
further analysis by deriving the expected profits of synergybuyers and sellers for both the
direct sale, respectively for a sale with options and clarifies some of the assumptions used
in our model. Section 3 provides the analytical results and proofs of the paper, for a market
of sequential auctions with one synergy buyer. Sections 4 and 5 present the results from
our experimental study, while Section 6 concludes with a discussion.
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2. EXPECTED PROFIT FOR A SEQUENCE OF N AUCTIONS AND 1 SYN-
ERGY BUYER

In Section 3 of this paper, we show analytically that optionscan be profitable to both
synergy buyer and seller. This section provides a basis for these proofs, by first deriving the
expected profit functions (which depend on the bids of the synergy buyer) for the synergy
buyer and the seller. Throughout this study it is assumed that both sellers and buyers are
risk neutral and that they want to maximize their expected utility or, in this case, their
expected profit.

2.1 The market setting

We consider a market set-up in whichn unique, complementary goods, are sold individu-
ally in auctions with sequential closing times.

Formally, letG be the set ofn goods for sale in a temporal sequence of auctions and
vsyn(Gsub) be the valuation the synergy buyer has forGsub ⊆ G. In this section, we
further assume thatvsyn(G) > 0 and∀Gsub ( G, vsyn(Gsub) = 0. In other words, to
somewhat simplify the theoretical analysis, we consider a synergy buyer that desires the
bundle of all the goods considered in the model (Gsub = G).

The goodsG1..Gn ∈ G are sold individually through sequential, first-price, sealed-
bid auctions. The main reason for this choice is that, in manysettings where sequential
auctions occur in practice, such as request-for-quotes (RFQ) auctions in logistics or supply
chains, a model close to first-price auctioning is often used.

Moreover, in a setting with sequentially closing auctions (unlike in single-shot auctions),
the usual reason for preferring second-price auctions to first-price ones (i.e. that bidding
one’s value is a dominant strategy) does not apply. In sequential setting with valuation
complementarities of the agents, second-price auctions donot have the dominant strate-
gies properties described by Vickrey for a single auction (see also [Boutilier et al. 1999;
Greenwald and Boyan 2004] for a discussion of this issue).

The time these auctions take place in ist = 1 . . . n, such that at timet goodGt ∈ G
is auctioned. The above assumptions mean that if the synergybuyer has failed to obtain
Gt, then she cannot achieve a bundle, for which she has a positive valuation. So ifGt+1 is
auctioned with a positive reserve price, then obtainingGt+1 would cost the synergy buyer
money. If the synergy buyer fails to obtainGt, then it is rational for her to not place bids
in subsequent auctions.

Therefore, in this paper, we consider a model in which the number of future opportuni-
ties to buy the good (i.e. auctions) is known, but there is uncertainty over the outcome of
these auctions. This models well decentralized settings, in which sellers are independent
and/or the items are auctioned off as they arrive. One such practical example [Robu et al.
2008; Robu et al. 2011] is decentralized transportation logistics, where transportation or-
ders are auctioned off by different sellers (called shippers) at different points of arrival in
the market, as they become available9.

The bids of the synergy buyer are~B = (b1, . . . , bn), wherebt is the bid the synergy
buyer will place for goodGt, conditional on having won the previous auctions. Because

9In future work, we plan to look at extending this model to deal with uncertainty about thenumberof future
auctions, as well as their outcomes. However, this would require a further approximation in the way that future
uncertainty in completing the desired bundle is computed, which would make getting clear analytical results
difficult.
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of the first-price auction format,bt is also the price the synergy buyer has to pay if she
wins the auction. Throughout this analysis, we assume the competition the synergy buyer
faces for each goodGt (sold at timet) is formed by local bidders that desire only the
goodGt. We further assume that these local bidders do not consider the bids placed by
the synergy buyer in their bidding. Therefore, from the perspective of the synergy bidder,
the competition can be modeled as a distribution over the expected closing prices at each
time pointt, more precisely as a distribution over a valuebt,maxl, which is the maximal
bid placed by the competition not countingbt.

An important part of the reasoning of the synergy buyer’s strategy, in our model, is the
availability, for each auction held at timet, of a probability distributionFt(bt), which gives
the buyer her probability of winning the item sold at timet by placing bidbt in that auction.
There are several ways in which, in a realistic scenario, thesynergy buyer could acquire this
information. First, it may be that the synergy buyer knows, for each auction, the number
of local bidders she is competing against, and has a distribution over their valuations. In
such a case, it would be easy to aggregate this local competition in a single probability
distribution function, that returns the probability of winning, given a bid. More generally,
however, this distribution could be learned from repeated interactions/participation in the
market, and may not necessarily require knowledge about thenumber of competitors in
each auction.

We can exemplify this type of probabilistic reasoning in a realistic application scenario,
which initially motivated this theoretical work - distributed transportation logistics [Robu
et al. 2008; Robu et al. 2011]. In such a market, carriers (i.e. companies owning the actual
trucks) have to bid in request for quotes auctions10. A logistic planner (representing a
carrier), knows what an order from Amsterdam to London coststo execute, on average,
given the market conditions on a given day. If she bids an amount bt, she can estimate the
probability of being awarded that order. Note that, in this case, she may not know exactly
which other carrier companies are present in the market, butfrom her experience she can
estimate her chances of winning the order by placing a certain bid.

2.2 Hidden reservation values

For each goodGt, there exists a strictly positive reservation value ofbt,res, which is the
seller’s own valuation for that good, or, alternatively, itcan be seen as a resale value if she
fails to sell the good in the current auction. To explain, in many real sequential auction
markets where options can be applied, sellers have the option of trying to resell their goods
later, even if the expected revenue of selling later is less than the expected revenue from
selling now. For instance, someone who can’t sell his/her computer monitor or bike frame
on Ebay today will try again in the future, although there is acost involved in waiting.
While we do not model resale explicitly in our model, it is realistic to allow the goods to
have a residual resale for sellers, because a seller would not want to sell her good now if
the maximum offer received would be less than what she could get by waiting to sell in a
future auction.

In order to model this formally, we allow sellers of each goodGt to set a hidden reserve
valuebt,res, not visible to the bidders before the auction starts. The way such a model with
hidden reserves works is that, after all the bids have been received, a seller can keep the

10Note that, while in this paper, for simplicity, we consider direct, not reverse auctions in which the lowest bid
wins, the exposure problem over bundles of orders is identical.
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goods if the maximal bid received falls under her hidden reserve value. Having a secret
(as opposed to a public) reservation value in afirst price auction motivates sellers to be
truthful in setting their reserves - see [Bajari and Hortacsu 2003; Elyakime et al. 1994] for
a discussion of this point11.

Note that, while hidden reservation values ensure sellers are not forced to sell their items
unless they want to, they also have the advantage of preventing the “hold up” effects, that
would appear with publicly posted reservation values. For example, the seller in the last
auction in the sequence could post such a high reservation price as to extract the entire
valuation from the synergy bidder. However, with a hidden reservation value, the game is
two-stage: the seller decides on whether to accept or rejectoffersafter the bids are received
(i.e. she cannot pre-commit to a reservation price), which precludes this undesired effect12.

In order to model the reasoning of the synergy bidder in the presence of the hidden
reservation value, we introduce an additional joint variable bmt defined as:

bmt = max{bt,maxl, bt,res} (1)

wherebt,maxl denotes the maximum bid by one of the local bidders in the auction at time
t, while bt,res is the reservation price of the seller. Thus,bmt can be seen as themaximum
alternative bidin the auction at timet, which can come either from one of local bidders
or the seller (representing its hidden reserve value, belowwhich the item won’t get sold).
Using a decision theoretic approach, we can model the strategy of the synergy bidder with
respect to only a single probability over variablebmt, which is essentially a probability
over the maximum of variablesbt,maxl and bt,res. This can be easily computed if the
probabilities overbt,res andbmt are available separately, or it could be learnt directly over
time, from repeated participation in the market.

2.3 Synergy buyer’s profit with n unique goods, without options

Formally, we denote byFt(bt) the probability that the synergy buyer wins goodGt with
bid bt - whereFt(bt) depends on whetherbt can outbid the maximal bidbmt of by the
competition, excludingbt (as defined in Equation 1 above).To deal with ties, we assume
the synergy buyer wins onlyGt if bt > bmt and not if the bids are equal. ThenFt(bt) can
be defined as follows:

Ft(bt) = Prob(bt > bmt) (2)

The synergy buyer has only a strictly positive valuation forthe bundle of goodsG, which
includes all the goodsGt, sold at timest = 1..n. Therefore, in a market without options,
the a-priori expected profitπdir

syn of the synergy buyer is:

E(πdir
syn) =

[

vsyn(G)

n
∏

i=1

Fi(bi)

]

+

[ n
∑

j=1

(−bj)

j
∏

k=1

Fk(bk)

]

(3)

The synergy buyer wants to maximize her expected profit. So her optimal bids~B∗ =

11Note, however, that, as shown in [Elyakime et al. 1994], having a publicly posted reserve value may actually
bring sellers more revenue, but in our model we don’t allow this. The reason is that this would not keep sellers
truthful, and place an additional computation burden on the bidders, due to the presence of the public reserve
price parameter.
12In addition, in practical settings it would be hard for the seller to know its exact place in the auction sequence
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(b∗1, . . . , b
∗
n) maximize equation 3:

~B∗ = argmax ~B∗
E(πdir

syn) (4)

Note that, with a decision theoretic model, the synergy bidder takes into account the
reservation valuesbt,res as part of the expectation probabilityF (bt) (recall thatF (bt) is
defined as the probability of winning by placing bidbt).

2.4 Seller’s expected profit and strategy assumptions

Next, the profit of the sellers are examined. We assume that all sellers have their own
valuation for the good that they sell and that they set their reserve price ofbt,res equal to
this private valuation. So when the good is sold forbt, the seller ofGt has a profitπdir

t of
bt − bt,res. As previously shown, the synergy buyer participates only when she has won
the previous auctions; otherwisebmt is the maximal placed bid (or, ifbmt = bt,res, the
seller keeps the item).

Additionally, we also need an assumption on the seller’s patience, because when an
option is sold to a synergy buyer, that buyer must be able to decide whether to exercise
it or not after all the other auctions of interest finish. To avoid such timing issues, in our
model we explicitly assume that then auctions that a synergy buyer can participate in are
conducted by sellers with longer deadlines than the buyers.

Given the above modeling assumptions, the expected profit ofthe seller of the goodGt

sold at timet can be written as:

E(πdir
t ) = (E(bmt) − bt,res)(1 −

t−1
∏

i=1

Fi(bi)) +
(

Ft(bt)(bt − bt,res)

+ (1 − Ft(bt))(E(bmt|bmt ≥ bt) − bt,res)
)

t−1
∏

i=1

Fi(bi) (5)

Intuitively explained, the equation defines the expected utility over 3 disjoint cases: one
in which the optimal bidsbi of the synergy bidder were not sufficient to win all auctions up
to time t, in which case the expected profit of the seller is the highestexpected bid of the
local bidders, captured byE(bmt), minus its own reservation valuebt,res (or, in the case
bmt = bt,res, possible according to Equation 1, this term becomes zero);the second case
in which the synergy bidder wins all previous auctions, including the current one (i.e. the
one at timet), in which case the expected profit is this bid minus reservation bt−bt,res, and
the third in which the synergy buyer won all previous auctions but fails to win the current
one, in which case still the highest bid by the local bidders is taken.

2.5 Synergy buyer and seller profits in a model with options

Previous sections derived the expected profit functions forthe synergy buyer and the sellers
in a market without options. The next step is to do the same fora market with options. This
section has the same setting as the general model withn goods being sold, only now an
option onGt is auctioned at timet. Therefore, all the sellers in the market will sell options
for their goods, instead of directly the goods themselves. After then auctions have taken
place, the buyers need to determine whether or not they will exercise their option. It is
assumed that an option is exercised only if a buyer has obtained her entire, desired bundle.
The local bidders are only interested inGt, so they will always exercise an option onGt

ACM Journal Name, Vol. V, No. N, August 2012.



· 11

should they have one. The synergy buyer is only interested ina bundle of all goods, so she
will only exercise an option (and pay the corresponding exercise price) if she has options
on all the goods required.

The option consists of a fixed exercise priceKt and the synergy buyer’s bids on the
option price are ~OP = (op1, . . . , opn). The maximal bid without the synergy buyer was
bmt, but nowopmt is the maximal placed option price.

Recall that we assume that the competition is formed by localbidders, who cannot rea-
son about the presence in the market or the bids placed by the synergy buyer. Moreover,
all local bidders in an auction only want the one good sold in that auction, hence they do
not benefit from having an option and they will always exercise any option they acquire.
Because of these assumptions, it follows that the competition will keep bidding the same
total price, which is the bid without options minus the exercise price. Thus the distribution
of the competition is only shifted horizontally to the left,by the reduction of the exercise
price: opmt = bmt − Kt (since the seller can setKt ≤ bt,res, this ensures that always
bmt ≥ Kt, c.f. Equation 1). Thus, if the synergy buyer bids the same total price (option +
exercise), then she has the same probability of winning the auction in both models.

Let F o
t (opt) be the probability thatopt wins the auction for the option onGt. So if

opt + Kt = bt, thenF o
t (opt) = F o

t (bt − Kt) = Ft(bt).
The synergy buyer’s expected profit with options then is:

E(πop
syn) =

[

vsyn(G) −
n

∑

h=1

Kh

] n
∏

i=1

F o
i (opi) +

n
∑

j=1

[

(−opj)

j
∏

k=1

F o
k (opk)

]

(6)

So her optimal bids~OP
∗

= (op∗1, . . . , op
∗
n) maximize the profit equation 6:

~OP
∗

= argmax ~OP
∗ E(πop

syn) (7)

The main difference for the seller ofGt, is that if the synergy buyer wins, then she earns
opt immediately when the options is sold, and an additionalKt − bt,res when (and if) the
option is exercised. The probability of exercise is the probability that the synergy buyer
wins all the subsequent auctions. As in the model without options, the seller of goodGt

can set a hidden reservation value for her goodbt,res. As before, this represents a potential
resale value for her, in case the item remains unsold, or in case the option for the item is
sold, but it is not exercised. Basically, the way the mechanism works is that each seller
announces the exercise price level ofKt, and receives a number of option price bids. After
all these option price bids are received, the seller has the option to cancel the auction and
keep the good if the maximal bid received falls underbt,res − Kt.

Given this model, the total expected profit of the seller of goodGt sold at timet is:

E(πop
t ) = (E(opmt) + Kt − bt,res)(1 −

t−1
∏

i=1

F o
i (opi))

+
(

F o
t (opt)

[

opt + (Kt − bt,res)

n
∏

h=t+1

F o
h(oph)

]

+ (1 − F o
t (opt))(E(opmt|opmt ≥ opt) + Kt − bt,res)

)

t−1
∏

i=1

F o
i (opi) (8)
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Briefly explained, this equation has the same 3-case structure as Eq. 5 above. In two
cases: when the synergy buyer loses an auction for one the earlier items in the sequence
(before the items sold at timet), or when she wins all the earlier auctions, but not the auc-
tion at timet, the expected payoffs are equivalent to the direct auctioning case, although
this time expressed slightly differently, based on both theexercise and option price. How-
ever in one case, when the synergy buyer acquires all the previous items and the current
one (middle line in Eq. 8), the payoff is composed of two amounts. The option priceopt

will be gained for sure, in this case. However, the difference between the exercise and
reserve priceKt−bt,res (which signifies the item actually changes hands) is acquired only
if the synergy bidder also wins all the subsequent auctions at timesh = t + 1..n.

This is an important difference, since in one important case, part of the amount she is
about to receive depends on the outcome of future auctions. The key, however, rests in the
key observation that the synergy buyer should be willing to bid more in total (i.e.Kt +opt)
than in the direct auctions case. This will be analyzed in thenext section.

Note that the order in the auction sequence is important, andsellers placed towards the
end of the auction sequence are likely to benefit more from thefact that a synergy bidder
is present in the auction. In practice, it would be desirableto establish the agenda such
that the most valuable items are sold first - see Fatima [Fatima 2006] for a discussion.
The theoretical analysis provided in the next section, however, starts from very general
framework, and would allow us to model any auction order.

Before presenting our analytical and experimental study, we summarize for clarity the
assumptions used in the model in the form of Table I.

3. ANALYTICAL STUDY OF THE CASES IN WHICH OPTIONS CAN BENEFIT
BOTH SYNERGY BUYER AND SELLER

In Section 2, we derive the a-priori, expected profit for the synergy buyer and the sellers as
a function of the synergy buyer’s bids for a market with and without options. In this section,
we use these functions to determine the difference in profit between the two markets, which
is πδt andπδsyn for the seller of goodGt and the synergy buyer respectively, where:

Definition 3.1.

πδt = πop
t − πdir

t ,

πδsyn = πop
syn − πdir

syn

So if πδt andπδsyn are positive, then both agents are better off with options.

3.1 Bidding strategies which ensure that both parties benefit from using options

Let ~B∗ denote the synergy buyer’s optimal bidding policy in a market where goods are
sold directly (without options). We assume for the rest of Section 3 that for1 ≤ t ≤
n, Ft(b

∗
t ) > 0 andFt(b

∗
t ) < 1. So she may complete her bundle, but may also end up

paying for a worthless subset of goods. Thus she faces an exposure problem. For the

market with options, we define a benchmark strategy~OP
′

for the synergy buyer, so that
the two markets can easily be compared.

Definition 3.2. Let b∗t be the optimal bid that the synergy buyer would place in the
auction at timet if no options are offered, andKt the exercise price of the option sold at
timet (pre-set by the seller of goodGt). Under the assumptions thatb∗t > Kt and that local
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Synergy buyer Requires all the goodsGt, sold at timest = 1..n (full complementarity)
Decision-theoretic reasoning w.r.t. two distributions:

Ft(bt) in the direct auctions model
F o

t (opt) = Ft(bt − Kt) in the model with options
Local bidders Only want goodGt auctioned at timet

Do not reason about bids placed by the synergy bidder
Maximal bid placed by local bidders modeled asEbt,maxl

Behaviour can be captured by joint stochastic variablebmt = max{bt,maxl, bt,res

Only sell one goodGt sold at timet through a closed, first price auction
Sellers Are patient (stay in the market longer) than synergy bidders

Have a residual (resale) valuebt,res in case the good is unsold
Reservation Hidden: Seller cannot pre-commit and announce reservation value

values Seller may keep the good if maximal bid received under its reservation
In first price auctions, seller will use its residual valuebt,res truthfully

Option Each seller sets and announces exercise pricesKt

model In the analysis, all bidsb∗t ≥ Kt, otherwise bidder drops out.
Sellers’ prior Analytical part: Sellers know their position in auction sequence
knowledge Experiments:Sellers may not know their exact position in advance

Any type of distributions can be handled by the bound formulas shown.
Type of distribution For some distributions, the bids can only be determined numerically.

considered To give a closed form expression for optimal synergy bids,
uniform distribution are used (but in Section 3.2 only).

Table I. Summary of assumptions underlying the model.

bidders in the auction at timet do not reason about the bids of the synergy bidder, we define

the benchmark strategy for the synergy buyer’s bids with options ~OP
′
= (op′1, . . . , op

′
n)

for 1 ≤ t ≤ n as:

op′t = b∗t − Kt

The benchmark strategy implies that the synergy buyer will bid the same total amount
for the good, as if she used her optimal bidding policy in a direct sale market. Clearly this
does not have to be her profit-maximizing bid in a market wherepriced options are used.
In fact, it is almost always the case that the synergy buyer will bid a different value in a
market with priced options. This deviation from the benchmark is denoted byλt:

Definition 3.3. Letλt denote the deviation in the bid of the synergy buyer on the item
Gt sold at timet, in a model with options, with respect to her profit-maximizing bidb∗t in
a model without options. So her bid on an option forGt will be op′t + λt.

Fig. 1. A possible situation in which options are desirable.

These definitions enable us to define the bounds within which the use of options (with a
given exercise price) are desirable for both the synergy buyer and the seller, for each good
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in the auction sequence (except the last one, for which thereis no uncertainty, so the use
of options is indifferent). Fig. 1 gives the visual description of a generic setting in which
options are beneficial for both sides. It shows the possible bids a synergy buyer can place
for an option. First, bids have to be bigger than the reserve priceRes, for each good in the
sequence. The pointop′ is where the synergy buyer keeps bidding the same total priceas
in a market without options, c.f. Def. 3.2.

The deviations, in an option model, from the benchmark bidop′ is measured by three
levels, all denoted byλ:

— λl: The minimal premium the seller requires to benefit from using options overop′ (due
to the risk of remaining with the item unsold)

— λh: The maximal additional amount the synergy buyer is willingto pay for an option,
over his bid in an auction without optionsop′, such that her expected profit is at least as
high as in the no-options case.

— λ∗ = op∗ − op′, whereop∗ is the synergy buyer’s profit-maximizing bid in the market
with options.

Given these definitions, if it is rational for the synergy buyer to bid an additional quantity
betweenλl andλh (as shown in Fig. 1), then both she and the seller are better off with
options.

In the rest of Sect. 3, we derive the analytical expressions which can be used to determine
the values forλl, λh andλ∗ and compare them. Before this, however, we describe an
important assumption behind the proofs in the remainder of this section.

3.1.1 Overview of our proof technique.In order to derive theλ bounds defined above,
we use a recursive argument structure. First, we look at whathappens when we intro-
duce an option for just the first good, leaving the remaining goods to be allocated using
the benchmark strategy, which mirrors the allocation of a direct auctions. Given the as-
sumptions defined above regarding the bidding behaviour of the local bidders, the use of
a benchmark strategy by the synergy buyer would provide the same outcomes as that of
a direct auction, without options. The availability of options in the remaining auctions at
timest = 2..n would only increase her chances of winning the rest of the items needed to
complete her bundle which, in turn, will only increase what the synergy bidder is willing
to bid in the first auction.

Formally, we only consider one of theλ parameters: the one corresponding to the first
good. Recall that, for this good, the buyer’s probability ofnot completing her desired bun-
dle, hence her exposure problem, is the greatest. Our proof structure could be generalized
as a recursive procedure: if one shows that options are beneficial to use for the first item in
a sequence, given a remaining [non-empty] sequence of auctions, this can be generalized to
all remaining sub-sequences (except for the very last item,for which the analysis is trivial,
as options cannot bring a benefit by comparison to direct auctions).

In order to analytically examine the benefits of deviating from the benchmark strategy
op′1 in the first auction, the proofs will use the supposition thatthe synergy buyer will use
the benchmark strategy from Def. 3.2 for the remaining goodsin the sequence. The use
of the benchmark bidding strategy for the remaining items can be seen as giving an “upper
bound” for the lower lambda value expected by the seller (i.e. λl) and a lower bound for
the highest value that can be offered by the buyer (i.e.λh). We can see this by examining
the effect of this assumption on each of the parties:
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—For thesynergy buyer: Being offered the opportunity to use options also in futureauc-
tions can only increase her expected profit from future auctions (sinceλ∗ ≥ 0 and
op∗ ≥ op′). Otherwise, the synergy buyer will revert to using her benchmark strategy
op′, which brings the same expected profit as the direct sale case. Her expected profit
is at least as large in the options case as in the direct sale case i.e. E(πop

syn,t≥2) ≥

E(πdir
syn,t≥2).

—For theseller of the first item: Because for each of the following itemsop∗ ≥ op′, the
probability that the agent will get all the future items can only increase, for each of the
items in the sequence. Formally:F o

h(op∗h) ≥ F o
h(op′h) = Fh(b∗h),∀h = 2..n. This

implies that
∏n

h=2 F o
h(op∗h) ≥

∏n
h=2 Fh(b∗h), therefore the probability that the option

for the first item is exercised can only increase. Therefore,this benchmark case acts as
a lower bound for the expected profit of the seller, and as an upper bound on theλl.

In future auctions the synergy seller and buyer can use options, but this will not nega-
tively affect the initial decisions, i.e. at the beginning of the auction sequence. Therefore,
the lambda values referred to in the equations in the following sections could be formally
denoted asλas

l andλas
h , where in the general case it holds that∃λl, λh such thatλl ≤ λas

l

andλh ≥ λas
h . To avoid overloading the notation, we still useλl andλh, but the reader

should be aware these refer to the tightest bounds on these lambda values, under the as-
sumption that the benchmark bidding strategy is used in all auctions subsequent to the
current one.

3.1.2 When synergy buyer is better off with options.This part of Section 3.1 examines
for which bids the synergy buyer is better off with options. This is done by determining
the maximal amount she is willing to pay for options.

LEMMA 3.4. Let ~B∗ =< b∗t > for 1 ≤ t ≤ n be the vector of optimal bids of the
synergy buyer in the model without options, andop′t + λt be the bids in a model with
options. Then the expected gain (i.e. difference in expected profit) from using options
E(πδsyn) can be written as:

E(πδsyn) =
[

vsyn(G)(

n
∏

i=1

Fi(b
∗
i + λi) −

n
∏

i=1

Fi(b
∗
i ))

]

+
[

n
∑

j=1

Kj(

j
∏

k=1

Fk(b∗k + λk) −
n

∏

i=1

Fi(b
∗
i + λi))

]

+

n
∑

j=1

(−λj)

j
∏

k=1

Fk(b∗k + λk)

+

[ n
∑

j=1

(−b∗j )(

j
∏

k=1

Fk(b∗k + λk) −

j
∏

k=1

Fk(b∗k))

]

PROOF. We compute the difference in profit between a model with options and a model
without options, using expected profit equations (6) and (3), as defined in the previous
section. In a model without options, the optimal bids of the synergy buyer at each time step
t are given byb∗t . In a model with options, we express the bidding policy as a deviation
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with respect to the benchmark strategy with options, i.e.op′t+λt. This gives the difference:

E(πδsyn) =

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)

n
∏

i=1

F o
i (op′i + λi)

]

+

[ n
∑

j=1

(−(op′j + λj)

j
∏

k=1

F o
k (op′k + λk)

]

−

[

vsyn(G)

n
∏

i=1

Fi(bi)

]

−

[ n
∑

j=1

(−b∗j )

j
∏

k=1

Fk(b∗k)

]

We can now replaceop′t with the definition of the benchmark strategy (i.e. same total
bid amount, as in the case without options), using the properties: op′t = b∗t − Kt and
F o

t (op′t + λt) = Ft(b
∗
t + λt). This gives:

E(πδsyn) =

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)

n
∏

i=1

Fi(b
∗
i + λi)

]

+

[ n
∑

j=1

(−b∗j + Kj − λj)

j
∏

k=1

Fk(b∗k + λk)

]

−

[

vsyn(G)

n
∏

i=1

Fi(bi)

]

−

[ n
∑

j=1

(−b∗j )

j
∏

k=1

Fk(b∗k)

]

This formula is now re-grouped, separating the termsvsyn(G),
∑n

j=1 Kj ,
∑n

j=1(−λj)

and
∑n

j=1(−b∗j ), each with its corresponding probabilities to complete theproof the proof:

E(πδsyn) =
[

vsyn(G)(

n
∏

i=1

Fi(b
∗
i + λi) −

n
∏

i=1

Fi(b
∗
i ))

]

+
[

n
∑

j=1

Kj(

j
∏

k=1

Fk(b∗k + λk) −
n

∏

i=1

Fi(b
∗
i + λi))

]

+

n
∑

j=1

(−λj)

j
∏

k=1

Fk(b∗k + λk)

+

[ n
∑

j=1

(−b∗j )(

j
∏

k=1

Fk(b∗k + λk) −

j
∏

k=1

Fk(b∗k))

]

To explain intuitively Lemma 3.4, the difference in expected profits between the two
models is formed of 4 parts (corresponding to the 4 lines). First, in an options model, the
synergy bidder has a higher probability of getting the desired bundle and extract its value,
since she bids more in total (line 1). Furthermore, in an options model, the bidder does
not have to pay exercise prices unless she acquires alln items in the desired bundle (line
2). On the minus side, she does have to pay a set of additional amountsλ (line 3) for all
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items she bids on until one is lost (line 3) and, for these items, the chance of acquiring
them increases slightly, which also increases the chance oflost bids (line 4).

In the following, we turn our attention to providing equations that allow us to deduce
the λ parameters that give the synergy buyer an incentive to use options. As previously
explained in Sect. 3.1.1 above, we simplify the proof structure by only focusing on the
most important option for the synergy buyer: the one on the first good (when bidding for
this good, the probability of not completing her entire bundle is the greatest). This is done
under the assumption that for the goods in the sequence, we assume the benchmark strategy
is used (i.e.λt = 0 for t > 1). For the rest of the items in the sequence, the same proof
technique can be applied recursively.

THEOREM 3.5. Letλ1 be the deviation in the bidding strategy, compared to the bench-
mark strategyop′1, as defined in Def. 3.2. Ifλt = 0 for 1 < t ≤ n, then by definition,
E(πδsyn) >= 0 if 0 ≤ λ1 < λh. The value ofλh (corresponding toE(πδsyn) = 0) can
be solved as the numerical solution to the following equation:

F1(b
∗
1 + λh)λh = F1(b

∗
1 + λh)

[

n
∑

j=1

Kj(

j
∏

k=2

Fk(b∗k) −
n

∏

i=2

Fi(b
∗
i ))

]

+ (F1(b
∗
1 + λh) − F1(b

∗
1))

[

vsyn(G)

n
∏

i=2

Fi(b
∗
i ) −

n
∑

j=1

(b∗j )

j
∏

k=2

Fk(b∗k)
]

PROOF. The proof is based on the difference in profit function derived in Lemma 3.4,
using the assumption thatλt = 0 for 1 < t ≤ n. As the expectation function of the synergy
bidder is descending in the value ofλ, we determine whenE(πδsyn) = 0.

[

vsyn(G)(F1(b
∗
1 + λh) − F1(b

∗
1))

n
∏

i=2

Fi(b
∗
i )

]

+
[

n
∑

j=1

Kj(F1(b
∗
1 + λh)

j
∏

k=2

Fk(b∗k)) − (F1(b
∗
1 + λh)

n
∏

i=2

Fi(b
∗
i ))

]

+ (−λh)F1(b
∗
1 + λh)

+
[

n
∑

j=1

(−b∗j )(F1(b
∗
1 + λh) − F1(b

∗
1))

j
∏

k=2

Fk(b∗k)
]

= 0

Isolating the values ofλh yields the formula in Th. 3.5.

F1(b
∗
1 + λh)λh = (F1(b

∗
1 + λh) − F1(b

∗
1))

[

vsyn(G)
n

∏

i=2

Fi(b
∗
i )

]

+ F1(b
∗
1 + λh)

[

n
∑

j=1

Kj(

j
∏

k=2

Fk(b∗k) −
n

∏

i=2

Fi(b
∗
i ))

]

+ (F1(b
∗
1 + λh) − F1(b

∗
1))

[ n
∑

j=1

(−b∗j )

j
∏

k=2

Fk(b∗k)

]
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Which give the following equation for determiningλh:

F1(b
∗
1 + λh)λh = F1(b

∗
1 + λh)

[

n
∑

j=1

Kj(

j
∏

k=2

Fk(b∗k) −
n

∏

i=2

Fi(b
∗
i ))

]

+ (F1(b
∗
1 + λh) − F1(b

∗
1))

[

vsyn(G)

n
∏

i=2

Fi(b
∗
i ) −

n
∑

j=1

(b∗j )

j
∏

k=2

Fk(b∗k)
]

3.1.3 When the first seller is better off with options.We now determine the minimum
or lower boundλl (the level ofλ that, according to Def. 3.3, keeps the seller ofG1

indifferent about options). In order to compare this bid with theλh from the previous
section, it is again assumed thatλt = 0 for 1 < t ≤ n.

THEOREM 3.6. If without options the synergy buyer bids~B∗ and with optionsop′1+λ1

for G1 andop′t for 1 < t ≤ n, thenE(πδ1) for the seller ofG1 is:

E(πδ1) = F1(b
∗
1)(λ1 + (b1,res − K1)

[

1 −
n

∏

h=2

Fh(b∗h)
]

)

+ (F1(b
∗
1 + λ1) − F1(b

∗
1))(b

∗
1 + λ1 − E(bm1|b

∗
1 + λ1 ≥ bm1 > b∗1)

+ (b1,res − K1)
[

1 −
n

∏

h=2

Fh(b∗h)
]

)

By definition,λ1 is the lower bound forλl that guarantees that the expected profit of
the sellerE(πδ1) > 0. The value ofλl can be obtained as the solution to the equation
E(πδ1) = 0, which using the equation above gives:

F1(b
∗
1 + λl)(−λl) = F1(b

∗
1 + λl)((b1,res − K1)

[

1 −
n

∏

h=2

Fh(b∗h)
]

)

+ (F1(b
∗
1 + λl) − F1(b

∗
1))(b

∗
1 − E(bm1|b

∗
1 + λl ≥ bm1 > b∗1))

PROOF. The difference in profit is equation (8) minus equation (5):

E(πop
1 ) − E(πdir

1 ) =
(

F o
1 (op1)

[

op1 + (K1 − b1,res)
n

∏

h=2

F o
h(oph)

]

+ (1 − F o
1 (op1))(E(opm1|opm1 ≥ op1) + K1 − b1,res)

)

−
(

F1(b
∗
1)(b

∗
1 − b1,res) + (1 − F1(b

∗
1)(E(bm1|bm1 ≥ b∗1) − b1,res)

)

Recall that the the priceop1 bid in an options model can be expressed in terms of the
benchmark strategyop′1 and the deviationλ1.

E(πδ1) = F o
1 (op′1 + λ1)(op

′
1 + λ1 +

[

(K1 − b1,res)

n
∏

h=2

F o
h(op′h)

]

)

+ (1 − F o
1 (op′1 + λ1))(E(opm1|opm1 ≥ op′1 + λ1) + K1 − b1,res)

− F1(b
∗
1)(b

∗
1 − b1,res) − (1 − F1(b

∗
1))(E(bm1|bm1 ≥ b∗1) − b1,res)
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Furthermore, we can make the substitution to replaceop′1 with its definition, as follows:
op1 = op′1 + λ1 = b∗1 − K1 + λ1 andF o

1 (op1) = F o
1 (op′1 + λ1) = F1(b

∗
1 + λ1):

E(πδ1) = F1(b
∗
1 + λ1)(b

∗
1 − K1 + λ1 +

[

(K1 − b1,res)

n
∏

h=2

Foh(op′h)
]

)

+ (F1(b
∗
1 + λ1) − F1(b

∗
1))(−E(bm1|b

∗
1 + λ1 ≥ bm1 > b∗1) + b1,res)

− F1(b
∗
1)(b

∗
1 − b1,res)

Split F1(b
∗
1 +λ1) into F1(b

∗
1) andF1(b

∗
1 +λ1)−F1(b

∗
1) and combine someK1 andb1,res.

E(πδ1) = F1(b
∗
1)(−K1 + b1,res + λ1 +

[

(K1 − b1,res)

n
∏

h=2

F o
h(op′h)

]

)

+ (F1(b
∗
1 + λ1) − F1(b

∗
1))(b

∗
1 − K1 + λ1 +

[

(K1 − b1,res)

n
∏

h=2

F o
h(op′h)

]

− E(bm1|b
∗
1 + λ1 ≥ bm1 > b∗1) + b1,res)

Thus:

E(πδ1) = F1(b
∗
1)(λ1 + (b1,res − K1)

[

1 −
n

∏

h=2

Fh(b∗h)
]

)

+ (F1(b
∗
1 + λ1) − F1(b

∗
1))(b

∗
1 + λ1 − E(bm1|b

∗
1 + λ1 ≥ bm1 > b∗1)

+ (b1,res − K1)
[

1 −
n

∏

h=2

Fh(b∗h)
]

)

Since, by definition,E(πδ1) = 0 gives the value ofλl, this value can be solved via the
equation in Th. 3.6.

F1(b
∗
1 + λl)(−λl) = F1(b

∗
1 + λl)((b1,res − K1)

[

1 −
n

∏

h=2

Fh(b∗h)
]

)

+(F1(b
∗
1 + λl) − F1(b

∗
1))(b

∗
1 − E(bm1|b

∗
1 + λl ≥ bm1 > b∗1))

Intuitively, the difference in profit has two parts: the cases where the synergy buyer wins
the auction in both markets and the ones where she only wins with options. With the first,
the synergy buyer pays more than she used to and with the second, the synergy buyer pays
more than the local bidders, who used to win ifλ1 < λl. But both cases have the downside
for the seller that the synergy buyer may now not exercise heroption.

3.1.4 Condition for both synergy buyer and seller to be better off with options. The
previous parts of Section 3.1 give the equations for the cases when the individual agents
are better off with options. These results will now be combined to give the formal condi-
tion for when they are both better off. Intuitively, this condition is equivalent to stating that
the minimum bid the seller ofG1 requires should be below the maximal value the synergy
buyer is willing to pay. As shown the beginning of Section 3.1.1, the equations forλl and
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λh that are derived in Theorems 3.5 and 3.6 above are the narrowest possible interval val-
ues, under the assumption that all remaining auctions are direct auctions. Let the solutions
to the equations in Theorems 3.5 and 3.6 be denoted byλas

h andλas
l . We show that∃λl, λh

such thatλl ≤ λas
l andλh ≥ λas

h . Next, we summarize the results in a final theorem:

COROLLARY 3.7. Under the condition that the optimal decision of the synergybuyer
is to bidλx additionally for an option onG1 (whereλas

l < λx < λas
h ), then both the seller

of G1 and the synergy buyer have a higher expected profit in a marketwith only options
compared to one without options.

PROOF. This corollary follows from the results of previous theorems. Say that the syn-
ergy buyer bidsop′1 +λx for the first good in the sequence, whereλas

l < λx < λas
h andop′t

for the other goods. Then the synergy buyer bids more thanop′ +λas
l ≥ op′ +λl (because

λl ≤ λas
l ), so according to Theorem 3.6 the seller ofG1 has a higher expected profit with

options. Also, the synergy buyer bids between0 < λx ≤ λas
h ≤ λh extra (asλh ≥ λas

h ),
so according to Theorem 3.5 she too has a higher expected profit with options with these
bids. Therefore∃ a non-empty interval[λl, λh] for which both parties prefer using options,
rather than a direct sale.

3.2 Synergy buyer’s profit-maximizing bid with uniform distributions

In the previous sections, we focused our attention on deriving equations for the boundsλl

andλh between which the additional bids of the synergy buyer have to fall in order for
both parties to be incentivised to use options. Note that those previous results are quite
general and hold for any type of distribution that the maximal bid from the other agents in
the first auctionF(b

∗
1) might follow.

While these bounds were defined in relation to the expected-profit maximizing bidb∗ in
a modelwithoutoptions, the optimal (i.e. expected profit maximizing) bidop∗ in a model
with options have yet to be defined. The reason for this is thatderiving this is much more
involved than the optimal policy in a model without options.In this section, we look at
the synergy buyer’s profit-maximizing bidsop∗, but with the additional assumption that
F1(b1) follows a uniform distribution in the range of the possible bids. Note that, while
the analytical result provided here is for a uniform distribution, the same effects hold for
Gaussian distributions. In fact, the optimal bids can be derived for Gaussian distributions,
but just not in a closed analytical form, as is done in this section for uniform distributions.

In order to derive the optimalλ∗, we do this by use the same framework introduced
in Def. 3.3 and Fig. 1 above. That means, we compute the deviation λ∗ between the
optimal bid in a model with options and the optimal bid in a model without options, i.e.
the differenceλ∗ = (K1 + op∗1) − b∗1 (the reason to do this will become apparent in the
proof, but, basically, by taking the difference, several terms drop out). Note that in this
section, we still apply the above results and assumption regarding bidding the benchmark
strategy in future auctions, but to simplify the notation, we still useλl andλh, instead of
λas

l andλas
h .

If the profit-maximizing bidop∗1 > op′1 + λl, then according to Theorem 3.6 the seller
of G1 is better off with options. Therefore, it is in the rational interest of the seller to set
the exercise price for selling her good such that the expected optimal bid of her buyers, in a
model with options, will provide sufficient incentive for the seller to also use options, and
thus the following condition holds:op∗1 > op′1 +λl. Note that in order to use Theorem 3.6,
the bids for the other goods are fixed atop′t. Firstop∗1 andλl are derived.
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LEMMA 3.8. If F1(b1) follows a uniform distribution betweenua andub, thenop∗1 +
K1 − b∗1 = λ∗, where:

λ∗ =











0.5(K1(1 −
∏n

i=2 Fi(b
∗
i )) +

∑n
j=2 Kj(

∏j
k=2 Fk(b∗k) −

∏n
i=2 Fi(b

∗
i ))),

if ua ≤ E(πdir
syn,k≥2) ≤ ub + (ub − ua)

0, otherwise

PROOF. With a uniform bid distribution betweenua andub, the probability of winning
with bid b1 has the following shape:

F1(b1) =











0, if b1 < ua

(b1 − ua)/(ub − ua) = α(b1 − ua), if ua ≤ b1 ≤ ub

1, if b1 > ub

(9)

f1(b1) =

{

1/(ub − ua) = α, if ua ≤ b1 ≤ ub

0, otherwise
(10)

ForF o
1 the variablesαo, uao andubo are used, whereuao = ua−K1 andubo = ub−K1,

so thatF1(b1) = F o
1 (op1) whenb1 − K1 = op1.

First, we determine, for this type of distribution, the equation for the optimal bidb∗1 in a
model without options. To do this, we start from the expectedprofit equation (3):

E(πdir
syn) = F1(b1)

[

vsyn(G)
n

∏

i=2

Fi(bi)
]

+ F1(b1)(−b1) + F1(b1)
[

n
∑

j=2

(−bj)

j
∏

k=2

Fk(bk)
]

E(πdir
syn) = F1(b1)

[

− b1 +
[

vsyn(G)

n
∏

i=2

Fi(bi)
]

+
[

n
∑

j=2

(−bj)

j
∏

k=2

Fk(bk)
]

]

So the derivative with respect tob1:

∂E(πdir
syn)

∂b1
= f1(b1)

[

− b1 +
[

vsyn(G)
n

∏

i=2

Fi(bi)
]

+
[

n
∑

j=2

(−bj)

j
∏

k=2

Fk(bk)
]

]

+ F1(b1)(−1) = 0

Filling in the equations forf1 andF1 leads to:

[

vsyn(G)

n
∏

i=2

Fi(bi)
]

+
[

n
∑

j=2

(−bj)

j
∏

k=2

Fk(bk)
]

+ ua = 2b∗1

Nevertheless, theb∗1 obtained through this formula still has to satisfy the interval con-
straintsua ≤ b∗1 ≤ ub. This means:

ua ≤

[

vsyn(G)
∏n

i=2 Fi(bi)
]

2
+

[
∑n

j=2(−bj)
∏j

k=2 Fk(bk)
]

2
+

ua

2
≤ ub
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Which yields:

ua ≤
[

vsyn(G)

n
∏

i=2

Fi(bi)
]

+
[

n
∑

j=2

(−bj)

j
∏

k=2

Fk(bk)
]

≤ 2ub − ua

Note that the middle expression is, in fact, the expression for the expected profit of a
direct synergy bidder, from the second auction onwards (i.e. for k ≥ 2), discounting the
bid to be paid for the first item. Therefore, we can rewrite this condition as:

ua ≤ E(πdir
syn,k≥2) ≤ ub + (ub − ua)

From this form, it is easier to explain why outside this interval, λ∗ = 0. If the expected
profit of the future sequenceE(πdir

syn,k≥2) < ua, there is no point in the buyer to continue
bidding (either direct or with options), as she cannot afford her desired bundle anyway.
Therefore, bothb∗ andλ∗ should be zero. If the expected profit of the future sequence
exceeds the value ofub with a whole intervalub−ua (i.e. E(πdir

syn,k≥2) > ub+(ub−ua),
then the direct bid assures the bidder of winning the item (asuniform distributions are
bounded). But this means that options are also not useful, soagainλ∗ = 0 (there is no
point of bidding more than in a direct model).

To get the value ofλ∗ outside these trivial cases is more involved. First, we compute the
optimal bidop∗1 in a modelwith options:

E(πop
syn) =

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)

n
∏

i=1

F o
i (opi)

]

+

[ n
∑

j=1

(−opj)

j
∏

k=1

F o
k (opk)

]

First, we isolateop1 in the above equation:

E(πop
syn) = F o

1 (op1)
[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)

n
∏

i=2

F o
i (opi)

]

+ F o
1 (op1)(−op1) +

[ n
∑

j=2

(−opj)

j
∏

k=2

F o
k (opk)

]

E(πop
syn) = Fo1(op1)

[

− op1 +
[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)

n
∏

i=2

Foi(opi)
]

+
[

n
∑

j=2

(−opj)

j
∏

k=2

Fok(opk)
]

]

We take the derivative with respect toop1:

∂E(πop
syn)

∂op1
= fo

1 (op1)
[

− op1 +
[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)
n

∏

i=2

F o
i (opi)

]

+
[

n
∑

j=2

(−opj)

j
∏

k=2

F o
k (opk)

]

]

+ F o
1 (op1)(−1) = 0
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In order to determine the optimal valueop∗1, we add the condition
∂E(πop

syn)

∂op1

= 0:

αo

[

− op∗1 +
[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)
n

∏

i=2

F o
i (opi)

]

+
[

n
∑

j=2

(−opj)

j
∏

k=2

F o
k (opk)

]

]

+ αo(op
∗
1 − uao)(−1) = 0

Which finally yields the following equation for determiningop∗1:

[

(vsyn(G) −
n

∑

h=1

Kh)

n
∏

i=2

F o
i (opi)

]

+
[

n
∑

j=2

(−opj)

j
∏

k=2

F o
k (opk)

]

+ uao = 2op∗1

We now focus our attention at computing the differenceλ∗ between the optima decision-
theoretic bid in a model with options vs. a model without options. By definition, we have
that: λ∗ = (K1 + op∗1) − b∗1, so2λ∗ = 2op∗1 + 2K1 − 2b∗1. When taking this difference,
uao = ua − K1 andopk are replaced according toopk = op′k = b∗t − Kt (because for the
other auctions, the benchmark strategy is used) andF o

k (op′k) = F1(b
∗
1). Then all variables

cancel each other out, except for theKt:

2(b∗1 + λ∗ − K1) =
[

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)
n

∏

i=2

Fi(b
∗
i )

]

+
[

n
∑

j=2

(−b∗j + Kj)

j
∏

k=2

Fk(b∗k)
]

]

+ ua − K1

hence

2λ∗ =
[

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)

n
∏

i=2

Fi(b
∗
i )

]

+
[

n
∑

j=2

(−b∗j + Kj)

j
∏

k=2

Fk(b∗k)
]

]

+ ua + K1 − 2b∗1

thus

λ∗ = 0.5(
[

[

(vsyn(G) −
[

n
∑

h=1

Kh

]

)
n

∏

i=2

Fi(b
∗
i )

]

+
[

n
∑

j=2

(−b∗j + Kj)

j
∏

k=2

Fk(b∗k)
]

]

+ ua + K1

− (
[

[

vsyn(G)
n

∏

i=2

Fi(bi)
]

+
[

n
∑

j=2

(−bj)

j
∏

k=2

Fk(bk)
]

]

+ ua))

After some re-writing:

λ∗ = 0.5((−
n

∑

h=1

Kh)

n
∏

i=2

Fi(b
∗
i ) +

n
∑

j=2

Kj

j
∏

k=2

Fk(b∗k) + K1)
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Re-arranging the parantheses:

λ∗ = 0.5(K1 − K1

n
∏

i=2

Fi(b
∗
i ) −

n
∑

h=2

Kh

n
∏

i=2

Fi(b
∗
i ) +

n
∑

j=2

Kj

j
∏

k=2

Fk(b∗k))

Which finally leads to the equation in Lemma 3.8:

λ∗ = 0.5(K1(1 −
n

∏

i=2

Fi(b
∗
i )) +

n
∑

j=2

Kj(

j
∏

k=2

Fk(b∗k) −
n

∏

i=2

Fi(b
∗
i ))) (11)

The main intuition behind this formula is that, in an optionsmodel, the synergy buyer
saves the exercise price when she fails to complete her bundle. Therefore, it is her profit-
optimizing strategy, in a model with options, to increase her bid with a part of the potential
savings on the exercise prices of subsequent auctions.

LEMMA 3.9. If F1(b1) follows a uniform distribution, then the lower bound is:

λl = −(b∗1 − ua +
[

1 −
n

∏

h=2

Fh(b∗h)
]

(b1,res − K1))+

+

√

√

√

√(b∗1 − ua +
[

1 −
n

∏

h=2

Fh(b∗h)
]

(b1,res − K1))2

−2(b∗1 − ua)
[

1 −
n

∏

h=2

Fh(b∗h)
]

(b1,res − K1)

PROOF. Take theλl equation from Theorem 3.6. With a uniform distribution,F1(b1) =
α(b∗1 − ua) andE(bm1|b

∗
1 + λl ≥ bm1 > b∗1) = b∗1 + 0.5λl. So the equation becomes:

α(b∗1 + λl − ua)(−λl) = α(b∗1 + λl − ua)((b1,res − K1)
[

1 −
n

∏

h=2

Fh(b∗h)
]

)

+ αλl(b
∗
1 − b∗1 − 0.5λl)

Dividing both sides byα and reducingb∗1 in the last parenthesis gives:

(b∗1 + λl − ua)(−λl) = (b∗1 + λl − ua)((b1,res − K1)
[

1 −
n

∏

h=2

Fh(b∗h)
]

) + λl(−0.5λl)

After re-arranging the terms and moving the left -hand side to the right, this yields:

(b∗1 + λl − ua)(λl + (b1,res − K1)
[

1 −
n

∏

h=2

Fh(b∗h)
]

) − 0.5λ2
l = 0

The above equation can be brought to standard, 2nd order polynomial form in the unknown
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λl:

0 = 0.5λ2
l + λl(b

∗
1 − ua + (b1,res − K1)

[

1 −
n

∏

h=2

Fh(b∗h)
]

)

+ (b∗1 − ua)((b1,res − K1)
[

1 −
n

∏

h=2

Fh(b∗h)
]

)

This polynomial equation can then be solved via the quadratic formula:

λl = −(b∗1 − ua +
[

1 −
n

∏

h=2

Fh(b∗h)
]

(b1,res − K1))

±

√

√

√

√(b∗1 − ua +
[

1 −
n

∏

h=2

Fh(b∗h)
]

(b1,res − K1))2 − 2(b∗1 − ua)
[

1 −
n

∏

h=2

Fh(b∗h)
]

(b1,res − K1)

Note that, formally, the conditionua ≤ b∗ ≤ ub should also be imposed in the above
equation. However, ifb∗ for the direct sale case falls outside this interval (i.e. if≤
E(πdir

syn,k≥2) < ua or ≤ E(πdir
syn,k≥2) > ub + (ub − ua)), we know that the the lambda

of the sellerλ∗ = 0, so there is no point in the seller even considering offeringoptions.
Outside this interval, it makes no sense to compute an expression forλl.

The next and final step involves comparing the equations forλ∗ (from Lemma 3.8) and
λl (from Lemma 3.9), such as to derive a condition for whenλl < λ∗. We found that
getting a closed form expression for this condition is not possible for these two equations.
However, the framework developed above is sufficient to enable the seller to solve this
condition numerically using a standard solver and, thus, choose the optimal level for the
exercise priceK1.

Note that all the analysis performed in this section (and, overall, in this paper) refers
to using options when [at least] one of the buyers participating in the sequential auction
market is a synergy buyer (and, thus, she has an exposure problem, as defined in the in-
troduction). All the optimal price bounds for options givenhere refer to the case when
options serve to relieve this exposure problem of a buyer with complementarities.

It is conceivable, however, that options might also prove useful in cases when agents
do not have synergy valuations. For example, options could also be used in the case of
substitutabilities (i.e. when agents have to choose between a set of items sold in sequence).
However, the complementarity problem is arguably the hardest to address, and this is why
we focus on it here, leaving the study of the usefulness of options in other cases to future
work.

3.3 Numerical illustration of option pricing

In this section, before we provide the full experimental analysis of the model, we provide
some details of the optimal pricing window (i.e. the interval for which op′ + λl ≤ op′ +
λ∗ ≤ op′ + λh). To this end, we use a configuration similar to the settings used in the
experiments reported in Section 4.

We consider a basic setting withn = 2 auctions, and a synergy bidder wanting both
items. Her valuation for getting both of these items isvsyn. Now, in each of the 2 auctions
the bidder faces a number of local bidders only interested inacquiring the item in that

ACM Journal Name, Vol. V, No. N, August 2012.



26 ·

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Exercise Price

O
pt

io
n 

P
ric

e

Profitable interval for using options

 

 

Lower bound: op’+λ
l

Upper bound: op’+λ
h

Optimal: op*=op’+λ*

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

 Exercise Price

O
pt

io
n 

P
ric

e

Profitable interval for using options

 

 

Lower bound: op’+λ
l

Upper bound: op’+λ
h

Optimal: op*=op’+λ*

Fig. 2. Illustration of the size of the window for whichop′ + λl ≤ op′ + λ∗ (for which using priced options
is beneficial for both seller and synergy bidder), in a sequence of 2 auctions and 2 cases: A (left). A synergy
bidder with a valuationvsyn = 24 faces one local bidder in each auction, with valuations drawn at random from
N(µ = 10, σ = 4). B (right). A synergy bidder with a valuationvsyn = 28 faces 5 local bidders in each
auction, with valuations drawn at random fromN(µ = 10, σ = 4).

auction, whose valuations are drawn from a normal distribution N(10, 4). We consider
two settings: in the first one, a synergy bidder with a valuation for 2 items ofvsyn = 24
faces exactly one local bidder with valuation drawn fromN(10, 4) per auction. In the
second setting, the valuation of the synergy bidder isvsyn = 28, but she faces 5 local
bidders with valuations drawn fromN(10, 4) in each auction. Moreover, we note that we
consider a seller that sets an exercise priceK in advance, and thesamefor both auctions
(i.e. K1 = K2 = K), where the value ofK is varied on the abscissa. The optimal price
intervals are illustrated in Figure 2.

Figure 2 illustrates that, for both configurations of values/competition setting/price ex-
pectations, there is an interval in which the seller can set the exercise priceK, such that
op′ +λl ≤ op′ +λ∗. In these case, the increase in the bids of the synergy biddercompared
to direct auctions (i.e.λ∗) is above the minimum threshold increase expected by the seller
(i.e. λl), to compensate for the risk of remaining with the first item unsold. In our exam-
ple, note that this interval is considerably narrower in thesecond case, due to the increased
competition. In both cases, adding more local bidders per auction and increasing the mean
of the valuation distributions have an effect of narrowing the “window” in which options
are beneficial for both parties. Note that we do not claim thishappens in every configura-
tion, and there are many value settings in which it always holds thatop′ + λl ≥ op′ + λh,
i.e. the window in which sellers have an incentive to offer options - either free or positively
priced - may be empty.). However, as we discuss in the next section, options can be bene-
ficial for both buyer and seller in a wide variety of settings,and in such settingsbothseller
and synergy buyers would benefit, in expectation, from usingoption contracts.
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4. SIMULATION OF A MARKET WITH A SINGLE SYNERGY BUYER

This section presents an experimental examination of a market with one synergy buyer. It
introduces the market entry effects in the synergy buyer’s behaviour, as well as the thresh-
old effects that may determine which exercise prices the seller chooses for her options.
This experimental analysis is performed here for a market with one synergy bidder and
several local bidders, while Sect. 5 considers a market withmultiple synergy bidders.

The experimental setting is as follows: we consider a simulation where two goods A
and B are auctionednA andnB times respectively. The synergy buyer desires one copy
of both goods and has zero valuation for the individual goods. That is, each synergy (or
global) bidder requires exactly one bundle of{A,B}13. In the setting considered in this
section, local bidders want only one good and participate inone auction, thus their bids
can be modeled as a distribution.

Furthermore, in order to simplify the analysis of the model,we assume there is a sin-
gle seller who auctions all the goods. This is actually equivalent to studying whetheron
averagesellers have an incentive to use options. To explain, on any single sequence of
auctions taken in isolation, the sellers of different itemsmay have diverging incentives to
use options, based on their position in the auction queue (asnoted at the end of section 2.5,
sellers with a later position in the auction queue may make more money). However, in a
very large setting, where buyers enter the market randomly,it is difficult for any individual
seller to strategize about her particular place in the sequence (and, furthermore, in most
markets she may simply have no information to do this). Our goal is to study under which
conditions, on average, sellers benefit from using options if there are synergy buyers in the
market. Here, the average revenue can be also interpreted asthe benefits of a typical seller,
if her position in the sequential queue were chosen at random(which is realistic in large
markets, with repeated interactions). Also, to somewhat reduce the number of test param-
eters, we further assume that the exercise price is the same for all goods of the same type.
So the seller needs to determine which exercise price for A and which for B maximize her
expected profit.

Note that, typically a seller has a resale value for the goodsthat remain unsold, which is
usually lower than the value at the start of the auction sequence. The reason for this may
be that there is some time discounting associated with waiting for a sequence of auctions to
resell her items, or even a listing cost, which is paid per auction (such as in the eBay case).
In this paper, we do not explicitly simulate resale, but we use a reservation value, which
represents the expected resale value the seller expects to get, if she is forced to resell her
items. To summarize, simulations were run in Matlab and had the following parameters:

Name Description
n The number of auctions.
mean The mean of price distribution.
std The standard deviation of price distribution.
res Reserve prices.
vsyn Valuation of synergy buyer for A and B combined.
k Number of simulations for each auction run (i.e. how many times

a sequence of auctions is repeated for one set of parameters).

13An intuitive way to think about this setting is as a sequential sale of individual shoes of exactly the same type,
whereA is the left shoe, andB is the right shoe, and each synergy buyer requires exactly one pair.
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A basic simulation run is as follows. First, all possible auction sequences are determined
for the given number of auctions for A and B. The simulation isthen run for all these
sequences, both for a direct sale setting and for a setting where the items are sold through
options with given exercise prices.

For each auction, in each simulation run, there is a set of local bidders, who are assumed
not to reason about the bids of the synergy buyer. The bids of these local bidders are
therefore, assumed to follow a normal price distribution, with the parametersn,mean, std
andres consisting out of two values: one for good A and one for good B.For each sim-
ulation run, the synergy bidders(s) are asked to determine their profit-maximizing bid for
that setting, as described in the next section. The optimization required for determining
their optimal bid is done using the Matlab function “fminsearch” from the Optimization
Toolbox.

Since there may be considerable variance in the bids of the local bidders each possible
auction sequence is runk times (typically, we hadk > 10000). The average profit of the
seller and the synergy buyer which are reported here, for both the case of with and without
options, are averages over all thesek simulations and also over all possible auction orders
of items A and B in the sequence.

4.1 Synergy buyer’s bid strategy

This section describes how the synergy buyer determines herbids in the simulation. In
order to neutralize the effect that the exact order items areauctioned in plays on the bidding
strategy, we add the assumption that the synergy buyer knowsthe number of remaining
auctions, but not the order they will be held in. This remaining number of auctions of
each type is common knowledge (i.e. the synergy bidders can always observe how many
auctions of each type are left before they have to leave the market, and so does the seller).

The model described here is for a situation without options.But in order to apply it
to a situation with options, one merely has to replace the variables: bt = opt − Kt and
vsyn(A,B) := vsyn(A,B) − KA − KB . As in the analytical section, we assume a bidder
wants only a complete bundle of{A,B}. Therefore,vsyn(A) = 0, vsyn(B) = 0.

Determining the synergy buyer’s profit-maximizing bidb∗t at statet basically involves
solving the Markov Decision Process (MDP), where we select the optimal bidb∗t at time
t, subject to the optimal bidb∗t+1 being selected for the future time pointt + 1 (which in
this case, is an auction). We can, however, use the valuationfunction of the bidding agent
to significantly reduce the state space of the MDP, as shown below. However, first we
introduce some notation.

Let b∗ be the immediate best response to the state, which depends onfour variables:
zA, zB ,X andIt. The variableszA andzB are the number of remaining auctions forA
andB respectively (including the current auction), sozA ≤ nA, zB ≤ nB . The type
of good, which is currently sold, is denoted byIt. The set of goods the synergy buyer
owns (i.e. the endowment) is described byX, which can either be∅, {A} or {B}. If X is
{A,B} then the synergy buyer is done14. LetQ(zA, zB ,X, It, bt) be the expected profit of

14Note that the experimental settings used in the model considered here preclude the possibility of the synergy
buyer from acquiring more options than she needs to make up her desired bundle. But it is theoretically possible
in our model, especially in settings with very low option prices compared to the synergy valuations, that the
synergy buyer is incentivised to hoard options for more items than she really needs, and only choose to exercise
some of these in the end. We leave the examination of such cases to further work.
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the synergy buyer when biddingbt. Note that, in these definitions,b∗t+1 andVt+1() denote
the best available bid, respectively best expected value for the next state (as computed by
recursion), whileIt+1 is the type of the next item in the auction sequence. Therefore, using
MDP notation, the profit-maximizing bidb∗t is determined as follows:

b∗t = argmaxbt
Q(zA, zB ,X, It, bt) (12)

Where the expected profit is determined via:

Q(zA, zB ,X, It = A, b∗t+1) = FA(bt)(−bt

+ Vt+1(zA − 1, zB ,X ∪ A, b∗t+1)) + (1 − FA(bt))Vt+1(zA − 1, zB ,X, b∗t+1) (13)

Q(zA, zB ,X, It = B, bt) = FB(bt)(−bt

+ Vt+1(zA, zB − 1,X ∪ B, b∗t+1)) + (1 − FB(bt))Vt+1(zA, zB − 1,X, b∗t+1) (14)

WhereV () is the value of a state, which simply means the maximum expected profit of
that state:

Vt(zA, zB ,X, bt) = maxbt
Q(zA, zB ,X, It, bt) (15)

Looking at the formula forQ(), it basically says that for the probability of winning the
auction with her bid, the synergy buyer has to pay a price equal to her bid and the good is
included in the endowmentX of the next state. If she does not win the auction, then the
value of the current state is equal to the value of the next state.

As we mentioned before, in computing its optimal bidding strategy used in the experi-
mental section, we assume the synergy buyer does not know whether the next auction will
be for A or B, she knows only the total numbers of auctions for Aand B remaining. We
acknowledge this is a departure from the formulas in the theoretical analysis, where the
exact order of the auctions was taken into account to computethe bidding strategies. There
are two reasons to use this assumption here. The first is that it reduces considerable the
state space that needs to be modeled when computed the optimization. But the second is
that we also find this choice more realistic if this model is tobe applied to real-life settings.
For example, when bidding on a part-truck order in a logisticscenario, it is more realistic
to assume that a carrier can approximate the number of futureopportunities to buy a com-
plementary load, but not the exact auction order in which future loads will be offered for
auction.

If we assume the synergy buyer only knows the total numbers ofauctions for A and B
remaining (and not their exact order), then her bidding strategy is based on assuming each
future auction has an equal probability to occur. Therefore, the probability of an auction
for A occurring next is simply the number of remaining auctions A divided by the total
number of remaining auctions. Thus, a weighted average can be used to determine the
value of the next auction, while not knowing for which good itwill be for.

Apart from this general framework, we can prune the state space with the cases in which
we know the synergy buyer’s bid is zero:

b∗t = argmaxbt
Q(0, zB ,X,B, bt) = 0, with A /∈ X (16)

b∗t = argmaxbt
Q(zA, 0,X,A, bt) = 0, with B /∈ X (17)

bt∗ = argmaxbt
Q(zA, zB ,X, It ∈ X, bt) = 0 (18)

With the first two cases, the synergy buyer can no longer obtain her desired bundle,
because she does not own the complementary item and there is no chance left of acquiring
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it. The last equation is for the case when the synergy buyer already has a copy of the type
of good (and, from her valuation function, she only wants exactly one copy of A and B).
The corresponding values of these states are:

V (0, zB ,X, b∗t ) = 0, if A /∈ X (19)

V (zA, 0,X, b∗t ) = 0, if B /∈ X (20)

V (zA, zB , {A}, b∗t ) = V (0, zB , {A}, b∗t ) (21)

V (zA, zB , {B}, b∗t ) = V (zA, 0, {B}, b∗t ) (22)

The first two equations correspond to the case when the buyer can no longer get the
complementary-valued item, therefore the sequence of auctions of the same type has no
value to her. In both these casesb∗t = 0. The last two equations are important, since they
help the most to reduce the state space. Basically, as already mentioned, we assume that
a synergy bidder only wants exactly one bundle of{A,B}. If she already owns a good
of one of the two types, she will no longer be interested in theremaining auctions for that
type of good. Therefore, the valuationV () of these states is equivalent to a state when no
auctions are remaining for the type of good she already owns (as she would not take part
in those anyway). All these techniques help reduce the recursive search.

To conclude, to determine the synergy buyer’s bids in any situation, the values ofb∗t and
V () need to be calculated for the following states:

∀zB > 0 Q(0, zB , {A}, B, bt)

∀zA > 0 Q(zA, 0, {B}, A, bt)

∀zA > 0, zB > 0 Q(zA, zB , ∅, A, bt)

∀zA > 0, zB > 0 Q(zA, zB , ∅, B, bt)

Note that, in general, solving forb∗t involves solving a continuous MDP - except for
some cases for which a closed form solution exists (e.g. the case of uniform distributions in
Section 3.2). Basically, in the setting considered here with small sequences of auctions, we
can treat solving for the optimal bids as a multi-variable optimization problem, which can
be solved with standard optimization packages available inMatlab. In larger settings with
more auctions, computing the solutions of this MDP may be considerably more involved,
and may require additional computational techniques that have not been studied as part of
this paper. We note, however, that solving continuous MDPs efficiently, while not trivial,
is an active research area, and we provide sufficient detailsthat the solutions developed
there could be applied to our framework.

4.2 Experimental results: market entry effect for one synergy buyer

First, we study experimentally the incentives to use options for the sellers and buyers, in
the case there is just one synergy bidder present in the market. In order to study different
dimensions of such markets, we considered several combinations of parameter settings.

The first setting hasnA = 2 andnB = 2. As mentioned above, the local bidders only bid
in one local auction, without considering the bids placed bythe synergy bidder. Therefore,
their bids can be modeled as a distribution∼ N(10, 4) for both goods. The goods A and B
are, in this model, of equal rarity and attract an equal amount of independent competition
during bidding. This choice is not random, as having a certain degree of symmetry in
the experimental model allows us to reduce the number of parameter settings we need to

ACM Journal Name, Vol. V, No. N, August 2012.



· 31

consider. More specifically, we assume the same exercise prices are set for both goods of
type A and B. This is a reasonable assumption, because A and B are of symmetric value
and because bidders do not know in advance the exact order goods will be sold in.

Furthermore, for each good, the seller has a reservation valueres = 8, which gives its
estimate resell value in the case the synergy buyer acquiresan option for the item, but fails
to exercise it. Since, on average, local bidders bid have an expected mean of 10 for an item,
20% is a reasonably safe estimate of a resell value.

The value of a bundle of{A,B} for the synergy buyer is an important choice, especially
in relation to the mean expectationµ of the bids placed by single-item bidders. We con-
sidered two settings:v(A,B) = 24 (thus 20% more, on average, than local competition) -
with results shown in Fig. 3, andv(A,B) = 21 (which is only 5% more on average than
local competition) - with results shown in Fig. 4.

Fig. 3. Percentage increase in profit for a model using optionswith respect to direct sale, for the case there is one
synergy buyer is present in the market. In the setting, there are two items of type A sold and two items of type B.
For all 4 items, the bids of the local bidders follow the distributionN(10, 4), while the valuation of the synergy
buyer isv(A, B) = 24 (thus 20% more, on average, than the local bidders). What is varied on the horizontal axis
is the exercise price with which the items are sold (assuming they are set the same for all items, being of equal
rarity). Note that the figure is super-imposed: the left-handside axis refers exclusively to the seller, while the
right-hand side axis refers exclusively to the synergy bidder. From this picture, one can already see the important
effect: synergy buyer prefers, on average, higher exerciseprices, while seller prefers lower ones. Note that there
is a sudden increase in profit, on the seller side, for the options case withk = ǫ > 0, with respect to direct
auctioning. This is simply because, with options, the sellergets to keep the item (for which it has a non-residual
value), rather than the buyer, who disposes of it (as in the direct sale case).

Looking at these two figures, some important effect can be observed. First, we mention
that the seller has an immediately higher expected profit with options compared to direct
sale. This is because an option is sometimes not exercised and then the seller gets to keep
the good (for which she has a positive valuation), while the synergy buyer still pays the
option price.

There are two main effects to be observed from Fig. 3 and 4:
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Fig. 4. Percentage increase in profit for a model using optionswith respect to direct sale, for the case there is one
synergy buyer is present in the market. The settings are exactly the same as those is in Fig. 3 above: 2 auctions
for A and 2 for B, with local bidders followingN(10, 4). However, now the valuation of the synergy buyer is
v(A, B) = 21 (thus only 5% more, on average, than the local bidders). One can see, however, that there is an
important difference by comparison to Fig. 3: the threshold effect in the profit increase for the seller when the
exercise priceK ≥ 2.5. Intuitively, the reason this effect occurs is the market-entry effect on the part of the
synergy buyer, who would otherwise stay out for this lower valuation

Fig. 5. Percentage increase in profit for the case of one synergy buyer, for longer auction sequences. The
settings in terms of valuations are exactly the same as those isin Fig. 4 above: the synergy buyer has a value
v(A, B) = 21, while single-item bidders bid according toN(10, 4). One change is that now there are 4 auctions
available for each type, i.e. 4 auctions for an item of type A and 4 for B. Notice that now there are multiple
thresholds, since there are multiple points when the market entry effect of the synergy buyers appears. However,
on average, the percentage increases in expected profits forthe synergy buyers are lower, when compared to the
direct auctions case. The reason for this is that, with multiple future buying opportunities, the exposure problems
that synergy bidder faces decreases.
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Fig. 6. Influence of the position in an auction queue of an itemon the seller’s expected profit. Settings are the
same as in Fig. 3, but with one important difference: the rarityof the goods is no longer symmetric. There is now
only 1 auction for a good of type A, but 7 auctions for a good of type B. What is varied along the horizontal axis is
the position in the auction queue of the sale of the rarer item(of type A). The graph shows the absolute difference
in profit for a seller of an itemof type Band for the synergy buyer (i.e. the difference in profit between an options
and direct auctions model). Note that, if the rare item of typeA is sold at the end of the auction sequence, the
benefit of selling item B through an option increases, because the exposure risk of not acquiring item of type A
increases.

—First, the synergy buyer in such a market always prefershigherexercise prices (an effect
clearly seen in both Figs. 3 and 4). This may be counter-intuitive at first, but is a
rational expectation. If the option for an item is sold with ahigher exercise price, then
the synergy buyer can bid more aggressively on the option price to get the item, since
she is “covered” for the loss represented by the exercise price. The local bidders extract
no advantage from being offered the good as an options vs. a direct sale, because, if they
acquire the option, they would always exercise it regardless. Therefore, they will simply
lower their bid for the option with the amount represented bythe exercise price.

—Second, the expected profit of the seller seems to decrease between intervals if she has
to sell the option with a higher exercise price. The main reason for this is that there
is some chance that she or she would remain with her item unsold (because the option
is not exercised), and thus extract only her reservation value for that item. There is,
however, an important difference between the cases shown inFig. 3 and 4, which is the
participation thresholds (that appear as “peaks” in the picture), where the expected profit
of the seller seems to “jump” at a new level. These can be explained by the synergy buyer
joining the market, as the expected profit becomes non-negative. The threshold nature
is determined by the discrete nature of the auction sequence, as is explained below.

Such a participation threshold is illustrated in Fig. 4 is the increase in the seller’s ex-
pected profit when the exercise price is set above a certain level (K ≥ 2.5, for the settings
in Fig. 4). Such thresholds can be explained as follows. If the synergy buyer currently
owns nothing, then she will only bid on a good if the number of remaining auctions and
their exercise prices give her a prior expectation of a positive profit. Conversely, if the
synergy buyer is not offered a sequence of option sales from which she derives a positive
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expected profit, she has the incentive to leave the market altogether. There are two main
factors that increase a synergy buyer’s expected profit in a sequence of auctions (sold as
options):

—The number of remaining future auctions of the other good, necessary to complete her
bundle.

—The exercise price of the options (that only needs to be paid at the end). This should be
high enough to cover the risk, given her valuation for the bundle.

Note that in some market setting (such as the one in Fig. 3), noparticipation effects
(i.e. thresholds) occur, because the value the synergy buyer assigns to her desired bundle
is already high enough, so she would participate in the market anyway (i.e. regardless of
whether she gets offered options or not), and at any point in the sequence that there is still
a chance of completing her bundle.

However, in the valuation settings in Fig. 4, the synergy buyer will only bid on a good
if there are two remaining auctions for the other good. So sheplaces a bid for A if the
auctions are[A,B,B], but not if they are[A,B]. This is because with a single auction for
B, the risk of ending up with only a worthless A is too great. But in a market with exercise
prices of at least 2.5, the risk is reduced and one remaining auction is already enough for
the synergy buyer to stay in the market. So a higher exercise price enables the synergy
buyer to stay the market, even if she owns nothing and there are only a few auctions left,
which increases the seller’s expected profit. This increasein participation is beneficial to
the seller, who thus has an incentive to fix the exercise pricesKA = KB = 2.5.

4.3 Settings with longer sequences of auctions and effect of auction order

In the previous section, we examined a sequence of auctions of a specific length ofnA =
2, nB = 2. We now look at whether we can observe similar effects in the case when the
number of opportunities to buy goods A and B increases. With the exception of auction
lengths, the parameters are kept the same as in the previous case. First, we keep the relative
rarity of both goods symmetrical, but increase the number ofauctions available for each to
4, i.e.nA = nB = 4. Results are shown in Fig. 5.

Basically, there are two main effects to observe here. First, the benefits to the buyer
of having options mechanism decreases (seen from comparingthe percentage increases
shown in the right-hand vertical axis of Figs. 4 and 5). The reason for this is that, in
sequential auctions, the number of available future opportunities plays a big role in how
big the exposure problem the synergy buyer faces is. If thereis less exposure, then the
relative benefits of using options becomes smaller (although it is still quite considerable).
The second effect to be observed from Fig. 5 is that there are more participation thresholds
(denoted by peaks), but they are smaller. The reason is that,for a longer sequence of auc-
tions, there are more possible sequences of remaining auction combinations. The synergy
bidder will join in the bidding in some, but not in others, leading to multiple participation
thresholds.

The second problem we look in this subsection at is what happens if the relative fre-
quency of the two goods is more asymmetric. We keep the same total number of auctions
in the sequence (8), but the relative frequency is highly asymmetric:nA = 1, nB = 7. As
mentioned, in the previous graphs, results were averaged over all possible auction orders -
while here, by contrast, we look at auction orders one by one.
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For this setting, there are exactly 8 possible auction orders, corresponding to the point
where the rarer good (type A) can be inserted in the auction queue. What is varied on the
horizontal axis is this position of the typeA good. The reason why we look at whether a
seller of items of typeB would use options is that the exposure of the synergy buyer exists
for the other good in the sequence. For the single item of typeA, the benefits of using
options are limited, because the synergy buyer has 7 other auctions in which to acquire the
second item anyway, hence she has much less of an exposure problem.

Clearly, we can see an important effect of the position of therarer good in the auction
queue, from the perspective of both parties. If the item of type A is sold at the very
beginning of the auction sequence, then the synergy bidder has no exposure problem left
for the rest of the sequence, hence there is no incentive to use options, for either party.
However, it is at the very end of the auction sequence, the synergy buyer will not know
whether she would need the item acquired until all auctions end. For this case, the benefits
of using options are considerably greater.

5. MULTIPLE SYNERGY BUYERS

Finally, we consider market settings in which multiple synergy buyers are active simulta-
neously. Much of the experimental set-up and parameter choices are the same as described
in the above sections, for the case of one for the single synergy buyer. The only difference
is that now multiple synergy buyers may enter and leave the market at different times and
they have different valuations for the combination of A and B.

We have to emphasize that the results from this section are still rather preliminary and are
based on some restrictions on the reasoning capability of the synergy buyers in the market.
Specifically, as in the single-bidder case, we assume the synergy bidders have some prior
expectations about the closing prices in future auctions and compute their optimal strategy
with respect to this expectation. In these results, this expectation is assumed the same for all
synergy bidders, which is a reasonable choice in comparing their strategies, but assuming
the sequence of auctions considered is too short for other synergy buyers to learn about
existing competition and adapt their bids. In a more realistic market, however, synergy
bidders could be expected to be able to learn and adjust theirexpectations based on past
interactions, as well as reason game-theoretically about the fact that another synergy bidder
may present in the market at the same time. At this point, these more sophisticated forms
of reasoning are left to future work.

As in the previous section all simulations of this section have reserve prices of 8 and
local bidders following∼ N(10, 2.5). The first two experiments also have two synergy
buyerssyn1 andsyn2 with valuations for both goods of 21.5 and 22.5 respectively. The
order the synergy bidders enter the market (and the number ofauctions they can stay in)
are given in Figs. 9 and 10, while results for all settings areshown in Fig. 7, respectively
8. In the following, we will discuss these in separate subsections.

5.1 Two synergy buyers interacting indirectly through the exercise price level

In the setting examined here, the two synergy buyers each have nA = 3 andnB = 3,
without the other agent participating in these auctions. Anexample of such an auction
sequence is shown in Fig. 9. However, these two synergy bidders do interact indirectly as
follows. Since options are sold through open auctions basedon the option price, the seller
has to fix the exercise prices for the whole market (i.e. for all auctions in the sequence).
So while synergy buyers may not participate in the same auctions, their presence does
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Fig. 7. Percentage increase in profits for a market with with 2 synergy bidders. There are 3 auctions for A and 3
for B, and for each one the bids from the competition formed by local bidders follows the distributionN(10, 2.5).
The valuations of the two synergy bidders for a bundle{A,B} are 21.1 forsyn1, respectively 22.5 forsyn2. The
order the agents enter the market is described by Fig. 9 below (so the two agents do not compete directly against
each other in this setting). Notice that, in this case, the average profit ofsyn2 does not decrease with the entry of
syn1 in the market.

Fig. 8. Percentage increase in profits for a market with with 2 synergy bidders. The setting and valuations are
the same as in Fig. 7 above. However, the order the agents enterthe market is now described by Fig. 10 below
(so the two agentsdo compete directly for the same goods). Notice that, in this case, the average profit ofsyn2
decreases due to the additional competition fromsyn1.

influence the competition through the exercise prices set bythe seller.
This effect can be seen in Fig. 7, in which the seller maximizes her expected profit at

K = KA = KB = 2.4. In this casesyn2 is better off, because without the presence
of syn1 she would be offered options with lower exercise prices. Butsyn1 is worse off,
because if she were alone in the market the seller would chooseK = 3.2, which gives her
a higher expected profit. Yet, due tosyn2, the seller setsK = 2.4. In this case, due to the
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Fig. 9. An auction sequence for the case shown in Fig 7.

seller’s choice of exercise prices, one synergy buyer (syn1) gains, whilesyn2 loses.

5.2 Direct synergy buyer competition in the same market

Next, we considered a setting in which synergy buyers compete directly for some of the
goods. The entry points for such a setting are shown in Fig. 10, while simulation results
are given in Fig. 8.

Fig. 10. An auction sequence for the case shown in Fig. 8.

As can be seen in Figure 8, the profit ofsyn2 drops at 2.5. In previous figures the
synergy buyers’ profits were monotonically increasing in the exercise prices, because they
then have a smaller loss when they fail to complete their bundle. But now this effect cannot
immediately compensate the extra competition coming fromsyn1, who participates in the
same auctions more often after this threshold at 2.5. So, in this case, both synergy buyers
lose from the presence of additional bidders. While one synergy buyer (i.e.syn2) should
benefit because she is offered better (higher) exercise prices than if she were alone in the
market, this effect cannot immediately compensate the additional competition.

5.3 Larger simulation with random synergy buyers’ market entry

In the final results we report in this paper, we conducted a larger scale simulation with
multiple synergy buyers, which can enter the market randomly, with a certain probability.

The experimental setup implies that each sequence of auctions (forming a test case)
has 10 items of each type (i.e.nA = 10 andnB = 10). What differs from previous
settings is the random entry of synergy buyers. For each auction, there is a25% chance
that a synergy buyer will enter the market. If she does, then her valuation is drawn from
a uniform distribution between 20 and 22 and she will stay in the market for exactly four
auctions. To simplify matters, the auction sequence is fixedat first selling A, then B, then
A etc. so that each synergy buyer will face exactly two auctions for an item of type A
and two for an item of type B. However, the general result of this section is also true for a
random auction sequence, since the basic effects remain thesame.

As shown in Figure 11, the seller’s profit now only has one maximum at 5, because
initially each increase in exercise prices causes, with some probability, a synergy buyer
to participate more often. So each point is a threshold and the profit graph smooths out
over those many local maxima, corresponding to a steady increase (on average) of the
expected profit. This result shows why it can be rational for the seller to have the same
exercise prices for all goods of the same type (e.g. the sameKA). In a market with random
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Fig. 11. Percentage increase in seller’s profits in a larger experimental setting, with synergy buyers randomly
entering the market.

entry of synergy buyers, the seller does not know which buyers are participating in any
particular auction. Her optimal policy is to set her exercise prices which maximize her
overall expected profit (in this case,K = 5).

6. DISCUSSION AND FURTHER WORK

This paper examined, from a decision-theoretic perspective, the use of priced options as a
solution to the exposure problem in sequential auctions. Weconsider a model in which the
seller is free to fix the exercise price for options on the goods she has to offer, and then sell
these options in the open market, through a first price auction mechanism.

For this setting, we derived analytically, for a market witha synergy buyer and un-
der some assumptions, expressions that provide the bounds on the option prices between
which both synergy buyers and sellers have an incentive to use option contracts over direct
auctions. Next, we performed an experimental analysis of several settings, where either
one or multiple synergy bidders are active simultaneously in the market. We show that, if
the exercise price is chosen appropriately, selling items through priced options rather than
directly can increase the expected profits of both parties.

The overall conclusion of our study is that the proposed priced options mechanism can
considerably reduce the exposure problem that synergy bidders face when taking part in
sequential auctions. Furthermore, and most important,both parties in the market have
an incentive to prefer and use such a mechanism. We show that in many realistic market
scenarios, sellers can fix the exercise prices at a level thatboth provides sufficient incentive
for buyers to take part in the auctions, as well as cover theirrisk of remaining with the items
unsold.

It is important to note, however, that sequential auction allocation is a highly complex
and still under-researched area, for which few exact analytical solutions are known to ex-
ist. To our knowledge, this study provides a first decision-theoretic analysis for the use of
priced options to solve this problem. The analysis and results for the several fundamen-
tal cases studied here can serve as a basis for future work in more complex and realistic
settings. These include more complex market scenarios, as well as more sophisticated rea-
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soning abilities on the part of participating synergy bidders and sellers. For example, in
a large market, synergy bidders could be expected to use learning strategies to adapt to
changing market conditions, as well as the presence of othersynergy bidders who want
similar item combinations. However, the sellers of the items could also use learning to
choose better levels of the exercise pricesK with which to sell the options for their goods.

Other possible issues open to future research include: markets where bidders have im-
perfect or asymmetric information about other participants, more complex preferences over
bundles, or different attitudes to risk. In order to study markets involving a variety of such
heterogeneous agents, a promising approach may be to use evolutionary game theory tech-
niques. Such an approach has already been considered for continuous double auctions
(CDAs) by [Cai et al. 2007], but to our knowledge this has not been attempted before for
sequential auctions with complementarities.

To conclude, sequential auction bidding with complementary valuations is a problem
that appears in many real-life settings, although no dominant strategies exist and bidders
face a severe exposure problem. The main intuition of this work is that a simple options
mechanism, where sellers auction options for their goods (with a pre-set exercise price),
instead of the goods themselves can go a long way in solving the exposure problem, and
can be beneficial to both sides of such a market.

In practical terms, the potential impact of having a workingsolution to the exposure
problem in sequential auctions is considerable. One example, which was used to illustrate
some aspects of the model in this paper is decentralised transportation logistics [Robu
et al. 2008; Robu et al. 2011], where loads appear sequentially, over time, and a bidding
agent has to acquire a combination of these to fill her transportation capacity (i.e. truck).
In decentralised electricity markets, much of the available electricity supply (especially
that generated by renewable sources, such as wind or solar energy) comes online with a
certain probability. In allocating this intermittent, “green” electricity through an electronic
market, options could be a promising solution to deal with the inherent uncertainty. Other
potential applications include retail electronic commerce (such as those discussed in [Juda
and Parkes 2006] or keyword markets in sponsored search [Jordan et al. 2010; Borgs et al.
2007; Robu et al. 2009]. In our future work, we plan to explorethe application of priced
option mechanisms to some of these areas.
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