
Chapter 6

Modelling ATM Case-study

6.1 Introduction

In this chapter, we present another case-study modelled in Event-B to further investi-

gate our research findings of production cell (PC) case-study. This could also help in

evaluating the application of existing standard Event-B composition and decomposition

techniques for our feature-based reuse approach. We decided to model automated teller

machine (ATM) because it provides significant variability as compared to PC. The ATM

example is more reuse-oriented in terms of requirements features and suits the traditional

feature modelling approach. We can model a product line of ATM systems having dif-

ferent features which can be configured to build variants of ATM. We explore further

patterns for composition and to what extent we can reuse existing specifications and

their associated proofs to build more products of a product line. This enables us to

generalise our feature-oriented reuse framework in the form of a modelling pattern and

its application on a different system to that of PC. Based on this case-study, we can then

suggest modelling guidelines for future users of Event-B to model distributed systems

while improving reusability of specification and their associated proofs. This case-study

also generated requirements for future tools and techniques to further enhance reusabil-

ity of Event-B developments.

6.2 ATM

An ATM provides various services to a bank’s customers using their ATM cards issued

by the bank. There are some basic services provided by an ATM such as cash with-

drawal, viewing account balance and card pin related services. Other services can also

be provided by ATMs which vary for different banks and ATM locations, e.g., mobile

top up and cash deposit etc. We can build a product line of ATMs to manage variability

107

108 Chapter 6 Modelling ATM Case-study

Figure 6.1: ATM feature model

and commonality and benefit from reuse while building several ATM products having

different features. A set of available features configured and composed together result

in a variant of an ATM product line. Figure 6.1 shows a feature model for the ATM

product line and the requirements specification for the ATM case-study is given in Ap-

pendix B. Although some ATM requirements have been previously modelled in Event-B

[118], we have used a different set of requirements and modelled these in a different way

to experiment with our feature-oriented reuse approach.

6.3 Roadmap

In the following section, we show the Event-B development of some ATM features and

explore the amount of reuse that can be achieved by using existing (de)composition

techniques of Event-B. We also investigate whether existing tools and techniques are

capable enough for our proposed feature-oriented modelling in Event-B. Based on this,

we can then suggest any requirements for the tools and techniques to be developed in the

future to compliment our feature-based reuse framework. By generalising the modelling

style used in this case-study, we can also provide a set of guidelines for Event-B users

to model feature-oriented systems as expected in product line development.

At first, we modelled two features of ATM product line and by using the two existing

decomposition techniques of Event-B, we show how we can avoid reproof efforts through

reuse by following a pattern of modelling. Sections 6.4.1 and 6.4.2 discuss the modelling,

refinement and decomposition of transfer and deposit features respectively. The compo-

sition of various sub-components of the two features (resulting from SED) is presented

in Section 6.4.3 to model an ATM product. After modelling and refining these two

features to build one ATM product, we modelled another ATM feature - withdraw - to

Chapter 6 Modelling ATM Case-study 109

MACHINE IntegralATM 0

SEES IntegralATM CO

VARIABLES

bal, cardAcct, validCard

INVARIANTS

inv1 : bal ∈ ACCOUNT 7→ N
inv2 : cardAcct ∈ CARD 7→ACCOUNT

inv3 : validCard ⊆ CARD

EVENTS

Event Transfer =̂

any
src ac, dest ac, am, c

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : c ∈ validCard
grd4 : c 7→ src ac ∈ cardAcct
grd5 : am ∈ N1

grd6 : src ac ∈ dom(bal)
grd7 : dest ac ∈ dom(bal)
grd8 : src ac 6= dest ac
grd9 : am ≤ bal(src ac)

then
act1 : bal := bal C− {dest ac 7→ (bal(dest ac) +

am), src ac 7→ (bal(src ac)− am)}
end

Event Deposit =̂

any
acc, am, c

where
grd1 : acc ∈ ACCOUNT
grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd4 : c ∈ validCard
grd5 : c 7→ acc ∈ cardAcct

then
act1 : bal(acc) := bal(acc) + am

end

END

1

Figure 6.2: Integral ATM abstract model for two features

build a second ATM product having three features, discussed in Section 6.4.4. We show

how we can reuse existing features to build the second product and save user time and

effort while making sure that there are no inconsistencies and ambiguities introduced

during the application of our suggested modelling pattern, while preserving refinement

during the (de)composition. In Section 6.4.5, we evaluate and generalise the suggested

modelling pattern. This pattern also supports team-based development where different

features of a product line could be modelled in parallel by different teams as far as the

restrictions of the pattern are maintained.

6.4 Event-B Modelling of ATM Features

We started with an abstract model of ATM that models its requirements for a set of

features. These include: withdraw, deposit, check balance, balance transfer, change PIN

and validate card. So, in the abstract model, we have events for each of these features.

Some of these features are mandatory while others are optional, as shown in the ATM

feature model (Figure 6.1). Any instance of the ATM feature model must contain the

mandatory features. For example, the card validation feature is required for any ATM

product. So, we have modelled this as an independent reusable feature to be included in

110 Chapter 6 Modelling ATM Case-study

Integral

ATM Abstract

Deposit_0Transfer_0

SVD

Integral ATM Abstract Model

Vars: bal, validCard, cardAcct

Events: Deposit, Transfer

Deposit_0

Vars: bal, validCard, cardAcct

Events: Deposit, Transfer_external

Transfer_0

Vars: bal, validCard, cardAcct

Events: Transfer, Deposit_external

SVD

Figure 6.3: ATM integral model decomposed using SVD

any configuration of the ATM product line and this also helps in avoiding redundancy

when modelling a subset of features from the feature model.

In order to save time and to use a smaller example, we only consider a subset of these

features. So, we have an integral model of the ATM that allows cash deposit and balance

transfer between two accounts. This abstract model is shown in Figure 6.2. In terms

of user actions, we assume that an ATM card is validated in the card validation feature

before any of these two features could be used by the user. We then decomposed this

model into deposit and transfer features (Figure 6.3) using shared-variable decomposition

(SVD). This acts as a problem decomposition step. This pattern remains valid even if we

model and refine the deposit and transfer features separately, as far as the two features

could later be shown as a result of shared-variable decomposition of a model. This would

require a tool to generate external events in the developments of both features and to

validate that the shared-variables are not refined.

As a result of decomposition, the event Deposit goes into the deposit feature and

the Transfer event goes into the transfer feature - see Figure 6.4. Both features now

have shared variables (i.e., bal, validCard and cardAccount) and external events (i.e.,

deposit feature has Transfer as an external event and the transfer feature has Deposit

as an external event). All external events and shared-variables must not be refined as a

consequence of SVD. Note that the external events shown in the figure are exact copies of

their internal counterparts. This is because there are no local variables present for each

of the feature and all the parameters are being used by the shared variables. Normally,

external events are abstracted away leaving out details of their local variables which do

not appear at this abstract level. Following is the detail for each of these features and

their stepwise refinement, both horizontally and vertically.

Chapter 6 Modelling ATM Case-study 111

MACHINE Deposit
VARIABLES

bal // Shared variable

validCard // Shared variable

cardAcct // Shared variable

INVARIANTS

inv4 : bal ∈ ACCOUNT 7→ N
inv5 : cardAcct ∈ CARD 7→ACCOUNT

inv6 : validCard ⊆ CARD

EVENTS
Event Deposit =̂

any
acc, am, c

where
grd1 : acc ∈ ACCOUNT
grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd4 : c ∈ validCard
grd5 : c 7→ acc ∈ cardAcct

then
act1 : bal(acc) := bal(acc) + am

end

Event Transfer =̂
External event, DO NOT REFINE

any
src ac, dest ac, am, c

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : c ∈ validCard
grd4 : c 7→ src ac ∈ cardAcct
grd5 : am ∈ N1

grd6 : src ac ∈ dom(bal)
grd7 : dest ac ∈ dom(bal)
grd8 : src ac 6= dest ac
grd9 : am < bal(src ac)

then
act1 : bal := bal C− {dest ac 7→

(bal(dest ac) + am), src ac 7→
(bal(src ac)− am)}

end

END

MACHINE Transfer
VARIABLES

bal // Shared variable

validCard // Shared variable

cardAcct // Shared variable

INVARIANTS

inv4 : bal ∈ ACCOUNT 7→ N
inv5 : cardAcct ∈ CARD 7→ACCOUNT

inv6 : validCard ⊆ CARD

EVENTS
Event Transfer =̂

any
src ac, dest ac, am, c

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : c ∈ validCard
grd4 : c 7→ src ac ∈ cardAcct
grd5 : am ∈ N1

grd6 : src ac ∈ dom(bal)
grd7 : dest ac ∈ dom(bal)
grd8 : src ac 6= dest ac
grd9 : am < bal(src ac)

then
act1 : bal := bal C− {dest ac 7→ (bal(dest ac) +

am), src ac 7→ (bal(src ac)− am)}
end

Event Deposit =̂
External event, DO NOT REFINE

any
acc, am, c

where
grd1 : acc ∈ ACCOUNT
grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd4 : c ∈ validCard
grd5 : c 7→ acc ∈ cardAcct

then
act1 : bal(acc) := bal(acc) + am

end

END

1

Figure 6.4: ATM integral model decomposed using SVD into transfer and de-
posit features

6.4.1 Refinement of Transfer Feature

The first refinement model of transfer feature refines the Transfer event for a success-

ful transfer of money (TransferOk) and another event (TransferFails) is introduced

when the transfer fails due to the account balance being less than the transfer amount as

shown in Figure 6.5. Other reasons for failure of balance transfer can be introduced in

subsequent refinements as required (e.g., failing due to hardware or communication prob-

lems, though not considered in the scope of this case-study). The event FinishTransfer

completes the transfer and resets the ATM involved in the transfer for new transaction.

As we can not refine the external event Despoit due to restriction of SVD, it is present

at all refinement levels of transfer feature but not shown in the figures due to space

limitations. Invariants show the typing of new variables introduced in this refinement,

i.e., transferOkA, transferFailA and cardInAtm.

Figure 6.6 shows the events (both new and refined) of transfer feature during all the

112 Chapter 6 Modelling ATM Case-study

INVARIANTS

inv9 : transferOkA ∈ P(ATM)

in10 : transferFailA ∈ P(ATM)

inv10 : cardInAtm ∈ ATM 7→ CARD

inv11 : transferOkA ∩ transferFailA = ∅

Event TransferOK =̂
refines Transfer

any
src ac, dest ac, am, c, a

where
grd1 : src ac ∈ ACCOUNT

grd2 : dest ac ∈ ACCOUNT

grd3 : c ∈ validCard

grd4 : c 7→ src ac ∈ cardAcct

grd5 : am ∈ N1

grd6 : src ac ∈ dom(bal)
grd7 : dest ac ∈ dom(bal)
grd8 : src ac 6= dest ac

grd9 : am ≤ bal(src ac)
grd10 : a ∈ dom(cardInAtm)
grd11 : c = cardInAtm(a)
grd12 : a /∈ (transferOkA ∪ transferFailA)

then
act1 : bal := bal C− {dest ac 7→ (bal(dest ac) + am),

src ac 7→ (bal(src ac)− am)}
act2 : transferOkA := transferOkA ∪ {a}

end

Event TransferFails =̂

any
src ac, dest ac, am, c, a

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : c ∈ validCard
grd4 : c 7→ src ac ∈ cardAcct
grd5 : am ∈ N1

grd6 : src ac ∈ dom(bal)
grd7 : dest ac ∈ dom(bal)
grd8 : src ac 6= dest ac
grd9 : am > bal(src ac)
grd10 : a ∈ dom(cardInAtm)
grd11 : c = cardInAtm(a)
grd12 : a /∈ (transferOkA ∪ transferFailA)

then
act2 : transferFailA := transferFailA ∪ {a}

end

Event FinishTransfer =̂

any
a

where
grd1 : a ∈ ATM
grd2 : a ∈ (transferOkA ∪ transferFailA)

then
act1 : transferOkA := transferOkA \ {a}
act2 : transferFailA := transferFailA \ {a}

end

1

Figure 6.5: Transfer model’s invariants and events of first refinement

refinements. The dotted lines show new events which refine skip whereas the solid lines

show refined events. The event TransferFails of first refinement has similar structure

to TransferOk event in terms of event refinement and hence not elaborated in the figure.

The second refinement introduces request and response mechanism between ATM and

the Bank. Here, ATM sends a balance transfer request to the bank (i.e., ReqTransfer

event), which responds after a successful or failed transfer event takes place (i.e., event

TransferOk or TransferFails through event RespTransferOk or RespTransferFails

respectively). The ATM then displays the transfer status (i.e., event TransferOkAtm

or TransferFailsAtm). The Event-B specification of all the events at this refinement

level is shown in Figure 6.7. We also introduce a transaction variable trans (typing:

trans ∈ P(ATM)) for transferring balance which restricts the transfer request event

only if the ATM is not currently in a transaction. An ATM currently in a transfer

transaction could be in any of its sub states, as shown in the invariant below. Several

new variables are also introduced at this refinement level.

inv18 : partition(trans, reqTransfer , transferOk , transferFail , respTransferOk , respTransferFail)

The third level of refinement further refines the request and response mechanisms by de-

composing the request event for sending and receiving the request and similarly for the

response event. For example, the abstract event ReqTransfer is decomposed into the re-

fined event SendReqTransfer (which sends the balance transfer request from the ATM)

and the new event RecvReqTransfer (which receives the balance transfer request at the

Chapter 6 Modelling ATM Case-study 113

Transfer_0

TransferOk

SendRespTransferOk RecvRespTransferOk

TransferOkAtmReqTransfer TransferOk RespTransferOk

SendReqTransfer RecvReqTransfer

Transfer_1

Transfer_2

Transfer_3

TransferFails

Transfer

TransferOk

SendRespTransferOk RecvRespTransferOkSendReqTransfer RecvReqTransfer TransferOk
Transfer_4

TransferOkAtm

TransferOkAtm

FinishTransfer

Figure 6.6: Event refinement of transfer feature

Table 6.1: Proof statistics for transfer refinements

Model Auto Manual Total

Transfer 0 7 0 7

Transfer 1 6 0 6

Transfer 2 53 5 58

Transfer 3 58 2 60

Transfer 4 115 8 124

Bank). Similarly, the response abstract event RespTransferOk is decomposed into the

refined event SendRespTransferOk (which sends the response for a successful transfer

from the Bank) and the new event RecvRespTransferOk (which receives the successful

transfer response at the ATM) and so on for the transfer failure events. The abstract

request and response variables reqTransfer, respTransferOk and respTransferFail

are also refined as shown below:

inv7 : partition(reqTransfer , sendReqTransfer , recvReqTransfer)

inv8 : partition(respTransferOk , sendRespTransferOk , recvRespTransferOk)

inv9 : partition(respTransferFail , sendRespTransferFail , recvRespTransferFail)

The fourth refinement introduces middleware (MW) between the ATM and the Bank.

This refinement also prepares the model to be decomposed using SED into three ar-

chitectural components of the transfer feature, i.e., ATM, MW and the Bank, where

MW is used for communicating between the two. The recomposition of these (ATM,

MW, Bank) would refine the feature being decomposed (fourth refinement). Here we do

not introduce any further requirements rather the focus is on how the model could be

114 Chapter 6 Modelling ATM Case-study

EVENTS
Event ReqTransfer =̂

any
src ac, dest ac, am, c, a

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : c ∈ validCard
grd5 : am ∈ N1

grd6 : src ac 6= dest ac
grd9 : c = cardInAtm(a)
grd10 : a /∈ trans

then
act1 : reqTransfer := reqTransfer ∪ {a}
act2 : trAmount(a) := am
act3 : srcAcc(a) := src ac
act4 : destAcc(a) := dest ac
act5 : trans := trans ∪ {a}

end

Event TransferOK =̂
refines TransferOK

any
src ac, dest ac, am, c, a

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd4 : c 7→ src ac ∈ cardAcct
grd5 : am ∈ N1

grd8 : src ac 6= dest ac
grd9 : am ≤ bal(src ac)
grd12 : c = cardInAtm(a)
grd14 : src ac = srcAcc(a)
grd15 : dest ac = destAcc(a)
grd16 : am = trAmount(a)
grd17 : a ∈ reqTransfer
grd18 : a /∈ (transferOk ∪ transferFail)

then
act1 : bal := bal C− {dest ac 7→ (bal(dest ac) +

am), src ac 7→ (bal(src ac)− am)}
act5 : transferOk := transferOk ∪ {a}
act6 : reqTransfer := reqTransfer \ {a}

end

Event RespTransferOk =̂
refines FinishTransfer

any
a

where
grd2 : a ∈ transferOk
grd3 : a /∈ transferFail

then
act1 : respTransferOk := respTransferOk ∪ {a}
act2 : transferOk := transferOk \ {a}

end

Event TransferFails =̂
refines TransferFails

any
src ac, dest ac, am, c, a

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd5 : am ∈ N1

grd8 : src ac 6= dest ac
grd9 : am > bal(src ac)
grd12 : c = cardInAtm(a)
grd14 : src ac = srcAcc(a)
grd15 : dest ac = destAcc(a)
grd16 : am = trAmount(a)
grd17 : a ∈ reqTransfer
grd18 : a /∈ (transferOk ∪ transferFail)

then
act2 : transferFail := transferFail ∪ {a}
act3 : reqTransfer := reqTransfer \ {a}

end

Event RespTransferFail =̂
refines FinishTransfer

any
a

where
grd2 : a ∈ transferFail
grd3 : a /∈ transferOk

then
act1 : respTransferFail := respTransferFail ∪ {a}
act2 : transferFail := transferFail \ {a}

end

Event TransferOKAtm =̂

any
a

where
grd8 : a ∈ respTransferOk
grd9 : a /∈ respTransferFail

then
act1 : transOkAtm(a) := TRUE
act5 : respTransferOk := respTransferOk \ {a}
act6 : trans := trans \ {a}

end

Event TransferFailsAtm =̂

any
a

where
grd8 : a ∈ respTransferFail
grd9 : a /∈ respTransferOk

then
act1 : transOkAtm(a) := FALSE
act5 : respTransferFail := respTransferFail \ {a}
act6 : trans := trans \ {a}

end

1

Figure 6.7: Transfer model’s events of second refinement

designed towards implementation. Since we would like all features to have the same ar-

chitectural design, this would enable us to later compose all components of a particular

type (i.e., MW or Bank) resulting from the decomposition and refine these further.

In this refinement step, we added new variables to make sure that there are no more

shared-variables when we decompose the model into three components and only have

shared events. For example, in third refinement, we only had one variable for transfer

amount (trAmount) whereas we introduced two extra variables (trAmountB, trAmountM)

to hold transfer amount for each of the three components. This would be used to pass

value between the components synchronised through shared events after SED as dis-

cussed below. Several new invariants were also added as a result of this. Some of the

Chapter 6 Modelling ATM Case-study 115

ATM MW Bank

4a. SendRespTransferOk5a. RecvRespTransferOk

1. SendReqTransfer 2. RecvReqTransfer

3a. TransferOk

6a. TransferOkAtm

4b. SendRespTransferFails5b. RecvRespTransferFails

3b. TransferFails

6b. TransferFailsAtm

OR

Figure 6.8: Transfer fourth refinement model with events ready for architectural
decomposition

invariants at this refinement level are shown below. These invariants allow us to make

the sate of three components disjoint by introducing new variables.

inv12 : ∀a ·a ∈ dom(trAmountM)⇒ a ∈ dom(trAmount) ∧ trAmountM (a) = trAmount(a)

inv13 : ∀a ·a ∈ recvReqTransfer ∧ a ∈ dom(trAmountB) ⇒ a ∈ dom(trAmountM) ∧
trAmountB(a) = trAmountM (a)

inv14 : ∀a ·a ∈ dom(srcAccM)⇒ a ∈ dom(srcAcc) ∧ srcAccM (a) = srcAcc(a)

inv15 : ∀a ·a ∈ recvReqTransfer ∧ a ∈ dom(srcAccB) ⇒ a ∈ dom(srcAccM) ∧ srcAccB(a) =

srcAccM (a)

inv16 : ∀a ·a ∈ dom(destAccM)⇒ a ∈ dom(destAcc) ∧ destAccM (a) = destAcc(a)

inv17 : ∀a ·a ∈ recvReqTransfer ∧ a ∈ dom(destAccB)⇒ a ∈ dom(destAccM) ∧ destAccB(a) =

destAccM (a)

inv18 : ∀a ·a ∈ dom(cardInAtmM)⇒ a ∈ dom(cardInAtm) ∧ cardInAtmM (a) = cardInAtm(a)

inv19 : ∀a ·a ∈ recvReqTransfer ∧ a ∈ dom(cardInAtmB) ⇒ a ∈ dom(cardInAtm) ∧
cardInAtmB(a) = cardInAtm(a)

inv20 : ∀a ·a ∈ dom(cardInAtmB)⇒ a ∈ dom(cardInAtm)

Figure 6.8 shows the architecture of fourth refinement model including all the events

and the component to which these would belong to after decomposition. The events

shared between any two components are split into two. The sequence of events is shown

by numbering the events in ascending order. Only one of the events from 3a or 3b would

take place for a particular transaction, followed by their corresponding events only (a

or b).

116 Chapter 6 Modelling ATM Case-study

The architectural decomposition is achieved using shared-event decomposition (SED).

During the decomposition, the shared variable validCard is moved to the ATM com-

ponent and the other shared variables bal and cardAcct into the Bank component.

The external events were also partitioned accordingly, e.g., part of the external event

Deposit containing variable validCard moved to ATM and the rest to the Bank com-

ponent as shown in Figure 6.9. This splitting of external events is possible since we can

leave out such external events (resulting from SVD) when composing models using SVC

later. The only restriction of SVD is to not refine these events.

During architectural decomposition, we partitioned variables into different components

whereas events were split between any two components. Hence, the components syn-

chronise through these shared-events following the message passing mechanism of SED.

For example, in Figure 6.8, the event SendReqTransfer is shared between ATM and the

MW whereas the event RecvReqTransfer is shared between MW and the Bank. Fig-

ure 6.10 shows Event-B specification of SendReqTransfer event decomposed into two

events for ATM and MW components. So, a balance transfer transaction starts when

an ATM machine sends a transfer request (e.g., variable trAmount holds the transfer

amount here) through the MW (e.g., trAmountM is passed the transfer amount) which is

received by the Bank (e.g., trAmountB eventually contains the transfer amount). After

processing the transfer request, the Bank then sends a response for a successful or failed

transfer through the MW. The ATM finally displays the transfer status accordingly.

This decomposition was performed using the SED tool available as a plug-in for Rodin.

We specify names of the components and the variables that each component should

contain after the decomposition. This is why there must not be any shared variables

among the components resulting from the decomposition. The tool then partitions the

events based on the variables. Each of these three components can be further refined

but the shared variables and external events (resulting from SVD) must not be refined.

It is interesting to note that we have used SED on models that were decomposed using

SVD having external events. Table 6.1 shows the proof obligations statistics for each

of the transfer refinements and whether the POs were discharged automatically by the

Rodin provers or interactively.

6.4.2 Refinement of Deposit Feature

Similar to the transfer feature, we refined and decomposed the deposit feature resulting

in three components, i.e., ATM, MW and the Bank. In the first refinement, the abstract

event Deposit was was refined further to introduce the cash available in an ATM and

the card inserted in it as shown below:

Chapter 6 Modelling ATM Case-study 117

Event Deposit =̂
// External event, DO NOT REFINE

extends Deposit

any
acc, am, c

where
grd1 : acc ∈ ACCOUNT

grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd4 : c ∈ validCard

grd5 : c 7→ acc ∈ cardAcct

then
act1 : bal(acc) := bal(acc) + am

end

Event Deposit =̂
// ATM part
// External event, DO NOT REFINE

any
acc, am, c

where
typing c : c ∈ CARD
typing am : am ∈ Z
grd1 : acc ∈ ACCOUNT
grd3 : am ∈ N1

grd4 : c ∈ validCard
then

skip

end

Event Deposit =̂
// BANK part
// External event, DO NOT REFINE

any
acc, am, c

where
typing c : c ∈ CARD
typing am : am ∈ Z
grd1 : acc ∈ ACCOUNT
grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd5 : c 7→ acc ∈ cardAcct
then

act1 : bal(acc) := bal(acc) + am
end

1

Figure 6.9: Splitting external event Deposit into two during architectural de-
composition using SED

Event Deposit =̂

refines Deposit

any

acc, am, c

a

where

grd1 : acc ∈ ACCOUNT

grd2 : acc ∈ dom(bal)

grd3 : am ∈ N1

grd4 : c ∈ validCard

grd5 : c 7→ acc ∈ cardAcct

grd6 : a ∈ ATM

grd7 : a ∈ dom(atmCash)

grd8 : a ∈ dom(cardInAtm)

grd9 : cardInAtm(a) = c

then

act1 : bal(acc) := bal(acc) + am

act2 : atmCash(a) := atmCash(a) + am

end

In the second refinement, we introduced the request and response mechanism between

the ATM and the Bank. Here, an ATM sends a deposit request to the bank (i.e.,

ReqDeposit event), which responds (i.e., RespDeposit event) after the deposit event

takes place at the Bank (i.e., DepositB event), where the account balance associated

with the card is incremented by the deposited amount. Upon successful deposit, the

118 Chapter 6 Modelling ATM Case-study

Event SendReqTransfer =̂
refines SendReqTransfer

any
src ac, dest ac, am, a, c

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : am ∈ N1

grd5 : src ac 6= dest ac
grd4 : c ∈ validCard
grd7 : a 7→ c ∈ cardInAtm
grd8 : a ∈ ATM
grd11 : a /∈ trans

then
act1 : sendReqTransfer := sendReqTransfer ∪ {a}
act2 : trAmount(a) := am
act3 : srcAcc(a) := src ac
act4 : destAcc(a) := dest ac
act6 : trAmountM (a) := am
act7 : srcAccM (a) := src ac
act8 : destAccM (a) := dest ac
act10 : cardInAtmM (a) := c
act11 : trans := trans ∪ {a}

end

MW event

Event SendReqTransfer =̂

any
src ac, dest ac, am, a, c

where
typing c : c ∈ CARD
typing am : am ∈ Z
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : am ∈ N1

grd5 : src ac 6= dest ac
grd8 : a ∈ ATM

then
act1 : sendReqTransfer :=

sendReqTransfer ∪ {a}
act6 : trAmountM (a) := am
act7 : srcAccM (a) := src ac
act8 : destAccM (a) := dest ac
act10 : cardInAtmM (a) := c

end

ATM event

Event SendReqTransfer =̂

any
src ac, dest ac, am, a, c

where
typing c : c ∈ CARD
typing am : am ∈ Z
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : am ∈ N1

grd5 : src ac 6= dest ac
grd4 : c ∈ validCard
grd7 : a 7→ c ∈ cardInAtm
grd8 : a ∈ ATM
grd11 : a /∈ trans

then
act2 : trAmount(a) := am
act3 : srcAcc(a) := src ac
act4 : destAcc(a) := dest ac
act11 : trans := trans ∪ {a}

end

1

Figure 6.10: An event of transfer feature’s fourth refinement model split into
two events using SED

ATM displays deposit successful message and also increments the cash available in the

ATM (i.e., DepositATM event). We also introduced transaction mechanism through the

variable trans as we did for the Transfer feature’s refinement. Figure 6.11 shows the

events at this refinement level.

Again, following from the transfer feature refinement, the third level of refinement fur-

ther refined the request and response mechanisms by partitioning the request event for

sending and receiving the request and similarly for the response event. The fourth re-

finement introduced MW between ATM and the Bank. The proof obligations statistics

for this development is given in Table 6.2 and Figure 6.12 shows the events (both new

and refined) of deposit feature during all the refinements.

We then decomposed this deposit feature into ATM, MW and the Bank using SED. The

shared variables and external events were partitioned in the same way as done in the

Chapter 6 Modelling ATM Case-study 119

Event ReqDeposit =̂

any
c, am, a

where
grd2 : am ∈ N1

grd3 : c ∈ ran(cardInAtm)
grd4 : a ∈ dom(cardInAtm)
grd5 : cardInAtm(a) = c
grd6 : c ∈ validCard
grd9 : a /∈ trans

then
act1 : reqDep := reqDep ∪ {a}
act2 : trans := trans ∪ {a}
act3 : atmDepAm(a) := am

end

Event DepositB =̂
refines Deposit

any
acc, am, c, a

where
grd1 : acc ∈ ACCOUNT
grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd5 : c 7→ acc ∈ cardAcct
grd6 : a ∈ ATM
grd7 : a ∈ dom(atmCash)
grd8 : a ∈ dom(cardInAtm)
grd9 : cardInAtm(a) = c
grd10 : a ∈ reqDep
grd11 : a ∈ dom(atmDepAm)
grd12 : atmDepAm(a) = am

then
act1 : bal(acc) := bal(acc) + am
act2 : atmCash(a) := atmCash(a) + am
act5 : processedDep := processedDep ∪ {a}

end

Event RespDeposit =̂

any
a

where
grd1 : a ∈ processedDep
grd2 : a ∈ reqDep

then
act1 : respDep := respDep ∪ {a}
act3 : processedDep := processedDep \ {a}
act4 : reqDep := reqDep \ {a}

end

Event DepositATM =̂

any
am, a

where
grd8 : a ∈ respDep
grd9 : a ∈ dom(atmDepAm)
grd10 : atmDepAm(a) = am

then
act2 : atmCashA(a) := atmCashA(a) + am
act4 : respDep := respDep \ {a}
act5 : trans := trans \ {a}

end

1

Figure 6.11: Deposit feature’s events of second refinement

Table 6.2: Proof statistics for deposit refinements

Model Auto Manual Total

Deposit 0 7 0 7

Deposit 1 7 0 7

Deposit 2 27 0 27

Deposit 3 37 0 37

Deposit 4 46 3 49

transfer feature. So, the shared variable validCard moved to the ATM component and

rest of the shared variables (i.e., bal and cardAcct) moved to the Bank component. The

external events were also partitioned accordingly. The vertical refinement architecture

of deposit feature is same as that of the balance transfer feature discussed earlier.

Figure 6.13 shows the architecture of fourth refinement model including all the events and

which component these would belong to after decomposition. It also shows the sequence

of events. So, for the deposit feature, an ATM sends a deposit request through the

MW which is received by the bank. The bank then sends a response after incrementing

the account balance through the middleware. The ATM finally displays the deposit

successful message and also increments the amount of cash it contains by the deposited

120 Chapter 6 Modelling ATM Case-study

Deposit_0

Deposit

SendRespDeposit RecvRespDeposit

DepositAtmReqDeposit Deposit RespDeposit

SendReqDeposit RecvReqDeposit

Deposit_1

Deposit_2

Deposit_3

Deposit

Deposit

SendRespDeposit RecvRespDepositSendReqDeposit RecvReqDeposit Deposit
Deposit_4

DepositAtm

DepositAtm

Figure 6.12: Event refinement of deposit feature

4. SendRespDeposit5. RecvRespDeposit

1. SendReqDeposit 2. RecvReqDeposit

3. Deposit

6. DepositAtm

ATM MW Bank

Figure 6.13: Deposit feature’s fourth refinement model with events ready for
architectural decomposition

amount. These decomposed components synchronise using the shared-events and can

be further refined independently.

6.4.3 Composing Sub-components of Two Features

Figure 6.14 shows the development and (de)composition structure for the deposit and

transfer features of the ATM. In the figure, asterisk (*) denotes a model with exter-

nal events, and bal, validCard and cardAcct are the model’s shared variables. We

needed external events in order to later compose these features using SVC after several

refinement steps, to make sure the composition was correct by construction and hence

Chapter 6 Modelling ATM Case-study 121

Integral ATM Concrete Model

Integral

ATM Abstract

Deposit_0*

(bal,validCard,cardAcct)

Transfer_0*

(bal,validCard,cardAcct)

Deposit_4*

(bal,validCard,cardAcct)

Transfer_4*

(bal,validCard,cardAcct)

SVD

Bank0_T*

(bal,cardAcct)

ATM0_T*

(validCard)
MW0_T

SED

Bank_T+D

(bal,cardAcct)

MW_T+D

ATM_T+D

(validCard)

Bank0_D*

(bal,cardAcct)

ATM0_D*

(validCard)
MW0_D

SED

SVC

SVC

SEC

A

C

Figure 6.14: Refinement and (de)composition architecture for transfer and de-
posit features

not need reproving. This means that we had to make sure that the two features were

a result of SVD of an integral abstract model, as mentioned earlier. This generated a

tooling requirement to automatically generate external events for the features that we

would like to compose using SVC and hence saving time to manually do so. Note that

in this case study, the shared variables bal and cardAcct along with their correspond-

ing external events are localised in the Bank component; whereas the shared variable

validCard and its corresponding external event is localised in the ATM component.

Now that we have the same architectural decomposition (ATM, MW, Bank) for each

feature, we would like to compose these models pairwise (i.e., Bank T+D = Bank T

+ Bank D, etc.) for implementation purposes. In general, the task would of course be

more complex, involving more than two features. In our case, where the shared variables

bal and cardAcct are localised into the two architectural Bank components, these can

be composed, with the composite Bank refining each Bank component. This is because

each Bank’s external events are ‘cancelled out’, or implemented, by the other Bank’s

actual events. For example, components Bank0 T and ATM0 T of transfer feature have

parts of the external event Deposit as shown below:

122 Chapter 6 Modelling ATM Case-study

Event Deposit =̂

// ATM0 T

// External event, DO NOT REFINE

any

acc, am, c

where

typing c : c ∈ CARD

typing am : am ∈ Z
grd1 : acc ∈ ACCOUNT

grd3 : am ∈ N1

grd4 : c ∈ validCard

then

skip

end

Event Deposit =̂

// BANK0 T

// External event, DO NOT REFINE

any

acc, am, c

where

typing c : c ∈ CARD

typing am : am ∈ Z
grd1 : acc ∈ ACCOUNT

grd2 : acc ∈ dom(bal)

grd3 : am ∈ N1

grd5 : c 7→ acc ∈ cardAcct

then

act1 : bal(acc) := bal(acc) + am

end

These external events have been refined by events sendReqDeposit and depositB re-

spectively, present in ATM0 D and Bank0 D of deposit feature as shown below:

Event sendReqDeposit =̂

any

c, am, a

where

typing c : c ∈ CARD

typing am : am ∈ Z
typing a : a ∈ ATM

grd2 : am ∈ N1

grd3 : c ∈ ran(cardInAtm)

grd4 : a ∈ dom(cardInAtm)

grd5 : cardInAtm(a) = c

grd6 : c ∈ validCard

grd9 : a /∈ trans

then

act2 : trans := trans ∪ {a}
act3 : atmDepAm(a) := am

end

Event depositB =̂

any

acc, am, a, c

where

typing c : c ∈ CARD

typing am : am ∈ Z
grd1 : acc ∈ ACCOUNT

grd2 : acc ∈ dom(bal)

grd3 : am ∈ N1

grd5 : c 7→ acc ∈ cardAcct

grd6 : a ∈ ATM

grd7 : a ∈ dom(atmCash)

grd8 : a ∈ dom(cardInAtmB)

grd9 : cardInAtmB(a) = c

grd11 : a ∈ dom(atmDepAmB)

grd12 : atmDepAmB(a) = am

grd13 : a ∈ recvReqDep

then

act1 : bal(acc) := bal(acc) + am

act2 : atmCash(a) := atmCash(a) + am

act5 : processedDep := processedDep ∪ {a}
end

Figure 6.15 shows the events of Bank T and Bank D and the resulting composition

Bank T+D, where external events disappear as a consequence of shared-variable com-

position. The composition of different components is achieved using our feature com-

position tool, as there is no tool support for shared-variable composition. Since we had

same architecture for both the components, there were conflicting variables and invari-

ants which were resolved by the tool automatically. Table 6.3 shows the number of proof

Chapter 6 Modelling ATM Case-study 123

RecvReqTransfer

TransferOk

SendRespTransferOk

TransferFail

SendRespTransferFail

Deposit*

RecvReqDeposit

Deposit

SendRespDeposit

Transfer*

RecvReqTransfer

TransferOk

SendRespTransferOk

TransferFail

SendRespTransferFail

RecvReqDeposit

Deposit

SendRespDeposit

+

Note: * represents external event

Bank_T Bank_D

Bank_T+D

SVC

Figure 6.15: Composing bank components of transfer and deposit features

Table 6.3: Proof statistics for deposit and transfer components and their com-
position

Component Transfer Deposit Composite
T D T+D

ATM 11 10 20

MW 17 7 25

Bank 32 18 47

Total 60 35 92

obligations for different components of transfer and deposit features and their compos-

ites. This shows that by following the suggested modelling pattern, we can avoid the

proof effort for the composite models (i.e., fourth column of the table).

The suggested pattern is correct by construction due to the application of shared-variable

and shared-event (de)composition techniques and following their restrictions. In order to

prove that the pattern works for this example, we composed the three components (i.e.,

ATM T+D, MW T+D, Bank T+D) using shared-event composition, though this is not

required in practice. The composition resulted in the concrete integral model of ATM

(box C in Figure 6.14) which refines the abstract integral model (box A in the figure).

This refinement relationship was also proved by refining the integral ATM abstract model

up to four refinements and the composition (i.e., ATM concrete model) was proved to

refine the fourth refinement of integral ATM model, as shown in Figure 6.16. Here, in

order to prove that box C refines box A, we had to model refinements of box B although

this is not required in actual development.

124 Chapter 6 Modelling ATM Case-study

Integral

ATM Abstract

(ATMintegral_0)

Deposit_0*

(bal,validCard,cardAcct)

Transfer_0*

(bal,validCard,cardAcct)

Deposit_4*

(bal,validCard,cardAcct)

Transfer_4*

(bal,validCard,cardAcct)

SVD

Bank0_T*

(bal,cardAcct)

ATM0_T*

(validCard)
MW0_T

SED

Bank_T+D

(bal,cardAcct)

MW_T+D

ATM_T+D

(validCard)

Bank0_D*

(bal,cardAcct)

ATM0_D*

(validCard)
MW0_D

SED

SVC

SVC

SEC

ATMintegral_1

ATMintegral_2

ATMintegral_3

ATMintegral_4

Integral ATM Concrete Model

A

C

B

Figure 6.16: Refinement preservation experiment of the suggested pattern

6.4.4 Modelling Second ATM Product By Reusing Existing Features

After modelling an ATM product with two features, we modelled another ATM product

having a cash withdraw feature as well (as shown by the dotted box on the right in

Figure 6.17). This enabled us to explore how much of the existing models and their proofs

could be reused or to what extent we could reduce the overall modelling effort for the

second ATM product through reuse after modelling the first one. So, we elaborated the

top-level integral model to include the cash withdrawal functionality and decomposed it

into three features (i.e., deposit, transfer and withdraw). Figure 6.18 shows the abstract

integral Event-B model for the second ATM product.

Chapter 6 Modelling ATM Case-study 125

Integral

ATM Abstract

Deposit_0*

(bal,validCard,cardAcct)

Transfer_0*

(bal,validCard,cardAcct)

Deposit_4*

(bal,validCard,cardAcct)

Transfer_4*

(bal,validCard,cardAcct)

SVD

Bank0_T*

(bal,cardAcct)

ATM0_T*

(validCard)
MW0_T

SED

Bank_T+D+W

(bal,cardAcct)

MW_TDW

ATM_TDW

(validCard)

Bank0_D*

(bal,cardAcct)

ATM0_D*

(validCard)
MW0_D

SED

SVC

SVC

SEC

Withdraw_0*

(bal,validCard,cardAcct)

Withdraw_4*

(bal,validCard,cardAcct)

Bank0_W*

(bal,cardAcct)

ATM0_W*

(validCard)

SED

MW0_W

Figure 6.17: Refinement and (de)composition architecture for 2nd ATM product

6.4.4.1 Refinement of Withdraw Feature

We refined the withdraw feature in the same way as the other two features discussed

earlier. The first refinement differentiates between the successful and failed withdrawal.

The next two refinements introduce the request and response mechanism between Bank

and the ATM. The fourth refinement introduces MW so that we can decompose this

model into three components (i.e., ATM, MW and Bank), as we did for the other two

features. Figure 6.19 shows the events (both new and refined) of withdraw feature during

all the refinements. Note that the number of refinement steps for any of the features

could be different. This solves the problem of composing non-conformal refinements as

discussed in the production cell case-study.

6.4.4.2 Discussion

Provided the new feature is ‘non-interfering’ - in the sense that in the SVD refinement,

the other two features remain unchanged - then all we have to do is refine the with-

draw feature only. An interfering feature would require making changes to the existing

features which would lead to feature interaction problem mentioned in Chapter 3. If

the additional feature only interferes with subset of existing features, then we would

only need to re-engineer that subset. This could also be very useful in saving modelling

and proof effort when we can reuse a large set of existing features by modifying a small

subset of these due to feature interaction of additional feature to model a new product.

126 Chapter 6 Modelling ATM Case-study

MACHINE IntegralATM2 0

SEES IntegralATM2 CO

VARIABLES

bal, cardAcct, validCard

INVARIANTS

inv1 : bal ∈ ACCOUNT 7→ N
inv2 : cardAcct ∈ CARD 7→ACCOUNT

inv3 : validCard ⊆ CARD

EVENTS

Event Deposit =̂

any
acc, am, c

where
grd1 : acc ∈ ACCOUNT
grd2 : acc ∈ dom(bal)
grd3 : am ∈ N1

grd4 : c ∈ validCard
grd5 : c 7→ acc ∈ cardAcct

then
act1 : bal(acc) := bal(acc) + am

end

Event Transfer =̂

any
src ac, dest ac, am, c

where
grd1 : src ac ∈ ACCOUNT
grd2 : dest ac ∈ ACCOUNT
grd3 : c ∈ validCard
grd4 : c 7→ src ac ∈ cardAcct
grd5 : am ∈ N1

grd6 : src ac ∈ dom(bal)
grd7 : dest ac ∈ dom(bal)
grd8 : src ac 6= dest ac
grd9 : am ≤ bal(src ac)

then
act1 : bal := bal C− {dest ac 7→ (bal(dest ac) +

am), src ac 7→ (bal(src ac)− am)}
end

Event Withdraw =̂

any
acc, am, c

where
grd1 : acc ∈ ACCOUNT
grd2 : am ∈ N1

grd3 : acc ∈ dom(bal)
grd4 : am ≤ bal(acc)
grd5 : c ∈ validCard
grd6 : c 7→ acc ∈ cardAcct

then
act1 : bal(acc) := bal(acc)− am

end

END

1

Figure 6.18: Integral ATM abstract model for 2nd ATM product of Figure 6.17

Withdraw_0

WithdrawOk

SendRespWithdrawOk RecvRespWithdrawOk

WithdrawOkAtmReqWithdraw WithdrawOk RespWithdrawOk

SendReqWithdraw RecvReqWithdraw

Withdraw_1

Withdraw_2

Withdraw_3

WithdrawFail

Withdraw

WithdrawOk

SendRespWithdrawOk RecvRespWithdrawOkSendReqWithdraw RecvReqWithdraw WithdrawOk
Withdraw_4

WithdrawOkAtm

WithdrawOkAtm

Figure 6.19: Event refinement of withdraw feature

Chapter 6 Modelling ATM Case-study 127

Table 6.4: Proof obligations for withdraw component and the composite models

Component Withdraw Composite
W T+D+W

ATM 13 29

MW 9 33

Bank 28 61

Total 50 123

The additional feature must also preserve any invariants related to the shared-variables

in the existing features. So, this means that both the deposit and transfer features

would now contain external event Withdraw of the withdraw feature. Since the deposit

and transfer components have already been proved, new POs were only generated for

the newly added external event acting on the shared variables (i.e., bal, cardAcct and

validCard). Also, these new POs were only generated in the abstract models of deposit

and transfer features, no matter how many refinements exist because of the restriction

of SVD that external events and shared variables should not be refined. Hence, we

only have to discharge these small number of POs when reusing existing models. In

this particular example, only three new POs were generated for each of the deposit and

transfer abstract models and these were automatically discharged by the Rodin provers.

Table 6.4 shows the number of POs for different components of withdraw feature before

and after composition with the components of other two features. This shows that we

managed to avoid reproving POs for whole developments of deposit and transfer fea-

tures by following this pattern of reuse (Tables 6.1 and 6.2 show total savings of 375

POs for second ATM product). With the help of proper tool support, we could even

avoid discharging POs at abstract models for the components being reused.

6.4.5 Evaluation

We have examined a specific pattern of mixed decomposition-recomposition - SVD fol-

lowed by SED and then SVC/SEC in a single development. It is possible to do this

provided shared variables and their associated external events are not refined and the

shared variables are localised in exactly the same component resulting from architec-

tural decomposition of various features. Our case-study example supports this claim

where we proved that this reuse pattern preserves the refinement relation provided the

restrictions of the pattern stated above are followed.

We can generalise this pattern where the shared variables and their associated external

events must be localised in exactly the same component in each of the feature develop-

ments. For example, consider two features P and Q with shared-variables x and y and

external event(s); which appear to result from SVD of model M as shown in Figure 6.20.

After several refinement steps of P , we get Pn where new events and variables (e.g.,

128 Chapter 6 Modelling ATM Case-study

M

Q(x,y)*P(x,y)*

Qm(x,y,z)*Pn(w,x,y)*

SVD

PnC1(w,x)*PnC2 QmC2QmC1(x)*

SED

PnC3(y)* QmC3(y,z)*

SED

.

PnQmC1(w,x)

PnQmC2

SEC

SVC

SEC

Problem
Decomposition

Architectural
Decomposition

Architectural
Composition

PrC4QrC1

PnQmC3(y,z)

. . .

SVC

SEC

N
* shows external event(s)
** multiple refinement steps

** **

Figure 6.20: Feature-oriented refinement and (de)composition pattern

variable w) are introduced. This model is further decomposed using SED into three

components C1...C3 where variables w and x are localised into C1 and y into C3. This

pattern requires that the variables x and y must be localised into components C1 and

C3 respectively for the feature Qm (which results from various refinements of Q). This

could then scale up to any number of features (as required in product line modelling)

without the need for reproving already proved features, and their composition - as sug-

gested earlier - would be correct by construction. These components could be further

refined, provided that the restrictions of the two styles of decomposition are observed.

As shown in the figure, we have to use SVC while composing PnC1(w, x) and QmC1(x)

as these two components have external events and shared-variable x, and the same for

PnC3(y) and QmC3(y, z). Here, we can leave out the external events during SVC since

these are cancelled-out by their counter-parts, e.g., external event of PnC1 is cancelled

out by an event of QmC1. We can compose PnC2 and QmC2 using SEC since both

components are disjoint, and so on for the rest of the components.

Chapter 6 Modelling ATM Case-study 129

6.5 Conclusion

We have modelled and refined features of ATM product line using Event-B with a view

of reusing these features when modelling a second ATM product after the first one. We

explored the use of both types of decomposition/composition techniques of Event-B in

a single development (i.e., shared-event (SED/SEC) and shared variable (SVD/SVC)

(de)composition). We used SVD for problem decomposition earlier in the development

where we decomposed the problem into various requirements features. These features,

after refining separately, were decomposed again into architectural components using

SED. This serves as solution decomposition. These architectural components could

then be refined independently as required and could be composed using SVC/SEC for

implementation purposes.

This resulted in a modelling pattern which preserves refinement, provided that the re-

strictions of both styles of decomposition and that of the suggested pattern are observed.

These include that the shared-variables and their associated external events are not re-

fined as a consequence of SVD; and are localised in exactly the same type of architec-

tural component during solution decomposition of all the features. Although the pattern

is correct by construction due to the application of the two styles of (de)composition

(i.e., SVD/SED), this refinement preservation was also verified by manually refining the

integral development and proving that the concrete model resulting from this decompo-

sition/recomposition pattern refines the abstract model, which was decomposed using

SVD in the beginning.

The first ATM product modelled contained two features, i.e., deposit and transfer. We

then modelled another ATM product which contained withdraw feature as well. The

second product reused already developed features and hence saved modelling effort. The

amount of proof obligations to be discharged for existing features was minimal which

could be completely avoided with the help of proper tool support. So, this case-study

proved quite useful in terms of suggesting a modelling pattern which employs existing

techniques of Event-B. This pattern helps in reusing Event-B developments and their

associated proofs as required in product line modelling. Based on our two case-studies,

we suggest guidelines for Event-B users in the next chapter, to use feature-oriented

reuse approach in Event-B for modelling product lines and also highlight the tooling

requirements that need to be implemented to make full use of this reuse approach.

	6 Modelling ATM Case-study
	6.1 Introduction
	6.2 ATM
	6.3 Roadmap
	6.4 Event-B Modelling of ATM Features
	6.4.1 Refinement of Transfer Feature
	6.4.2 Refinement of Deposit Feature
	6.4.3 Composing Sub-components of Two Features
	6.4.4 Modelling Second ATM Product By Reusing Existing Features
	6.4.4.1 Refinement of Withdraw Feature
	6.4.4.2 Discussion

	6.4.5 Evaluation

	6.5 Conclusion

