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Abstract

In this paper, local distributions of low order Gaussian Markov Random Field (GMRF)
model parameters are proposed as texture features for unsupervised texture segmenta-
tion. Instead of using model parameters as texture features, we exploit the variations in
parameter estimates found by model fitting in local region around the given pixel. The
spatially localized estimation process is carried out by maximum likelihood method em-
ploying a moderately small estimation window which leads to modeling of partial texture
characteristics belonging to the local region. Hence significant fluctuations occur in the
estimates which can be related to texture pattern complexity. The variations occurred in
estimates are quantified by normalized local histograms. Selection of an accurate win-
dow size for histogram calculation is crucial and is achieved by a technique based on
the entropy of textures. These texture features expand the possibility of using relatively
low order GMRF model parameters for segmenting fine to very large texture patterns
and offer lower computational cost. Small estimation windows result in better bound-
ary localization. Unsupervised segmentation is performed by integrated active contours,
combining the region and boundary information. Experimental results on statistical and
structural component textures show improved discriminative ability of the features com-
pared to some recent algorithms in the literature.

1 Introduction
Texture segmentation has received considerable attention in recent computer vision research
because texture features are one of the important elements in human understanding of vi-
sual data [4, 9, 17]. Preceding studies have demonstrated that statistical model based texture
features yield good results in texture segmentation [5]. MRF theory provides a means of
modeling context dependent patterns such as textures and object features [11]. Gaussian
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MRFs (GMRF) are a special version of MRFs. One of the early methods in GMRF lit-
erature along with unsupervised texture segmentation is introduced in [14]. Other studies
which employ these features are reported in [4, 8, 13, 18, 21]. In these studies estimated
model parameters of GMRF have been used as an effective texture feature and known as the
conventional or classical GMRF features (CGMRF) [3, 22]. Successful attempts have been
made in literature for harnessing improved GMRF based texture features. A step by step
least square (SSLS) method is suggested in [22] to estimate parameters according to a prior-
ity sequence. In [7] an improved estimation scheme is proposed to find estimators that can
be applied in a non-stationary framework. A hierarchical GMRF for parameter estimation is
proposed in [10], and a unified model of GMRF and mixtures of Gaussian for texture seg-
mentation has been proposed in [15]. A new feature formulated based on estimated model
parameters are suggested in [3].

The present paper examines the use of local distributions of low order GMRF param-
eters, which are estimated via a localized estimation process which is restricted to a small
estimation window size. They model the partial texture characteristics of the local region,
hence the estimates inherit serious fluctuations over the spatial domain with a systematic
pattern. It turns out that the variations on these inconsistent estimates surprisingly provide
more discriminative features compared to consistent model parameters which are employed
in CGMRF method. These spatial variations of biased estimates can be absorbed into nor-
malized local histograms. Also smaller estimation windows help to maintain well localized
boundaries. Incorrect model selection, for example to capture details of a very large texture
pattern or a texture image with two very close textures, reduces the discriminative ability of
the CGMRF features. Even though model selection is important, there exists a difficulty in
employing large neighborhood sizes because the number of model parameters required to
estimate, increases drastically by raising the size of the neighborhood. Yet the local distribu-
tions of estimates have the ability to successfully segment fine to very large texture patterns
with a comparatively low order GMRF despite of texture pattern size. However, it is impor-
tant to note that the accuracy of segmentation highly depends on the window size used to
calculate histograms. Since variations occurred in the estimates have a relation to the texture
pattern, the correct window size for this purpose is assumed to be nearly equal to texture
pattern size. Therefore a technique to automate the selection of window size by considering
entropy of a texture image is proposed.

The features are smoothed using diffusion via Beltrami flow and directed to the inte-
grated active contour model [17] for unsupervised texture segmentation. The procedure is
unsupervised in the sense that it does not incorporate any training sample set. Instead of
the level set based evolution scheme, shape characteristic function is employed as proposed
in [12] to increase performance. The results reveal that the features proposed here produce
superior texture segmentation performance.

The rest of the paper is organized as follows. The feature extraction method and the
unsupervised segmentation method are discussed in section 2 and section 3 respectively.
Section 4 presents the experimental results. Conclusions are drawn in section 5.

2 Feature Extraction Method

2.1 Gaussian Markov Random Field Model

Model parameters of the conditional distribution of GMRF offer a satisfactory feature set [7].
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Some main concepts of conditional GMRF models are briefly restated here. Markovianity
denotes to the fact that a pixel value depends only on its neighboring pixel values. The
GMRF model assumes that the intensity value of each pixel in the texture image is drawn
from a Gaussian distribution function. Let Ω represents the set of grid points on a two
dimensional image lattice. Then, Ω = {(x,y)∣1 ≤ x ≤ Imwidth,1 ≤ y ≤ Imheight}, where
Imwidth and Imheight are the width and height of the image. The intensity value of the pixel
s at (x,y) position is given by gs ∈ [0,255] and Ns denotes its neighborhood. Then the local
conditional probability density function has the form,

p(gs∣gs+r,r ∈ Ns) =
1√

2πσ
exp
{
−
(gs−∑r∈Ns αs+rgs+r)

2

2σ2

}
(1)

where αs+r is the interaction parameter which measures the influence on gs by inten-
sity value gs+r of a neighboring pixel at the neighbor location r ∈ Ns. Assume that pix-
els in symmetric positions about pixel s have identical parameters. i.e αs+r = αs−r with
r ∈ Ñs where Ñs, is the asymmetric neighbor set such that if r ∈ Ñs, then −r /∈ Ñs and
Ns = {r∣r ∈ Ñs} ∪ {r∣ − r ∈ Ñs}. Note that by the symmetric criterion the number of in-
teraction parameters are halved [16].

The model parameters can then be found by maximum likelihood estimation (MLE). The
MLE estimates of model parameters corresponding to the pixel at s is given by,

α =

[
N

∑
j=1

q j q
T
j

]−1[ N

∑
j=1

q j gs j

]
(2)

σ
2 =

1
N

N

∑
j=1

(
gs j −qT

j
α

)2
(3)

where α = col[αs+r∣r ∈ Ñs] and q j = col[Gs j+r∣r ∈ Ñs j ]. For each pixel a square estima-
tion window of size p, pre-processed to have zero mean, centered at the pixel is considered
in order to formulate texture features. N overlapping square neighborhoods of size n are ex-
tracted from the estimation window, which is then used as different realizations to estimate
parameters from equations (2) and (3) (Note that for GMRF model, it can be shown that
MLE and least square estimation lead to the same set of equations [16]). Square neighbor-
hoods are employed here, because model selection is not a prior concern when using local
distributions as describes in section 2.2. At the boundary of the image, symmetric boundary
condition is assumed.

2.2 GMRF Local Distributions Based Texture Features
An important property of a reliable texture feature is that it obtains minimal intraclass vari-
ations [22]. Then, considering CGMRF features, the estimated values corresponding to a
specific model parameter should attain reduced intraclass variations i.e. their values should
be uniform as much as possible over the region of one texture and give a near piece-wise
constant sense to the feature image comprising more than one texture.

It is known that a model parameter of GMRF directly represent interaction between a
pixel and a pixel located in its neighborhood [14, 22]. By observing the different neigh-
borhoods appearing on a certain texture, it is reasonable to assume that values of a spe-
cific model parameter should allow some variations depending on complexity of the texture
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pattern, rather than assuming a uniform dispersion. Therefore, estimates of model param-
eters should follow a certain distribution of values [16]. These variations in estimates are
smoothed out by the consistent estimation process which uses sufficiently large estimation
window, contributing towards an information loss regarding distributions of model param-
eter values. Hence in this paper we examine variations occurring in estimates of GMRF
parameters, which are estimated via a spatially restricted estimation process using a smaller
estimation window. A small estimation window provides a small number of local samples
for the estimation process. Therefore it does not fit the global texture model as necessary but
over-fit into given local samples providing a partial texture model describing a local region
of the texture. These biased estimates inherit serious fluctuations over the spatial domain
with a systematic pattern related to re-occurrences of local regions of the texture. These
spatial variations of biased estimates are assumed to represent the variations occur in model
parameters and can be quantified by local normalized histograms. Also exploiting smaller
estimation windows lead to well localized boundaries.

Local distributions of biased estimates also represent some degree of robustness to the
choice of neighborhood size. Estimates achieved by involving a wrong neighborhood size
does not represent the true texture model [18]. In the literature of GMRF, it is noticed that
neighborhood size is restricted to small values, maintaining less computational cost [3, 4, 6,
14, 22]. When the neighborhood size is restricted, the estimates will deviate from true values
causing monotonic shifting of the numerical value obtained for uniform consistent estimates.
These monotonic shifts cause problems, specially in situations where close component tex-
tures are to be segmented. Yet the fluctuation patterns occurring in biased estimates retain
their significance for representing a texture, despite the restriction posed on neighborhood
size. Hence segmentation of two textures with close characteristics could not be successful
with direct use of consistent estimates although local distributions of bias estimates can pro-
duce successful results. Therefore proposed features can segment fine to very large texture
patterns with a comparatively small neighborhood size with respect to pattern size. Hence
the selection of model is not a prime concern anymore.

Estimation of model parameters results in transformed images of model parameter es-
timates (feature images). Each transformed image represents estimated values of a certain
model parameter for all the pixels in the image. For every pixel s at (x,y) on a transformed
image, a square window of size b centered at that pixel is used to calculate the local normal-
ized histogram. These local distributions of model parameter values are here after referred
to as the parameter-local histogram (PL histogram).

Selection of an accurate window size b is very important for a better segmentation. The
window size chosen should be able to capture the actual pattern size of the texture. In [1] a
feature deviation function (FDF) has been employed to find minimum intra-class variation or
feature deviation to construct the texture features. Here instead of FDF, Shannon’s entropy
is used because our purpose is to measure the randomness of a texture. Let H(b) represent
the average entropy of all non overlapping windows of size b on a texture image. Then the
normalized derivative of H(b) is considered as,

H∗(b) =
∣H(b)−H(b−1)∣

Hmin
(4)

where Hmin is the minimum value of average entropy function H(b). It is observed that
fine texture patterns have a entropy function with higher values and steeper slopes compared
to larger texture patterns (Figure (1-b)). This is because fine textures contain more informa-
tion with smaller b values and hence higher entropy values. Also they reach the saturation
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(a)

(b) (c)
Figure 1: (a) Two textures characterized with fine(F) and large(L) texture patterns, (b) aver-
age entropy function, (c) normalized derivative of entropy

state quickly because the degree of randomness of the pattern is limited to a smaller window
size. Therefore we use equation (4) which captures both aspects. To find an accurate value of
b, a threshold is found experimentally. In our experiments, the images are comprised of two
textures and used in the above entropy method to calculate b with Shannon entropy. There-
fore the resulting average entropy curve associates the characteristics of both texture entropy
functions and also depends on percentage of occupancy of each texture and shapes of the
texture regions in the image. The value obtained for b here, is a suitable average window
size for both textures rather than for individual textures. It is noted that both the slope and
the Hmin which are now influenced by both textures, are important to find the correct value
for b. The information from slope provides a crude value for b and the information from
Hmin further refines it and drives it towards the correct value of b. The obtained window size
b in this way is sufficient to capture local spatial variations of estimated parameters of both
the textures.

Once the accurate window size b is found, PL histograms are calculated as follows. On
the transformed image Ik, of the kth model parameter, at a certain pixel s located at (x,y) the
PL histogram formulated using a patch Ik

b×b@(x,y) of size b×b around (x,y) is given by,

Fk
s(z) =

1
b2 ∑

u
δ

(
z− Ik

b×b@(s)(u)
)

(5)

where u is the linear index of the pixel location on the patch and δ is the Dirac delta
function. If the mean and standard deviation of parameter values on Ik is given by µk and
stdk, then the range of the histogram values z is chosen to be µk− 3stdk ≤ z ≤ µk + 3stdk.
Number of bins employed is always fixed. The full feature matrix of a pixel s at (x,y),
corresponding to all model parameters, is the concatenated PL histograms at (x,y) which
can be formulated as,

Fs =
(

F1
s ,F

2
s , . . . ,F

k
s , . . . ,F

(n2+1)/2
s

)
(6)
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or it can be concatenated into a vector rather than a matrix as above. To reduce the
amount of noise present in the PL histogram features and smooth the features, a diffusion
technique via Beltrami flow, comprehensively explained in Sagiv et al. [17] is employed.
This non linear smoothing scheme is chosen because it has the ability to preserve the edges
compared to linear diffusion such as Gaussian filtering, hence it is very useful in the present
application which tries to find the boundaries between two textures. Each bin image, created
by the values pertaining to all the image pixels with respect to a certain bin of PL histogram,
is iteratively smoothed.

3 Unsupervised Segmentation Model

An integrated framework which combines boundary and region information in active contour
modality presented by Sagiv et al. [17] is used as the segmentation method. Active contours
is previously combined with GMRF model in [13]. The segmentation method discussed
in [17] is briefly explained here from the view point of PL histogram features.

Let C be the evolving contour, and Fk
in and Fk

out be the average PL histogram of inside
and outside the contour C. Then the energy functional to be minimized is,

E(Fk
in,F

k
out ,C) = µ

∫
on(C)

h(x,y)dxdy+λin

(n2+1)/2

∑
k=1

∫
inside(C)

D(Fk
s ,F

k
in)dxdy

+λout

(n2+1)/2

∑
k=1

∫
outside(C)

D(Fk
s ,F

k
out)dxdy (7)

where D(., .) denotes the L1 norm distance between PL histogram features at a pixel
and the corresponding average PL histogram. µ , λin and λout are constants which determine
the contribution of each term to the total energy. The functional in equation (7) assumes the
texture image consists of two textures. Functional 7 can be generalized for images with more
than two textures by adapting a multi-phase scheme similar to the method proposed in [20].
h is the inverse edge image, where edges, or more meaningfully the boundaries between
two texture regions, are represented as lower intensity values. Fk

in and Fk
out are calculated

iteratively, as the average PL histograms of inside and outside of the evolving contour.
The h is calculated via the metric of the 2D image manifold [17]. Let the ith bin image is

represented by Wi = [W i(x,y)∣1 ≤ x ≤ Imwidth,1 ≤ y ≤ Imheight]. Then the metric of the
feature space is given by,

g(x,y) =

⎛⎝ 1+∑
L
i=1(W

i
x)

2
∑

L
i=1 W i

xW i
y

∑
L
i=1 W i

xW i
y 1+∑

L
i=1(W

i
y)

2

⎞⎠ (8)

where W i
x and W i

y are partial derivatives w.r.t. x and y. Partial derivatives can be obtained
by finite difference method applied on to ith bin image and L is equal to the number of total
bins in the vector form concatenated PL histogram.

Since the metric g is associated with measuring distances on manifolds, its components
represent the rate of change of a given manifold in a specific direction. Hence the determinant
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of g has higher values when a strong gradient presents [17]. Therefore metric g can be used
for edge detection. Then the value h(x,y) at (x,y) of inverse edge image h can be formed as,

h(x,y) =
1

det(g(x,y))
(9)

where det() represents taking determinant of a matrix and g(x,y) represent matrix of g
metric for the location (x,y). In energy functional (7), the first term is associated with the
boundary information while the second and third terms are responsible for regional informa-
tion. The evolution equation obtained by minimizing energy functional (7) is given by,

∂ χ

∂ t
= µdiv

(
h

∇χ

∣∇χ∣

)
−λin

(n2+1)/2

∑
k=1

D(Fk,Fk
in)+λout

(n2+1)/2

∑
k=1

D(Fk,Fk
out) (10)

Here instead of a level set formulation using the sign distance function φ(x,y) [19],
χ(x,y), the shape characteristic function is used, where H(φ(x,y)) = χ(x,y) [12] (H is the
Heaviside function). The shape-based active contour method to construct the evolution func-
tion has a faster convergence, less memory usage and better performance in the presence of
noise. To obtain the discrete version of equation (10) we use the semi implicit finite differ-
ence method discussed in [20].

4 Experimental Results
In order to demonstrate the performance of the proposed texture segmentation method, a
variety of texture images created from Brodatz textures [2] are employed. The selected
texture images include fine to very large texture patterns. The texture regions are comprised
of convex shapes, internal contours and disconnected regions. In some cases, textures are
very similar to each other in their texture characteristics, giving hardly noticeable region
boundaries to the human eye. In the feature extraction phase, 10 bins for PL histogram and
p = n+2 are chosen. p is the size of the estimation window to extract sample neighborhoods
and it is relatively small, hence spatially localizing the estimation process. p = n+ 16 was
used for CGMRF to obtain a consistent estimation [22]. The neighborhood size; n is fixed
to n = 5 which is a relatively small order. The value for b used in histogram calculation is
found by the entropy scheme proposed here, with a threshold value of 0.02 which is obtained
experimentally. In the smoothing phase, Beltrami diffusion is applied to each bin image
separately for 20 iterations with a 0.1 time step. In the segmentation phase, the smoothing
parameter ε is chosen to be 3 and the size of the smoothing filter is set to 19× 19pxls. We
also let λin = λout = λi.

The texture segmentation results on statistical and structural texture patterns with fine to
very large patterns are illustrated in figure (2). For the result in the figures (2-e, f ,g), n =
5 is not a sufficient neighborhood size to capture the texture pattern. The consequences of
using insufficient neighborhood sizes are alleviated by using the PL histogram as presented
in figures (2-i, j,k). The percentage error rate of incorrectly segmented pixels with respect to
the total number of pixels in the image (se) is given below each segmented image.

Texture segmentation method proposed here is evaluated against Sagiv et al. Gabor based
features [17](Figure (3)). Textures in figure (3-a) and (3-e) are quite challenging for human
vision to detect. The difficulty in the Gabor feature based method is to select a suitable
subset of filters. A subset of fine tuned filters is manually selected for the statistical textures
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(a) (b) (c) (d)

(e) se = 10.8% (f) se = 14.6% (g) se = 22.6% (h) se = 7.16%

(i) se = 1.68% (j) se = 1.09% (k) se = 2.54% (l) se = 2.90%
Figure 2: Segmentation Results. (a)-(d) the original images, (a) and (b) are 640× 640 and
(c) and (d) are 256× 256 , (e)- (h) using CGMRF[4, 13] and (i)-(l) using PL histogram.
µ = 10−7 and λi = 20.

(a) (b) (c) se = 8.34% (d) se = 2.70%

(e) (f) (g) se = 17.9% (h) se = 7.03%
Figure 3: Statistical texture segmentation results. (a), (e) original images (a) is 640×
640 and (e) is 256× 256, (b), (f) segmentation target, (c), (g) using Gabor features and
(d), (h) using PL histograms. Filters used, in (c) f = [0.15,0.3,0.35,0.4,0.45], in (g) f =
[0.15,0.3,0.35,0.4]. # of θ = 6, µ = 10−7 and λi = 20.
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(a) (b) (c) se = 4.17% (d) se = 0.63%

(e) (f) (g) se = 32.6% (h) se = 1.64%
Figure 4: Segmentation of texture images involved in the psychophysical studies of textures.
(a), (e) original images. (b) and (f) segmentation target. (c) and (g) segmentation results us-
ing Gabor features, (d) and (h) segmentation results using the method proposed here. Images
are 180×180.

of figure (3) to favor the filter based segmentation method in [17]. Our segmentation method
proposed here produces more accurate results in segmenting the challenging images of figure
(3) consisting of two statistical textures, compared to the method proposed in [17].

Finally, texture images used in psychophysical studies are employed here to analyze the
segmentation performance of the PL histogram. Figure (4-a) has two textures with close
power spectra and figure (4-e) has two textures with identical second order statistics [9].
As observed from figure (4-e) the texture is even difficult for human perception to segment.
The images are recreated from [9]. The segmentation based on PL histogram perform well
compared to Gabor feature based method in [17]. Segmentation result in figure (4-h) is
achieved with b = 21. When b is increased manually it starts to recognize some similarity
in the placement of rotated versions of texture elements within a texture and achieve a better
segmentation.

5 Conclusions
In this study the use of local distributions of biased estimates of low order GMRF model pa-
rameters as a texture feature in an unsupervised texture segmentation framework is explored.
The texture features proposed here, the PL histograms, (1) are more robust against the devi-
ation of estimates from true model parameter value as a result of improper model selection,
(2) take advantage of variations in inconsistent estimates, (3) achieve well localized bound-
aries, (4) extend successful segmentation of fine to very large texture patterns with smaller
neighborhoods and (5) can easily be formulated by local histograms, maintaining simplicity
and efficiency. The performance of the proposed texture features on other texture databases
should be evaluated in future. The limitations of using an ad hoc entropy based method for
window size selection of histogram calculation has to be analyzed further and improved. The
integrated active contour model employed here is suitable for a two-phase segmentation and

Citation
Citation
{Sagiv, Sochen, and Zeevi} 2006

Citation
Citation
{Sagiv, Sochen, and Zeevi} 2006

Citation
Citation
{Jain and Farrokhnia} 1990

Citation
Citation
{Jain and Farrokhnia} 1990

Citation
Citation
{Sagiv, Sochen, and Zeevi} 2006
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therefore, the test images consist of two textures. A multi-phase active contour model, can be
exploited for images containing more than two textures. Finally our segmentation algorithm
can successfully segment challenging homogeneous statistical and structural textures.
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