Jpylyzer: Analysing JP2000 files with a community
supported tool
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This paper introduces Jpylyzer, a validator and feature ex-
tractor for JP2 images. This simple tool is designed to
do one task, validation, reliably and in a way conforming
strictly to the JPEG 2000 Part 1 (ISO/IEC 15444-1) speci-
fication. In order to validate JP2 files, Jpylyzer examines the
features used for conformance, thus consequently is able to
list the features used. Further, this paper outlines how the
development of Jpylyzer was strictly controlled in order to
make Jpylyzer a tool that can be adopted by a wider com-
munity. We outline the software “curation” process being
adopted within the OPF and SCAPE digital preservation
projects. This process has resulted in Jpylyzer being suc-
cessfully adopted into the debian/Ubuntu community and
prepared Jpylyzer for submission to other platform “stores”
and download sites.

Jpylyzer was specifically created to answer the following
questions that you might have about any JP2 file:

1. Is this really a JP2 and does it really conform to the
format’s specifications (validation)?

2. What are the technical characteristics of this image
(feature extraction)?

At the highest level, a JP2 file is made up of a collection of
boxes. A box can be thought of as the fundamental build-
ing block of the format. Some boxes (‘superboxes’) are con-
tainers for other boxes. Figure 1 gives an overview of the
topéARlevel boxes in a JP2 file.

The structure of a JP2 file is important, as is the order of
the boxes, e.g. the first box in a JP2 file must always be
a ‘Signature’ box, followed by a ‘File Type’ box. Addition-
ally some boxes allow multiple instances (e.g. ‘Contiguous
Codestream’ box), whereas others (e.g. ‘JP2 Header’ box)
must be unique. Each box must also have the same four
part structure, as shown by Figure 2. The strict order and
properties these boxes allows for easy validation.

Jpylyzer parses a JP2 file, based on the JP2 format spec-
ification (ISO/IEC 15444-1) [1]. It then subjects the file’s
contents to a large number of tests, each of which is based
on the requirements and restrictions that are defined by the
standard. If a file fails one or more tests, this implies that
it does not conform to the standard, and is not valid JP2.
Importantly, this presumes that Jpylyzer’s tests accurately
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Figure 1: Top-level overview of a JP2 file (boxes
with dashed borders are optional)
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Figure 2: JP2000 box structure

reflect the format specification, without producing false pos-
itives.

It is important to note that Jpylyzer does not check that a
JP2 will render; it does not examine the bitstream content
of the file. For scalability, and the fact that other render
checking tools exist [3] [2] [4], it has been decided that this
functionality will never be added to the tool.



Further Jpylyzer adopts a closed world assumption. Jpy-
lyzer validates a file by trying to prove that is does not
conform to the standard. Additionally due to ambiguities
in the specification (that have been reported by the creators
of Jpylyzer), not all aspects of the standard can currently
be checked for validity. It is hoped in the future that these
issues will be resolved by the JP2000 standardization com-
munity.

Jpylyzer was designed for purpose. The British Library has
for some time been digitizing content into the JP2 format,
however to this point they had no reliable and scalable way
to validate these files. Through limited manual inspection,
a series of corrupt files were located, leading to question
about just how many files were corrupt. Jpylyzer was de-
signed to suit such a purpose, being a simple command line
tool that quickly analyses files and gives simplistic (as well
as extended) output. Using Jpylyzer, the British library was
able to successfully analyse 2.15 million JP2000 files and dis-
covered 676 invalid images. This process took 21 days using
a single threaded process.

From an early stage there was a strong demand for Jpy-
lyzer to exist as a cross platform tool. This demand came
from the user community, the most important community
to drive the adoption of Jpylyzer outside of the relatively
small digital preservation community.

Written in python, Jpylyzer provides a simple command line
interface to which a user invokes Jpylyzer along with the lo-
cation of one or more JP2 files. Reports are then output in
XML format and the user is able to save these to a file using
simple pipelines. Additionally the Jpylyzer library can be
imported into other python systems and utilized as a library.
Importantly, Jpylyzer can also be compiled into “native” C
code. As well as speeding up the execution of Jpylyzer,
this also allows Jpylyzer to be distributed for platforms that
don’t have python support natively.

The Jpylyzer XML output is split into several sections as
detailed in Figure 3, each equally important for effective
preservation of JP2 files. The first two sections (toollnfo
and fileInfo) detail the provenance information relating to
the version of Jpylyzer (the tool) used and the details of the
file scanned. The remaining three elements detail the vali-
dation results, beginning by simply stating whether the file
is valid or not before detailing the results of each test and
properties of each box.

So at this stage, Jpylyzer provides a small, focused and con-
tained tool for assisting in the digital preservation of JP2
files. It also conforms strictly to the JP2000 Part 1 speci-
fication and only utilizes off the shelf python libraries that
con be compiled for native use. These aspect forms the basis
of the OPF /Scape software curation process (Figure 4).

The first two steps usually represent as far as a prototypical
or research based tool gets. To progress beyond step two,
requires the adoption of good software development prac-
tices. Beyond using a version control system, good practice
involves adopting a version numbering system, relating this
to a ticketing system and actually considering what your
commit messages should be! Again without good practice,
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Figure 3: Jpylyzer’s XML output structure

it is likely that the development of the tool will stall later in
the process.

Step 4 relates to the packaging of the tool ready for dis-
tribution, not as a source code zip file, but as a one-click
install package. Beyond this your package needs documen-
tation, including user documentation, man page and well
constructed changelog. Your package will also need to con-
form to all the strict packaging specifications applied by the
platform developers (e.g. Apple, Microsoft and Linux) to
prevent your app being rejected or simply not working due
to specific requirements.

These stages sound easy, but if the tool has not been care-
fully curated they are not. If however, a piece of software
is curated properly, then there is a chance it might not only
be accepted into the “App Store” but also gain interest from
the community in using and improving your tool.

Jpylyzer represents and exemplar in the preservation com-
munity of this process working. In May 2011, Jpylyzer found
itself a mentor in the debian/Ubuntu community (a require-
ment for adoption). Through continued work with this men-
tor and the wider community, it is hoped that Jpylyzer will
soon be readily available to a much bigger community via
traditional methods. Further, through listening and working
with this community, it is hoped that a much larger number
of developers can support this tool well into the future.

Jpylyzer, a digital preservation software sustainability suc-
cess story.

Thanks go to the Dutch National Library, OPF and SCAPE
projects. Also to the debain mentor community for willing to
adopt the tool.
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Figure 4: The Software Curation Process
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