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[1] The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged
periods of organic carbon accumulation of theMesozoic. In this study, we use themolybdenum (Mo) stable isotope
system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both
locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1–7 wt %)
were deposited under mildly reducing (suboxic) conditions, while organic‐rich facies (TOC >7wt %) accumulated
under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked
to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of
the KCF and may have been related to orbitally controlled climate changes. Long‐term variations in d98/95Mo are
associated with the formation of organic‐rich intervals and are related to third‐order fluctuations in relative sea
level. Differences in the mean d98/95Mo composition of the organic‐rich intervals suggest that the global distri-
bution of reducing conditions wasmore extensive during the deposition of thePectinatites wheatleyensis and lower
Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites
pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but
was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates
that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent
with its behavior in present‐day sedimentary environments.

Citation: Pearce, C. R., A. L. Coe, and A. S. Cohen (2010), Seawater redox variations during the deposition of the Kimmeridge
Clay Formation, United Kingdom (Upper Jurassic): Evidence from molybdenum isotopes and trace metal ratios,
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1. Introduction

1.1. Geological Setting and Stratigraphy

[2] The Kimmeridge Clay Formation (KCF) was deposited
across much of Northern Europe between ∼155 and ∼148 Ma
during the Late Jurassic Kimmeridgian Age sensu anglico
(equivalent to the Kimmeridgian sensu gallico and early
Tithonian) [Gradstein et al., 2004]. As such, it represents one
of the most prolonged periods of organic carbon accumula-
tion to have occurred during the Mesozoic [Hallam, 1987;
Jenkyns et al., 2002], and the formation now acts as a major
petroleum source rock [Glennie, 1998]. Sedimentary rocks
with total organic carbon (TOC) contents of <2 wt % to >50
wt % (averaging 4.2 wt %) [Coe, 1992; Tyson, 2004] were
deposited in a series of shallow marine basins in the epi-
continental Laurasian Seaway. This N‐S trending seaway
connected the Boreal and Tethyan oceans and was associated
with low‐lying islands of various sizes scattered throughout
the region (Figure 1) [Smith et al., 1994; Ziegler, 1990].

Ammonites from the Kimmeridgian deposits of this region
suggest that the surface currents flowed southward from
the Boreal Ocean and overlay warmer saline bottom waters
produced in the Tethyan Ocean [Miller, 1990].
[3] The type section of the KCF, exposed along the Dorset

coast, United Kingdom, accumulated near the main depo-
center of theWessex Basin and reaches a maximum thickness
of ∼550 m [Cox and Gallois, 1981]. The different parts of the
section are usually referred to by the 13 ammonite zones into
which it is divided [Cope et al., 1980]. The type section
contains five bands particularly rich in organic matter that are
tens of meters thick and have been referred to as organic‐rich
intervals (ORIs) [Herbin et al., 1995; Jenkyns et al., 2002,
Tribovillard et al., 2004b]. These ORIs, which are also
present in contemporaneous Kimmeridgian deposits in the
Cleveland Basin, Yorkshire, and the Boulonnais region of
northern France, occur in the middle of the Aulacostephanus
eudoxus zone, the upper eudoxus to lower Aulacostephanus
autissodorensis zones, the Pectinatites elegans to lower
Pectinatites scitulus zones, the upper Pectinatites wheatle-
yensis to lower Pectinatites hudlestoni zones, and the upper
hudlestoni to lower Pectinatites pectinatus zones (Figure 2).
In addition to high TOC, the ORIs are also associated with
increases in d13Corg that are interpreted to reflect the enhanced
burial of isotopically light organic carbon within the marine
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basins [Jenkyns et al., 2002;Morgans‐Bell et al., 2001]. The
highest d13Corg values of ∼−21‰ occur within the Blackstone
Band of the wheatleyensis zone, which is one of the most
organic‐rich horizons in the KCFwith a TOC content of up to
50 wt % (Figure 2) [Coe, 1992; Morgans‐Bell et al., 2001;
Tyson, 2004]. The first ORI (in the mid‐eudoxus zone) is also
associated with a positive shift in d13Ccarb, seen in records
from hemipelagic carbonates deposited in the northern
Tethys [Padden et al., 2002; Weissert and Mohr, 1996],
suggesting that the burial of organic matter at that time might
have been sufficiently large so as to affect the carbon cycle
further afield. The five ORIs are separated by sedimentary
deposits with lower TOC contents (typically 1–7 wt %).
These intervals are referred to as the organic‐poor intervals
(OPIs), even though their organic carbon content is signifi-
cantly higher than that of an “average” shale [Piper and
Calvert, 2009; Tribovillard et al., 2004b].
[4] The mudrock facies also vary cyclically on a smaller 1–

10 m scale throughout the KCF, reflecting variations in the
proportion of clay minerals, TOC and CaCO3. Time series
analysis of the variation in magnetic susceptibility, photo-
electric factor, and total gamma ray demonstrates that the
periodicity of the cycles was controlled by Milankovitch
orbital parameters [Dunn, 1974; Huang et al., 2010;Weedon
et al., 1999, 2004]. This astronomical control on the com-
position of the KCF has been attributed to changes in both
marine productivity and the preservation of organic matter
[Piper and Calvert, 2009]. Marine productivity would have
been enhanced during climatic optimums as a result of higher
temperatures and higher pCO2, resulting in a larger net
transfer of organic matter to the sediment‐water interface.

The preservation of organic matter also depends on the
availability of oxygen, with more organic matter being pre-
served under reducing conditions due to a lower rate of oxi-
dation. The extent to which each mechanism was responsible
for the high organic carbon content of the KCF has been
discussed extensively in the literature [Bertrand and Lallier‐
Vergès, 1993; Cox and Gallois, 1981; Demaison and Moore,
1980; Lallier‐Vergès et al., 1993, 1997;Morgans‐Bell et al.,
2001; Oschmann, 1988, 1990; Sælen et al., 2000; Sinninghe
Damsté et al., 2001; Tribovillard et al., 1994; Tyson, 1979,
2005; van Dongen et al., 2006; van Kaam‐Peters et al.,
1998a, 1998b; Weedon et al., 2004] and is not considered
further here.
[5] Most paleoredox information for the availability of O2

in the depositional environment of the KCF comes from
specific intervals [e.g., Lees et al., 2004, 2006; Pearson et al.,
2004; Wignall and Meyers, 1988]. The identification of iso-
renieratane in the KCF demonstrates that euxinic conditions
(no O2 and “free” H2S within the water column) must have
extended into the photic zone at various times during the
Kimmeridgian [Sælen et al., 2000; Sinninghe Damsté et al.,
2001]. Sedimentary rocks in the KCF with TOC <10 wt %
contain lower levels of the redox‐sensitive trace metals (such
as Mo, V, and U) but have a positive correlation with the
degree of pyritisation (DOP), while sedimentary rocks with a
higher TOC (>10%) have higher concentrations of redox‐
sensitive trace elements and DOP values >90% that do not
covary with TOC [e.g.,Dunn, 1974; Tribovillard et al., 1994,
2004a, 2004b; Wignall and Meyers, 1988]. The covariance
between d15N and d13CTOC in samples from thewheatleyensis
to pectinatus zones is thought to reflect an increase in nitrate

Figure 1. (a) Kimmeridgian palaeogeography of the Laurasian Seaway and northwest Europe, adapted
from the compilation of Chambers et al. [2000]. (b) The inferred extent of organic‐rich sediment accu-
mulation during the early Kimmeridgian eudoxus zone, showing the location of the Kimmeridge type
section in the Wessex Basin [after Oschmann, 1988, 1990]. AM, Amorcian Massif.
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and/or ammonium utilization by phytoplankton within a
suboxic/anoxic water column [Sælen et al., 2000]. Variations
in d57/54Fe indicate that redox‐dependent cycling of Fe may
have occurred during the autissodorensis to pallasioides
zones, although interpretation of the d57/54Fe data is com-
plicated by evidence for diffusional Fe‐isotope exchange
during diagenesis [Matthews et al., 2004]. Taken together,

these paleoredox proxies suggest that the redox state of the
depositional environment varied considerably in both time
and space during the accumulation of the KCF.

1.2. Molybdenum Stable Isotope System

[6] The Mo isotope system has attracted particular atten-
tion as a paleoredox proxy because, uniquely, it has the

Figure 2. Summary graphic log, biostratigraphy, and chemostratigraphy of the Kimmeridge Clay Forma-
tion (KCF) in Dorset, after Morgans‐Bell et al. [2001]. MSB, Metherhills Stone Band; FSB, Flats Stone
Band; WL, Washing Ledge; ML, Maple Ledge; BB42, Blake’s Bed 42; YL, Yellow Ledge; CL, Cattle
Ledge; GL, Gray Ledge; BlSB, Blackstone Band; RLH, Rope Lake Head; BaSB, Basalt Stone Band; WSB,
White Stone Band;MWSB,MiddleWhite Stone; FSSB, Freshwater Steps Stone Band; BB2, Blake’s Bed 2.
The zero datum height used in this study is the base of Blake’s Bed 42, which corresponds to the base of the
elegans zone. The high‐resolution CaCO3, TOC, and d

13C data were collected as part of the Rapid Global
Geological Events (RGGE) project and represent 15‐point (CaCO3, TOC) and 5‐point (d13C) moving
averages [Morgans‐Bell et al., 2001; Jenkyns et al., 2002; Weedon et al., 2004]. The five organic‐rich
intervals (ORIs) [Herbin et al., 1995; Jenkyns et al., 2002; Tribovillard et al., 2004b] in the KCF are
highlighted in gray and numbered sequentially. The box represents the part of the formation that was
investigated in this study and includes the last three ORIs.
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potential to record changes in the extent of both local and
global marine anoxia [Anbar, 2004; Arnold et al., 2004;
Pearce et al., 2008; Poulson et al., 2006; Siebert et al., 2003].
Molybdenum occurs in present‐day seawater predominantly
as the chemically inert molybdate ion MoO4

2−, which is
slowly removed under oxidizing marine conditions through
assimilation into ferromanganese phases and other authigenic
material [e.g., Emerson and Huested, 1991; Morford and
Emerson, 1999]. The isotopically light oxic Mo isotope
composition (d98/95Mooxic ∼−0.6‰) of these phases results
from the preferential incorporation of lighter Mo isotopes and
causes residual Mo in seawater to be enriched in heavier
Mo isotopes (d98/95Moseawater ∼2.4‰) [Barling and Anbar,
2004; Pearce et al., 2009; Poulson et al., 2006]. The
d98/95Moseawater value of the present‐day oceans is uniform
because the marine residence time of Mo (∼800 ka) is con-
siderably greater than the mixing time of the oceans [Anbar,
2004]. It also appears that d98/95Moseawater has been constant
over the last ∼60 Ma [Siebert et al., 2003], at least at the 1–
3 Ma resolution over which that study was conducted. Under
euxinic conditions, dissolved molybdate is converted quan-
titatively to MoS4

2− without isotopic fractionation, such
that d98/95Mo in euxinic sedimentary deposits reflects the
isotopic composition of Mo in the coeval seawater (i.e.,
d98/95Moeuxinic ≈ d98/95Moseawater ≈ 2.4‰) [Tossell, 2005;
Neubert et al., 2008; Poulson et al., 2006]. Thus, by mea-
suring the d98/95Mo value of hydrogenous Mo within euxinic
sedimentary deposits, the palaeo d98/95Moseawater value can
be determined and used to infer the global proportion of oxic‐
reducing sedimentation [Anbar, 2004; Arnold et al., 2004;
Ling et al., 2005; Pearce et al., 2008]. The d98/95Mo values
of sediments deposited in anoxic open‐ocean sites today,
where [H2S] is substantially lower then in euxinic settings
(i.e., on the continental margins), fall within an intermediate
range that is generally close to 1.6‰, while the d98/95Mo
ratios of suboxic sediments (that have low O2 but no H2S) are
between −0.7‰ and 1.6‰ [McManus et al., 2006; Poulson
et al., 2006; Siebert et al., 2006].
[7] The use of the Mo isotope system as a proxy for

determining the areal extent of marine anoxia in the past
depends on the assumption that the depositional environment
was both euxinic and open to the global ocean. One of the
most useful geochemical proxies for assessing the redox state
of the local depositional environment is the degree of pyr-
itisation (DOP). This parameter reflects how much Fe3+ has
been reduced to Fe2+ and combined with sulfide to form
pyrite, which is calculated from the relative amounts of
“reactive” and “nonreactive” iron in the sample [Raiswell and
Berner, 1985; Raiswell et al., 1988]. A good approximation
for DOP can be obtained using the total amount of Fe and
S present and is based on the assumption that all sulfur in
the sediment is present as pyrite. The degree of pyritisation
determined in this manner is referred to as DOPT where

DOPT %ð Þ ¼ TS� 0:86

TFe

� �
� 100:

[8] Trace metal abundances and abundance ratios are also
sensitive to the amount of dissolved oxygen and can therefore

also be used as local paleoredox proxies. For example, dif-
ferences between the redox potentials of Re and Mo cause
oxic/suboxic sediments to be preferentially enriched in Re
with respect to Mo, whereas both metals are equally enriched
in strongly reducing sediments [Crusius and Thomson,
2000; Crusius et al., 1996]. Low Re/Mo ratios similar to
that of seawater (∼0.4 mmol/L in the present‐day oceans)
[Crusius et al., 1996] consequently suggest that deposition
occurred in a strongly reducing environment. Algeo and
Tribovillard [2009] used the relative enrichments of Mo
and U to assess variations in both redox state and basinal
restriction within modern and ancient paleoceanographic
systems. The enrichment factor (EF) of each element is
defined relative to the Post‐Archean Average Shale (PAAS)
composition as XEF = [(X/Al)sample /(X/Al)PAAS]. As with the
Re/Mo system, the rate ofMo accumulation increases relative
to the rate of U accumulation in sulfidic (euxinic) environ-
ments, causing the Mo/U ratio to equal or exceed that of
seawater. The relative enrichment of Mo may subsequently
decrease within strongly restricted settings owing to limited
Mo renewal [Algeo and Tribovillard, 2009]. V/Ni ratios can
also be used as a paleoredox proxy as Ni is preferentially
adsorbed to organic matter and incorporated into pyrite
within euxinic sediments. Lower V/Ni ratios therefore indi-
cate enhanced organic carbon burial under strongly anoxic/
euxinic conditions, while higher ratios suggest deposition
under less reducing environments [e.g., Tribovillard et al.,
1994, 2006].
[9] In this study, a range of geochemical paleoredox

proxies has been employed to determine both the local
depositional environment of the upper part of the KCF (∼151
to ∼149 Ma) at its type section in Dorset, United Kingdom,
and the global redox conditions at that time. Measured
d95/95Mo ratios, Mo abundances, Re/Mo, Mo/U and Vi/Ni
ratios, as well as DOPT have been used in conjunction with
changes in TOC and facies type to establish how the redox
state of the depositional environment varied between the
autissodorensis and the pectinatus zones. The d95/95Mo data
from the KCF are also compared with those from the organic‐
richWhitby Mudstone Formation (WMF), Yorkshire, United
Kingdom, which was deposited during the Toarcian (Early
Jurassic) OAE [Pearce et al., 2008]. On the basis of this
comparison between both organic‐rich units, the applicability
of the Mo isotope system as a paleoredox proxy is assessed.

2. Materials and Methods

[10] Bulk‐rock samples were collected by Coe [1992]
from the KCF type section exposed on the Dorset coast and
were positioned accurately with respect to detailed strati-
graphic logs [Coe, 1992; Morgans‐Bell et al., 2001]. In the
present study 39 samples were analyzed from the upper
autissodorensis to pectinatus zones. Cyclostratigraphic dat-
ing indicates that these zones were deposited over an interval
of ∼2.3 Ma (Figure 3) [Weedon et al., 2004], equating to an
average sample resolution of ∼58 ka. The section studied
includes three of the intervals that are particularly enriched in
organic carbon (ORIs 3–5), one of which is the extremely
organic‐rich Blackstone Band where TOC contents reach
50 wt % (Figure 2). Samples were taken from five different
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lithologies [Coe, 1992; Morgans‐Bell et al., 2001] and
include limestone (the Clavell’s Hard Stone Band), medium
dark to dark gray marl (henceforth medium gray marl),
medium dark to dark gray to greenish‐black shale (henceforth
dark gray shale), dark gray to greenish‐black to olive‐black
laminated shale (henceforth laminated shale), and grayish‐
black to brownish‐black mudstone (henceforth black mud-
stone). The samples analyzed in this study have been corre-
lated with the high‐resolution CaCO3, TOC, and d

13Corg data
obtained from the Rapid Global Geological Events (RGGE)
project boreholes (Figures 2 and 3) using the tie depths of
separate marker horizons described by Morgans‐Bell et al.
[2001].
[11] The d98/95Mo composition, major and minor element

concentrations, and TOC, CaCO3, and TS contents were
determined for the selected samples at The Open University
(Tables 1 and 2). The Mo isotope compositions and [Mo]

and [Re] abundances were measured with a Nu Instruments
MC‐ICP‐MS using the procedure described by Pearce et al.
[2009]. The long‐term d98/95Mo reproducibility of this pro-
tocol is 0.12‰, which is similar to that reported in other Mo
isotope studies. Major and minor element concentrations
were determined by X‐ray fluorescence (XRF) analysis,
using an ARL 8420+ dual goniometer wavelength dispersive
XRF spectrometer, while TOC, CaCO3, and TS contents were
determined on ∼200 mg samples using a LECO Instruments
CNS‐2000 elemental analyzer.

3. Results

3.1. d98/95Mo Variations

[12] Most d98/95Mo values determined in this study from
the KCF are between 0.96‰ and 2.46‰, the only excep-
tion being sample Kwh 3, which has the lowest measured

Figure 3. Variations in TOC, d13Corg, d
98/95Mo, [Mo], [Re], Re/Mo, V/Ni, and DOPT of samples from the

KCF analyzed in this study plotted against stratigraphical position. The graphic log and biostratigraphical
information are from the compilation of Morgans‐Bell et al. [2001]. CHSB, Clavell’s Hard Stone Band
[Coe, 1992]. Other limestone horizon abbreviations are as in Figure 2. Cyclostratigraphy represents the
long‐term orbital obliquity cycles of ∼38 ka, as defined byWeedon et al. [2004]. The high‐resolution RGGE
TOC and d13Corg data have been correlated with the coastal exposure log using the tie depths of separate
marker horizons [Morgans‐Bell et al., 2001]. All other geochemical data are from this study. The sedi-
mentary facies corresponding to the bed that the sample was taken from is reflected in the shape of each
sample point. The positions of the sequence boundaries (Kiv, K1, K2, and K3), maximum flooding surfaces
(MFS), and transgressive surfaces (TS) are from Coe [1992] and Ahmadi and Coe [1998]. The organic‐rich
intervals (ORIs) and intervening organic‐poor intervals (OPIs) are labeledwith theORIs highlighted in gray.
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d98/95Mo value of −0.19‰ (Figure 3 and Table 1). There is
no notable relationship between d98/95Mo and facies type,
although some stratigraphic trends can be discerned through
the KCF: d98/95Mo increases from 1.23‰ at the top of the
autissodorensis zone to 2.29‰ by the middle of the scitulus
zone and then decreases to ∼1.7‰ in the upper scitulus
zone, at the end of ORI 3 (ignoring the single exceptionally
low value of −0.19‰ at the start of OPI 3). d98/95Mo values
remain fairly constant at ∼1.7‰ through the upper scitulus
and lowerwheatleyensis zones (representing ORI 4), until the
hudlestoni zone where they drop to 0.96‰. This second
decrease coincides with the end of ORI 4. d98/95Mo compo-
sitions increase to ∼2.4‰ by the middle of the hudlestoni
zone (the start of ORI 5) and remain at generally higher
values than found during ORIs 3 and 4 (i.e., between 1.80‰
and 2.46‰) throughout the upper hudlestoni and lower
pectinatus zones. There is a progressive decrease in d98/95Mo
from 2.46‰ to 1.58‰ toward the end of ORI 5 (between

the middle pectinatus zone and upper pectinatus zone, the
top of the analyzed section). These variations in d98/95Mo
are thus clearly associated with the long‐term cycles in TOC,
with lower d98/95Mo values occurring during the OPIs and
higher d98/95Mo values during the ORIs (Figure 3).

3.2. Mo and Re Abundances and Re/Mo Ratios

[13] In contrast to d98/95Mo, Mo and Re abundances vary
considerably between the upper autissodorensis and upper
pectinatus zones. Molybdenum concentrations range from
0.9 to 65.1 ppm, while [Re] varies between 5.3 and 157.8 ppb.
High and low concentrations of both elements occur inter-
mittently throughout the succession (Figure 3). Particularly
abrupt fluctuations in [Mo] and [Re] are apparent in the
scitulus, wheatleyensis, hudlestoni, and pectinatus zones and
are associated with changes in facies; higher concentrations
of both metals occur in the more organic‐rich units (i.e.,
the black mudstones and laminated shales), while lower

Table 1. Stratigraphic and Geochemical Information for the Samples Analyzed in This Studya

Sample
Name

Bed

Lithology
Ammonite

Zone

Height (m)

d98/95Mo
(‰)

[Mo]
(ppm)

[Re]
(ppb)

Re/Mo
(ppb/ppm)

TOC
(wt %)

TS
(wt %)

CaCO3

(wt %)
DOPT
(%)Group No.

Above Bed
Base

Above
Datum

Kpe 34 50 12 L S Pe. pectinatus 0.20 154.79 1.58 ± 0.05 3.54 12.55 3.54 3.45 1.79 1.77 37.58
Kpe 27 50 5 M‐G M Pe. pectinatus 1.30 149.63 2.00 ± 0.04 2.85 7.99 2.80 2.02 0.90 8.85 20.01
Kpe 23 50 1 M‐G M Pe. pectinatus 0.70 144.37 2.17 ± 0.03 5.54 16.04 2.89 2.98 1.34 15.28 31.60
Kpe 19 49 9 D‐G S Pe. pectinatus 0.32 140.50 2.16 ± 0.08 37.98 35.06 0.92 4.75 1.51 17.46 28.93
Kpe 13 49 2 M‐G M Pe. pectinatus 1.00 134.84 2.46 ± 0.05 6.94 13.29 1.91 2.31 1.18 16.38 24.23
Kpe 8 47 10 L S Pe. pectinatus 0.32 130.21 2.16 ± 0.04 14.91 27.54 1.85 3.21 1.88 10.83 38.06
Kpe 4 47 1 M‐G M Pe. pectinatus 2.00 125.65 1.80 ± 0.06 3.22 16.51 5.13 4.03 1.23 24.84 32.07
Khu 40 45 25 B Mud Pe. hudlestoni 0.10 120.12 2.04 ± 0.09 52.58 157.84 3.00 40.47 7.75 6.51 227.32
Khu 34 45 13 B Mud Pe. hudlestoni 0.20 116.59 2.33 ± 0.04 23.91 46.16 1.93 7.38 2.06 40.55 46.43
Khu 28 45 6 B Mud Pe. hudlestoni 0.86 112.19 2.45 ± 0.07 25.11 112.64 4.49 9.08 2.14 46.96 59.67
Khu 26 45 1 B Mud Pe. hudlestoni 0.18 109.97 2.27 ± 0.04 44.86 53.01 1.18 8.33 1.03 42.32 34.20
Khu 22 44 5 M‐G M Pe. hudlestoni 0.60 103.68 2.38 ± 0.05 2.04 29.09 14.29 1.60 0.45 32.96 14.89
Khu 21 44 4 L S Pe. hudlestoni 0.13 102.96 1.78 ± 0.05 6.86 38.30 5.58 6.67 0.72 36.05 25.53
Khu 19 44 1 M‐G M Pe. hudlestoni 17.62 100.85 1.68 ± 0.05 2.01 6.22 3.09 2.05 0.51 28.01 16.63
Khu 18 44 1 M‐G M Pe. hudlestoni 11.73 94.96 1.62 ± 0.05 1.50 16.09 10.75 1.47 0.34 25.64 8.14
Khu 16 44 1 M‐G M Pe. hudlestoni 3.00 86.23 0.96 ± 0.05 0.91 6.45 7.10 1.15 0.29 34.34 8.25
Khu 15 43 11 D‐G S Pe. hudlestoni 0.20 83.11 1.67 ± 0.06 2.41 9.13 3.78 3.23 0.44 21.62 12.15
Khu 14 43 9 L S Pe. hudlestoni 0.65 82.46 1.81 ± 0.06 23.90 55.72 2.33 10.47 1.98 1.69 52.10
Khu 12 43 5 L S Pe. hudlestoni 0.57 80.04 1.64 ± 0.10 28.05 113.13 4.03 18.73 2.24 9.07 74.61
Khu 10 42 25 L S Pe. hudlestoni 0.32 76.70 1.76 ± 0.06 30.00 66.13 2.20 13.22 1.90 21.41 58.26
Khu 8 42 20 B Mud Pe. hudlestoni 0.54 73.98 1.71 ± 0.07 23.68 79.87 3.37 21.79 3.22 4.83 78.12
Kwh 28 42 12 B Mud Pe. wheatleyensis 0.38 71.21 1.76 ± 0.11 50.42 69.30 1.37 31.42 4.65 7.00 158.46
Kwh 22 42 7 L S Pe. wheatleyensis 0.10 68.41 1.40 ± 0.14 45.93 82.94 1.81 10.58 2.15 6.03 52.70
Kwh 19 42 4 D‐G S Pe. wheatleyensis 0.10 66.55 1.56 ± 0.17 42.73 68.17 1.60 6.89 3.42 3.91 66.44
Kwh 15 41 22 Lst Pe. wheatleyensis 0.35 63.39 1.73 ± 0.07 6.47 18.03 2.79 3.25 0.77 41.56 14.18
Kwh 12 41 15 L S Pe. wheatleyensis 0.10 59.24 1.22 ± 0.09 58.98 79.09 1.34 8.79 1.25 33.54 36.45
Kwh 9 41 8 L S Pe. wheatleyensis 0.15 56.31 1.36 ± 0.07 10.64 46.05 4.33 6.71 1.22 12.45 37.88
Kwh 5 40 3 M‐G M Pe. wheatleyensis 6.42 51.05 1.10 ± 0.06 7.38 33.53 4.54 3.97 0.43 38.09 17.13
Kwh 4 40 3 M‐G M Pe. wheatleyensis 3.92 48.55 1.77 ± 0.06 1.49 15.69 10.53 2.11 0.40 40.16 12.52
Kwh 3 40 3 M‐G M Pe. wheatleyensis 0.21 44.84 −0.19 ± 0.04 1.37 5.33 3.89 2.16 0.45 34.07 10.53
Ksc 17 39 9 L S Pe. scitulus 0.47 42.49 1.47 ± 0.15 49.60 89.78 1.81 9.74 1.64 19.73 46.81
Ksc 15 39 6 M‐G M Pe. scitulus 0.87 40.46 2.29 ± 0.04 7.97 24.34 3.05 5.14 1.31 15.31 42.91
Ksc 14 39 2 M‐G M Pe. scitulus 0.26 38.43 2.16 ± 0.05 3.48 20.61 5.92 3.28 0.75 15.73 28.46
Ksc 10 38 6 L S Pe. scitulus 0.40 32.97 1.12 ± 0.10 65.11 111.12 1.71 13.81 2.40 16.70 62.35
Ksc 4 37 11 L S Pe. scitulus 0.10 25.32 1.76 ± 0.05 14.64 45.27 3.09 12.88 2.16 4.59 55.01
Kel 19 36 30 L S Pe. elegans 0.34 15.33 1.80 ± 0.04 9.24 37.38 4.05 8.18 1.53 5.32 32.02
Kel 7 36 8 L S Pe. elegans 0.34 4.98 1.89 ± 0.10 7.34 36.13 4.92 7.55 2.09 4.77 54.17
Kau 105 35 49 M‐G M A. autissiodorensis 1.60 −0.85 1.73 ± 0.10 3.21 23.98 7.46 3.20 1.12 2.71 38.08
Kau 101 35 39 M‐G M A. autissiodorensis 0.05 −5.60 1.23 ± 0.14 25.11 48.27 1.92 14.86 2.01 10.94 33.50

aThe lithology of each sample reflects that defined for the corresponding bed number byMorgans‐Bell et al. [2001]. Lst, limestone; M‐GM, medium gray
marl; D‐G S, dark gray shale; L S, laminated shale; B Mud, black mudstone. d98/95Mo, [Mo], and [Re] were measured with a Nu Instruments MC‐ICP‐MS at
Open University, as described by Pearce et al. [2009]. Uncertainties for d98/95Mo reflect the 2 standard error of each measurement; the long‐term d98/95Mo
reproducibility is 0.12‰ (2 SD). TOC, TS, and CaCO3 were obtained using a LECO Instruments CNS‐2000 elemental analyzer.
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concentrations occur in the less organic‐rich lithologies (i.e.,
the medium gray shale and the limestone). The apparent
absence of progressive changes in [Mo] and [Re] in the ana-
lyzed section is likely to reflect the relatively low sample res-
olution across the sharp lithological contacts. Nevertheless,
both [Mo] and [Re] (and consequently Re/Mo ratios) correlate
well with the long‐term TOC cycles, with higher concentra-
tions of both metals found in the three ORIs; the average [Mo]
and [Re] of the ORIs are 25.80 ppm and 58.24 ppb, respec-
tively, while the average [Mo] and [Re] of the OPIs are
4.78 ppm and 16.77 ppb, respectively (Figure 3). Similarly,
Re/Mo ratios are lower during the ORIs (averaging 3.33)
and are higher during the OPIs (averaging 5.19).

3.3. TOC, V/Ni, and DOPT

[14] The TOC contents of samples analyzed in this study
closely match those of the RGGE core record, although the
TOC concentrations in the RGGE data set (Figure 3) are
lower as they are derived from ∼1 mg aliquots of larger
samples collected over 20 cm intervals and have been further
smoothed by taking a 15‐point moving average. By defini-

tion, the three ORIs have the highest TOC contents (varying
between ∼5 and 40.5 wt %), while the intervening OPIs have
lower TOC values that are typically <5 wt %. The highest
measured TOC contents of 31.4 and 40.5 wt % occur in the
Blackstone Band and just below the White Stone Band (Bed
Group 40; Bed 25), respectively. V/Ni ratios (Table 2) and
DOPT have an antiphase relationship that varies strati-
graphically in a manner similar to that of TOC (Figure 3).
Lower V/Ni ratios (<2.5) and higher DOPT values (>25%) are
recorded from the three ORIs, while higher V/Ni ratios (>2.5)
and lower DOPT values (<20%) are associated with the OPIs.
The extremely TOC‐rich Blackstone Band and Bed 40/25 are
also associated with the lowest V/Ni ratios (0.63 and 1.01)
and the highest DOPT values (159% and 227%), respectively.

4. Discussion

4.1. Depositional Environment of the KCF in Dorset

[15] The paleoredox proxies used in this study all indicate
that none of the samples were deposited in an oxic environ-
ment. DOPT is never less than ∼10%, and TOC does not

Table 2. Major and Minor Element Abundance Information Determined Using an ARL 8420+ Dual Goniometer Wavelength Dispersive
XRF Spectrometer

Sample
Name

SiO2

(wt %)
TiO2

(wt %)
Al2O3

(wt %)
Fe2O3

(wt %)
MnO
(wt %)

MgO
(wt %)

Cr
(ppm)

Cu
(ppm)

Ni
(ppm)

Sr
(ppm)

Th
(ppm)

U
(ppm)

V
(ppm)

Zr
(ppm)

V/Ni
(ppm/ppm)

Kpe 34 48.22 0.82 19.09 5.84 0.02 1.22 138.90 32.90 68.30 150.90 14.20 3.80 134.80 150.70 1.97
Kpe 27 43.78 0.71 16.01 5.50 0.02 1.28 125.40 19.70 48.50 153.70 11.40 2.10 131.30 140.50 2.71
Kpe 23 39.97 0.67 14.90 5.22 0.02 1.03 117.70 22.40 47.70 254.90 12.10 4.10 120.30 129.00 2.52
Kpe 19 41.79 0.66 16.69 6.41 0.02 1.49 105.00 23.10 64.40 198.70 11.10 10.30 126.00 118.50 1.96
Kpe 13 15.31 0.27 5.60 5.98 0.03 0.41 125.40 21.20 46.80 207.70 10.90 3.00 128.40 112.60 2.74
Kpe 8 43.46 0.67 18.42 6.09 0.02 1.31 125.80 26.50 59.90 189.60 11.20 4.90 154.80 105.60 2.58
Kpe 4 37.20 0.55 13.75 4.72 0.02 1.18 106.30 25.60 51.50 224.70 10.80 3.80 111.70 98.60 2.17
Khu 40 37.58 0.62 12.93 4.19 0.01 0.85 40.10 60.70 88.70 109.90 4.10 6.20 56.30 51.30 0.63
Khu 34 20.07 0.28 7.75 5.44 0.03 0.76 51.60 37.60 72.40 256.90 3.40 5.90 86.00 49.50 1.19
Khu 28 16.98 0.23 6.39 4.40 0.02 0.61 46.50 42.20 61.60 251.70 3.30 4.90 77.10 42.30 1.25
Khu 26 22.47 0.29 8.16 3.69 0.02 0.84 53.00 40.40 65.90 248.50 5.10 5.10 94.30 51.90 1.43
Khu 22 36.03 0.57 13.86 3.72 0.02 1.78 94.10 19.40 42.10 317.90 9.90 3.30 108.60 95.50 2.58
Khu 21 30.46 0.40 10.93 3.49 0.02 1.06 76.60 39.40 61.60 264.40 7.10 2.50 88.70 68.20 1.44
Khu 19 38.44 0.61 14.36 3.74 0.02 1.59 101.90 22.50 46.80 309.80 11.80 3.00 109.80 102.60 2.35
Khu 18 41.15 0.66 14.70 5.17 0.02 1.91 104.70 17.70 44.50 294.10 11.20 2.40 118.70 119.20 2.67
Khu 16 38.71 0.59 12.42 4.28 0.02 1.95 91.90 17.20 34.30 383.90 8.20 3.30 105.60 120.40 3.08
Khu 15 41.80 0.68 15.58 4.48 0.02 1.69 115.90 21.70 48.40 276.30 11.90 2.50 118.20 123.70 2.44
Khu 14 49.06 0.76 17.11 4.66 0.01 1.06 115.10 42.10 72.70 90.60 13.20 3.90 124.30 136.80 1.71
Khu 12 37.39 0.59 13.21 3.69 0.01 0.82 89.90 40.60 90.60 135.10 9.40 5.40 106.00 110.30 1.17
Khu 10 34.00 0.53 11.47 4.02 0.01 0.73 86.20 34.50 74.70 136.40 9.80 3.70 92.50 103.60 1.24
Khu 8 52.54 0.88 19.84 5.08 0.02 1.25 79.50 31.60 77.70 115.40 10.00 5.50 87.70 123.20 1.13
Kwh 28 26.72 0.46 9.45 3.61 0.01 0.69 48.90 34.60 67.00 111.50 6.30 3.30 67.80 88.70 1.01
Kwh 22 43.94 0.74 16.04 5.01 0.02 1.11 114.40 46.00 78.20 174.90 11.50 5.20 146.50 136.90 1.87
Kwh 19 44.44 0.70 17.50 6.32 0.02 1.11 111.80 51.40 72.70 150.40 10.20 4.20 163.40 126.70 2.25
Kwh 15 34.30 0.50 8.43 6.66 0.04 4.30 72.90 23.60 30.80 199.60 6.00 2.50 80.40 132.30 2.61
Kwh 12 28.49 0.46 10.63 4.20 0.02 0.70 75.10 41.30 78.00 227.90 8.90 7.10 144.50 90.80 1.85
Kwh 9 47.19 0.71 14.43 3.97 0.01 0.94 105.60 40.10 60.10 174.20 10.40 4.70 118.80 155.60 1.98
Kwh 5 31.90 0.46 11.67 3.11 0.02 1.52 76.10 29.00 53.00 376.70 6.70 3.40 104.70 81.70 1.98
Kwh 4 32.94 0.51 11.45 3.97 0.02 2.45 80.90 20.30 41.90 375.90 9.90 2.60 91.60 99.10 2.19
Kwh 3 36.65 0.56 12.33 5.26 0.03 2.22 89.00 17.60 36.70 364.70 10.30 0.20 104.90 116.80 2.86
Ksc 17 35.47 0.61 14.24 4.32 0.01 0.88 90.70 41.90 86.10 212.90 9.30 8.10 177.70 114.20 2.06
Ksc 15 48.87 0.72 12.84 3.76 0.01 0.96 92.10 28.60 47.80 214.90 10.40 3.30 124.60 167.10 2.61
Ksc 14 54.45 0.75 11.47 3.24 0.02 0.99 79.00 21.50 32.40 170.80 10.10 3.50 77.50 210.50 2.39
Ksc 10 32.53 0.55 12.51 4.74 0.01 0.73 88.90 53.50 89.30 174.40 9.10 5.00 134.50 108.40 1.51
Ksc 4 45.42 0.74 16.16 4.83 0.02 0.96 103.60 40.20 73.30 112.40 11.30 4.30 123.70 144.10 1.69
Kel 19 48.13 0.76 17.47 5.88 0.03 0.99 114.50 34.20 83.50 114.90 13.10 2.20 141.60 140.20 1.70
Kel 7 51.19 0.87 18.38 4.73 0.02 0.89 124.20 30.60 57.10 185.20 10.80 3.80 132.40 169.40 2.32
Kau 105 63.45 0.86 14.87 3.63 0.01 0.81 95.20 19.00 46.60 103.80 9.20 3.80 102.30 282.00 2.20
Kau 101 38.18 0.64 13.64 7.38 0.03 1.52 102.40 27.70 60.40 132.50 9.70 5.30 121.30 137.60 2.01
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decrease below 1.15 wt % (Figure 3). The lowest observed
d98/95Mo value of −0.19‰ (sample Kwh 3; Figure 3) is
similar to the mean continental d98/95Mo value of ∼0‰
[Siebert et al., 2003], suggesting that the Mo in this sample is
dominated by the detrital component. This interpretation is
supported by the fact that theMo concentration of this sample
is only 1.4 ppm and that it plots significantly below the
expected d98/95Mo versus 1/[Mo] trendline. The observation
that all other d98/95Mo values are above 0.96‰ implies that
the depositional environment throughout the studied interval
was oxygen deficient and predominantly anoxic or euxinic,
in agreement with previous findings [e.g., Piper and
Calvert, 2009; Tribovillard et al., 2004b].
[16] The inference from the d98/95Mo data that the lime-

stone, medium gray marl, and dark gray shale facies in the
KCF were deposited under mildly reducing conditions is
supported by the DOPT/TOC and TS/TOC relationships
(Figure 4). These relatively organic‐poor samples (TOC
values of 1–7 wt %) define positive linear relationships
that intercept close to the origin for both DOPT/TOC and
TS/TOC, suggesting that that there is little or no syngenetic
pyrite present within these samples (i.e., euxinic conditions
did not extend above the sediment‐water interface at those
times). In particular, the gradient defined by the TS/TOC
values for these samples (0.41; Figure 4b) is the same as that
suggested by Raiswell and Berner [1985] for oxic to suboxic
sedimentary deposits. The relatively organic‐rich samples
(TOC contents typically >7 wt %) from the laminated shale
and black mudstone facies define DOPT/TOC and TS/TOC
relationships that have shallower slopes and positive inter-
cepts on the y axis (Figure 4). This observation implies that
these facies correspond to more strongly reducing (anoxic to
euxinic) conditions in which syngenetic pyrite was able to
form in the water column due to the (perhaps intermittent)
presence of freeH2S. The presence of sulfidized organicmatter
and sygnetic pyrite crystals in the TOC‐rich Kimeridgian
sedimentary deposits of Yorkshire [Tribovillard et al., 2004a]
supports this inference.
[17] Trace metal paleoredox data also suggest that the

intensity of reducing conditions varied locally during the
deposition of the KCF. Changes in the Re/Mo and V/Ni ratios
are inversely correlated with DOPT fluctuations (Figure 3).
These proxies imply that the organic‐rich intervals were
deposited under more strongly reducing conditions than the
organic‐poor intervals. Similar variations are seen in the
relative enrichments of Mo and U (Figure 4d). Lower Mo/U
ratios are recorded in the less organic‐rich sedimentary
deposits (averaging 4.9 in the medium gray shales), while the
most organic‐rich sedimentary deposits have higher Mo/U
ratios, with an average of 23.8 in the black mudstone facies.
Mo/U ratios below that of present‐day seawater (∼7.5–7.9)
[Algeo and Tribovillard, 2009] indicate that deposition
occurred under suboxic conditions, while Mo/U ratios above
seawater suggest enhanced Mo accumulation under sulfidic
conditions. The Mo/U relationship defined by samples from
the KCF (Figure 4d) is similar to that observed in sedimentary
deposits from the Cariaco Basin, for which a particulate
shuttle has been suggested as a means of achieving the
high‐Mo enrichments [Algeo and Tribovillard, 2009]. This

process, which is linked to Mn‐Fe redox cycling, is aided
by variations in water column redox and supports other
evidence showing that the depositional environment of the
KCF varied over time [e.g., Wignall and Meyers, 1988;
Wignall and Newton, 2001]. Local redox conditions during
the accumulation of the KCF in Dorset are consequently
inferred to have varied from suboxic to euxinic and can be
directly related to the TOC content and to sedimentary facies.

4.2. Extent of Marine Anoxia During
the Kimmeridgian

4.2.1. d 98/95Mo, Astronomical Cycles, and Relative Sea
Level Change
[18] Relatively little variation is observed in d98/95Mo

within any one ORI or OPI of the KCF, despite a range of
facies types being analyzed (Figure 3). This finding suggests
that, within the sampling resolution of this study, d98/95Mo
was not significantly affected by the short‐term changes in
local facies type. Longer‐term differences can be seen,
however, between the mean d98/95Mo compositions of the
ORIs. The average d98/95Mo value of sediments deposited in
ORI 5 (2.18‰) is close to that of seawater and is therefore
similar to the Mo isotope composition of sediments deposited
in modern day euxinic environments (e.g., the Black Sea)
[Neubert et al., 2008], whereas the average d98/95Mo values
of sedimentary deposits from ORIs 3 and 4 (1.79‰ and
1.60‰, respectively) are closer to those observed in anoxic
environments (∼1.7‰) [Poulson et al., 2006; Siebert
et al., 2006]. Since the DOPT/TOC and TS/TOC crossplots
indicate that the organic‐rich facies were deposited under
strongly reducing/euxinic conditions (Figure 4) and bio-
marker evidence from the presence of isorenieratane sug-
gests that photic zone euxinia occurred at various intervals
throughout the KCF [Sinninghe Damsté et al., 2001], there
is no reason to suspect that the lower mean d98/95Mo values
of ORIs 3 and 4 reflect deposition under less reducing con-
ditions. Differences in the d98/95Mo values of the three
ORIs covered in this study are therefore thought to reflect
changes in the d98/95Mo composition of global seawater
caused by variations in the areal extent of reducing deposi-
tional conditions.
[19] The d98/95Mo value of seawater depends on the global

proportion of oxic to euxinic/highly reducing sedimentation
[Anbar, 2004;Arnold et al., 2004; Ling et al., 2005], such that
an increase in the areal extent of reducing sedimentation
would decrease d98/95Moseawater and lower d98/95Mo in the
coeval euxinic sediments. On the basis of a two end‐member
model for Mo removal from the oceans (i.e., considering
oxic and euxinic sinks only) [Ling et al., 2005], the mean
seawater d98/95Mo values of 1.79‰ and 1.60‰ during ORIs
3 and 4 suggest a twofold or threefold increase in the pro-
portion of Mo burial in euxinic sediments (with respect to the
present‐day oceans), respectively. In reality, however, some
of the decrease in d98/95Mo during these two ORIs will have
been caused by an increase in the proportion of Mo burial in
suboxic to anoxic (i.e., noneuxinic) reducing sediments on
continental margins [cf.McManus et al., 2006; Siebert et al.,
2006].
[20] A close relationship between the timing of the

ORIs and third‐order relative sea level fluctuations in the
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Kimmeridgian [Coe, 1992; Tribovillard et al., 2004b]
supports the hypothesis that flooding of the continental
margins through the Laurasian Seaway may have aided the
generation of widespread stagnant and reducing depositional
conditions during the ORIs. Sequence stratigraphic frame-
works for the KCF in Dorset indicate that the sequence
boundaries (representing periods of relative sea level fall at

the end of a marine highstand) occur near the top of bed group
35 and at the base of bed groups 40, 44, and 50 [Ahmadi,
1997; Ahmadi and Coe, 1998; Coe, 1992; Taylor et al.,
2001]. Three of these surfaces (K1, K2, and K3) corre-
spond closely with the end of ORIs 3, 4, and 5, respectively
(Figure 3). Similarly, the transgressive surfaces that define
the onset of relative sea level rise occur near the start of the

Figure 4. Relationships between (a) DOPT and TOC, (b) TS and TOC, (c) [Mo] and TOC, and (d) Mo(EF)
and U(EF) for the KCF. The shape of each sample point reflects its lithology (see Figure 3 for key). Different
relationships are defined by the organic‐poor facies (TOC 1–7wt%;medium graymarl and dark gray shale)
and the organic‐rich facies (TOC >7 wt %; laminated shale and black mudstone) in the DOPT versus TOC
and TS versus TOC crossplots (Figures 4a and 4b, respectively). In both instances, the organic‐rich sedi-
mentary deposits have positive intercepts that indicate sygenetic pyrite formation under strongly reducing
(anoxic to euxinic) conditions. Intercepts for the organic‐poor sedimentary deposits are zero to negative,
implying that these deposits contain only diagenetic pyrite formed under less reducing (suboxic to anoxic)
conditions. [Mo]/TOC gradients recorded in the KCF (Figure 4c) are lower than for present‐day anoxic
basins [Algeo and Lyons, 2006] but are not thought to reflect basinal restriction during the Kimmeridgian, as
the organic‐rich facies have Mo/U ratios that are up to 8 times higher than that of seawater (Figure 4d). In
addition, Mo/U ratios of the KCF organic‐rich facies do not decrease below seawater (e.g., to 0.3 times or
0.1 times the present‐day levels indicated by the dashed lines), indicating that the KCF was deposited in a
sulfidic and non‐Mo‐limited environment [see Algeo and Tribovillard, 2009, for more detail]. This infer-
ence is supported by the observation that d98/95Mo decreases as [Mo] increases in the laminated shale facies
(Figure 4c), which is the inverse relationship to that expected during basinal restriction. In conjunction these
trace metal proxies show that the redox conditions varied from suboxic to euxinic during the accumulation
of the KCF and that the basin never became strongly restricted for a significant period of time, if at all.
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three ORIs (at the base of bed groups 36 and 41 and near the
middle of bed group 44), while the highest TOC levels within
each ORI broadly correspond to the inferred maximum
flooding surfaces (Figure 3). These observations suggest that
periods of high relative sea level aided the deposition of
organic‐rich mudrocks and hence the formation of the ORIs.
Conversely, periods of low relative sea level resulted in the
redeposition of sediments from the margins into the basin,
while water depth was insufficient to allow widespread
reducing conditions to develop across the Laurasian Seaway
[Coe, 1992; Piper and Calvert, 2009; Tribovillard et al.,
2004b].
4.2.2. Assessment of Basinal Restriction
[21] In theory, it is possible that changes in sedimentary

d98/95Mo values reflect variations in the degree of restriction
of the depositional basin, as the d98/95Mo composition of
dissolved Mo will decrease relative to that of coeval seawater
if the reservoir becomes dominated by isotopically light
riverine Mo (d98/95Moriverine = ∼0.8‰ [Archer and Vance,
2008]). Such effects will also be associated with a signifi-
cant decrease in the abundance of Mo within the basin, as the
concentration of Mo in the dissolved riverine load is signif-
icantly lower than that of seawater. Variations in [Mo]/TOC
ratios have consequently been proposed as a proxy for the
degree of restriction of a marine basin, and reducing basins
have been shown to display different [Mo]/TOC relationships
according to the extent of Mo drawdown [Algeo and Lyons,
2006; McArthur et al., 2008]. Restricted basins such as the
Black Sea have low [Mo]/TOC gradients of ∼4.5, while
partially restricted basins such as the Cariaco Basin have
higher [Mo]/TOC gradients of ∼25 [Algeo and Lyons, 2006].
The samples analyzed from the KCF in this study typically
have [Mo]/TOC gradients below those of the present‐day
reducing basins, with values ranging from 1.4 to 5.3
(Figure 4c). Other things being equal, this observation
could be consistent with a partial to strong degree of basinal
restriction for the KCF. However, there is no evidence
for limited Mo renewal in the Mo(EF) /U(EF) relationship
(Figure 4d), as unlike samples from the Black Sea [Algeo and
Tribovillard, 2009], the Mo/U ratios of organic‐rich samples
from the KCF do not fall below the composition of seawater.
This finding suggests that basin reservoir effects are not
responsible for the low [Mo]/TOC gradients within the KCF
and that instead the relationship is more likely to be controlled
by the very high organic carbon content of the KCF deposits.
[22] The interpretation that the Wessex Basin was not

restricted during the Kimmeridgian is also supported by
lithological and sequence stratigraphical evidence that
implies that the ORIs were deposited during marine high-
stands [e.g., Tribovillard et al., 2004b]. In addition, the
fact that samples from the organic‐rich laminated shale
facies display a clear decrease in d98/95Mo as [Mo] increases
(Figure 4c) is inconsistent with enhanced scavenging of iso-
topically light riverine Mo from a hypothetically restricted
basin, as the abundance of Mo would be expected to decrease
under such conditions. There is also no evidence for signifi-
cant riverine discharge into the Laurasian Seaway during the
Kimmeridgian, as the region was dominated by low‐lying
landmasses and the climate is thought to have been relatively
arid [Abbink et al., 2001;Wignall and Ruffell, 1990]. Finally,

if basinal restriction was the cause for the lower d98/95Mo
values in ORIs 3 and 4, then ORI 5 should display a similar
if not more extreme trend (i.e., to even lower d98/95Mo)
owing to the fact that it was deposited after the period of
highest relative sea level in the Kimmeridgian [Coe, 1992;
Taylor et al., 2001; Tribovillard et al., 2004b], whereas the
reverse trend is in fact observed. Taken together, these
observations suggest that the long‐term changes in the
d98/95Mo record of the KCF in Dorset reflect variations in
the Mo composition of global seawater.

4.3. Comparison Between the KCF and the Toarcian
OAE

[23] Several comparisons [e.g., Sælen et al., 2000] have
been made between the KCF and the Whitby Mudstone
Formation (WMF) that was deposited in Yorkshire, United
Kingdom, during the Toarcian (Early Jurassic). Part of the
WMF accumulated during the Toarcian oceanic anoxic event
(OAE), during which numerous organic‐rich successions
were deposited simultaneously worldwide [e.g., Al‐Suwaidi
et al., 2010; Cohen et al., 2007; Jenkyns, 1985, 1988, 2003;
Jenkyns et al., 2002]. The enhanced deposition of organic‐
rich sediment during the Toarcian was associated with a
major perturbation to the global carbon cycle, characterized
by a large negative carbon‐isotope excursion that affected
both the terrestrial and marine carbon reservoirs [Hesselbo
et al., 2000, 2007; Kemp et al., 2005; Schouten et al.,
2000]. Variations in d98/95Mo and other trace metal proxies
in the WMF confirm that the global extent of anoxic sedi-
mentation expanded appreciably during theOAE [Archer and
Vance, 2008; Pearce et al., 2008]. Furthermore, redox con-
ditions during the OAE were found to fluctuate at the same
time as astronomically paced variations in d13C [Kemp et al.,
2005], indicating that marine redox conditions at that time
were closely related to climate [Pearce et al., 2008]. On
the basis of these observations, the deposition of TOC‐rich
successions during the Toarcian OAE can be attributed to
the widespread expansion of marine anoxia that was most
likely related to severely perturbed environmental conditions
following the eruption of the Karoo‐Ferrar LIP near the
Pliensbachian‐Toarcian boundary [Cohen et al., 2004, 2007;
Hesselbo et al., 2000; Pálfy and Smith, 2000; Pearce et al.,
2008].
[24] Progressive changes in the areal extent of reducing

deposition during the Toarcian OAE are illustrated by trends
in the relationship between d98/95Mo and 1/[Mo] (Figure 5a).
The onset of reducing depositional conditions is defined by
an increase in d98/95Mo to 1.6‰ and a progressive increase
in [Mo] that results in a well‐defined oxic‐anoxic linear
relationship during the Dactylioceras tenuicostatum ammo-
nite zone (Interval 1). The OAE itself (predominantly the
cleviceras exaratum ammonite subzone; Interval 2) is char-
acterized by a deviation away from this relationship, with
d98/95Mo decreasing as [Mo] increases. Because the local
depositional environment remained euxinic [Raiswell and
Berner, 1985] under conditions of rising sea level through-
out the OAE, the decreases inferred for d98/95Moseawater at
that time must have been caused by an expansion in the areal
extent of marine anoxia [Pearce et al., 2008]. This interval
is also associated with a very low [Mo] (<10 ppm) for such
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organic‐rich sedimentary deposits, which is an expected
consequence of globally enhanced drawdown of the marine
Mo inventory during the OAE [e.g., Algeo, 2004]. The end
of widespread anoxia in the Toarcian is defined by an
increase in d98/95Mo and [Mo] during the falciferum and
commune subzones (Intervals 3 and 4; Figure 5a), which
reflect an increase in oxic Mo burial and the replenishment
of the global oceanic Mo reservoir, respectively.
[25] In comparing the relationships between d98/95Mo and

1/[Mo] in the WMF and the KCF, it should be remembered
that the KCF section investigated in this study spans a much
longer time interval than the WMF and also that sam-
ples from several different mudrock facies from the KCF have
been analyzed. Samples from the medium gray marl in the
KCF suggest a suboxic‐euxinic relationship similar to that
observed in the WMF (Figure 5b), although this relationship
is not as well defined in the KCF as none of the samples
analyzed represent fully oxic conditions. The d98/95Mo values
of the more organic‐rich sedimentary deposits in the KCF
generally fall below this oxic‐euxinic trend and display a
large variation in d98/95Mo (between 1.12‰ and 2.45‰) at
high [Mo]. Most of the variation in d98/95Mo comes from
sediments deposited during the three ORIs; comparison
between the d98/95Mo versus 1/[Mo] relationships for the
ORIs and OPIs (Figure 5c) demonstrates that during each
ORI d98/95Mo decreased while [Mo] increased. The decrease
in d98/95Mo is particularly apparent in ORIs 3 and 4 and
supports the suggestion that these periods were associated
with a global expansion in the areal extent of reducing
deposition. However, sedimentary deposits from the KCF are
not associated with particularly low [Mo] (i.e., high 1/[Mo]),
suggesting that the reduction in the marine Mo inventory
during the ORIs was not as substantial as it was during the
Toarcian OAE. This observation, in conjunction with the fact
that d98/95Mo decreases to only 1.12‰ (unlike 0.8‰ in the
WMF), implies that the extent of highly reducing conditions
during the deposition of the KCF was not as extensive
as during the Toarcian OAE. Indeed, the decrease in d98/95Mo
during the ORIsmay to some extent reflect the replacement of
oxic sites of deposition with those where suboxic conditions
prevailed, which would have diminished the dominant sink of
isotopically light Mo in the oceans without significantly
affecting the total amount of Mo in the oceans. The clear
relationship between d98/95Mo and 1/[Mo] for the KCF

(Figure 5c) suggests that changes in marine redox occurred
on a global scale during the Kimmeridgian and that these
changes were directly related to the formation of the ORIs.

5. Conclusions

[26] This study provides the first Mo isotope data for the
Kimmeridge Clay Formation (KCF), from its type section
in Dorset, United Kingdom. Measured d98/95Mo values, in
conjunction with other trace metal paleoredox proxies (Mo
and Re abundances, Re/Mo, Mo/U, Vi/Ni ratios and DOPT)
indicate that local depositional conditions of the KCF in
Dorset between the autissodorensis and pectinatus zoneswere
never fully oxic but varied from mildly reducing (suboxic) to
strongly reducing (euxinic) and that changes in redox occurred
on both short and long time scales. Interbed variations in trace
metal abundances are directly linked to the TOC content and
facies type of the sample, suggesting that the short‐term
changes in redox were governed by orbitally controlled
climate changes that occurred cyclically during the accu-
mulation of the KCF. Long‐term variations in trace metal
abundances and d98/95Mo are associated with the formation of
organic‐rich intervals (ORIs) in the KCF that can be related
to third‐order (∼700 ka) fluctuations in relative sea level.
[27] Differences in the mean d98/95Mo value of the three

ORIs examined in this study are best interpreted as reflecting
changes in the d98/95Mo composition of seawater caused by
variations in the global extent of reducing depositional con-
ditions. Flooding of continental margins during periods of
marine highstand associated with the ORIs are interpreted
to have promoted the expansion of reducing conditions. This
hypothesis is supported by sequence stratigraphic frame-
works for the KCF in Dorset, which indicate that trans-
gressive surfaces occur near the start of the three ORIs while
the sequence boundaries correspond closely with the end of
ORIs. Conditions during the deposition of the intervening
organic‐poor intervals (OPIs) were less reducing, the OPIs
having a higher detrital content as a consequence of relative
sea levels being lower.
[28] Comparison between Mo isotope data from the KCF

and the Toarcian Whitby Mudstone Formation (WMF)
demonstrates that variations in d98/95Mo and 1/[Mo] can
be used in conjunction with other data to define the redox
state(s) of palaeodepositional environments, as well as to

Figure 5. Comparison of the d98/95Mo and 1/[Mo] relationships in (a) theWhitbyMudstone Formation (WMF) and (b and c)
the Kimmeridge Clay Formation (KCF). Note that the 1/[Mo] scale is expanded below 0.3 ppm−1 and that the position of the
“anoxic‐euxinic” boundary at 0.3 ppm−1 is arbitrary. The d98/95Mo compositions of the oceanic sources (detrital and riverine
from Siebert et al. [2003] and Archer and Vance [2008], respectively) and sinks (oxic, anoxic and euxinic from Poulson et al.
[2006]) are shown for reference. All data for the WMF are from Pearce et al. [2008]: Intervals 1–4 in theWMF reflect periods
of deposition before, during, and after the Toarcian OAE. Decreases in d98/95Mo combined with relatively low [Mo] during
Interval 2 reflect the widespread expansion of anoxic deposition during the Toarcian OAE [Pearce et al., 2008]. Data for the
KCF are from this study and are shown according to lithology (Figure 5b) and whether they occur during an organic‐poor
interval (OPI) or organic‐rich interval (ORI) (Figure 5c). Samples from the medium gray marl facies are generally close to the
inferred oxic‐euxinic trendline, with the exception of sample Kwh 3 that falls below this trend due to the predominance of the
detrital Mo contribution. No notable trends are observed in other facies types, although samples deposited during ORIs 3 and
4 display decreases in d98/95Mo and increases in [Mo], as highlighted by the dashed lines (short dash, ORI 3; long dash,
ORI 4). These trends in ORIs 3 and 4 are consistent with an expansion in the areal extent of reducing sedimentation
during these intervals of high relative sea level.
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estimate the areal extent of reducing sedimentation globally.
Our observations also suggest that the Mo isotope system in
Jurassic seawater responded to changes in redox conditions
in a manner that is consistent with its behavior in present‐
day sedimentary environments. Similar patterns of change
in d98/95Mo can therefore be anticipated for other episodes
during which enhanced accumulation of marine organic
matter occurred.
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