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Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence
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The nonlinear dynamics of magnetic helicity HM , which is responsible for large-scale magnetic structure
formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional
magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and
statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using
a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal
dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic
energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result
in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is
important in the context of magnetic-field excitation in turbulent plasmas.
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The emergence of large-scale magnetic structures in turbu-
lent plasmas is dynamically important in many astrophysical
settings such as with regard to the interstellar medium or
the magnetic-field generation in planets and stars by the
turbulent dynamo effect [1–3]. The structure formation can
be studied via the magnetic helicity HM = 1

2V

∫
V

dV a · b,
where b is the magnetic field and a denotes the magnetic
vector potential. This topological characteristic of magnetic
fields yields a measure of the linkage and the twist of the field
lines [4,5]. In the magnetohydrodynamic (MHD) single-fluid
approximation [6], which neglects microscopic scales and the
associated kinetic dynamics HM , is ideally conserved in a
three-dimensional volume with periodic or closed boundary
conditions [7]. It is thus prone to a nonlinear and conservative
inverse spectral cascade process in the inertial range of MHD
plasma turbulence. If driven at small scales �, the cascade
results in spectral transfer of magnetic helicity toward small
spatial wave numbers k ∼ �−1 [8], i.e., to the formation
of large-scale magnetic structures. This process is thus of
fundamental importance with regard to, e.g., the dynamics of
magnetic fields in the above-mentioned turbulent astrophysical
settings. In spite of its importance, little is known about the
nonlinear dynamics that underlies the inverse cascade. It is the
purpose of this Rapid Communication to shed some light on
the rather mysterious nonlinear phenomenon creating large-
scale order out of quasirandom turbulent magnetic fluctu-
ations. Please note that although the constraining effect of
magnetic helicity conservation on certain α-dynamo configu-
rations is important, it is beyond the scope of this work (for
further details see Ref. [9]). The existence of such an inverse
cascade was first demonstrated in numerical simulations based
on the eddy damped quasinormal Markovian (EDQNM) clo-
sure model of three-dimensional MHD turbulence [10], which
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deals theoretically with the spectral self-similarity of magnetic
helicity. The associated self-similar spectral signature in the
turbulent inertial range ∼k−2 is in agreement with dimensional
analysis based on a constant nonlinear spectral flux. Several
studies applying direct numerical simulations find an inverse
transfer of magnetic helicity (see, e.g., Refs. [11–13]) without
reporting self-similar scaling behavior, a notable exception
being Ref. [13].

In this Rapid Communication the inverse cascade of
magnetic helicity in homogeneous MHD turbulence is studied
by three-dimensional high-resolution direct numerical simu-
lations. In the main setup kinetic and magnetic energy and
magnetic helicity are injected at small scales of the initially
excited spectral range of turbulent fluctuations. It is shown
that macroscopic quantities, in particular kinetic helicity and
the ratio of kinetic and magnetic energies, have an important
influence on the HM cascade that is captured by a universal
relation based on dimensional analysis of the MHD EDQNM
closure model. This insight suggests a link between magnetic
helicity and mean-field dynamo theory in particular with
regard to the saturation behavior of the dynamo mechanism.

The dimensionless MHD equations are written as

∂tω = ∇ × (v × ω + j × b)

+ [μn(−1)n−1�n + λ�−2]ω + Fv, (1)

∂tb = ∇ × (v × b) + [ηn(−1)n−1�n + λ�−2]b + Fb, (2)

∇ · v = ∇ · b = 0, (3)

where v is the velocity, ω = ∇ × v is the vorticity, b is the
magnetic field, and j = ∇ × b is the electric current density.
Equations (1)–(3) are solved by a standard pseudospectral
method using a leapfrog scheme for time integration. Antialias-
ing is achieved by spherical mode truncation. The simulation
domain is a triply 2π -periodic cube discretized by 10243

collocation points. Hyperviscous small-scale dissipation op-
erators of order n = 8 are used to improve scale separation
parametrized by the hyperdiffusion coefficients μn and ηn with
the hyperviscosity μ8 = 9 × 10−41 and μ8/η8 = 1. Boundary
effects at smallest spatial wave numbers k are alleviated by a
large-scale energy sink λ�−2 for both fields with the constant
λ set equal to 0.5. The forcing terms Fv and Fb are random,
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FIG. 1. Inverse cascade of magnetic helicity HM
k in three-

dimensional MHD turbulence for t ∈ [1,6.66]. Curves are given
for points in time spread equidistantly over the interval. Magnetic
fluctuations with maximal magnetic helicity and nonhelical velocity
fluctuations are supplied through the forcing with k0 = 206.

δ-correlated processes of equal amplitude that act over a band
of wave numbers k ∈ [k0 − 3,k0 + 3] with k0 = 206. They
inject velocity- and magnetic-field fluctuations with well-
defined kinetic and magnetic helicities, kinetic helicity being
defined as HK = 1

2V

∫
V dVv · ω. Such driving, chosen here

for simplicity and numerical efficiency, could, in principle,
be realized by a random small-scale distribution of electric
currents and forces. The initial velocity and magnetic fields are
smooth with equal energies, random phases, and fluctuations
that have a Gaussian energy distribution, peaked at k0. In the
course of the simulation the total energy quickly attains a
quasistationary state, fluctuating around unity with EM/EK ≈
9. Cross helicity HC = 1

2V

∫
V

dV v · b is negligible. The
simulation is carried up to t = 6.66 large-eddy turnover times.
While the application of hyperviscous dissipation operators
is necessary to observe well-developed scaling ranges, it
precludes the unambiguous definition of a Reynolds number.

The temporal evolution of the magnetic helicity spectrum
over the simulation period shown in Fig. 1 indicates inverse
spectral transfer. This is also reflected by the nonlinear spectral
flux of magnetic helicity


HM

k = 2
∫ k

0
dk′k′2

∫
d�(b∗

k′ · [v × b]k′ + c.c.),

with [· · ·]k denoting Fourier transformation and the asterisk
standing for complex conjugate (c.c.). The flux spectrum
shown in Fig. 2(a) is constant over finite wave-number intervals
on both sides of the forcing band signaling equilibrium
between turbulence driving and dissipation. While on the
right-hand side direct spectral transfer is observed as a result of
the small-scale energy sink, on the left-hand side of the forcing
band an inverse cascade develops that is driven by the constant
magnetic helicity input around k0. The spectral flux of total
energy E = EK + EM = ∫

d3k(|vk|2 + |bk|2)/2 is given by


k =
∫ k

0
dk′k′2

∫
d�(ik′ × [v × ω + j × b]k′ · v∗

k′

+ ik′ × [v × b]k′ · b∗
k′ + c.c.)

and is shown in Fig. 2(b). It lacks spectral constancy in the
inverse-cascade region and it is principally carried by magnetic

FIG. 2. Moduli of fluxes of (a) magnetic helicity and (b) total
energy (inverse, solid curves; direct, dotted curves) normalized
by corresponding dissipation rates. Flux spectra are shown for
t ∈ [1.66,6.66] for the forced simulation and are spread equidistantly
over this period.

energy transfer. This suggests that the inverse energy flux
is a consequence of the inverse cascade of HM . The linear
scaling of the 
k envelope that follows from the dimensional
estimate Ek ∼ kHM

k in combination with the approximate
constant value of the envelope of 
HM

k also supports this
interpretation.

The compensated magnetic helicity spectrum at the end
of the simulation period is displayed in Fig. 3(a). It exhibits
two approximate scaling ranges: on the direct transfer side for
250 � k � 400 and in the inverse transfer region for 7 � k �
30. The corresponding asymptotic scaling laws are HM

k ∼
k−3.3 (inverse, cf. [13]) and HM

k ∼ k−1.5 (direct). The latter
value has to be taken with care due to the very short spectral
range and the high-order hyperviscosity acting at largest wave
numbers. The inverse-cascade scaling is at variance with the
k−2 behavior reported in Ref. [10].

FIG. 3. Compensated spectra of (a) magnetic helicity; (b) total
(solid line), kinetic (dashed line), and magnetic (dash-dotted line)
energy, and (c) kinetic helicity. (d) � = (EK

k /EM
k )γ HJ

k /HK
k for

γ = 1 (dashed line) and γ = 2 (solid line) at t = 6.66 in the driven
simulation.
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Since HM is the helicity of the magnetic vector potential a,
its inverse cascade pulls quantities derived from this potential,
e.g. magnetic energy and to a lesser extent also electric current
density jk ∼ k2ak , toward large scales. The magnetic and
velocity fields are intrinsically coupled in MHD turbulence
by Alfvénic fluctuations [14] and thus similar behavior is
observed for the spectral kinetic energy and kinetic helicity
HK

k as well. The respective spectra are thus expected to
inherit the self-similarity from HM

k as is indeed observed
[see, e.g., Fig. 3(c)]. It seems to be reasonable to regard
the merging of current-carrying structures where the currents
have significant positively aligned components and thus
experience mutual attraction as the physical mechanism of
the inverse cascade of magnetic helicity [15]. This is also in
line with recent statements in the literature about nonlocality of
the magnetic helicity flux [12,16]. Terming the inverse transfer
of HM

k a cascade is thus merely following convention and not
a physical description of the actual process of a spectrally
non-local merging of current-carrying strucures. Note that in
this simulation no kinetic helicity is injected by the turbulence
driving. In the case of simultaneous injection of kinetic helicity,
the spectral diagnostics discussed in this work show no signif-
icant difference from the presented simulations. In general,
the details of the small-scale forcing, such as randomness
of amplitudes and/or complex phases, were verified to have
no measurable impact on the self-similar behavior reported
below. The only significant parameter in this respect is the
separation of the smallest admissible wave number k = 1 and
the forcing wave number of about two decades. The scale
separation determines the extent of the observable self-similar
inverse-cascade dynamics. It is thus even more important than
the classical Reynolds number, which is not well defined due to
the necessary high-order hyperviscous small-scale diffusion.

The energy spectra in Fig. 3(b) exhibit approximate scaling
known from decaying turbulence [14,17], i.e., Ek ∼ k−5/3

and ER
k = |EM

k − EK
k | ∼ k−7/3 (not shown), with an excess

of magnetic energy. The observations are in agreement with
the interpretation of the finite levels of EK

k and HK
k as a

result of the local and temporary stirring induced by changes
of magnetic-field topology. This is to be expected in the
course of the inverse cascade of magnetic helicity. As will
be shown in the following, the lacking equipartition of EK

k

and EM
k and the presence of kinetic helicity are the reasons for

disagreement with the above-mentioned EDQNM simulations
of Ref. [10]. There, the relaxation time of the nonlinear
interaction θkpq , which represents a free parameter of the
EDQNM approach and determines the nonlinear process
governing turbulent dynamics, is chosen to be the Alfvén time
(kB0)−1. Consequently, the resulting dominance of Alfvénic
interactions drives the system in the inertial range into a nearly
perfect equipartition of kinetic and magnetic energies.

The observed spectral scaling of magnetic helicity can
be better understood with the help of the integro-differential
EDQNM equation for the evolution of HM

k . A formally similar
approach has been successful with regard to the residual
energy spectrum ER

k = |EM
k − EK

k | [14]. The equation for the
evolution of HM

k in the EDQNM model [10] reads

(∂t + η1k
2)HM

k =
∫

�
dp dq θkpq

(
T adv

k + T khl
k + T Lor

k

)
, (4)

with

T adv
k = hkpq

k

pq

(
k2EK

q HM
p − p2EK

q HM
k

)
,

T khl
k = hkpq

k

pq

(
k2

p2
EM

q HK
p − k2

p2
EM

k HK
q

)
,

T Lor
k = ekpq

p2

k
EM

k HM
q − jkpq

kp

q
EM

q HM
k .

The geometric coefficients hkpq , ekpq , and jkpq follow from the
solenoidality constraints in Eq. (3) and are given in Ref. [10].
The triangle restricts integration to wave vectors k, p, and q,
which form a triangle, i.e., to a domain in the p-q plane that
is defined by q = |p + k|. The time θkpq is characteristic of
the eddy damping of the nonlinear energy flux involving wave
numbers k, p, and q. It is defined phenomenologically, but its
particular form does not play a role in the following arguments.

The three nonlinear contributions on the right-hand side
of Eq. (4) can be associated with the advective T adv

k and
explicitly twisting T khl

k effects of turbulent fluctuations, as
well as self-interaction (T Lor

k ) of the magnetic field through the
Lorentz force. Assuming that the most important nonlinearities
involve the turbulent velocity and that the spectral scaling
range of HM

k is stationary, a dynamical equilibrium of turbulent
advection and the HM -increasing effect of helical fluctuations
is assumed, i.e. T adv

k ∼ T khl
k . A dimensional approximation of

the respective flux terms kEK
k HM

k ∼ k−1EM
k HK

k yields

HK
k ∼

(
EK

k

EM
k

)γ

k2HM
k , γ = 1. (5)

This is a statement about the spectral dynamics of kinetic and
magnetic helicity [or current helicity HJ = 1

2V

∫
V

(∇ × b) · b
since HJ

k ∼ k2HM
k ] in the case of EK

k /EM
k �= 1. The agree-

ment of Eq. (5) with the numerical experiment is significantly
improved [see Fig. 3(d)] when increasing γ by one. This yields
the main result

HK
k ∼

(
EK

k

EM
k

)2

HJ
k . (6)

Equation (6) is fulfilled, i.e., constant and close to unity,
for almost all wave numbers k > 12 excluding the drive
and deep dissipation scales; however, it does not cover the
full spectral scaling range of HM

k due to its susceptibility
to the asymmetry of energies and helicities introduced by
the large-scale energy sink. The higher-order modification
of Eq. (5) cannot be motivated within the framework of
quasinormal EDQNM theory using the chosen approach of
nonlinear equilibrium. The underlying cause is presumably
the nonlocality of the inverse-cascade process, which is not
captured by the dimensional simplification of the EDQNM
equations.

For verification purposes, a test simulation of decaying
turbulence with the same numerical resolution of 10243 and
an initially finite level of magnetic helicity, i.e., 50% of
the energetically possible maximum HM

max ∼ EM/k0, is con-
ducted. The initial Gaussian random-phase energy spectrum
with EK

k = EM
k for all k is peaked around k0 = 70 to allow

some development of inverse transfer. The distribution of HM
k

is homogeneous over the initial spectrum. The hyperdiffusive
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FIG. 4. Compensated spectra of (a) magnetic helicity, (b) kinetic
helicity. (c) Spectral magnetic helicity flux normalized by corre-
sponding dissipation rate (Inverse: solid curve, direct: dashed curve).
(d) � = (EK

k /EM
k )γ HJ

k /HK
k for γ = 1 and scaled by a factor 1/3

(dashed line) and for γ = 2. All spectra shown have been taken at
t = 9.2 in the decaying simulation.

coefficients are chosen as μ8 = η8 = 3 × 10−41 with forcing
switched off. Figure 4 displays the most important results
of this decaying test simulation after about 9.2 large-eddy
turnover times. The magnetic helicity [Fig. 4(a)] exhibits
approximate self-similar spectral scaling ∼k−3.6 with most of
the excited scales in the range 15 � k � 60 having developed
during the decay. Kinetic helicity [Fig. 4(b)] reflects this as it
is not injected into the system but generated via the Lorentz
force during the inverse transfer of HM

k . It shows two distinct
asymptotic power-laws: ∼k−0.5 for 60 � k � 120 and ∼k0.4

for 11 � k � 45 in the range covered by the inverse transfer
of HM

k during turbulence decay. The signature of kinetic,
magnetic, and total energies is similar to the observation made

in the driven case. The spectral flux of magnetic helicity
[Fig. 4(c)] exhibits a split near k0 as for k > k0 small-scale
dissipation determines the helicity transfer direction while for
k < k0 an inverse transfer with k-dependent 
HM

k is observed.
This is reflected by Eq. (6) [see Fig. 4(d)], which is fulfilled
only in the region of approximately constant 
HM

k and is
apparently independent of the transfer direction.

A comparison of the presented findings with mean-field
dynamo theory (see, for example, Ref. [3] and references
therein), in particular the α coefficient including the current he-
licity α ∼ HJ − HK , is interesting. Equation (6) is consistent
with vanishing α since the cascade process does not generate
magnetic flux and thus does not act as a dynamo itself. It
furthermore suggests a modified α ∼ (EK/EM )2HJ − HK ,
which includes the squared ratio of kinetic and magnetic ener-
gies ∼(EM )−2 as a turbulent dynamo-quenching mechanism of
the current helicity contribution to α. This form of α quenching
has recently been observed in a numerical test-field model [18].

In summary, a different and probably universal relation
connecting the spectral behavior of magnetic and kinetic
helicities and energies in homogeneous MHD turbulence is
found motivated by statistical EDQNM closure results. Direct
numerical simulations of MHD turbulence that is decaying or
driven at small scales confirm the validity of the findings for
spectral intervals of constant flux of magnetic helicity. The
result has interesting connections to the α coefficient known
from mean-field dynamo theory: It suggests an inherent and
strong quenching of the dynamo, in particular of the current
helicity effect, if the energy of turbulent magnetic fluctuations
grows compared to the kinetic contribution of velocity.

The authors are grateful for discussions with
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P. Mininni, and A. Pouquet.
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