

University of Southampton Research Repository ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination

UKACC Control 2012

Determination of Dynamic Flexure Model Parameters for Ship Angular Deformation Measurement

Wei Wu^{1, 2}, Sheng Chen^{2, 3}, Shiqiao Qin¹

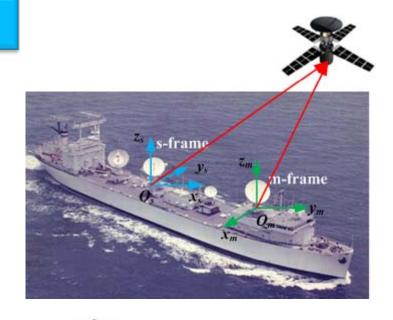
¹School of Opto-Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

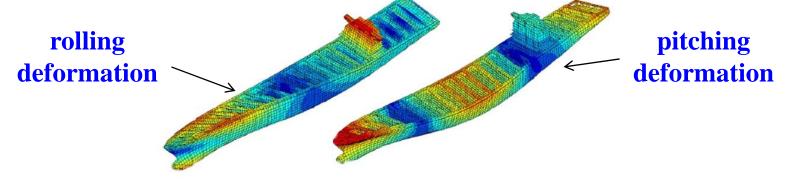
² School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

³ King Abdulaziz University, Jeddah 21589, Saudi Arabia

Outline

- 1 Background
- Parameters Estimation Approach
- Simulation System
- Results and Analysis
- **5** Conclusions


Ship Angular Deformation


Ship angular deformation refers to the two frames angle displacement

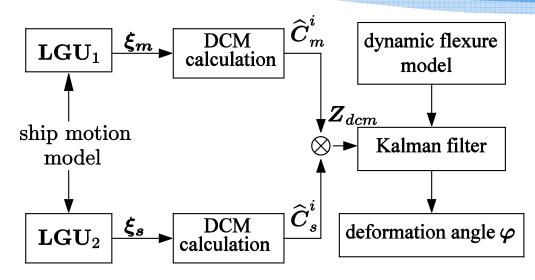
Pitching: cross x-axis

Rolling: cross y-axis

Yawing: cross z-axis

Ship deformation:

$$\varphi(t) = \phi_0 + \theta(t)$$


where ϕ_0 is time-invariant component,

Measurement system

 $\theta(t)$ is dynamic component, which is usually modeled as a second-order Gauss-Markov process, the correlation function is

$$R_{\theta_i}(\tau) = \sigma_i^2 \exp\left(-\alpha_i |\tau|\right) \left(\cos \beta_i \tau + \frac{\alpha_i}{\beta_i} \sin \beta_i |\tau|\right), i = x, y, z$$

in which σ^2 is the variance, α is the damping factor, β is the circular frequency.

Schematic diagram of ship deformation measurement system

Kalman Filter

Measurement function:
$$Z_{dcm} = B\theta - A\phi_0 + B(\hat{C}_i^m \psi_m - \hat{C}_i^s \psi_s)$$

State function:
$$\dot{X} = FX + W$$

State vector:
$$X = [\phi_0^T \ \theta^T \ \psi_m^T \ \psi_s^T \ \tilde{\varepsilon}_m^T \ \tilde{\varepsilon}_s^T]^T$$

Specifically, the measurement vector is given by

$$\mathbf{Z}_{dcm} = \begin{bmatrix} C_{13}C'_{12} + C_{23}C'_{22} + C_{33}C'_{32} \\ C_{13}C'_{11} + C_{23}C'_{21} + C_{33}C'_{31} \\ C_{11}C'_{12} + C_{21}C'_{22} + C_{31}C'_{32} \end{bmatrix},$$

and the matrices A and B are given by

$$\boldsymbol{A} = \begin{bmatrix} C_{33}C_{22}' - C_{23}C_{32}' & C_{13}C_{32}' - C_{33}C_{12}' \\ C_{33}C_{21}' - C_{23}C_{31}' & C_{13}C_{31}' - C_{33}C_{11}' \\ C_{31}C_{22}' - C_{21}C_{32}' & C_{11}C_{32}' - C_{31}C_{12}' \\ \end{bmatrix} \text{ and } \boldsymbol{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

where C_{ij} and C'_{ij} are the components of DCMs of LGU₁ and LGU₂, respectively.

The state transition matrix is given by

in which

and

$$m{F}_{12 imes12}^2 = \left[egin{array}{ccc} m{O}_{3 imes6} & -\widehat{m{C}}_m^i & m{O}_{3 imes3} \ m{O}_{3 imes6} & m{O}_{3 imes3} & -\widehat{m{C}}_s^i \ m{O}_{6 imes12} \end{array}
ight],$$

The state noise covariance is

$$E[\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}}] = \operatorname{diag}\left\{\boldsymbol{O}_{1\times3}, 4b_{x}^{2}\sigma_{x}^{2}\alpha_{x}, 4b_{y}^{2}\sigma_{y}^{2}\alpha_{y}, 4b_{z}^{2}\sigma_{z}^{2}\alpha_{z}\right\}$$
$$\boldsymbol{O}_{1\times9}, (\boldsymbol{\sigma}_{mr}^{2})^{\mathrm{T}}, (\boldsymbol{\sigma}_{sr}^{2})^{\mathrm{T}}\right\},$$

- Determine the Dynamic Flexure Model Parameters
 - Empirical method

The parameters are determined according to experience

Statistical method

The parameters are obtained from previously recorded measurement data

In actual condition, the parameters depend on sea condition, ship velocity and ship structure, etc. It requires to estimate the parameters on-line.

Our Novelty

The dynamic flexure information is existing in attitude difference measured by LGU_1 and LGU_2 .

$$Z_{dcm} = B\theta - A\phi_0 + B(\hat{C}_i^m \psi_m - \hat{C}_i^s \psi_s)$$

Assume the dynamic flexure can be depicted as a secondorder Gauss-Markov process, we developed an on-line dynamic flexure parameters estimation method by utilising the attitude difference measured by two LGUs, and Tufts-Kumaresan (T-K) method was applied to obtain a robust and accuracy estimates.

The attitude matching function can be written as

$$Z_{dcm} = B\theta + (B - A)\phi_0 + B(\hat{C}_i^m\psi_m - \hat{C}_i^s\psi_s)$$

$$\tilde{Z}_{dcm} \approx B\theta$$

Remove the second term $(B - A)\phi_0$: for (B-A) is a small, and ϕ_0 can be compensated to several *mrads* using the course estimate results, so the multiply results are small and can be removed.

Remove the third term $B(\hat{C}_i^m \psi_m - \hat{C}_i^s \psi_s)$: for the frequency of attitude error caused by gyro bias and random walk noise is far less than θ , this term can be removed through a high-pass filter.

The correlation function of \tilde{Z}_{dcm} is given by

$$R_{Z}(\tau) = \left\langle \tilde{Z}_{dcm}(t), \tilde{Z}_{dcm}(t+\tau) \right\rangle = \left\langle \theta(t), \theta(t+\tau) \right\rangle$$

Recall that the correlation function of dynamic flexure $\theta(t)$, based on the second-order Gauss-Markov process assumption is

$$R_{\theta}(\tau) = \sigma^{2} \exp\left(-\alpha |\tau|\right) \left(\cos \beta \tau + \frac{\alpha}{\beta} \sin \beta |\tau|\right)$$

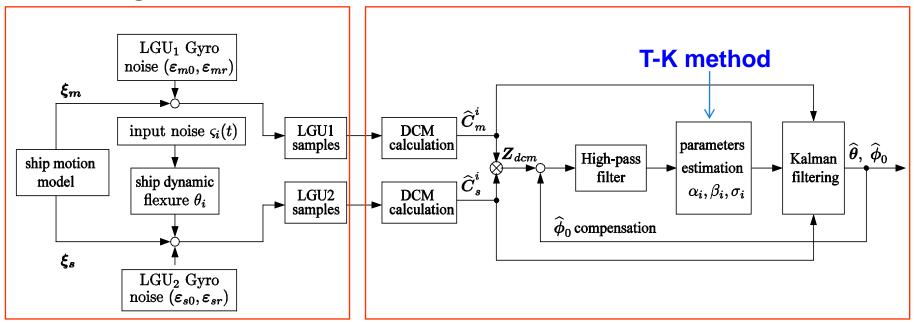
Therefore, the parameters σ^2 , α and β can be obtained from $R_Z(\tau)$.

• T-K Method

The T-K methods is widely applied in estimation of parameters for closely spaced sinusoidal signals in noise

$$y(n) = \sum_{l=1}^{M} a_l \exp\left[\left(-\alpha_l + j\beta_l\right)n\right] + q(n), n = 1, 2, \dots, N$$

where M is the number of sinusoidal signals, N is the sample length, a_l is the amplitude, α_l is the damping factor and β_l is circular frequency.


The parameters α_l and β_l can be resolved by using T-K method. Then, substitute the estimate results α_l and β_l to above equation, and the magnitude a_l can be resolved by using the least square methods.

- Parameters Estimation Procedure
- Initialization
 - Calculate the DCMs of \hat{C}_m^i and \hat{C}_s^i , derive Z_{dcm}
 - Compensate the $\hat{\phi}_0$ using course estimation results
 - Remove gyro errors through high-pass filter
- T-K Based Parameters Estimation
 - Calculate the correlation function $R_Z(\tau)$ of Z_{dcm}
 - Construct the T-K prediction function and evaluate the frequency $\beta/2\pi$ and damping factor α
 - Calculate the variance σ^2 using the least square algorithm
- KF Based Angular Deformation Measurement

Gyro samples generation

Parameters estimation and KF based deformation measurement

Schematic diagram of gyro samples generation and dynamic flexure parameters estimation

The ship attitude can also be modeled as a second-order Gauss-Markov process, whose correlation function takes the form

$$R_{\xi_i}(\tau) = \sigma_{\xi_i}^2 e \exp\left(-\alpha_{\xi_i} |\tau|\right) \left(\cos \beta_{\xi_i} \tau + \frac{\alpha_{\xi_i}}{\beta_{\xi_i}} \sin \beta_{\xi_i} |\tau|\right)$$

Ship attitude parameters

	Magnitude	Frequency	Damping factor
	$\sigma_{\xi_i \;\; (ext{deg})}$	eta_{ξ_i} / 2π (Hz)	$lpha_{\xi_i \ (\mathrm{S}^{ ext{-}1})}$
Pitch	2.2	0.18	0.10
Roll	3.4	0.07	0.06
Yaw	0.8	0.05	0.12
Set according to experience		Identified from experiment data	

Simulation System

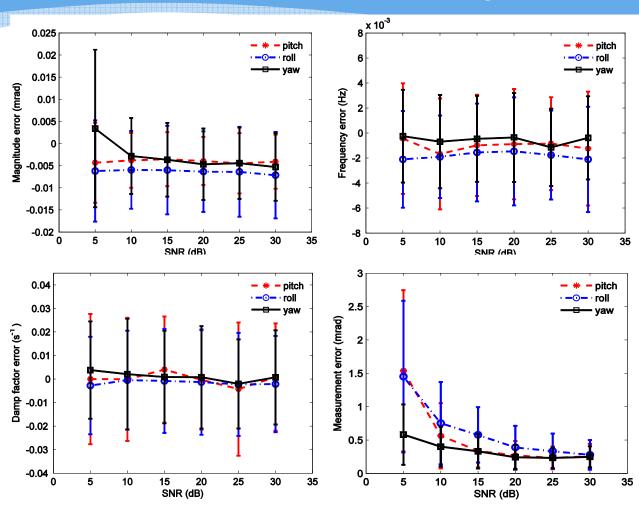
True dynamic flexure parameters

Set according	Magnitude –	Frequency	Damping factor	
to experience	$\sigma_{i \text{ (mrad)}}$	$\beta_i / 2\pi \text{ (Hz)}$	$\alpha_{i} \ (\mathrm{s}^{\text{-1}})$	
Pitch	0.40	0.19	0.13	Identified from experiment data
Roll	0.68	0.17	0.11	experiment data
Yaw	0.50	0.18	0.10	

In order to reflect actual measurement environment, we add Gaussian white noise with variance $\sigma_{\varsigma_i}^2$ in dynamic flexure signal. The SNR is defined by

$$SNR_i = 10\log_{10}\frac{\sigma_i^2}{\sigma_{\varsigma_i}^2}$$

Means and standard deviations of the estimated dynamic flexure parameters obtained under the condition of $\sigma_{\varsigma_i}^2=0$,


GIVEN
$$T = 600 \text{ s}, N = 20 \text{ s}, L = 6 \text{ s} \text{ and } M = 2.$$

	Magnitude	Frequency	Damping factor
	σ_i (mrad)	$\beta_i/2\pi$ (Hz)	α_i (s ⁻¹)
Pitch	0.3950 (0.0064)	0.1892 (0.0041)	0.1272 (0.0252)
Roll	0.6722 (0.0089)	0.1685 (0.0039)	0.1054 (0.0188)
Yaw	0.4961 (0.0075)	0.1798 (0.0034)	0.1013 (0.0183)

Performance of the Kalman filter based ship angular deformation measurement obtained based on the dynamic flexure model identified under the condition of $\sigma_{\varsigma_i}^2=0$.

	Mean and standard	Mean and standard	Mean and standard
	deviation of	deviation of KF	deviation of KF
	true deformation	estimated deformation	based measurement
	angle (mrad)	angle (mrad)	error (mrad)
Pitch	3.4981 (0.4267)	3.5179 (0.5525)	0.2626 (0.2005)
Roll	3.4792 (0.7209)	3.5131 (0.7776)	0.3259 (0.2369)
Yaw	3.5027 (0.4840)	3.5483 (0.5626)	0.1944 (0.1382)

Results and Analysis

Mean estimate errors for dynamic flexure parameters magnitude σ^2 , frequency $\beta/2\pi$ and damping factor α as well as measurement error with different SNR

- we have developed an on-line dynamic flexure parameters estimation approach based on T-K method for KF based ship angular deformation measurement
- Compared with previous methods, the proposed method offers:
 - on-line estimation (not require *a priori* knowledge)
 - accurate estimation
 - robust to noise and work conditions

Thank You For Your Attention

1, 010111110001

The world by the ball