The University of Southampton
University of Southampton Institutional Repository

Development and implementation of a deflection amplification mechanism for capacitive accelerometers

Development and implementation of a deflection amplification mechanism for capacitive accelerometers
Development and implementation of a deflection amplification mechanism for capacitive accelerometers
Micro-Electro-Mechanical-Systems (MEMS) and especially physical sensors are part of a flourishing market ranging from consumer electronics to space applications. They have seen a great evolution throughout the last decades, and there is still considerable research effort for further improving their performance. This is reflected by the plethora of commercial applications using them but also by the demand from industry for better specifications. This demand together with the needs of novel applications fuels the research for better physical sensors.

Applications such as inertial, seismic, and precision tilt sensing demand very high sensitivity and low noise. Bulk micromachined capacitive inertial sensors seem to be the most viable solution as they offer a large inertial mass, high sensitivity, good noise performance, they are easy to interface with, and of low cost. The aim of this thesis is to improve the performance of bulk micromachined capacitive sensors by enhancing their sensitivity and noise floor.

MEMS physical sensors, most commonly, rely on force coupling and a resulting deflection of a proof mass or membrane to produce an output proportional to a stimulus of the physical quantity to be measured. Therefore, the sensitivity to a physical quantity may be improved by increasing the resulting deflection of a sensor. The work presented in this thesis introduces an approach based on a mechanical motion amplifier with the potential to improve the performance of mechanical MEMS sensors that rely on deflection to produce an output signal.

The mechanical amplifier is integrated with the suspension system of a sensor. It comprises a system of micromachined levers (microlevers) to enhance the deflection of a proof mass caused by an inertial force. The mechanism can be used in capacitive accelerometers and gyroscopes to improve their performance by increasing their output signal. As the noise contribution of the electronic read-out circuit of a MEMS sensor is, to first order, independent of the amplitude of its input signal, the overall signal-to-noise ratio (SNR) of the sensor is improved.

There is a rather limited number of reports in the literature for mechanical amplification in MEMS devices, especially when applied to amplify the deflection of inertial sensors. In this study, after a literature review, mathematical and computational methods to analyse the behaviour of microlevers were considered. By using these methods the mechanical and geometrical characteristics of microlevers components were evaluated. In order to prove the concept, a system of microlevers was implemented as a mechanical amplifier in capacitive accelerometers.

All the mechanical structures were simulated using Finite Element Analysis (FEA) and system level simulations. This led to first order optimised devices that were used to design appropriate masks for fabrication. Two main fabrication processes were used; a Silicon on Insulator (SOI) process and a Silicon on Glass (SoG) process. The SOI process carried out at the University of Southampton evolved from a one mask to a two mask dicing free process with a yield of over 95%, in its third generation. The SoG is a well-established process at the University of Peking that uses three masks.

The sensors were evaluated using both optical and electrical means. The results from the first prototype sensor design (1HAN) revealed an amplification factor of 40 and a mechanically amplified sensitivity of 2.39V/g. The measured natural frequency of the first mode of the sensor was at 734Hz and the full-scale measurement range was up to 7g with a maximum nonlinearity of 2%. The measurements for all the prototype sensor designs were very close to the predicted values with the highest discrepancy being 22%. The results of this research show that mechanical amplification is a very promising concept that can offer increased sensitivity in inertial sensors without increasing the noise. Experimental results show that there is plenty of room for improvement and that viable solutions may be produced by using the presented approach. The applications of this scheme are not restricted only to inertial sensors but as the results show it can be used in a broader range of micromachined devices.
Zeimpekis, Ioannis
a2c354ec-3891-497c-adac-89b3a5d96af0
Zeimpekis, Ioannis
a2c354ec-3891-497c-adac-89b3a5d96af0
Kraft, Michael
54927621-738f-4d40-af56-a027f686b59f
Chong, Harold
795aa67f-29e5-480f-b1bc-9bd5c0d558e1

Zeimpekis, Ioannis (2012) Development and implementation of a deflection amplification mechanism for capacitive accelerometers. University of Southampton, Electronics and Computer Science, Doctoral Thesis, 226pp.

Record type: Thesis (Doctoral)

Abstract

Micro-Electro-Mechanical-Systems (MEMS) and especially physical sensors are part of a flourishing market ranging from consumer electronics to space applications. They have seen a great evolution throughout the last decades, and there is still considerable research effort for further improving their performance. This is reflected by the plethora of commercial applications using them but also by the demand from industry for better specifications. This demand together with the needs of novel applications fuels the research for better physical sensors.

Applications such as inertial, seismic, and precision tilt sensing demand very high sensitivity and low noise. Bulk micromachined capacitive inertial sensors seem to be the most viable solution as they offer a large inertial mass, high sensitivity, good noise performance, they are easy to interface with, and of low cost. The aim of this thesis is to improve the performance of bulk micromachined capacitive sensors by enhancing their sensitivity and noise floor.

MEMS physical sensors, most commonly, rely on force coupling and a resulting deflection of a proof mass or membrane to produce an output proportional to a stimulus of the physical quantity to be measured. Therefore, the sensitivity to a physical quantity may be improved by increasing the resulting deflection of a sensor. The work presented in this thesis introduces an approach based on a mechanical motion amplifier with the potential to improve the performance of mechanical MEMS sensors that rely on deflection to produce an output signal.

The mechanical amplifier is integrated with the suspension system of a sensor. It comprises a system of micromachined levers (microlevers) to enhance the deflection of a proof mass caused by an inertial force. The mechanism can be used in capacitive accelerometers and gyroscopes to improve their performance by increasing their output signal. As the noise contribution of the electronic read-out circuit of a MEMS sensor is, to first order, independent of the amplitude of its input signal, the overall signal-to-noise ratio (SNR) of the sensor is improved.

There is a rather limited number of reports in the literature for mechanical amplification in MEMS devices, especially when applied to amplify the deflection of inertial sensors. In this study, after a literature review, mathematical and computational methods to analyse the behaviour of microlevers were considered. By using these methods the mechanical and geometrical characteristics of microlevers components were evaluated. In order to prove the concept, a system of microlevers was implemented as a mechanical amplifier in capacitive accelerometers.

All the mechanical structures were simulated using Finite Element Analysis (FEA) and system level simulations. This led to first order optimised devices that were used to design appropriate masks for fabrication. Two main fabrication processes were used; a Silicon on Insulator (SOI) process and a Silicon on Glass (SoG) process. The SOI process carried out at the University of Southampton evolved from a one mask to a two mask dicing free process with a yield of over 95%, in its third generation. The SoG is a well-established process at the University of Peking that uses three masks.

The sensors were evaluated using both optical and electrical means. The results from the first prototype sensor design (1HAN) revealed an amplification factor of 40 and a mechanically amplified sensitivity of 2.39V/g. The measured natural frequency of the first mode of the sensor was at 734Hz and the full-scale measurement range was up to 7g with a maximum nonlinearity of 2%. The measurements for all the prototype sensor designs were very close to the predicted values with the highest discrepancy being 22%. The results of this research show that mechanical amplification is a very promising concept that can offer increased sensitivity in inertial sensors without increasing the noise. Experimental results show that there is plenty of room for improvement and that viable solutions may be produced by using the presented approach. The applications of this scheme are not restricted only to inertial sensors but as the results show it can be used in a broader range of micromachined devices.

Text
Ziempekis_final_thesis.pdf - Other
Download (6MB)

More information

Published date: January 2012
Organisations: University of Southampton, Electronics & Computer Science

Identifiers

Local EPrints ID: 341919
URI: http://eprints.soton.ac.uk/id/eprint/341919
PURE UUID: 1193aeb4-74b4-4fb0-9b63-aad741e35c16
ORCID for Ioannis Zeimpekis: ORCID iD orcid.org/0000-0002-7455-1599
ORCID for Harold Chong: ORCID iD orcid.org/0000-0002-7110-5761

Catalogue record

Date deposited: 12 Nov 2012 15:01
Last modified: 15 Mar 2024 03:38

Export record

Contributors

Thesis advisor: Michael Kraft
Thesis advisor: Harold Chong ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×