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
It is tempting to be confident that we know how biological 
evolution works. After all, we know a mechanism capable of 
producing adaptation, and we understand the necessary and 
sufficient conditions for this to occur, and those conditions are 
met in natural populations – the rest is surely just details. 
However, there can be many different algorithms that utilise a 
given underlying mechanism (subalgorithm), and in other 
contexts we cannot assert that we know what algorithm is 
operating just because we identify a subalgorithm it contains. 
Using sorting algorithms based on the mechanism of 
‘compare and swap’ (as an analogue of evolutionary 
algorithms based on natural selection) we discuss three 
substantial ways in which an algorithm can be based on, and 
depend on, a mechanism and yet not be that mechanism, each 
of which has some bearing on natural processes of evolution: 
1) unstructured versus structured applications of a mechanism, 
2) dataindependent versus datadependent, 3) iterative versus 
recursive. In the context of computational algorithms more 
generally, it is easy to see that each of these issues 
corresponds to different algorithmic classes. We suggest that 
in natural evolution, it is not obvious that none of these issues 
apply, nor that the empirical evidence supports the view that 
an unstructured, dataindependent and iterative interpretation 
of natural selection is sufficient to create biological evolution.  

Biological Evolution and Natural Selection  
Here we are interested in the adaptive aspects of evolution and 
the algorithmic principles that produce such adaptation. To 
begin, we must distinguish adaptive aspects of 
, i.e., the phenomenon of adaptation that actually 
happens in the natural world (by whatever mechanism), from 
   , ENS, i.e., the specific 
algorithmic account of biological evolution originating with 
Darwin. Of course, Darwin did not know a lot of the 
mechanical details that were filledin later by neoDarwinism, 
the Modern Synthesis and subsequent work. But here we are 
interested in the general form of the algorithm described by, 
for example, Lewontin (1970) – i.e. heritable variation in 
reproductive success. ENS, as used here, therefore refers to 
the standard model: i.e. an algorithm involving a population of 
individuals, reproducing at variable rates as determined by 
heritable characteristics that are susceptible to random 
variation. These basics have not changed since Darwin and 

continue to form the basis of all working models for 
adaptation in evolutionary biology despite the many 
complexities of real biology that have become evident since 
Darwin. To take just one example, although evidence for the 
neutral theory of evolution (Kimura, 1985) might change our 
interpretation of evolutionary processes, few would argue that 
it invalidates ENS as an explanation of adaptive change. 
Indeed, it almost seems impossible, at least to some, that any 
such detail could alter the fundamental algorithm of evolution.  

We take it as given that biology instantiates ENS. That is, 
ENS occurs in biological evolution (there is no need to 
reiterate the evidence for this). However, we wish to separate 
the conclusion that ENS   biological evolution from 
the conclusion that the algorithm of adaptive biological 
evolution  ENS. Ordinarily, the notions involved are 
difficult to separate – or at least, care is not taken to separate 
them. The statement ‘evolution is true’, for example, fails to 
separate the claims that biological evolution has occurred 
(species have changed adaptively over time), that ENS has 
occurred (as described by Darwin), and/or that ENS is the 
mechanism by which biological evolution has occurred. A lot 
of emphasis is placed on showing that a biological population 
instantiates ENS with the implicit assumption that, if we show 
that it does, then we have shown that we know how biological 
evolution works. Does that necessarily follow?  

Crudely, the issue that we want to discuss is something 
very simple: that a physical system can (trivially) instantiate 
more than one algorithm simultaneously; in particular, that an 
algorithm  can contain another algorithm , (≠). For 
example, an algorithm for matrix multiplication contains an 
algorithm for addition but it is not an algorithm for addition. 
Thus, biological evolution may  ENS (and it does), but 
it might not  ENS. Accepting this logical possibility 
immediately and directly leads to the conclusion that no 
amount of evidence for ENS in biological populations can 
enable us to conclude that we know the algorithm of 
biological evolution. Also, despite the fact that addition is 
simpler than matrix multiplication, addition is not a more 
parsimonious explanation ofmatrix multiplication because it 
is not sufficient for matrix multiplication. Likewise an 
argument of parsimony does not enable us to conclude that we 
know the algorithm of biological evolution unless we can 
show that ENS (alone) is sufficient for biological evolution.  

Of course, previous work has discussed at length evidence 
for the sufficiency of ENS to produce the biological 
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adaptation we observe in nature, e.g., (Sober, 1984; Neander, 
1995; Bedau, 2008). However, such debates are often 
hampered by the implicit assumption that ENS is effectively a 
synonym for a natural account of biological evolution (in 
contrast to a supernatural ‘account’). Because of this 
assumption, the assertion that there must be a natural 
algorithm responsible for biological evolution forces the 
conclusion that ENS is that algorithm – and the result of this 
circular reasoning leads to the conclusion that ENS must be 
sufficient for biological adaptation. An inability to see that 
ENS might not be the algorithm of biological evolution (even 
though biological evolution surely depends on it) makes it 
impossible to discuss properly the possibility that ENS might 
not be sufficient to produce the adaptation we observe1.  

Nonetheless, two  possibilities for how 
biological evolution might contain ENS but not be ENS might 
come to mind: a) there exists an altogether different 
algorithmic process, operating over and above ENS, such that 
the existence of ENS in biology is sort of a coincidence/ or 
even a red herring, b) that biological evolution is some small 
variant of ENS, ‘ENS plus some bells and whistles’, but 
really, the fundamental nature of the algorithm is still ENS. A 
constructive discussion will require a carefully considered 
middle ground that neither depends on fantastical hypothetical 
alternatives nor on splittinghairs. The issues we discuss are 
not merely hypothetical – and, in fact, the existence of 
relevant features/mechanisms in biological evolution is not in 
question. The more difficult issue is whether such features are 
minor details or algorithmically substantive.  

The main contribution of this paper thus concerns issues of 
algorithmic equivalence. We want to address features that 
change the fundamental nature of an algorithm – but we also 
want to show that such features can nonetheless be rather 
subtle. In fact, we restrict ourselves further to cases where  
and  have a particular kind of relationship such that  does 
not merely contain a mechanism (subalgorithm) , but  is 
 . Meaning that  depends on  ( is essential for 
), and in a sense  is just  arranged in a particular manner, 
and the difference between  and  might come ‘for free’ 
(without design). Using concrete examples from another 
domain, we then investigate whether it can be the case that 
even though  is based on  in this restricted sense, it can 
nonetheless be the case that, we do not know how  works 
just because we know how  works. If so, this potentially 
prevents us from concluding that we know how biological 
evolution works even if granted that it is based on ENS. 

Natural Selection ≈Natural Selection? 
The conditions that facilitate the process of evolution by 
natural selection – i.e. heritable variation in reproductive 
                                                             
1As scientists we must be careful that we do not fall back on the 
following argument: 1) either it’s ENS or it’s supernatural, 2) it is not 
supernatural, 3) therefore it’s ENS. Even though the logic of the argument 
is correct, the conclusion is false because the first clause is false. Despite 
the fact that ENS occurs in nature and is capable of producing adaptation, 
it is not the only logical possibility (even if we restrict ourselves to 
mechanisms   ENS). The assumption that questioning the 
sufficiency of ENS implies a willingness to entertain supernatural 
‘accounts’ is potentially highly damaging to scientific debate. 

success – are common in natural populations. The action of 
natural selection can be observed in natural populations and 
under controlled conditions; and, it is evidently capable of 
producing adaptation. The fossil record and genomic data 
show that all living things are connected in a tree of 
incremental (phenotypic and genetic) changes as the theory 
predicts. There is therefore no doubt that natural selection 
occurs and that it is fundamental to evolutionary change.  

Given these facts, the claim that we know how evolution 
works seems reasonable. Dawkins, for example, states that 
“What Darwin achieved was nothing less than a complete 
explanation for the complexity and diversity of all life” 
(Dawkins, 2008). Obviously, “complete” is an overstatement. 
Many details have been filledin/addedon over the last 150 
years – including neutral evolution (Kimura, 1985), kin 
selection (Hamilton, 1964), niche construction (OdlingSmee 
et al, 2003), epigenetic inheritance (Jablonka & Lamb, 1995), 
selforganisation (Kauffman, 1993), symbiogenesis (Margulis 
& Fester, 1991), exaptation (Gould & Lewontin, 1979), ‘evo
devo’ interactions (Sommer, 2009), lateral gene transfer 
(Doolittle & Bapteste, 2007), compositional evolution 
(Watson, 2006), etc. – not to mention the molecular basis of 
inheritance – and there will surely be more. Moreover, some 
authors argue that issues such as these have a fundamental 
bearing on the underlying algorithm of biological evolution 
(see also Pigliucci, 2007). But others disagree – the  hyperbole 
of Dawkins aside, the sentiment is that all of these ‘addons’ 
are merely contingent implementation details compared to the 
fundamental mechanism that drives it, ENS.  

Underlying this there is perhaps a belief that ENS is the 
only adaptive algorithm that could  occur 
spontaneously in a physical substrate (and that therefore all 
other details  be either derivatives of it or unimportant). 
This assumption must be dispensed with. After all, prior to 
Darwin, no one could imagine  adaptive algorithm that 
could possibly occur spontaneously in a physical substrate. 
But Darwin showed that there exists at least one algorithm in 
that class. Is ENS really so fundamental that it is impossible 
for another algorithm to exist that is not simply a derivative of 
it? Consider a trivial counterexample; the optimization 
algorithm simulated annealing (Kirkpatrick et al, 1983). This 
occurs spontaneously in physical systems – in hot lumps of 
metal and other crystals as they cool – which was the 
inspiration for the computational algorithm in the first place. 
But simulated annealing is not natural selection and not a 
derivative of it. One might object that this example is merely 
the result of a physical dynamical system just doing what it 
does naturally – but so is natural selection, of course – there is 
nothing ‘other worldly’ about ENS. One might also object that 
simulated annealing is arguably a less sophisticated (weaker) 
algorithm than ENS, we would agree. Nonetheless, not all 
natural algorithms are necessarily ENS or derivatives of it.  

However, in this paper we deliberately restrict ourselves to 
algorithms that, like all of the expansions mentioned above,
 ENS, and to algorithms that are based on ENS in a 
fundamental manner such that ENS is essential for their 
operation – i.e., no adaptation would occur without the 
inclusion of ENS. This might appear to concede that we are 
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merely talking about ‘addons’ – additions or extensions that 
do not change the fundamental underlying algorithm. But it is 
exactly the validity of this conclusion that we wish to discuss.  

Algorithmic equivalence and subtle ways an algorithm 
can be based on a given mechanism 
In the context of algorithms in general, it is easy to confirm 
that algorithm  can contain another algorithm  and yet not 
be algorithm  (see the matrix multiplication example above, 
or, in turn, the relationship of matrix multiplication to some 
signal processing algorithm, for example). Given that  
contains , we could argue that  is not an  
description of  but merely . But this would clearly 
be disingenuous in some cases (e.g., the missing details 
between addition and matrix multiplication are clearly 
fundamental). Likewise, it follows that,  , many 
different algorithms could contain natural selection and yet 
not be natural selection in a fundamental sense. But in the 
abstract, this point has little biological relevance. We need to 
restrict ourselves to biologically relevant algorithmic variants. 
However, rather than, at the other extreme, allowing the 
specific biological details (neutral evolution, evodevo etc.) to 
drive the discussion, in this paper we take a different route.  

Instead we discuss some specific but canonical ways in 
which algorithms can belong to fundamentally different 
algorithmic classes – despite all being based on the same 
underlying mechanism – simply by applying that mechanism 
in different ways. Namely, by applying that mechanism in 
different structural arrangements, in dynamic arrangements 
and in recursive arrangements:  
 1) unstructured vs structured applications of a mechanism,  
 2) dataindependent vs datadependent applications,  
 3) iterative vs recursive applications of a mechanism. 

To this end we discuss at some length a number of non
evolutionary algorithms; in particular, different types of 
sorting algorithms all based on the mechanism of ‘compare 
and swap’. In this context it is clear that many different 
algorithms can all be based on and dependent on the same 
underlying mechanism, and yet belong to fundamentally 
different algorithmic classes. This enables us to discuss the 
relevant conceptual issues in a domain that is uncontroversial. 
We suggest that in light of such analogies, some important 
issues in evolution that presently seem inseparable can be 
teased apart, enabling us to ask clearer questions about 
biological evolution, and make clearer claims about our 
knowledge of it. This approach does, of course, have the 
weakness that we do not address specific biological 
mechanisms in detail – one may simply conclude that 
although our point may be true for sorting, it is not true for 
evolution. But it is our contention that in the domain we 
actually care about, biological evolution, the relevant facts 
(the algorithmic principles and their adaptive consequences) 
are not known – making it impossible to discuss the relevant 
issues. In the meantime, we aim to open up the relevant 
conceptual space to identify the relevant questions. 

Our aims in this paper are therefore to discuss concepts 
such as algorithmic equivalence, and algorithmic classes, and 
in particular the implications of this for how we understand 

evolution by natural selection. This is discussed at a largely 
conceptual level using analogies with other algorithmic 
domains. In each of the following sections we discuss the 
relevant issues with respect to algorithms in general (where 
the conclusions are uncontroversial), and then indicate their 
potential relevance to biological evolution. We then recap the 
implications and draw some general conclusions with respect 
to what we know about natural evolution.  

Unstructured and structured applications of a 
mechanism  

We begin with the subtle ways that  of a 
mechanism can result in different algorithms. 

Unstructured and structured sorting algorithms 
Consider algorithms for sorting a list of numbers. Many 
sorting algorithms can be described as multiple applications of 
a ‘compare and swap’ (C&S) operator: 

Compare-and-swap(<a,b>): 
If a ≥ b return <a,b> else return <b,a>. 

Bubblesort for example, iterates through a list repeatedly, 
applying C&S to adjacent numbers in the list.  One can 
visualise the order in which C&S operations are applied as a 
  (Fig. 1) (Knuth, 1973; Cormen et al, 2001)
Finding sorting networks with minimal number of 
comparators (and/or minimum depth) for a given number of 
inputs is a favourite sport of computer science (including, e.g., 
Hillis’ (1990) use of coevolutionary methods). Many different 
sorting algorithms (with different time complexities) can be 
described as sorting networks (Fig. 1). 

  a)       

  b)   
 Sorting networks. Horizontal lines carry inputs that 
flow from left to right, vertical junctions apply C&S 
operations – a) Bubblesort (the number of C&S operations 
can be reduced by 1 each iteration through the list as shown, 
giving a time complexity of (1)/2 rather than 2). b) 
Bitonicsort, time complexity Θ(·log()2) (Batcher 1968).  

 

Bubblesort and Bitonicsort both involve many C&S 
operations, and no sorting would occur without C&S; C&S is 
essential for sorting to occur. But even though the only 
difference between them is how the C&S operations are 
arranged, Bubblesort and Bitonicsort are not two different 
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descriptions of the same algorithm. This is evident in the 
observation that the two algorithms have different time 
complexities, and therefore, for a given time limit, one can 
sort lists of a given size correctly that the other cannot – i.e. 
Bubble sort does  sort correctly in time ·log()2.  

Note also that compare and swap itself is an algorithm. 
Both Bubblesort and Bitonicsort  the C&S algorithm. 
But neither of them  C&S – there is more to them than 
that. It is therefore not the case that describing an algorithmic 
mechanism, , that is essential for and contained in an 
algorithm, , is the same as describing the algorithm  even if 
 is essentially just a particular arrangement of . In these 
examples, the ‘structural context’ in which C&S occurs is 
necessary in order to describe Bubblesort or Bitonicsort. 
Note that it would be true to say that, given the right structural 
context, C&S results in sorting. But this still would not 
distinguish whether it was Bubblesort or Bitonicsort that had 
been implemented. Note also that some arrangements of C&S 
operations do not result in correct sorting for all inputs. Thus 
C&S is not sufficient for sorting. 

Of course, Bubblesort and Bitonicsort are very special 
arrangements of C&S operations. However, a random 
arrangement of comparators with sufficiently many C&S 
operators would sort correctly so long as all comparators are 
pointing the same way – no other organisation is required. The 
expected time complexity (expected number of operators 
needed to sort correctly) for such a network is no more than 
2 times more than the time complexity of Bubblesort, for 
example, (consider the probability of placing a required 
comparator between a particular pair of lines, and the fact that 
extra comparators do not hinder sorting). Such a  
network can reasonably be described merely as ‘lots of C&S 
operations’ since the structural context is minimal.  

It is also instructive to consider the possibility of sorting 
networks that are structured in only subtle ways – e.g., such 
that nearby lines have a higher probability of a comparator 
being placed between them.  If we restrict comparators to 
adjacent lines only, then the time complexity of 
 is no more than  times the time complexity of 
Bubblesort, for example – since Bubblesort uses only this 
type of comparator (and the probability of placing a particular 
comparator is now 1/(1)).  

Unstructured and structured natural selection 
We explore the analogy that ‘C&S is to sorting’ what ‘natural 
selection is to biological evolution’ (see Box 1). The sorting 
examples show that the structural context of an algorithm  
(e.g., C&S) can change the algorithm  (containing ) in 
substantive ways. Thus even if biological evolution contains 
ENS we cannot necessarily conclude that the algorithm of 
biological evolution is ENS even if the only difference is how 
ENS is ‘arranged’. This would be reasonable only if (like 
Random sort) the structural context of natural selection in 
biological evolution was minimal – in this case biological 
evolution would be nothing more than ‘lots of natural 
selection’. But if biological evolution requires natural 
selection to be applied in a particular structural context then 
that could constitute a substantially different algorithm. This  

Box 1: From sorting algorithms to evolutionary algorithms 
 

runs counter to the assumption that any algorithm based on 
natural selection is the same algorithm regardless of context.  

In evolutionary theory it is well known that population 
structure changes the effective unit of selection. That is, 
 in kin selection theory does not measure genetic 
relatedness in an absolute sense, but rather the genetic 
relatedness of the individuals that interact compared to the 
genetic relatedness of the population as a whole (Michod & 
Hamilton, 1980). Population structure therefore changes 
relatedness. Kin selection, or inclusive fitness theory, provides 
an explanation for differing levels of cooperation in a 
population, for example – i.e., different social outcomes. 
Multilevel selection theory (Wilson, 1992), including type1 
group selection, extends these principles. In principle, 
something as simple as the fact that a population is spatially 
embedded (altering who interacts with whom and who 
competes with whom) thus alters the structural context in 
which natural selection applies, e.g. by making proximal 
individuals more likely to participate in a competitive 
interaction than distal individuals (compare with Adjacent
only random sort). Then consider gene selection in the context 
of multicellular organisms and how much these ‘vehicles’ 
(Dawkins 1976) structure the context of genic selection. These 

To fleshout the analogy, consider the ‘compare and copy’ 
(C&C) operator below: 

Compare-and-copy(<a,b>):  
If a>b return <a,a> else return <b,b>. 

We can plugin this operator in place of C&S into the 
above sorting algorithms. This will produce algorithms 
that take a list of  numbers as input and output a list of 
numbers that has multiple copies of numbers from the 
input in proportion to the number of twoplayer 
tournaments that they win. This is a simple selection 
algorithm or the reproduction part of an evolutionary 
process. We could likewise define a probabilistic version 
of this operator (copying  over  with probability that 
takes account of the ratio of their fitnesses) if that were 
desirable. A  operator 
would provide all characteristics of heritable variation in 
reproductive success. To produce multigeneration 
evolution one would need to repeatedly call the sorter with 
the output of the previous ‘generation’. (See the 
, (Harvey, 2011), for a genetic algorithm using a steady 
state strategy with pairwise tournaments and insitu 
variation (including sexual recombination) – but no 
structured context, by default). 

Note that the time complexity of the sorting algorithms 
would then transform into the time complexity required to 
make  copies of the biggest number (there are easier 
ways to do that, but that’s not the point here). E.g., 
Adjacentonly random sort, given the C&C operator 
instead of C&S, would require less generations on average 
than Random sort to converge to an output where the 
biggest number is copied  times. Therefore, given limited 
time, Adjacentonly random sort could produce 
convergence in some cases where Random sort could not. 
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observations are not usually taken to imply a different 
algorithm for biological evolution. Should we conclude that 
these issues are minor modifiers on ENS? Or, that structured 
ENS, like structured sorting, constitutes a different algorithm? 
We suggest, it is not so obvious that structuring does not 
change the algorithm of evolution, nor that unstructured 
natural selection captures what is important about biological 
evolution any more than unstructured C&S captures sorting. 

Data-independent and data-dependent 
applications of a mechanism  

Clearly, the output of an algorithm is sensitive to its input. But 
the way in which an algorithm operates can also be sensitive 
to the input, and again, this can be rather subtle. 

Data-independent and data-dependent sorting  
In a sorting network, the sequence of C&S operations is fixed 
(part of the interest in them derives from the fact that their 
fixed arrangement makes them suitable for implementation in 
hardware). But other sorting algorithms exist that do not have 
this property. , for example, is a datadependent 
algorithm. Merge sort depends on a Merge procedure (applied 
recursively) which takes two sorted lists (length ) and 
combines them into a single sorted list (length ). Each Merge 
requires only order  C&S operations. The recursive 
application of Merge, in effect, combines lists of length 1 
(necessarily already sorted) into successively bigger lists until 
a complete list is returned. Quicksort (which has an ‘in situ’ 
version, using no additional registers) is a sorting algorithm 
working on similar principles but ‘bottomup’. Mergesort and 
Quicksort have (optimal) total time complexity O(log). 

The Merge procedure compares the items from the tops of 
the two sorted input lists and transfers the smaller to the 
output list. This reveals a new top item in one of the lists. By 
repeating until the lists are empty, a fullysorted output list is 
created. Note that there is no fixed order to the comparisons 
made in Merge – the th (for >1) comparison made depends 
on the outcome of the (1)th comparison and all previous 
comparisons. E.g. the first comparison is between A1 and B1 
(the first elements of each list), then the second comparison is 
between A1 and B2, if B1 was greater than A1, whereas it is 
between A2 and B1, otherwise. Thus we cannot describe 
Mergesort as any fixed ordering of compare and swap 
operations. Put another way, to implement Mergesort in a 
sorting network would require a network where the result of a 
comparison at one point in the network influenced the 
presence or absence of a comparator downstream.  

It is instructive to consider a Random sorting network with 
a simple kind of datadependence. For example, suppose that 
whenever a comparator does not result in a swap, nearby 
downstream comparators on the same lines are skipped. We 
can see that this might increase the efficiency of the sort by 
avoiding redundant comparators in some cases. More 
sophisticated local rules are also worth contemplating; e.g., if 
neither of the inputs to a comparator were altered since the 
last comparator on those lines, skip the comparator. Such a 
rule could be used in conjunction with a ‘fullyconnected 

sorting network’ – i.e. where all 2 comparators are repeated 
 times. This network sorts correctly (Bubble sort is a subset 
of this network), and the datadependence rule cannot prevent 
it from sorting correctly, and with the datadependence rule it 
would use much less than the 3 comparators present.  

Note that even for a datadependent algorithm there is a 
traceback through time such that, at every point in time, we 
can explain a new listordering given the previous list
ordering and the application of the C&S operation applied at 
that point in time. But that is true for Mergesort just like it is 
true for Bubblesort or Randomsort – i.e., post hoc analysis 
shows that there is a sequence of C&S operations and, given 
that they occurred in that order, they explain the correct 
sorting. But the existence of such a trace (per se) does not 
distinguish which algorithm we are tracing or explain how 
they came to be in that order.  

Data-independent & data-dependent natural selection 
In the examples of contextual structuring we discussed above 
(e.g., population structure, kin selection, vehicles, multilevel 
selection) we assumed that these structures were constant or 
provided by extrinsic factors (e.g., spatial embedding or 
happenstance contingency). But, of course, they are also 
influenced by the action of natural selection itself. For 
example, the evolution of individual traits that affect habitat 
preference inevitably affect population structure and thus 
relatedness. Recent work (Powers, 2010; Powers et al, 2011; 
Snowdon et al, 2009) has begun to investigate the evolution of 
individual traits that affect the level of selection via s
  (Powers, 2010). This is a mechanism 
where (by analogy with  , OdlingSmee et 
al, 2003) an organism alters its social context (who it interacts 
with and how much) and thereby affects the selective 
pressures on its social behaviour (e.g. cooperation). This fits 
directly with wellknown theory relating population structure 
to social evolution (e.g. spatial or grouped population 
structures promote cooperation; Nowak & May, 1992). But 
whereas most studies assume that population structure is a 
given, social niche construction includes individual traits that 
alter population structure (e.g., via habitat preference, or 
selective adhesion, or the evolution of vertical transmission 
mechanisms). One particular study (Powers et al, 2011) 
investigates the evolution of initial group size in an 
aggregation and dispersal process and shows that individual 
natural selection drives group size down to increase 
cooperation (Szathmary, 2011). We have been investigating 
analogous mechanisms in various domains, in particular in 
adaptive networks (Gross & Sayama, 2009) where the 
topology of the network affects the behaviour on the network, 
and reflexively, the behaviour on the network affects the 
network topology (Watson et al, 2010; 2011a; 2011b). 
 Thus, by straightforward means, the outcome of natural 
selection at one point in time can affect the way in which 
natural selection is applied at a future point in time (see also 
Neander, 1995). Thus, biological evolution is datadependent. 
In principle, this puts it in a fundamentally different 
algorithmic class from dataindependent natural selection. Of 
course, one might argue that Lewontin’s formulation, for 
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example, does not categorically exclude datadependence 
(since the possibility is not mentioned). But the omission is 
potentially as substantial as saying that Mergesort is lots of 
C&S without mentioning that the ordering depends on input. 

Note also that there is a trace back through time such that, 
at every point, we can explain a new state of a population as a 
result of ENS acting on individual traits. But that does not 
distinguish which evolutionary algorithm we are tracing; in 
particular, whether the population structure that determined 
the structure of the trace was datadependent or not. Thus, the 
fact that evolved organisms fit into a tree of life does not 
mean we can conclude that evolution is dataindependent ENS 
(both dataindependent and datadependent ENS algorithms 
would have the property that results fit into such a tree).   

Iterative versus recursive applications of a 
mechanism 

Mergesort, as well as being datadependent, is also a 
recursive algorithm. The recursive application of a mechanism 
can result in a substantially different algorithm from iterative 
applications. Again, this has interesting analogues in biology. 

Iterative versus recursive sorting  
Bubblesort is a simple iterative algorithm. Mergesort (like 
Quicksort) is a recursive algorithm. It sorts a list by dividing 
it in two, sorting each sublist  (i.e., dividing 
it in two, sorting each sublist , and merging 
the sublists back together using the Merge procedure), and 
merging the sublists back together using the Merge 
procedure. To prove that Mergesort sorts correctly we can 
use a proof by induction. First we show that a list of just one 
number is already sorted. Then we show that the  
procedure, given two sorted input lists, produces one sorted 
list containing the numbers from both.  

Note that the Merge procedure is not in itself a sorting 
algorithm – it will not produce sorted output from arbitrary 
inputs, only from two presorted lists. Thus if we describe the 
Merge operation on its own, i.e. without the context of the 
recursive structure, it does not describe a process that sorts.  

(For interest, it is not too hard to define a subnetwork that 
carries out Merge using only order  C&S comparators, as 
Merge does, by starting with a full set of 2 comparators and 
using datadependence that turns off downstream comparators 
based on the outcome of upstream comparators, as mentioned 
previously. Thus, a Mergesort network could be constructed 
using such dynamic subnetworks arranged appropriately).  

Suppose we were to jump into a trace of the Mergesort 
algorithm at a particular level of recursion; perhaps the last 
Merge before the sorted output is produced (i.e., two lists of 
/2 into one list of ). We could explain (using data
dependent C&S operations) how Merge gets Mergesort from 
this point in its operation to the final sorted output. However, 
this would fundamentally fail to explain the sorted result 
because it fails to explain how the two sublists came to be 
sorted at this stage of operation. We could try to explain this 
by saying that more Merging was involved; but note that it 
would not be more Merging at the same level of description. 

We have to refer to Merging at multiple levels of organisation 
– i.e., no one level of Merge explains Mergesort.   

Iterative versus recursive natural selection 
Recursion is obviously a very special algorithmic structure. 
But multiple nested levels of structural organisation are 
ubiquitous in nature – in both evolved and nonevolved 
systems (Lenaerts et al, 2005). The major transitions in 
evolution (Maynard Smith & Szathmary, 1995) describe just 
such a multiscale structure, applying natural selection (in a 
structured and datadependent manner) at many scales of 
organisation. Maynard Smith & Szathmary describe a set of 
transitions that have been fundamental in the evolution of 
complexity. These events, including for example the transition 
from selfreplicating molecules to protocells and unicellular 
organisms to multicellular organisms, share the property that 
“entities that replicated independently before the transition 
can replicate only as part of a larger whole after the 
transition”. These processes are therefore entangled with 
issues such as changes in the unit of selection (Okasha, 2006; 
Michod, 1999; Buss 1987), and the ‘deDarwinisation’ of 
lower level units and ‘Darwinisation’ of new higherlevel 
units along various dimensions (GodfreySmith, 2009).  

Note that jumping in at a particular level within this 
hierarchy to try and describe how natural selection proceeds at 
that one level of organisation would not describe the 
algorithm responsible for the evolutionary outcomes we 
observe because it would not explain where the inputs to this 
level of organisation came from. At one of the lower levels of 
organisation, this is loosely related to Sober’s (1984) position 
that natural selection can explain why a population exhibits 
trait  in preference to trait , but not how either of those traits 
originated. It is a little too easy to simply assert that they 
originated from the prior action of ENS because we may be 
conflating different descriptive levels when we do this.    

Put another way, consider the necessary and sufficient 
conditions for ENS described by Lewontin – heritable 
variation in reproductive success. Notice that all these terms 
require us to define the units we are talking about so that we 
can define reproduction (and Darwinian fitness/reproductive 
success), heritability and variation. For example, we could 
focus on the level of genes (as Dawkins advocates), then we 
can talk about the heritability of genes given a set of genetic 
variation operators (mutation and recombination), and 
selection on genes (either in the context of cells or sexual 
organisms), and given a physical substrate that defines how 
well a given genetic sequence survives and replicates. But 
clearly, a lot of machinery is already assumed here, and not all 
of it obviously comes ‘for free’ from the biophysical 
properties of molecules. Sexual recombination, for example, 
is an evolved mechanism that radically changes the effective 
unit of selection from genomes to genes (Watson, 2005) – 
without some mechanism that enables genes to be inherited 
individually the premise of genic selection is meaningless, and 
we would be talking only about genome selection.  

The point about the Merge procedure is not merely that the 
inputs (sorted sublists) are variable in size or that sublists of 
different sizes are relevant at different stages of the process. 
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The point is that the Merge procedure (despite containing lots 
of C&S) is not a sorting algorithm at all, and only when one 
appreciates that Mergesort is recursive, and therefore 
continually redefines the inputs to the Merge procedure, do 
we understand how Mergesort produces sorted outputs. 
Likewise, the point is not merely that the terms of reference in 
biological evolution are a bit slippery – a bit difficult to define 
clearly (this point has been made many times, e.g. see 
GodfreySmith, 2009 for many interesting examples). The 
point is that there is not necessarily  one set of terms that 
satisfies the requirements of the process.  

‘Self-structuring’ & Opaque Consequences of ENS 
Recursion involves a process turned upon itself. More 
generally, the idea that evolution can modify its own 
operation is discussed in the evolution of evolvability 
(Kirchner & Gerhart, 1998; Sterelny 2011) and, e.g. evolved 
exploration distributions (Toussaint & von Seelen, 2007; 
Parter et al, 2008) that alter the space of phenotypic 
possibilities on the fly. Likewise, the evolution of new genetic 
mechanisms (nonrandom genetic variation mechanisms, e.g. 
via mobile genetic elements; Shapiro, 2011) can alter the 
space of genetic possibilities – analogous to ‘selfmodifying 
code’ in computer science. In the major transitions we 
contemplate evolution modifying its own operational units. 

 Such recursive and selfreferential notions of evolution 
present a concept of evolution that continually ‘reinvents 
itself’; changing the level of selection, forming new 
mechanisms of heredity and creating new evolutionary units 
at successive scales of biological organisation. Thus 
evolutionary processes cocreate the structural context of 
selection, effectively redefining the evolutionary process 
(Sterelny, 2011; Calcott & Sterelny, 2011; GodfreySmith, 
2011). We refer to this as ‘.  

The analogy suggests that explaining what is going on in 
some of these biological processes, especially in the major 
transitions and selfstructuring evolution, is not captured by 
ENS, any more than Mergesort, for example, is captured by 
unstructured, dataindependent and iterative applications of 
the compare and swap mechanism. If this is the case, then 
 , i.e. unstructured, dataindependent and iterative 
ENS, is not necessarily the algorithm responsible for 
producing biological adaptation even though it is evidently 
capable of producing some adaptation.  

However, the question then becomes, is selfstructuring 
ENS merely plain ENS given the right kind of substrate or 
materials? That is,   , can plain 
ENS create structured, datadependent and recursive ENS? If 
so, then any failure of plain ENS to explain biological 
evolution seems to be merely an epistemological issue – i.e., a 
failure to comprehend or deduce the opaque consequences of 
the original simple algorithm. We have some sympathy for 
this position. But plain ENS is not going to create structured 
ENS in all substrates/ environments – some substrates won’t 
allow datadependence or recursion for example. We would 
argue that understanding the conditions for plain ENS to 
become selfstructuring is really a necessary part of describing 

the algorithm (Bedau, 2008) – and such understanding is not 
captured by the plain ENS algorithm per se.  

Moreover, the process that transforms plain ENS into 
structured ENS is not  ENS itself. We might use 
the term ‘selforganisation’ to cover a multitude of 
possibilities with respect to order that comes ‘for free’ in 
physical systems (although note that here we are talking about 
selforganisation of the algorithm itself, not merely of the 
object/material that ENS operates on). We have been 
investigating a more specific mechanism of 
 (Watson et al, 2010; 2011a; 2011b; submitted) that 
arises ‘for free’ in adaptive networks, for example. The 
hierarchical form of selfstructuring evolution that results has 
a fundamentally different algorithmic capability from plain 
ENS (Mills, 2010; Watson et al, submitted). This implies that 
the algorithmic nature of biological evolution is not merely a 
point of view but can be settled empirically. 

Conclusions 
Understanding how compare&swap or Random sort works 
is a long way from understanding how Merge sort works. 
More generally, knowing that an algorithm sorts, and that it 
contains C&S, does not tell us whether that algorithm is an 
unstructured, dataindependent and iterative algorithm (like 
Random sort) or, at the opposite extreme, a structured, data
dependent and recursive algorithm (like Merge sort). Thus, it 
is not the case that we necessarily know how an algorithm  
works, even if we know that it contains a known algorithm . 
Moreover, the examples of sorting algorithms show that  can 
belong to fundamentally different classes of algorithm even 
when the relationship between  and  is highly restricted 
such that  not only contains  but is   : 
Specifically,  depends on ,  is essential for the operation 
of ;  is, in a sense, just an arrangement of  (albeit perhaps 
a dynamic and/or recursive arrangement) and that 
arrangement can in some cases be builtup using only local 
restrictions and/or simple restructuring principles.    

This shows that conditions that produce structured, data
dependent and/or recursive applications of a mechanism can 
result in an algorithm that is in a fundamentally different class 
from unstructured, dataindependent and iterative applications 
of the same mechanism. Thus, even if we grant that biological 
evolution not only contains ENS but is  ENS in this 
restrictive sense, no amount of evidence for the existence of 
ENS in nature enables us to conclude that we know the 
algorithm of biological evolution. 

Parsimony would preclude the need to consider alternative 
algorithms for biological evolution if, but only if, it was 
shown that ENS was a sufficient algorithm to produce 
biological evolution. Thus, consider the statement: 
        
        
  And compare with: 
         
      
  . Or for that matter: 
        
        
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  . Obviously the latter 
statements can only be true because the ‘appropriate 
conditions’ clause can bury substantial algorithmic structure. 
The question is thus whether ‘the conditions’ of biological 
evolution conceal substantial algorithmic structure. We have 
discussed how these conditions might include structuring, 
datadependence and recursion and that doing so would 
change the fundamental nature of the algorithm. We cannot 
therefore accept the first of these three statements as evidence 
that ENS is algorithmically sufficient for biological evolution.  
   In conclusion, we suggest that it is not at all clear that 
biological evolution is unstructured, dataindependent and 
iterative – indeed, we have discussed specific evidence to the 
contrary. Thus, notwithstanding the fact that biology 
instantiates ENS, it is certainly not for granted (arguments of 
parsimony included) that evolution by natural selection is the 
algorithm of biological evolution.  
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

  






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


            


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
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
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         


           
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
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
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
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

 


 


         

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



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

        

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Is Evolution by Natural Selection the Algorithm of Biological Evolution?
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