
© 2012 Massachusetts Institute of Technology  Artificial Life 13: 121–128



Richard A. Watson

Natural Systems Group, University of Southampton, U.K.
raw@ecs.soton.ac.uk


It is tempting to be confident that we know how biological
evolution works. After all, we know a mechanism capable of
producing adaptation, and we understand the necessary and
sufficient conditions for this to occur, and those conditions are
met in natural populations – the rest is surely just details.
However, there can be many different algorithms that utilise a
given underlying mechanism (subalgorithm), and in other
contexts we cannot assert that we know what algorithm is
operating just because we identify a subalgorithm it contains.
Using sorting algorithms based on the mechanism of
‘compare and swap’ (as an analogue of evolutionary
algorithms based on natural selection) we discuss three
substantial ways in which an algorithm can be based on, and
depend on, a mechanism and yet not be that mechanism, each
of which has some bearing on natural processes of evolution:
1) unstructured versus structured applications of a mechanism,
2) dataindependent versus datadependent, 3) iterative versus
recursive. In the context of computational algorithms more
generally, it is easy to see that each of these issues
corresponds to different algorithmic classes. We suggest that
in natural evolution, it is not obvious that none of these issues
apply, nor that the empirical evidence supports the view that
an unstructured, dataindependent and iterative interpretation
of natural selection is sufficient to create biological evolution.

Biological Evolution and Natural Selection
Here we are interested in the adaptive aspects of evolution and
the algorithmic principles that produce such adaptation. To
begin, we must distinguish adaptive aspects of 
, i.e., the phenomenon of adaptation that actually
happens in the natural world (by whatever mechanism), from
   , ENS, i.e., the specific
algorithmic account of biological evolution originating with
Darwin. Of course, Darwin did not know a lot of the
mechanical details that were filledin later by neoDarwinism,
the Modern Synthesis and subsequent work. But here we are
interested in the general form of the algorithm described by,
for example, Lewontin (1970) – i.e. heritable variation in
reproductive success. ENS, as used here, therefore refers to
the standard model: i.e. an algorithm involving a population of
individuals, reproducing at variable rates as determined by
heritable characteristics that are susceptible to random
variation. These basics have not changed since Darwin and

continue to form the basis of all working models for
adaptation in evolutionary biology despite the many
complexities of real biology that have become evident since
Darwin. To take just one example, although evidence for the
neutral theory of evolution (Kimura, 1985) might change our
interpretation of evolutionary processes, few would argue that
it invalidates ENS as an explanation of adaptive change.
Indeed, it almost seems impossible, at least to some, that any
such detail could alter the fundamental algorithm of evolution.

We take it as given that biology instantiates ENS. That is,
ENS occurs in biological evolution (there is no need to
reiterate the evidence for this). However, we wish to separate
the conclusion that ENS   biological evolution from
the conclusion that the algorithm of adaptive biological
evolution  ENS. Ordinarily, the notions involved are
difficult to separate – or at least, care is not taken to separate
them. The statement ‘evolution is true’, for example, fails to
separate the claims that biological evolution has occurred
(species have changed adaptively over time), that ENS has
occurred (as described by Darwin), and/or that ENS is the
mechanism by which biological evolution has occurred. A lot
of emphasis is placed on showing that a biological population
instantiates ENS with the implicit assumption that, if we show
that it does, then we have shown that we know how biological
evolution works. Does that necessarily follow?

Crudely, the issue that we want to discuss is something
very simple: that a physical system can (trivially) instantiate
more than one algorithm simultaneously; in particular, that an
algorithm  can contain another algorithm , (≠). For
example, an algorithm for matrix multiplication contains an
algorithm for addition but it is not an algorithm for addition.
Thus, biological evolution may  ENS (and it does), but
it might not  ENS. Accepting this logical possibility
immediately and directly leads to the conclusion that no
amount of evidence for ENS in biological populations can
enable us to conclude that we know the algorithm of
biological evolution. Also, despite the fact that addition is
simpler than matrix multiplication, addition is not a more
parsimonious explanation ofmatrix multiplication because it
is not sufficient for matrix multiplication. Likewise an
argument of parsimony does not enable us to conclude that we
know the algorithm of biological evolution unless we can
show that ENS (alone) is sufficient for biological evolution.

Of course, previous work has discussed at length evidence
for the sufficiency of ENS to produce the biological

jfurbush
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-31050-5-ch018

adaptation we observe in nature, e.g., (Sober, 1984; Neander,
1995; Bedau, 2008). However, such debates are often
hampered by the implicit assumption that ENS is effectively a
synonym for a natural account of biological evolution (in
contrast to a supernatural ‘account’). Because of this
assumption, the assertion that there must be a natural
algorithm responsible for biological evolution forces the
conclusion that ENS is that algorithm – and the result of this
circular reasoning leads to the conclusion that ENS must be
sufficient for biological adaptation. An inability to see that
ENS might not be the algorithm of biological evolution (even
though biological evolution surely depends on it) makes it
impossible to discuss properly the possibility that ENS might
not be sufficient to produce the adaptation we observe1.

Nonetheless, two  possibilities for how
biological evolution might contain ENS but not be ENS might
come to mind: a) there exists an altogether different
algorithmic process, operating over and above ENS, such that
the existence of ENS in biology is sort of a coincidence/ or
even a red herring, b) that biological evolution is some small
variant of ENS, ‘ENS plus some bells and whistles’, but
really, the fundamental nature of the algorithm is still ENS. A
constructive discussion will require a carefully considered
middle ground that neither depends on fantastical hypothetical
alternatives nor on splittinghairs. The issues we discuss are
not merely hypothetical – and, in fact, the existence of
relevant features/mechanisms in biological evolution is not in
question. The more difficult issue is whether such features are
minor details or algorithmically substantive.

The main contribution of this paper thus concerns issues of
algorithmic equivalence. We want to address features that
change the fundamental nature of an algorithm – but we also
want to show that such features can nonetheless be rather
subtle. In fact, we restrict ourselves further to cases where 
and  have a particular kind of relationship such that  does
not merely contain a mechanism (subalgorithm) , but  is
 . Meaning that  depends on  ( is essential for
), and in a sense  is just  arranged in a particular manner,
and the difference between  and  might come ‘for free’
(without design). Using concrete examples from another
domain, we then investigate whether it can be the case that
even though  is based on  in this restricted sense, it can
nonetheless be the case that, we do not know how  works
just because we know how  works. If so, this potentially
prevents us from concluding that we know how biological
evolution works even if granted that it is based on ENS.

Natural Selection ≈Natural Selection?
The conditions that facilitate the process of evolution by
natural selection – i.e. heritable variation in reproductive

1As scientists we must be careful that we do not fall back on the
following argument: 1) either it’s ENS or it’s supernatural, 2) it is not
supernatural, 3) therefore it’s ENS. Even though the logic of the argument
is correct, the conclusion is false because the first clause is false. Despite
the fact that ENS occurs in nature and is capable of producing adaptation,
it is not the only logical possibility (even if we restrict ourselves to
mechanisms   ENS). The assumption that questioning the
sufficiency of ENS implies a willingness to entertain supernatural
‘accounts’ is potentially highly damaging to scientific debate.

success – are common in natural populations. The action of
natural selection can be observed in natural populations and
under controlled conditions; and, it is evidently capable of
producing adaptation. The fossil record and genomic data
show that all living things are connected in a tree of
incremental (phenotypic and genetic) changes as the theory
predicts. There is therefore no doubt that natural selection
occurs and that it is fundamental to evolutionary change.

Given these facts, the claim that we know how evolution
works seems reasonable. Dawkins, for example, states that
“What Darwin achieved was nothing less than a complete
explanation for the complexity and diversity of all life”
(Dawkins, 2008). Obviously, “complete” is an overstatement.
Many details have been filledin/addedon over the last 150
years – including neutral evolution (Kimura, 1985), kin
selection (Hamilton, 1964), niche construction (OdlingSmee
et al, 2003), epigenetic inheritance (Jablonka & Lamb, 1995),
selforganisation (Kauffman, 1993), symbiogenesis (Margulis
& Fester, 1991), exaptation (Gould & Lewontin, 1979), ‘evo
devo’ interactions (Sommer, 2009), lateral gene transfer
(Doolittle & Bapteste, 2007), compositional evolution
(Watson, 2006), etc. – not to mention the molecular basis of
inheritance – and there will surely be more. Moreover, some
authors argue that issues such as these have a fundamental
bearing on the underlying algorithm of biological evolution
(see also Pigliucci, 2007). But others disagree – the hyperbole
of Dawkins aside, the sentiment is that all of these ‘addons’
are merely contingent implementation details compared to the
fundamental mechanism that drives it, ENS.

Underlying this there is perhaps a belief that ENS is the
only adaptive algorithm that could  occur
spontaneously in a physical substrate (and that therefore all
other details  be either derivatives of it or unimportant).
This assumption must be dispensed with. After all, prior to
Darwin, no one could imagine  adaptive algorithm that
could possibly occur spontaneously in a physical substrate.
But Darwin showed that there exists at least one algorithm in
that class. Is ENS really so fundamental that it is impossible
for another algorithm to exist that is not simply a derivative of
it? Consider a trivial counterexample; the optimization
algorithm simulated annealing (Kirkpatrick et al, 1983). This
occurs spontaneously in physical systems – in hot lumps of
metal and other crystals as they cool – which was the
inspiration for the computational algorithm in the first place.
But simulated annealing is not natural selection and not a
derivative of it. One might object that this example is merely
the result of a physical dynamical system just doing what it
does naturally – but so is natural selection, of course – there is
nothing ‘other worldly’ about ENS. One might also object that
simulated annealing is arguably a less sophisticated (weaker)
algorithm than ENS, we would agree. Nonetheless, not all
natural algorithms are necessarily ENS or derivatives of it.

However, in this paper we deliberately restrict ourselves to
algorithms that, like all of the expansions mentioned above,
 ENS, and to algorithms that are based on ENS in a
fundamental manner such that ENS is essential for their
operation – i.e., no adaptation would occur without the
inclusion of ENS. This might appear to concede that we are

Is Evolution by Natural Selection the Algorithm of Biological Evolution?

122  Artificial Life 13

merely talking about ‘addons’ – additions or extensions that
do not change the fundamental underlying algorithm. But it is
exactly the validity of this conclusion that we wish to discuss.

Algorithmic equivalence and subtle ways an algorithm
can be based on a given mechanism
In the context of algorithms in general, it is easy to confirm
that algorithm  can contain another algorithm  and yet not
be algorithm  (see the matrix multiplication example above,
or, in turn, the relationship of matrix multiplication to some
signal processing algorithm, for example). Given that 
contains , we could argue that  is not an 
description of  but merely . But this would clearly
be disingenuous in some cases (e.g., the missing details
between addition and matrix multiplication are clearly
fundamental). Likewise, it follows that,  , many
different algorithms could contain natural selection and yet
not be natural selection in a fundamental sense. But in the
abstract, this point has little biological relevance. We need to
restrict ourselves to biologically relevant algorithmic variants.
However, rather than, at the other extreme, allowing the
specific biological details (neutral evolution, evodevo etc.) to
drive the discussion, in this paper we take a different route.

Instead we discuss some specific but canonical ways in
which algorithms can belong to fundamentally different
algorithmic classes – despite all being based on the same
underlying mechanism – simply by applying that mechanism
in different ways. Namely, by applying that mechanism in
different structural arrangements, in dynamic arrangements
and in recursive arrangements:
 1) unstructured vs structured applications of a mechanism,
 2) dataindependent vs datadependent applications,
 3) iterative vs recursive applications of a mechanism.

To this end we discuss at some length a number of non
evolutionary algorithms; in particular, different types of
sorting algorithms all based on the mechanism of ‘compare
and swap’. In this context it is clear that many different
algorithms can all be based on and dependent on the same
underlying mechanism, and yet belong to fundamentally
different algorithmic classes. This enables us to discuss the
relevant conceptual issues in a domain that is uncontroversial.
We suggest that in light of such analogies, some important
issues in evolution that presently seem inseparable can be
teased apart, enabling us to ask clearer questions about
biological evolution, and make clearer claims about our
knowledge of it. This approach does, of course, have the
weakness that we do not address specific biological
mechanisms in detail – one may simply conclude that
although our point may be true for sorting, it is not true for
evolution. But it is our contention that in the domain we
actually care about, biological evolution, the relevant facts
(the algorithmic principles and their adaptive consequences)
are not known – making it impossible to discuss the relevant
issues. In the meantime, we aim to open up the relevant
conceptual space to identify the relevant questions.

Our aims in this paper are therefore to discuss concepts
such as algorithmic equivalence, and algorithmic classes, and
in particular the implications of this for how we understand

evolution by natural selection. This is discussed at a largely
conceptual level using analogies with other algorithmic
domains. In each of the following sections we discuss the
relevant issues with respect to algorithms in general (where
the conclusions are uncontroversial), and then indicate their
potential relevance to biological evolution. We then recap the
implications and draw some general conclusions with respect
to what we know about natural evolution.

Unstructured and structured applications of a
mechanism

We begin with the subtle ways that  of a
mechanism can result in different algorithms.

Unstructured and structured sorting algorithms
Consider algorithms for sorting a list of numbers. Many
sorting algorithms can be described as multiple applications of
a ‘compare and swap’ (C&S) operator:

Compare-and-swap(<a,b>):
If a ≥ b return <a,b> else return <b,a>.

Bubblesort for example, iterates through a list repeatedly,
applying C&S to adjacent numbers in the list. One can
visualise the order in which C&S operations are applied as a
  (Fig. 1) (Knuth, 1973; Cormen et al, 2001)
Finding sorting networks with minimal number of
comparators (and/or minimum depth) for a given number of
inputs is a favourite sport of computer science (including, e.g.,
Hillis’ (1990) use of coevolutionary methods). Many different
sorting algorithms (with different time complexities) can be
described as sorting networks (Fig. 1).

 a)

 b)
 Sorting networks. Horizontal lines carry inputs that
flow from left to right, vertical junctions apply C&S
operations – a) Bubblesort (the number of C&S operations
can be reduced by 1 each iteration through the list as shown,
giving a time complexity of (1)/2 rather than 2). b)
Bitonicsort, time complexity Θ(·log()2) (Batcher 1968).

Bubblesort and Bitonicsort both involve many C&S
operations, and no sorting would occur without C&S; C&S is
essential for sorting to occur. But even though the only
difference between them is how the C&S operations are
arranged, Bubblesort and Bitonicsort are not two different

Is Evolution by Natural Selection the Algorithm of Biological Evolution?

123  Artificial Life 13

descriptions of the same algorithm. This is evident in the
observation that the two algorithms have different time
complexities, and therefore, for a given time limit, one can
sort lists of a given size correctly that the other cannot – i.e.
Bubble sort does  sort correctly in time ·log()2.

Note also that compare and swap itself is an algorithm.
Both Bubblesort and Bitonicsort  the C&S algorithm.
But neither of them  C&S – there is more to them than
that. It is therefore not the case that describing an algorithmic
mechanism, , that is essential for and contained in an
algorithm, , is the same as describing the algorithm  even if
 is essentially just a particular arrangement of . In these
examples, the ‘structural context’ in which C&S occurs is
necessary in order to describe Bubblesort or Bitonicsort.
Note that it would be true to say that, given the right structural
context, C&S results in sorting. But this still would not
distinguish whether it was Bubblesort or Bitonicsort that had
been implemented. Note also that some arrangements of C&S
operations do not result in correct sorting for all inputs. Thus
C&S is not sufficient for sorting.

Of course, Bubblesort and Bitonicsort are very special
arrangements of C&S operations. However, a random
arrangement of comparators with sufficiently many C&S
operators would sort correctly so long as all comparators are
pointing the same way – no other organisation is required. The
expected time complexity (expected number of operators
needed to sort correctly) for such a network is no more than
2 times more than the time complexity of Bubblesort, for
example, (consider the probability of placing a required
comparator between a particular pair of lines, and the fact that
extra comparators do not hinder sorting). Such a 
network can reasonably be described merely as ‘lots of C&S
operations’ since the structural context is minimal.

It is also instructive to consider the possibility of sorting
networks that are structured in only subtle ways – e.g., such
that nearby lines have a higher probability of a comparator
being placed between them. If we restrict comparators to
adjacent lines only, then the time complexity of 
 is no more than  times the time complexity of
Bubblesort, for example – since Bubblesort uses only this
type of comparator (and the probability of placing a particular
comparator is now 1/(1)).

Unstructured and structured natural selection
We explore the analogy that ‘C&S is to sorting’ what ‘natural
selection is to biological evolution’ (see Box 1). The sorting
examples show that the structural context of an algorithm 
(e.g., C&S) can change the algorithm  (containing ) in
substantive ways. Thus even if biological evolution contains
ENS we cannot necessarily conclude that the algorithm of
biological evolution is ENS even if the only difference is how
ENS is ‘arranged’. This would be reasonable only if (like
Random sort) the structural context of natural selection in
biological evolution was minimal – in this case biological
evolution would be nothing more than ‘lots of natural
selection’. But if biological evolution requires natural
selection to be applied in a particular structural context then
that could constitute a substantially different algorithm. This

Box 1: From sorting algorithms to evolutionary algorithms

runs counter to the assumption that any algorithm based on
natural selection is the same algorithm regardless of context.

In evolutionary theory it is well known that population
structure changes the effective unit of selection. That is,
 in kin selection theory does not measure genetic
relatedness in an absolute sense, but rather the genetic
relatedness of the individuals that interact compared to the
genetic relatedness of the population as a whole (Michod &
Hamilton, 1980). Population structure therefore changes
relatedness. Kin selection, or inclusive fitness theory, provides
an explanation for differing levels of cooperation in a
population, for example – i.e., different social outcomes.
Multilevel selection theory (Wilson, 1992), including type1
group selection, extends these principles. In principle,
something as simple as the fact that a population is spatially
embedded (altering who interacts with whom and who
competes with whom) thus alters the structural context in
which natural selection applies, e.g. by making proximal
individuals more likely to participate in a competitive
interaction than distal individuals (compare with Adjacent
only random sort). Then consider gene selection in the context
of multicellular organisms and how much these ‘vehicles’
(Dawkins 1976) structure the context of genic selection. These

To fleshout the analogy, consider the ‘compare and copy’
(C&C) operator below:

Compare-and-copy(<a,b>):
If a>b return <a,a> else return <b,b>.

We can plugin this operator in place of C&S into the
above sorting algorithms. This will produce algorithms
that take a list of  numbers as input and output a list of
numbers that has multiple copies of numbers from the
input in proportion to the number of twoplayer
tournaments that they win. This is a simple selection
algorithm or the reproduction part of an evolutionary
process. We could likewise define a probabilistic version
of this operator (copying  over  with probability that
takes account of the ratio of their fitnesses) if that were
desirable. A  operator
would provide all characteristics of heritable variation in
reproductive success. To produce multigeneration
evolution one would need to repeatedly call the sorter with
the output of the previous ‘generation’. (See the 
, (Harvey, 2011), for a genetic algorithm using a steady
state strategy with pairwise tournaments and insitu
variation (including sexual recombination) – but no
structured context, by default).

Note that the time complexity of the sorting algorithms
would then transform into the time complexity required to
make  copies of the biggest number (there are easier
ways to do that, but that’s not the point here). E.g.,
Adjacentonly random sort, given the C&C operator
instead of C&S, would require less generations on average
than Random sort to converge to an output where the
biggest number is copied  times. Therefore, given limited
time, Adjacentonly random sort could produce
convergence in some cases where Random sort could not.

Is Evolution by Natural Selection the Algorithm of Biological Evolution?

124  Artificial Life 13

observations are not usually taken to imply a different
algorithm for biological evolution. Should we conclude that
these issues are minor modifiers on ENS? Or, that structured
ENS, like structured sorting, constitutes a different algorithm?
We suggest, it is not so obvious that structuring does not
change the algorithm of evolution, nor that unstructured
natural selection captures what is important about biological
evolution any more than unstructured C&S captures sorting.

Data-independent and data-dependent
applications of a mechanism

Clearly, the output of an algorithm is sensitive to its input. But
the way in which an algorithm operates can also be sensitive
to the input, and again, this can be rather subtle.

Data-independent and data-dependent sorting
In a sorting network, the sequence of C&S operations is fixed
(part of the interest in them derives from the fact that their
fixed arrangement makes them suitable for implementation in
hardware). But other sorting algorithms exist that do not have
this property. , for example, is a datadependent
algorithm. Merge sort depends on a Merge procedure (applied
recursively) which takes two sorted lists (length ) and
combines them into a single sorted list (length ). Each Merge
requires only order  C&S operations. The recursive
application of Merge, in effect, combines lists of length 1
(necessarily already sorted) into successively bigger lists until
a complete list is returned. Quicksort (which has an ‘in situ’
version, using no additional registers) is a sorting algorithm
working on similar principles but ‘bottomup’. Mergesort and
Quicksort have (optimal) total time complexity O(log).

The Merge procedure compares the items from the tops of
the two sorted input lists and transfers the smaller to the
output list. This reveals a new top item in one of the lists. By
repeating until the lists are empty, a fullysorted output list is
created. Note that there is no fixed order to the comparisons
made in Merge – the th (for >1) comparison made depends
on the outcome of the (1)th comparison and all previous
comparisons. E.g. the first comparison is between A1 and B1
(the first elements of each list), then the second comparison is
between A1 and B2, if B1 was greater than A1, whereas it is
between A2 and B1, otherwise. Thus we cannot describe
Mergesort as any fixed ordering of compare and swap
operations. Put another way, to implement Mergesort in a
sorting network would require a network where the result of a
comparison at one point in the network influenced the
presence or absence of a comparator downstream.

It is instructive to consider a Random sorting network with
a simple kind of datadependence. For example, suppose that
whenever a comparator does not result in a swap, nearby
downstream comparators on the same lines are skipped. We
can see that this might increase the efficiency of the sort by
avoiding redundant comparators in some cases. More
sophisticated local rules are also worth contemplating; e.g., if
neither of the inputs to a comparator were altered since the
last comparator on those lines, skip the comparator. Such a
rule could be used in conjunction with a ‘fullyconnected

sorting network’ – i.e. where all 2 comparators are repeated
 times. This network sorts correctly (Bubble sort is a subset
of this network), and the datadependence rule cannot prevent
it from sorting correctly, and with the datadependence rule it
would use much less than the 3 comparators present.

Note that even for a datadependent algorithm there is a
traceback through time such that, at every point in time, we
can explain a new listordering given the previous list
ordering and the application of the C&S operation applied at
that point in time. But that is true for Mergesort just like it is
true for Bubblesort or Randomsort – i.e., post hoc analysis
shows that there is a sequence of C&S operations and, given
that they occurred in that order, they explain the correct
sorting. But the existence of such a trace (per se) does not
distinguish which algorithm we are tracing or explain how
they came to be in that order.

Data-independent & data-dependent natural selection
In the examples of contextual structuring we discussed above
(e.g., population structure, kin selection, vehicles, multilevel
selection) we assumed that these structures were constant or
provided by extrinsic factors (e.g., spatial embedding or
happenstance contingency). But, of course, they are also
influenced by the action of natural selection itself. For
example, the evolution of individual traits that affect habitat
preference inevitably affect population structure and thus
relatedness. Recent work (Powers, 2010; Powers et al, 2011;
Snowdon et al, 2009) has begun to investigate the evolution of
individual traits that affect the level of selection via s
  (Powers, 2010). This is a mechanism
where (by analogy with  , OdlingSmee et
al, 2003) an organism alters its social context (who it interacts
with and how much) and thereby affects the selective
pressures on its social behaviour (e.g. cooperation). This fits
directly with wellknown theory relating population structure
to social evolution (e.g. spatial or grouped population
structures promote cooperation; Nowak & May, 1992). But
whereas most studies assume that population structure is a
given, social niche construction includes individual traits that
alter population structure (e.g., via habitat preference, or
selective adhesion, or the evolution of vertical transmission
mechanisms). One particular study (Powers et al, 2011)
investigates the evolution of initial group size in an
aggregation and dispersal process and shows that individual
natural selection drives group size down to increase
cooperation (Szathmary, 2011). We have been investigating
analogous mechanisms in various domains, in particular in
adaptive networks (Gross & Sayama, 2009) where the
topology of the network affects the behaviour on the network,
and reflexively, the behaviour on the network affects the
network topology (Watson et al, 2010; 2011a; 2011b).
 Thus, by straightforward means, the outcome of natural
selection at one point in time can affect the way in which
natural selection is applied at a future point in time (see also
Neander, 1995). Thus, biological evolution is datadependent.
In principle, this puts it in a fundamentally different
algorithmic class from dataindependent natural selection. Of
course, one might argue that Lewontin’s formulation, for

Is Evolution by Natural Selection the Algorithm of Biological Evolution?

125  Artificial Life 13

example, does not categorically exclude datadependence
(since the possibility is not mentioned). But the omission is
potentially as substantial as saying that Mergesort is lots of
C&S without mentioning that the ordering depends on input.

Note also that there is a trace back through time such that,
at every point, we can explain a new state of a population as a
result of ENS acting on individual traits. But that does not
distinguish which evolutionary algorithm we are tracing; in
particular, whether the population structure that determined
the structure of the trace was datadependent or not. Thus, the
fact that evolved organisms fit into a tree of life does not
mean we can conclude that evolution is dataindependent ENS
(both dataindependent and datadependent ENS algorithms
would have the property that results fit into such a tree).

Iterative versus recursive applications of a
mechanism

Mergesort, as well as being datadependent, is also a
recursive algorithm. The recursive application of a mechanism
can result in a substantially different algorithm from iterative
applications. Again, this has interesting analogues in biology.

Iterative versus recursive sorting
Bubblesort is a simple iterative algorithm. Mergesort (like
Quicksort) is a recursive algorithm. It sorts a list by dividing
it in two, sorting each sublist  (i.e., dividing
it in two, sorting each sublist , and merging
the sublists back together using the Merge procedure), and
merging the sublists back together using the Merge
procedure. To prove that Mergesort sorts correctly we can
use a proof by induction. First we show that a list of just one
number is already sorted. Then we show that the 
procedure, given two sorted input lists, produces one sorted
list containing the numbers from both.

Note that the Merge procedure is not in itself a sorting
algorithm – it will not produce sorted output from arbitrary
inputs, only from two presorted lists. Thus if we describe the
Merge operation on its own, i.e. without the context of the
recursive structure, it does not describe a process that sorts.

(For interest, it is not too hard to define a subnetwork that
carries out Merge using only order  C&S comparators, as
Merge does, by starting with a full set of 2 comparators and
using datadependence that turns off downstream comparators
based on the outcome of upstream comparators, as mentioned
previously. Thus, a Mergesort network could be constructed
using such dynamic subnetworks arranged appropriately).

Suppose we were to jump into a trace of the Mergesort
algorithm at a particular level of recursion; perhaps the last
Merge before the sorted output is produced (i.e., two lists of
/2 into one list of ). We could explain (using data
dependent C&S operations) how Merge gets Mergesort from
this point in its operation to the final sorted output. However,
this would fundamentally fail to explain the sorted result
because it fails to explain how the two sublists came to be
sorted at this stage of operation. We could try to explain this
by saying that more Merging was involved; but note that it
would not be more Merging at the same level of description.

We have to refer to Merging at multiple levels of organisation
– i.e., no one level of Merge explains Mergesort.

Iterative versus recursive natural selection
Recursion is obviously a very special algorithmic structure.
But multiple nested levels of structural organisation are
ubiquitous in nature – in both evolved and nonevolved
systems (Lenaerts et al, 2005). The major transitions in
evolution (Maynard Smith & Szathmary, 1995) describe just
such a multiscale structure, applying natural selection (in a
structured and datadependent manner) at many scales of
organisation. Maynard Smith & Szathmary describe a set of
transitions that have been fundamental in the evolution of
complexity. These events, including for example the transition
from selfreplicating molecules to protocells and unicellular
organisms to multicellular organisms, share the property that
“entities that replicated independently before the transition
can replicate only as part of a larger whole after the
transition”. These processes are therefore entangled with
issues such as changes in the unit of selection (Okasha, 2006;
Michod, 1999; Buss 1987), and the ‘deDarwinisation’ of
lower level units and ‘Darwinisation’ of new higherlevel
units along various dimensions (GodfreySmith, 2009).

Note that jumping in at a particular level within this
hierarchy to try and describe how natural selection proceeds at
that one level of organisation would not describe the
algorithm responsible for the evolutionary outcomes we
observe because it would not explain where the inputs to this
level of organisation came from. At one of the lower levels of
organisation, this is loosely related to Sober’s (1984) position
that natural selection can explain why a population exhibits
trait  in preference to trait , but not how either of those traits
originated. It is a little too easy to simply assert that they
originated from the prior action of ENS because we may be
conflating different descriptive levels when we do this.

Put another way, consider the necessary and sufficient
conditions for ENS described by Lewontin – heritable
variation in reproductive success. Notice that all these terms
require us to define the units we are talking about so that we
can define reproduction (and Darwinian fitness/reproductive
success), heritability and variation. For example, we could
focus on the level of genes (as Dawkins advocates), then we
can talk about the heritability of genes given a set of genetic
variation operators (mutation and recombination), and
selection on genes (either in the context of cells or sexual
organisms), and given a physical substrate that defines how
well a given genetic sequence survives and replicates. But
clearly, a lot of machinery is already assumed here, and not all
of it obviously comes ‘for free’ from the biophysical
properties of molecules. Sexual recombination, for example,
is an evolved mechanism that radically changes the effective
unit of selection from genomes to genes (Watson, 2005) –
without some mechanism that enables genes to be inherited
individually the premise of genic selection is meaningless, and
we would be talking only about genome selection.

The point about the Merge procedure is not merely that the
inputs (sorted sublists) are variable in size or that sublists of
different sizes are relevant at different stages of the process.

Is Evolution by Natural Selection the Algorithm of Biological Evolution?

126  Artificial Life 13

The point is that the Merge procedure (despite containing lots
of C&S) is not a sorting algorithm at all, and only when one
appreciates that Mergesort is recursive, and therefore
continually redefines the inputs to the Merge procedure, do
we understand how Mergesort produces sorted outputs.
Likewise, the point is not merely that the terms of reference in
biological evolution are a bit slippery – a bit difficult to define
clearly (this point has been made many times, e.g. see
GodfreySmith, 2009 for many interesting examples). The
point is that there is not necessarily  one set of terms that
satisfies the requirements of the process.

‘Self-structuring’ & Opaque Consequences of ENS
Recursion involves a process turned upon itself. More
generally, the idea that evolution can modify its own
operation is discussed in the evolution of evolvability
(Kirchner & Gerhart, 1998; Sterelny 2011) and, e.g. evolved
exploration distributions (Toussaint & von Seelen, 2007;
Parter et al, 2008) that alter the space of phenotypic
possibilities on the fly. Likewise, the evolution of new genetic
mechanisms (nonrandom genetic variation mechanisms, e.g.
via mobile genetic elements; Shapiro, 2011) can alter the
space of genetic possibilities – analogous to ‘selfmodifying
code’ in computer science. In the major transitions we
contemplate evolution modifying its own operational units.

 Such recursive and selfreferential notions of evolution
present a concept of evolution that continually ‘reinvents
itself’; changing the level of selection, forming new
mechanisms of heredity and creating new evolutionary units
at successive scales of biological organisation. Thus
evolutionary processes cocreate the structural context of
selection, effectively redefining the evolutionary process
(Sterelny, 2011; Calcott & Sterelny, 2011; GodfreySmith,
2011). We refer to this as ‘.

The analogy suggests that explaining what is going on in
some of these biological processes, especially in the major
transitions and selfstructuring evolution, is not captured by
ENS, any more than Mergesort, for example, is captured by
unstructured, dataindependent and iterative applications of
the compare and swap mechanism. If this is the case, then
 , i.e. unstructured, dataindependent and iterative
ENS, is not necessarily the algorithm responsible for
producing biological adaptation even though it is evidently
capable of producing some adaptation.

However, the question then becomes, is selfstructuring
ENS merely plain ENS given the right kind of substrate or
materials? That is,   , can plain
ENS create structured, datadependent and recursive ENS? If
so, then any failure of plain ENS to explain biological
evolution seems to be merely an epistemological issue – i.e., a
failure to comprehend or deduce the opaque consequences of
the original simple algorithm. We have some sympathy for
this position. But plain ENS is not going to create structured
ENS in all substrates/ environments – some substrates won’t
allow datadependence or recursion for example. We would
argue that understanding the conditions for plain ENS to
become selfstructuring is really a necessary part of describing

the algorithm (Bedau, 2008) – and such understanding is not
captured by the plain ENS algorithm per se.

Moreover, the process that transforms plain ENS into
structured ENS is not  ENS itself. We might use
the term ‘selforganisation’ to cover a multitude of
possibilities with respect to order that comes ‘for free’ in
physical systems (although note that here we are talking about
selforganisation of the algorithm itself, not merely of the
object/material that ENS operates on). We have been
investigating a more specific mechanism of 
 (Watson et al, 2010; 2011a; 2011b; submitted) that
arises ‘for free’ in adaptive networks, for example. The
hierarchical form of selfstructuring evolution that results has
a fundamentally different algorithmic capability from plain
ENS (Mills, 2010; Watson et al, submitted). This implies that
the algorithmic nature of biological evolution is not merely a
point of view but can be settled empirically.

Conclusions
Understanding how compare&swap or Random sort works
is a long way from understanding how Merge sort works.
More generally, knowing that an algorithm sorts, and that it
contains C&S, does not tell us whether that algorithm is an
unstructured, dataindependent and iterative algorithm (like
Random sort) or, at the opposite extreme, a structured, data
dependent and recursive algorithm (like Merge sort). Thus, it
is not the case that we necessarily know how an algorithm 
works, even if we know that it contains a known algorithm .
Moreover, the examples of sorting algorithms show that  can
belong to fundamentally different classes of algorithm even
when the relationship between  and  is highly restricted
such that  not only contains  but is   :
Specifically,  depends on ,  is essential for the operation
of ;  is, in a sense, just an arrangement of  (albeit perhaps
a dynamic and/or recursive arrangement) and that
arrangement can in some cases be builtup using only local
restrictions and/or simple restructuring principles.

This shows that conditions that produce structured, data
dependent and/or recursive applications of a mechanism can
result in an algorithm that is in a fundamentally different class
from unstructured, dataindependent and iterative applications
of the same mechanism. Thus, even if we grant that biological
evolution not only contains ENS but is  ENS in this
restrictive sense, no amount of evidence for the existence of
ENS in nature enables us to conclude that we know the
algorithm of biological evolution.

Parsimony would preclude the need to consider alternative
algorithms for biological evolution if, but only if, it was
shown that ENS was a sufficient algorithm to produce
biological evolution. Thus, consider the statement: 
        
        
  And compare with:
         
      
  . Or for that matter:
        
        

Is Evolution by Natural Selection the Algorithm of Biological Evolution?

127  Artificial Life 13

  . Obviously the latter
statements can only be true because the ‘appropriate
conditions’ clause can bury substantial algorithmic structure.
The question is thus whether ‘the conditions’ of biological
evolution conceal substantial algorithmic structure. We have
discussed how these conditions might include structuring,
datadependence and recursion and that doing so would
change the fundamental nature of the algorithm. We cannot
therefore accept the first of these three statements as evidence
that ENS is algorithmically sufficient for biological evolution.
 In conclusion, we suggest that it is not at all clear that
biological evolution is unstructured, dataindependent and
iterative – indeed, we have discussed specific evidence to the
contrary. Thus, notwithstanding the fact that biology
instantiates ENS, it is certainly not for granted (arguments of
parsimony included) that evolution by natural selection is the
algorithm of biological evolution.

: Thanks to Chris Adami for motivating this
exploration. Thanks to Hywel Williams, Paul Ryan, Jason Noble,
Adam Davies and Miguel Gonzalez Canudas for discussion of the
manuscript, and Keyvan mir Mohammad Sadeghi for background
research on sorting networks.

         


  






          




            





       


       

         


           


          





  






       


        








 


 


         


           





           


       


        





         


           






        


         


        



       



 

      





         


         



          


         





         




       


         


  
      


       
        


Is Evolution by Natural Selection the Algorithm of Biological Evolution?

128  Artificial Life 13

