
Chapter 5

Case Study - Production Cell

5.1 Introduction

In this chapter, we present a real life control system case-study modelled in Event-

B, to be used as an example for our formal featured-oriented reuse framework. We

discuss how we can decompose and compose Event-B models in different ways and at

different abstraction levels to explore product line reuse approach in Event-B. The case-

study has been useful in exploring reusability, defining the notion of features for feature-

based modelling in Event-B and to figure out the tooling requirements for product line

modelling using Rodin.

5.2 Production Cell

The production cell (PC) [100] is an industrial metal processing plant which falls under

the category of critical systems. This is an example of a reactive system which has been

modelled in more than 30 formalisms [108, 110, 70, 101, 133], including the B formal

method which is a predecessor of the Event-B language [121]. The production cell has

also been specified at an abstract level using the RAISE [107] formal method and a

stepwise refinement approach has been used to generate the implementation. This was

supported by proofs to verify the safety properties of the system [98]. The production

cell has various components which must be controlled in real time while maintaining

safety properties to avoid any loss to human beings and damage to the equipment.

The production cell processes metal blanks which are routed to a press for forging, then

routed away from it after processing. Figure 5.1 shows top view of the production cell

plant. Metal blanks enter into the system through the feed belt and are dropped on

to the elevating-rotary table when the table is empty and in the loading position. The

table has two positions. The first position is for receiving blanks from the feed belt when

65

66 Chapter 5 Case Study - Production Cell
co

ncu
rre

ncy
patterns

N
ovem

ber2002

m
h@

inform
atik.tu-cottbus.de

5
/29

C
A

S
E

S
T

U
D

IE
S:

A
C

A
D

E
M

IC:

❑
low

-levelm
utex

algorithm
s

❑
D

ijkstra’s
philosophers

❑
M

ilner’s
schedulers

❑
solitaire

❑
...

M
O

R
E

R
E

A
L

IS
T

IC

❑
production

cell,K
arlsruhe

❑
production

cell,C
ottbus

❑
concurrentpushers

❑
2-hand

sw
itch

❑
plc

press
controller

❑
...

co
ncu

rre
ncy

patterns
N

ovem
ber2002

m
h@

inform
atik.tu-cottbus.de

6
/29

feed belt

deposit belt

elevating rotary table

robot

arm 1

arm 2

press

travelling crane

PRODUCTION CELL:
34 commands

Figure 5.1: Top view of production cell plant [100]

the table is neither elevated nor rotated. The table, once loaded, elevates and rotates

to the second position so that the first robot arm can pick up blanks as the robot arms

cannot move vertically. The robot rotates around its own axis. It has two arms which

can extend and retract horizontally and independently of each other. The first arm

picks a blank from the table and drops it on the press. The press has three positions

as the robot arms are at different planes to avoid collision. The first robot arm drops

the blank when the press is in the middle position. The press forges the blank at the

high position and moves to the lower position from where the blank is picked up by the

second robot arm. The blank is then dropped onto the deposit belt. There is a flaw

in the description of the production cell presented in [100] which does not define the

mechanism for finding out the blanks that are not properly forged and fed back into the

system for reprocessing. In reality, forged blanks should leave the system after being

transported on to the deposit belt. So, we assume that the forged blanks on the deposit

belt are removed from the system by some external mechanism, which is not included

in our modelling, and the ones that are not forged properly travel towards the end of

the deposit belt. A moving crane then picks these unforged blanks from the deposit belt

and brings them back to the feed belt for reprocessing. This completes one cycle of the

production cell. There are 13 actuators and 14 sensors for controlling and monitoring

various components of the plant. The detailed description of the production cell and

various requirements are narrated by [100]. The requirements specification subset we

used for modelling the production cell is given in Appendix A.

Chapter 5 Case Study - Production Cell 67

5.3 Roadmap

We discuss Event-B development of the production cell in three different ways. We start

with the physical component-based modelling of PC in Section 5.4, where we model

and refine PC system as integral model and then decompose it into various physical

components of the plant. We use both types of Event-B decomposition techniques,

i.e., shared-variable decomposition (SVD) and shared-event decomposition (SED); and

discuss the workload of modelling the system to be decomposed later using the two styles.

We then discuss controller-based (functional) modelling of PC in Section 5.5, where

we generalise PC requirements to model generic controllers of the plant or functional

features that could then be specialised for modelling various components of the PC. This

approach shows more reuse opportunity compared to the components-based PC. We

then discuss domain-specific modelling approach based on static variability in Section

5.6, where we can model variants of PC by switching the contexts. This allowed us

to use different methods of modelling the same system in Event-B and analysing our

approach to feature-based modelling using existing tools and techniques in Event-B.

This also enabled us to explore the amount of reuse that can be achieved using different

modelling styles.

Refinement is a process of introducing more details in each step from abstract specifi-

cation to the concrete one which is closer to implementation. By using refinement, we

can model a system in multiple steps and deal with small number of requirements in

each step rather than modelling the entire system in a single model. This becomes very

difficult to manage and prove when modelling everything in a single refinement step.

Hence, step-wise refinement is the approach we have used to model the production cell

system.

5.4 PC Component-based

5.4.1 Development Structure

In the physical component-based modelling approach, we started with an abstract model

of the production cell and refined it in a number of steps. The first four levels are

horizontal refinements where we introduced further requirements in each refinement step

and the later ones are the vertical refinements after we have decomposed the integral

model into various physical components using SVD.

We have also modelled the PC in a way that we could decompose it using SED. This

required us to prepare the model so that there are no shared variables and different

68 Chapter 5 Case Study - Production Cell

Figure 5.2: Component-based PC modelling

components communicate via shared-events. This means that we had to perform ver-

tical refinements earlier on, unlike the development which used SVD where we only do

horizontal refinement before the decomposition.

Each of these components can then be refined separately while maintaing the constraints

of the decomposition technique. We only refined one component (i.e., Press, resulting

from SVD of PC) further as the other components can be refined in the similar manner.

During the vertical refinements, actuators and sensors were introduced to model the pro-

duction cell closer to implementation. Figure 5.2 shows Event-B refinement architecture

for component-based PC modelling and the detail of each refinement step is discussed

below.

5.4.2 PC Abstract Model (PC 0)

The basic model for the production cell without much detail is specified in the abstract

model. Here we specify the whole production cell cycle described above in one event

Operate which models the processing of blanks from forged to unforged state through

the variable blanks. The Event-B model is shown in Figure 5.3 where PC CO is the

abstract context (Figure 5.3(a)) seen by the machine (Figure 5.3(b)). The machine has

a variable blanks and an invariant describing the variable type, i.e., every blank must

have a status. All the blanks are initialised to unforged state in the Initialisation

event and the blanks are forged in the Operate event. The abstract context contains

Chapter 5 Case Study - Production Cell 69

An Event-B Specification of PC COO Page 1 of ??

CONTEXT PC CO

SETS

BLANKS

STATUS

CONSTANTS

forged

unforged

unfBlanks

AXIOMS

axm1 : partition(STATUS , {forged}, {unforged})
axm2 : unfBlanks ∈ BLANKS → STATUS

axm3 : unfBlanks = BLANKS × {unforged}
END

(a) Context

An Event-B Specification of PC 0
Creation Date: 3 Apr 2012 @ 08:58:29 PM

MACHINE PC 0

SEES PC CO

VARIABLES

blanks

INVARIANTS

inv1 : blanks ∈ BLANKS → STATUS

EVENTS

Initialisation

begin
act1 : blanks := unfBlanks

end

Event Operate =̂

any
b

where
grd1 : b ∈ dom(blanks)
grd2 : blanks(b) 6= forged

then
act1 : blanks(b) := forged

end

END

(b) Machine

Figure 5.3: PC abstract model

the sets BLANKS and STATUS. The set STATUS has two elements defined as constants,

i.e., forged and unforged. The constant unfBlanks sets the status of all the blanks to

unforged as used in the Initialisation event of the machine.

Here we model requirement 1 of the PC requirement specification given in Ap-

pendix A.

5.4.3 PC First Refinement (PC 1)

In the first refinement, we look a bit further and introduce system components such as

feed belt, robot arms, press, deposit belt, crane and introduce position for each blank. So

at any time, we know where a particular blank is positioned and its status, i.e., forged

or unforged. A part of the Event-B model after first refinement is given in Figure 5.4.

The machine on the right refines PC 0 and sees the context PC CO1 shown on the left

which extends the context PC CO of Figure 5.3(a). The context PC CO1 defines an

enumerated set POS which contains the positions (axm1) that blanks can have during

the entire cycle of the production cell system. The machine contains a variable for

the position which is a partial function from BLANKS to POS (inv1), so a blank can be

positioned at any one component of the system at at any time. The invariant inv2

specifies that the blanks on the feed belt, table, arm1 and crane should be unforged

and those on arm2 must be forged as stated in the invariant inv3. The deposit belt

70 Chapter 5 Case Study - Production Cell

An Event-B Specification of PC CO1
Creation Date: 3 Apr 2012 @ 08:58:29 PM

CONTEXT PC CO1

EXTENDS PC CO

SETS

POS

CONSTANTS

fb

tbl

arm1

arm2

pr

db

cr

AXIOMS

axm1 : partition(POS , {fb}, {tbl},
{arm1}, {arm2}, {pr}, {db}, {cr})

END

(a) Extended context

An Event-B Specification of PC 1
Creation Date: 10 Apr 2012 @ 06:16:00 PM

MACHINE PC 1
added all parts of the plant how the bkanks are transported through each of these

REFINES PC 0

SEES PC CO1

VARIABLES

position

blanks

INVARIANTS

inv1 : position ∈ BLANKS 7→ POS

inv2 : ∀x ·x ∈ dom(position B {fb, tbl , arm1 , arm1 , cr})⇒
blanks(x) = unforged

inv3 : ∀x ·x ∈ dom(position B {arm2})⇒ blanks(x) = forged

EVENTS

Initialisation

begin
act1 : position := ∅
act2 : blanks := unfBlanks

end

Event opPress =̂

refines Operate

any
b

where
grd2 : b ∈ dom(position)
grd3 : position(b) = pr
grd4 : blanks(b) 6= forged

then
act1 : blanks(b) := forged

end

END

(b) PC 1 Refined partial machine

Figure 5.4: Partial model of PC first refinement

receives forged blanks from arm2 which are removed from the system where as the status

of improperly forged blanks is changed to unforged through some external mechanism

as stated in problem description earlier. Several new events were introduced for adding

blanks to the feed belt (loadFeedBelt), loading the table (loadTable), dropping blanks

on the press (loadPress), loading the robot arms (loadArm1, loadArm2), dropping

blanks on the deposit belt (loadDepositBelt), removing forged blanks from the system

(removeBlanks) and changing status of improperly forged blanks present on the deposit

belt to unforged (unforgeBlanks). The abstract event Operate is refined by opPress

event which actually processes the blanks. Below is the loadFeedBelt event for adding

blanks into the system for processing. The guard grd3 means adding a new blank which

is not already in the plant or a blank already in the plant coming from the crane that

was not forged properly.

Event loadFeedBelt =̂

any

b

where

grd1 : b ∈ BLANKS

grd2 : blanks(b) 6= forged

grd3 : b /∈ dom(position)∨position(b) = cr

then

act1 : position := position C− {b 7→ fb}
end

Chapter 5 Case Study - Production Cell 71

PC_0

PC_1

Operate

loadArm2

loadDepositBelt

LoadCrane

opPress

loadFeedBelt

loadTable

loadArm1

loadPress

unforgeBlanks

removeBlanks

Figure 5.5: Atomicity refinement of PC 0 event in PC 1

Figure 5.5 shows the atomicity refinement of Operate event in this level of refinement.

The dotted lines show new events introduced in the refinement whereas the solid line

shows refined event. The order in which events can take place is read from left to right,

as provided in the notation for atomicity decomposition diagram [50].

This refinement models requirements 2, 6, 13, 21, 28 and 35 of the PC requirement

specification.

5.4.4 PC Second Refinement (PC 2)

In the second refinement, we further refined the operations taking place at different

components of the production cell and introduced positions/states for components such

as the table, robot and press. The context at this level of refinement defines the enumer-

ated sets; PRESSPOS for press positions (i.e., low, mid, high) and RBTPOS for three robot

positions (i.e., pos1, pos2, pos3). Following are some of the invariants at this refinement

level:

inv5 : tblElevated = FALSE ⇒ tblRotated = FALSE

inv6 : tblRotated = TRUE ⇒ tblElevated = TRUE

inv7 : position B− {fb, db} ∈ BLANKS 7� POS

The invariants (inv5 and inv6) control the correct positions of the table at any time

which should only allow two of the possible four positions as described earlier. The

invariant ‘Inv7’ makes sure that the components other than feed belt and deposit belt

should not have more than one blank on them. The operations defined in the first

refinement are refined further to include more details, e.g., the event loadTable of PC 1

is refined by the events loadTable, moveTableUp, moveTableDown, rotateTableFwd

72 Chapter 5 Case Study - Production Cell

Event of PC_1

Events of PC_2

loadTable

loadTable

moveTableUp

rotateTableFwd

rotateTableBwd

moveTableDown

Figure 5.6: Atomicity refinement of loadTable event in PC 2

and rotateTableBwd to complete the functionality of the table as shown in Figure 5.6.

Below is the loadFeedBelt event at this refinement level. The guard grd5 ensures that

a blank is only added to the feed belt if it has not already reached its capacity.

Event loadFeedBelt =̂

refines loadFeedBelt

any

b

where

grd1 : b ∈ BLANKS

grd2 : blanks(b) 6= forged

grd3 : b /∈ dom(position)∨position(b) = cr

grd4 : finite(dom(position B {fb}))
grd5 : card(dom(position B {fb})) < fbMax

then

act1 : position := position C− {b 7→ fb}
end

This refinement models requirements 5, 7, 8, 9, 10, 11, 16, 22, 23, 24, 25, 26, 27, 29

and 33 of PC requirement specification.

5.4.5 PC Third Refinement (PC 3)

In third refinement, we introduced control functionality of the robot arms and move-

ment of the belts for the blanks to be delivered to the next stage. We introduced

sets ARMSTATUS for recording the status of robot arms (i.e., extended, retracted) and

BELTSTATUS to record whether a belt is running or stopped. Figure 5.7 shows some

invariants for the machine at this refinement level. We also introduced some safety re-

quirements for the components here. For example, safety requirements for the movement

of robot arms to avoid collision include:

Chapter 5 Case Study - Production Cell 73

An Event-B Specification of PC 3
Creation Date: 4 Apr 2012 @ 11:18:32 PM

MACHINE PC 3
added robot arms movement, tracking the blanks reaching end of the belts using sensors, and
added motors to handle movement of the belts

REFINES PC 2

SEES PC CO3

VARIABLES

position

blanks

tblElevated

tblRotated

blankOnFbEnd

blankOnDbEnd

pressPos

robotPos

arm1State

arm2State

fbStatus

dbStatus

INVARIANTS

inv5 : arm1State = extended ⇒ (robotPos = pos1 ∨ robotPos = pos3)

inv6 : arm2State = extended ⇒ (robotPos = pos2 ∨ robotPos = pos3)

inv9 : fbStatus = running⇒((blankOnFbEnd = FALSE)∨(tblElevated = FALSE∧tblRotated =
FALSE ∧ tbl /∈ ran(position)))

inv10 : dbStatus = running⇒((blankOnDbEnd = FALSE)∧(card(dom(positionB{db})) > 0))

EVENTS

Initialisation

begin
act4 : position := ∅

position := initPosition
act6 : blanks := unfBlanks
act1 : tblElevated := FALSE
act2 : tblRotated := FALSE
act3 : blankOnFbEnd := FALSE
act5 : blankOnDbEnd := FALSE
act7 : pressPos := low
act8 : robotPos := pos1
act9 : arm1State := extended
act10 : arm2State := retracted
act11 : fbStatus := stopped
act12 : dbStatus := stopped

end

Event loadFeedBelt =̂

refines loadFeedBelt

any
b

where
grd1 : b ∈ BLANKS
grd2 : blanks(b) 6= forged
grd5 : b /∈ dom(position) ∨ position(b) = cr
grd6 : finite(dom(position B {fb}))

Figure 5.7: Invariants of PC 3 for safety requirements of production cell

• Arm1 must not extend at all when the robot is in position 2 (inv5).

• Similarly, Arm2 must not be extended at all when the robot is in position 1 (inv6).

The invariant ‘inv9’ specifies that the feed belt should only move to make a blank

available at its end or if it already has a blank and the table is in a position to receive

the blank. The invariant ‘inv10’ ensures that the deposit belt should only move to make

a blank available at its end to be picked up by the crane.

The moveFeedBelt event is shown below which moves the belt if it has a blank on it

(grd2). It only moves the belt if there is no blank at the end of the belt to be dropped

on to the table or if the table is vacant and in a position to receive a blank (grd2). By

moving the feed belt, it makes a blank available on its end to be delivered to the next

component.

Event moveFeedBelt =̂

when

grd1 : finite(dom(position B {fb}))
grd2 : card(dom(position B {fb})) > 0

grd3 : fbStatus = stopped

grd4 : blankOnFbEnd = FALSE ∨ (tblElevated = FALSE ∧
tblRotated = FALSE ∧ tbl /∈ ran(position))

then

act1 : fbStatus := running

end

The loadCrane event below allows the crane to pick a blank from the deposit belt and

also serves as unloading of the belt.

74 Chapter 5 Case Study - Production Cell

Event loadCrane =̂

refines loadCrane

any

b

where

grd1 : b ∈ BLANKS

grd2 : b ∈ dom(position)

grd3 : position(b) = db

grd4 : blanks(b) 6= forged

grd5 : cr /∈ ran(position)

grd6 : blankOnDbEnd = TRUE

then

act1 : position(b) := cr

act2 : blankOnDbEnd := FALSE

end

This refinement models requirements 4, 14, 19, 20, 31 and 32 of the PC requirement

specification.

5.4.6 PC Fourth Refinement (PC 4)

This is a small refinement step where we introduced further requirements for the travel-

ling crane which includes controlling its movement between the two belts and loading/un-

loading functionality for blanks. A variable cranePos is introduced for the position of

crane which can be either at the deposit belt of or at the feed belt. Event loadFeedBelt

of PC 3 was refined by two events (as shown in Figure 5.8), i.e., loadFeedBelt and

unloadCrane , for loading new blanks or improperly forged blanks for reprocessing by

the crane. The guard grd4 of loadFeedBelt event at the top is split into guard grd4 in

both the events at the bottom. New events added in this refinement were moveCraneToFb

and moveCraneToDb as shown below:

Event moveCraneToFb =̂

when

grd1 : cranePos = crposdb

//crane is at deposit belt

grd2 : cr ∈ ran(position)

//crane has a blank on it

then

act1 : cranePos := crposfb

end

Event moveCraneToDb =̂

when

grd1 : cranePos = crposfb

//crane is at feed belt

grd2 : cr /∈ ran(position)

//crane is vacant

then

act1 : cranePos := crposdb

end

This refinement models requirements 36, 38, 39, 40 and 41 of the PC requirement

specification.

Chapter 5 Case Study - Production Cell 751

Event loadFeedBelt =̂

refines loadFeedBelt

//Event of PC 3

any

b

where

grd1 : b ∈ BLANKS

grd2 : b ∈ dom(blanks)

grd3 : blanks(b) 6= forged

grd4 : b /∈ dom(position)∨position(b) = cr

grd5 : card(dom(position B {fb})) < fbMax

then

act1 : position := position C− {b 7→ fb}
end

Event loadFeedBelt =̂

refines loadFeedBelt

//Event of PC 4

any

b

where

grd1 : b ∈ BLANKS

grd2 : b ∈ dom(blanks)

grd3 : blanks(b) 6= forged

grd4 : b /∈ dom(position)

grd5 : card(dom(position B {fb})) < fbMax

then

act1 : position := position C− {b 7→ fb}
end

Event unloadCrane =̂

refines loadFeedBelt

//Event of PC 4

any

b

where

grd1 : b ∈ BLANKS

grd2 : b ∈ dom(blanks)

grd3 : blanks(b) 6= forged

grd4 : position(b) = cr

grd5 : card(dom(position B {fb})) < fbMax

grd6 : cranePos = crposfb

then

act1 : position := position C− {b 7→ fb}
end

Figure 5.8: Refinement of event loadFeedBelt in PC 4

There are various other requirements for efficiency and flexibility which we have not

modelled due to time limitations and can be introduced in further refinement steps, as

discussed by [100].

5.4.7 Decomposition

After four horizontal refinements where most of the PC requirements were modelled, we

then wanted to introduce actuators and sensors for different components of the PC and

perform vertical refinement. The functionality of sensors and actuators is independent

for each of the components. Also, the model became quite big which was difficult to

understand and refine further as a whole. So, we decomposed the model into various

physical components (sub-models) of the PC (i.e., feed belt, table, robot, press, deposit

belt and crane). Following is the detail for applying both styles of Event-B decomposition

to the component-based production cell development.

76 Chapter 5 Case Study - Production Cell

An Event-B Specification of robot Page 1 of 1

Event loadTable =̂

any
b

where
grd1 : b ∈ BLANKS
grd2 : finite(dom((position C− {b 7→ tbl}) B {tbl}))
grd3 : tbl /∈ ran(position)
grd4 : blanks(b) 6= forged
grd5 : b ∈ dom(position)
grd6 : position(b) = fb
grd7 : tblElevated = FALSE
grd8 : tblRotated = FALSE
grd9 : blankOnFbEnd = TRUE
grd10 : fbStatus = running

then
act1 : position(b) := tbl
act2 : blankOnFbEnd := FALSE

end

(a) LoadTable Event of Table

Event loadTable =̂
//External event, DO NOT REFINE

any
b
tblElevated
tblRotated
blankOnFbEnd
fbStatus

where
typing tblElevated : tblElevated ∈ BOOL
typing tblRotated : tblRotated ∈ BOOL
typing blankOnFbEnd : blankOnFbEnd ∈ BOOL
typing fbStatus : fbStatus ∈ BELTSTATUS
grd1 : b ∈ BLANKS
grd2 : finite(dom((position C− {b 7→ tbl})B {tbl}))
grd3 : tbl /∈ ran(position)
grd4 : blanks(b) 6= forged
grd5 : b ∈ dom(position)
grd6 : position(b) = fb
grd7 : tblElevated = FALSE
grd8 : tblRotated = FALSE
grd9 : blankOnFbEnd = TRUE
grd10 : fbStatus = running

then
act1 : position(b) := tbl

end

(b) LoadTable event of Press

Figure 5.9: LoadTable as internal and external event in Table and Press com-
ponents respectively after SVD

Table 5.1: Event distribution among components of PC based on SVD

Event Type
Feed
Belt

Table Robot Press
Deposit

Belt
Crane

Internal Events 3 5 9 5 3 4

External Events 13 11 14 10 10 7

5.4.7.1 Shared-Variable Decomposition (SVD)

At first, we used shared-variable decomposition (SVD) since different components were

sharing variables. For example, all components shared the variable blanks, which mod-

els the status of blanks at any component. The variables tblRotated and tblElevated

are shared among feed belt, table and robot components and appear as event parame-

ters in the other components rather than as shared-variables. Same is the case with the

variable pressPos which is shared between press and robot components. During the

decomposition, events related to a particular physical component became events of that

sub-model and any events of the sub-model involving the shared-variable became exter-

nal events in all other components. For instance, event loadTable moved to the table

sub-model, became an external event in all the sub-models for other physical compo-

nents of PC. Figure 5.9 shows loadTable as an internal and external event in the table

and press components respectively. Table 5.1 shows the distribution of internal/external

events among various components of PC after SVD.

Chapter 5 Case Study - Production Cell 77

Table 5.2: Number of local and shared events of PC components based on SED

Event Type
Feed
Belt

Table Robot Press
Deposit

Belt
Crane

Local Events 0 4 7 4 3 2

Shared Events 4 4 4 4 2 2

5.4.7.2 Shared-Event Decomposition (SED)

In order to explore whether we can use shared-event decomposition (SED) to decompose

the integral model into sub-models, we had to prepare the model to be decomposed

using the SED style, right from the abstract model. For this, we had to partition

(localise) any variables that are shared between different components, so that there

is no more shared variables. For example, the shared variable position in PC 4 (i.e.,

position ∈ BLANKS 7→POS), which maintains the position of a blank on a component

within the plant, would be partitioned for each component. So, each component knows

the blank(s) present on it, e.g., variable blanksOnFb (i.e., blanksOnFb ∈ P(BLANKS))

models the blanks present on the feed belt and so on for the rest of the plant components.

During the decomposition, we partitioned the variables into various sub-models along

with their related events. Figure 5.10 shows how an event loadTable is split into

two events for the feed belt and table components. We simply split the guards and

actions into two. If a guard or action of an event is complex and can not be split then

it must be simplified during the preparatory step to be split into two. For example,

Figure 5.11 shows the event moveFeedBelt prepared in a refinement step to be split,

as the guard grd3 of the event on the left could not be partitioned. So, we had to

introduce extra parameters (t1, t2, t3) and guards (grd3, grd4, grd5) to simplify

this guard. Hence, the guard grd3 of event on the left is simplified by guard grd6 on the

right. The decomposition of this event is shown in Figure 5.12 for feed belt and table

components. Note that we had to do vertical refinement in order for us to perform SED

unlike SVD where we only carried out horizontal refinements before the decomposition.

So, it depends on the type of system being modelled and for distributed systems, the

SED approach seems more appropriate.

Table 5.2 shows the local and shared events of various components of PC after SED.

Table 5.3 shows the distribution of internal/external events among various components

of PC if we had performed SVD instead of SED. In this case, there are no globally

shared variables and the variables are only shared between connecting components, e.g.,

the table component shares variables with the feed belt and robot as it interacts with the

two in order to receive and deliver blanks.

78 Chapter 5 Case Study - Production Cell

Table 5.3: Events distribution of PC components when performed SVD on a
model prepared for SED

Event Type
Feed
Belt

Table Robot Press
Deposit

Belt
Crane

Internal Events 3 5 9 5 4 3

External Events 9 4 11 5 2 3

1

Event loadTable =̂

//Event before decompsoition

any

b

where

grd1 : blankOnTbl = ∅
grd2 : b ∈ blanksOnFb

grd3 : tblElevated = FALSE

grd4 : tblRotated = FALSE

grd5 : blankOnFbEnd = TRUE

grd6 : fbStatus = running

then

act1 : blankOnTbl := blankOnTbl ∪ {b}
act2 : blanksOnFb := blanksOnFb \ {b}
act3 : blankOnFbEnd := FALSE

end

Event loadTable =̂

//Event of Feed Belt Component

any

b

where

typing b : b ∈ BLANKS

grd2 : b ∈ blanksOnFb

grd5 : blankOnFbEnd = TRUE

grd6 : fbStatus = running

then

act2 : blanksOnFb := blanksOnFb \ {b}
act3 : blankOnFbEnd := FALSE

end

Event loadTable =̂

//Event of Table Component

any

b

where

typing b : b ∈ BLANKS

grd1 : blankOnTbl = ∅
grd3 : tblElevated = FALSE

grd4 : tblRotated = FALSE

then

act1 : blankOnTbl := blankOnTbl

∪ {b}
end

Figure 5.10: Event splitting example for SED

Chapter 5 Case Study - Production Cell 79

Event moveFeedBelt =̂

when
grd1 : card(blanksOnFb) > 0
grd2 : fbStatus = stopped
grd3 : blankOnFbEnd = FALSE ∨

(tblElevated = FALSE ∧ tblRotated =
FALSE ∧ blankOnTbl = ∅)

then
act1 : fbStatus := running

end

Event moveFeedBelt =̂

refines moveFeedBelt

any
t1 , t2 , t3

where
grd1 : card(blanksOnFb) > 0
grd2 : fbStatus = stopped
grd3 : t1 = tblElevated
grd4 : t2 = tblRotated
grd5 : t3 = blankOnTbl
grd6 : (blankOnFbEnd = FALSE)∨

(t1 = FALSE ∧ t2 = FALSE ∧ t3 = ∅)
then

act1 : fbStatus := running
end

1

Figure 5.11: Example of preparing an event for SED

Event moveFeedBelt =̂
//Event of Feed Belt Component

any
t1 , t2 , t3

where
typing t3 : t3 ∈ P(BLANKS)
typing t2 : t2 ∈ BOOL
typing t1 : t1 ∈ BOOL
grd1 : card(blanksOnFb) > 0
grd2 : fbStatus = stopped
grd6 : (blankOnFbEnd = FALSE)∨

(t1 = FALSE ∧ t2 = FALSE ∧ t3 = ∅)
then

act1 : fbStatus := running
end

Event moveFeedBelt =̂
// Event of Table Component

any
t1 , t2 , t3

where
typing t3 : t3 ∈ P(BLANKS)
typing t2 : t2 ∈ BOOL
typing t1 : t1 ∈ BOOL
grd3 : t1 = tblElevated
grd4 : t2 = tblRotated
grd5 : t3 = blankOnTbl

then
skip

end

1

Figure 5.12: Event of Figure 5.11 decomposed into two events

5.4.7.3 Discussion

Modelling a system with no shared variables seems to be a better option here. This is be-

cause after SVD we get lots of external events which must not be refined. This increases

size of the model making it difficult to manage/understand after some refinements. For

example, as shown in Table 5.1, the feed belt component of PC has 3 internal events and

13 external events. Table 5.1 and Table 5.3 show the number of internal/external events

of PC components when decomposed using the two styles for the shared and disjoint

variable modelling approaches respectively. The total number of events for a component

in Table 5.3 is less than that of the same component in Table 5.1.

On the other hand, sub-models resulting from SED may have some events which do

not make much sense on their own due to their other parts being present in another

sub-model as a consequence of event sharing. For example, event moveFeedBelt in

table component of Figure 5.12 is only meaningful when presented along with its other

half in the feed belt component. The sub-models resulting from SED could be modelled

independently without any restrictions. Though an extra preparatory refinement step

80 Chapter 5 Case Study - Production Cell

Table 5.4: Proofs statistics of component-based PC modelled for SED/SVD

Model SVD-based SED-based

PC 0 3 2

PC 1 43 29

PC 2 25 21

PC 3 43 30

PC 4 10 18

Press 1 83 57

Press 2 21 20

Press 3 107 89

is usually required in order to make the state variables disjoint to be decomposed using

SED.

After decomposing the model into sub-models, we could then refine each of these sub-

models independently. In case of SVD, we had to maintain the restrictions of the SVD

style while refining these sub-models, i.e., to ensure that the shared variables and external

events were not refined. We further refined the press sub-model vertically by introducing

actuators and sensors to model it closer to implementation. This involved another three

levels of refinement and was done using the refinement pattern for control systems [51].

We refined both of the press sub-models resulting from the two styles of decomposition,

i.e., SVD and SED. The two press sub-models are different in a way that one has external

events and shared-variables whereas the other only has local variables and shared events.

Their refinement approach was similar since we followed the same refinement pattern for

the two developments. We only discuss the press refinement resulting from SVD (i.e.,

Press 0) below as the other followed the same refinement structure. Figure 5.13 shows

variables and internal events of this model (Press 0). Other sub-models of component-

based PC (i.e., table, robot, etc.) could also be refined similarly. Table 5.4 shows the

number proof obligations at each refinement level for modelling component-based PC

from the view of SVD/SED.

5.4.8 Press First Refinement Model (Press 1)

The press model (Press 0 of Figure 5.13) resulting from SVD of component-based

PC (PC 4) was further refined by introducing actuators and sensors for handling the

press. Since the press can have three positions (i.e., Low, Mid and High), there were

three variables for the position sensors (i.e., pressPosLowSensor, pressPosMidSensor,

pressPosHighSensor). A variable for an electric motor of the press (pressMotor)

was introduced for its state, i.e., moving the motor forward, backward or stopped.

We added events for turning the sensors on and off (i.e., pressLowSensorOn/Off,

pressMidSensorOn/Off, pressHighSensorOn/Off). Events were added for starting

Chapter 5 Case Study - Production Cell 81

VARIABLES

blanks, position, pressPos, robotPos
//Shared variables, DO NOT REFINE

EVENTS

Event movePressToHigh =̂

when
grd1 : pr ∈ ran(position)
grd2 : pressPos = mid

then
act1 : pressPos := high

end

Event movePressToMid =̂

when
grd1 : pressPos = low
grd2 : pr /∈ ran(position)

then
act1 : pressPos := mid

end

Event movePressToLow =̂

when
grd1 : pr ∈ ran(position)
grd2 : pressPos = high

then
act1 : pressPos := low

end

Event loadPress =̂

any
b

where
grd1 : b ∈ BLANKS
grd2 : pr /∈ ran(position)
grd3 : b ∈ dom(position)
grd4 : position(b) = arm1
grd5 : pressPos = mid
grd6 : robotPos = pos2

then
act1 : position(b) := pr

end

Event opPress =̂

any
b

where
grd1 : b ∈ BLANKS
grd4 : b ∈ dom(position)
grd2 : position(b) = pr
grd3 : blanks(b) 6= forged
grd5 : pressPos = high
grd6 : finite(blanks C− {b 7→ forged})

then
act1 : blanks(b) := forged

end

END

1

Figure 5.13: Variables and events of Press 0 resulting from SVD of PC 4

and stopping the motor at different press positions (e.g., startPressMotorDown , stop-

PressMotorAtLowPos etc.). Figure 5.14 shows how the event movePressToLow was

refined using atomicity decomposition in various refinement steps. So, an event for mov-

ing the press from high to low position in Press 0 was decomposed into four events in

Press 1. The motor starts from high position that leads to the high position sensor

turning off. When the low position sensor turns on, the motor is stopped. These events

are shown in Figure 5.15. Other events were introduced in a similar way. Below are

some of the invariants at this refinement model.

inv4 : pressPosMidSensor = on⇒pressPosLowSensor = off ∧pressPosHighSensor = off ∧pressPos ∈ {low ,mid}
//Turn on mid sensor when the press arrives at mid position from low position

inv5 : pressPosLowSensor = on⇒pressPosMidSensor = off ∧pressPosHighSensor = off ∧pressPos ∈ {high, low}
//Turn on low sensor when the press arrives at the low position from high position

inv6 : pressPosHighSensor = on⇒pressPosMidSensor = off ∧pressPosLowSensor = off ∧pressPos ∈ {mid , high}
//Turn on high sensor when the press arrives at the high position from mid position

inv8 : pressMotor = bwd ⇒ (∃b ·b ∈ BLANKS ∧ b 7→ pr ∈ position ∧ blanks(b) = forged) ∧ pressPos = high

inv9 : pressMotor = fwd ∧ pressPos = mid ⇒ (∃b ·b ∈ BLANKS ∧ b 7→ pr ∈ position ∧ blanks(b) = unforged)

inv10 : pressMotor = fwd ∧ pressPos = low ⇒ pr /∈ ran(position)

Some gluing invariants were required to relate the abstract state to the new variables.

For example, invariant ‘inv8’ shown above makes sure that the press will only move

82 Chapter 5 Case Study - Production Cell

Press_0

movePressToLow

stopMotorAtLowPosCtrl

senseLowPosSensor stopMotorAtLowPos

stopMotorAtLowPosstartMotorFromHigh highPosSensorOff lowPosSensorOn

stopMotorAtLowPosActstartMotorFromHighCtrl startMotorFromHighAct

Press_1

Press_2

Press_3

Figure 5.14: Event refinement for press component

down if it is at the high position and has a blank on it which has been processed.

The invariant ‘inv9’ specifies that the press should only move up when it is at the

mid position and has received a blank to be processed. Similarly, the invariant ‘inv10’

ensures that the press only moves up from the low position when the blank on it has

been removed by the robot. We managed to discharge all the proof obligations. There

were 83 POs generated by the Rodin, only 18 were discharged interactively and the rest

were discharged automatically by the Rodin provers.

5.4.9 Press Second Refinement Model (Press 2)

In the second refinement, using the sensing pattern from the cookbook [51], we refined

the model so the controller uses the sensed values of the sensors. This is done to model

the system closer to reality as the value of the sensors at some point in time will be

different from the sensed values. We have not yet introduced the notion of time which

can be introduced later on. We added variables for sensed values of the sensors and a flag

for each sensor to monitor whether a sensor has been sensed or not. Gluing invariants

were added, e.g., a sensor flag will be true if the sensed value is same as the actual value

of the sensor and false otherwise, as shown below:

inv7 : prMidSensedFlag = TRUE ⇒ pressMidSensed = pressPosMidSensor

inv8 : prLowSensedFlag = TRUE ⇒ pressLowSensed = pressPosLowSensor

inv9 : prHighSensedFlag = TRUE ⇒ pressHighSensed = pressPosHighSensor

Chapter 5 Case Study - Production Cell 83

Event startMotorFromHigh =̂

any
b

where
grd1 : pressMotor = stop
grd2 : pressPosHighSensor = on
grd5 : pressPos = high
grd6 : b ∈ dom(position)
grd7 : position(b) = pr
grd8 : blanks(b) = forged

then
act2 : pressMotor := bwd

end

Event highPosSensorOff =̂

when
grd1 : pressPosHighSensor = on
grd2 : pressPos = high
grd3 : pressMotor = bwd

then
act1 : pressPosHighSensor := off

end

Event lowPosSensorOn =̂

when
grd1 : pressPosHighSensor = off
grd2 : pressPosMidSensor = off
grd3 : pressPosLowSensor = off
grd4 : pressMotor = bwd
grd5 : pressPos = high
grd6 : pr ∈ ran(position)

then
act1 : pressPosLowSensor := on

end

Event stopMotorAtLowPos =̂

refines movePressToLow

when
grd1 : pr ∈ ran(position)
grd2 : pressPos = high

grd3 : pressMotor = bwd
grd4 : pressPosLowSensor = on

then
act1 : pressPos := low

act2 : pressMotor := stop
end

1

Figure 5.15: Events of Press 1 resulting from atomicity decomposition of
movePressToLow event of Pres 0

Event stopPressMotorAtLowPos =̂

refines stopPressMotorAtLowPos

when
grd1 : pr ∈ ran(position)
grd2 : pressPos = high
grd3 : pressMotor = bwd
grd4 : prLowSensedFlag = TRUE
grd5 : pressLowSensed = on

then
act1 : pressPos := low
act2 : pressMotor := stop
act3 : prLowSensedFlag := FALSE

end

Event sensePressLowSensorVal =̂

when
grd1 : prLowSensedFlag = FALSE

then
act1 : pressLowSensed := pressPosLowSensor
act2 : prLowSensedFlag := TRUE

end

1

Figure 5.16: Events of Press 2 resulting from atomicity decomposition of
stopMotorAtLowPos event of Pres 1

The event decomposition diagram of Figure 5.14 shows how stopMotorAtLowPos event

of Press 1 was decomposed into two events in Press 2 for sensing the sensor value (new

event: SenseLowPosSensor) before stopping the motor (refined event:StopMotorAtLowPos),

as shown in Figure 5.16. Similarly, other events were introduced for different sensors.

This was a smaller refinement step as compared to Press 1. There were 21 POs and all

were discharged automatically.

84 Chapter 5 Case Study - Production Cell

Event stopPressMotorAtLowPosAct =̂

refines stopPressMotorAtLowPos

when
grd1 : pr ∈ ran(position)
grd2 : pressPos = high
grd3 : pressMotor = bwd
grd4 : prLowSensedFlag = TRUE
grd5 : pressLowSensed = on
grd6 : pressMotorCtrlFlag = TRUE
grd7 : pressMotorCtrl = stop

then
act1 : pressPos := low
act3 : prLowSensedFlag := FALSE
act2 : pressMotor := pressMotorCtrl
act4 : pressMotorCtrlFlag := FALSE

end

Event stopPressMotorAtLowPosCtrl =̂

when
grd1 : pr ∈ ran(position)
grd2 : pressPos = high
grd3 : pressMotorCtrl = bwd
grd4 : prLowSensedFlag = TRUE
grd5 : pressLowSensed = on
grd6 : pressMotorCtrlFlag = FALSE

then
act2 : pressMotorCtrl := stop
act3 : pressMotorCtrlFlag := TRUE

end

1

Figure 5.17: Events of Press 3 resulting from atomicity decomposition of
stopMotorAtLowPos event of Pres 2

5.4.10 Press Third Refinement Model (Press 3)

At this level of refinement, the actuation was refined where a controller sets the actu-

ation of a motor before the motor is actuated. Again, this brings the model closer to

implementation as in reality there will be a delay in setting the actuator and its actual

movement based on the actuation set by the controller. An abstract actuation event is

decomposed into two events for a controller and actuator. For example, in Figure 5.14,

the event stopMotorAtLowPos of Press 2 is split into stopMotorAtLowPosCtrl (new

event) and stopMotorAtLowPosAct (refined event) in Press 3. These two events are

shown in Figure 5.17.

There were 107 POs generated at this refinement level where most of these POs were

discharged automatically with a few discharged interactively. This model can be further

refined vertically by introducing the notion of time.

Other components (e.g., table, robot, feed belt etc.) can also be modelled in the same

way as the press using the refinement pattern for control systems. Their refinements

will be similar to the press as we will have to model the actuators and sensors for these

components in the same way.

5.4.11 Building Variants of PC

The component-based modelling approach discussed above gives us a product of PC

which models a particular topology. This topology is presented in Figure 5.18 which

shows the component-based PC model at fourth refinement level, before decomposition

into various components. The figure shows how the physical components are connected

Chapter 5 Case Study - Production Cell 85

-moveRbt

-moveFb
-stopFb

-moveTbl
-rotateTbl

-extend/
retract

-pick/drop

-movePr
-operate

-moveFb
-stopFb

-moveCr
-pick/drop

-extend/
retract

-pick/drop

loadTblloadFb loadArm1 loadPress

loadArm2loadDbloadCrane

Robot

unloadCrane

FeedBelt Table

Press

DepositBeltCrane

Arm1

Arm2

Figure 5.18: PC Topology1

-moveRbt1

-moveFb
-stopFb

-moveTbl
-rotateTbl

-extend/
retract

-pick/drop

-movePr1
-operate1

-moveFb
-stopFb

-moveCr
-pick/drop

-extend/
retract

-pick/drop

loadTblloadFb loadArm1r1 loadPress1

loadArm2r1

loadDb

loadCrane

Robot1

unloadCrane

FeedBelt Table

Press1

DepositBeltCrane

Arm11

Arm21

-moveRbt2

-extend/
retract

-pick/drop

-movePr2
-operate2

-extend/
retract

-pick/drop

loadPress2

loadArm2r2

Robot2

Press2

Arm12

Arm22

loadArm1r2
Fromr1

Figure 5.19: PC Topology2

with each other to model the production cell plant. It is designed to visualise the topol-

ogy in terms of components and their events and helps in reuse for instantiation of

alternative topologies. The boxes in the figure represent the physical components of

production cell. The events placed inside the boxes are internal (local) for the compo-

nents and those placed between the boxes represent shared events containing topological

information for modelling the connectivity of components. This is an example of domain

specific instance modelling with Event-B.

86 Chapter 5 Case Study - Production Cell

Each different topology is an instance of PC product line and we can build more variants

of PC by selecting a different configuration (or topology) of these physical components.

For example, consider a production cell with two press components for processing blanks

twice and using two robots. We can call this ‘topology 2’ where robot1 picks a blank from

the table and drops onto press1 and robot2 takes the blank from robot1 which picks it

from press1 and drops on press2 (see Figure 5.19). Here we are interested in exploring

to what extent we can reuse the models of topology1 while modelling topology2 and

hence the proof effort. In terms of the requirements specification listed in Appendix A,

we reused most of the requirements of topology1 with the requirements for the robot

and press components were duplicated. The additional requirement is the collection of

blanks by robot2 from robot1 for processing in the second press.

We had to do instantiation and refactoring to simply duplicate the functionality of

existing components for modelling topology2. This means that we would not have to

reprove the models which have already been proved for topology1. This is because

renaming of elements would not affect the proof obligations (POs) and is currently

supported by the refactory plug-in [122] in Rodin. We only had to prove the POs

generated for any additional information modelled in the second topology. For example,

we specify that arm1 of robot2 collects the blank from arm2 of robot1 unlike picking it

from the table in topology1.

For topology2 development, we started with the abstract model of topology1 and du-

plicated the events Operate for processing blanks twice, i.e. front and back (events

OperateFront, OperateBack). Both events could be achieved through refactoring.

We added an additional guard in OperateBack which ensures that it happens after

OperateFront event, as shown below:

Event Operate =̂

any

b

where

grd1 : b ∈ dom(blanks)

grd2 : blanks(b) 6= forged

then

act1 : blanks(b) := forged

end

Event OperateFront =̂

any

b

where

grd1 : b ∈ dom(blanks)

grd2 : blanks(b) = unforged

then

act1 : blanks(b) := forgedF

end

Event OperateBack =̂

any

b

where

grd1 : b ∈ dom(blanks)

grd3 : blanks(b) = forgedF

then

act1 : blanks(b) := forgedB

end

Chapter 5 Case Study - Production Cell 87

loadArm1
loadPress
opPress
loadArm2

Events of Topology1 Events of Topology2

loadArm1R1
loadPress1
opPress1
loadArm2R1

loadArm1R2
loadPress2
opPress2
loadArm2R2

Figure 5.20: Events refactoring for modelling topology2 after topology1 - 1st
refinement

In the first refinement, we duplicated the functionality for press and robot which means

we had to replicate all the events related to both of these components. Figure 5.20

shows events of topology1 and that of topology2 at first refinement level. We also had

to duplicate variables and invariants while duplicating a component. For example, a

variable arm1State in Topology1 became arm1r1State and arm1r2State for robot1

and robot2 respectivey in Topology2 along with duplication of their typing and other

invariants, as shown below:

INVARIANTS

//Topology 1

inv1 : arm1State ∈ ARMSTATE

inv5 : arm1State = extended ⇒ (robotPos = pos1 ∨ robotPos = pos3)

INVARIANTS

//Topology 2

inv1 : arm1r1State ∈ ARMSTATE

inv2 : arm1r2State ∈ ARMSTATE

inv7 : arm1r1State = extended ⇒ (robot1Pos = pos1 ∨ robot1Pos = pos3)

inv9 : arm1r2State = extended ⇒ (robot2Pos = pos1 ∨ robot2Pos = pos3)

Figure 5.21 show events of topology1 and that of topology2 as a result of refactoring at

second, third and fourth level of refinement.

Figure 5.22 shows the refinement architecture for modelling the two topologies and their

components as achieved after decomposition. An example of event instantiation while

modelling topology2 after topology1 is shown in Figure 5.23 where event loadPress is

88 Chapter 5 Case Study - Production Cell

loadArm1
movePressToHigh
movePressToMid
loadPress
opPress
movePressToLow
loadArm2
moveRbtToPos1
moveRbtToPos2
moveRbtToPos3

loadArm1R2
movePress2ToHigh
movePress2ToMid
loadPress2
opPress2
movePress2ToLow
loadArm2R2
moveRbt2ToPos1
moveRbt2ToPos2
moveRbt2ToPos3

loadArm1R1
movePress1ToHigh
movePress1ToMid
loadPress1
opPress1
movePress1ToLow
loadArm2R1
moveRbt1ToPos1
moveRbt1ToPos2
moveRbt1ToPos3

Events of Topology1 Events of Topology2

Figure 5.21: Events refactoring for modelling topology2 after topology1 - 2nd,
3rd and 4th refinement

duplicated for the two presses (events: loadPress1 & loadPress2). This type of in-

stantiation and refactoring has no proof burden. Figure 5.25 shows the proof obligations

for the event that were refactored when modelling the second topology along with the

additional POs. Figure 5.24 shows another example of event instantiation for loading

robot arm1 in topology1 (i.e., event loadArm1) . Here, the instantiation is not triv-

ial. We refactor the instantiated events for arm1 of robot1 (loadArm1R1) and robot2

(loadArm1R2), add and modify some guards and actions accordingly. This would require

us to prove that the refactored events preserve invariants.

The POs for topology2 were discharged in the same way as topology1. Table 5.5 shows the

number of POs for both topology developments at different refinement levels and how

these were discharged, i.e., automatically or interactively. It also shows the amount of

newly generated POs, reused (i.e., appear as these were in topology1) when modelling the

second topology and those generated as a result of refactoring. It shows the percentage of

reused POs as well. This means that refactoring utility could save the effort of reproving

these refactored POs. Table 5.6 shows the number of events and invariants for the two

topology developments along with the number of events reused from topology1 (i.e.,

appear without any modification) and those refactored (i.e., duplicated along with some

renaming). This experiment shows that we can reuse existing models and their proofs if

we have tools to automate the instantiation and refactoring processes; hence, generating

additional tooling requirements which are discussed later.

Chapter 5 Case Study - Production Cell 89

PC_1

PC_2

PC_3

PC_4

FeedBelt Table Robot Press
Deposit-

Belt
Crane

PC Topology 1

PC_0

Refines

Decomposition

PC_1

PC_2

PC_3

PC_4

FeedBelt Table Robot1 Press1
Deposit-

Belt
Crane

PC Topology 2

PC_0

Decomposition

Robot2 Press2

Figure 5.22: Refinement architecture for modelling the two topologies

Figure 5.23: Event instantiation example for PC topology2

5.4.12 Evaluation

We have discussed component-based modelling approach for PC. We refined PC both

horizontally and vertically and decomposed the integral model into various components

using both styles of Event-B decomposition (SVD/SED). After decomposition, we refined

the press component further to model actuators and sensors in various refinement steps,

using the pattern for modelling control systems in Event-B [51]. Other components

could be modelled in the same way and hence not discussed here. In order to explore

how we could reuse models of this development (which we call topology1), we modelled

another variant of PC that has more components than in the first one. Here we wanted

to model a PC which has two presses and two robots to process a blank twice. This

was done by simply duplicating the functionality of these two components which means

90 Chapter 5 Case Study - Production Cell

Figure 5.24: Event instantiation example for PC topology2

Only	 renames	
Press	 to	 Press1	

Renames	 Press	
to	 Press2*	

•  1	 extra	 PO	 as	 a	 result	 of	 addi8onal	 guard	 in	 the	 model	 to	 ensure	 that	 opPress2	 happens	 	 	 	
	 	 	 	 	 	 	 a<er	 opPress1.	

Topology-‐1	

Topology-‐2	

Figure 5.25: Proof obligations refactoring for an event of topology 2

Chapter 5 Case Study - Production Cell 91

Table 5.5: Proof obligations statistics for two topology developments

PC	 Topology	 1	 PC	 Topology	 2	

Ref.	
level	

Auto	 Manual	 Total	 Total	 Auto	 Manual	 New	
POs	

Reuse	 Refa-‐
ctored	 POs	

Reused	
POs	

Reuse	
%	

PC-‐0	 3	 -‐	 3	 6	 6	 -‐	 -‐	 5	 1	 100	

PC-‐1	 35	 8	 43	 79	 58	 21	 15	 39	 25	 81	

PC-‐2	 18	 7	 25	 25	 15	 10	 -‐	 6	 19	 100	

PC-‐3	 31	 12	 43	 57	 40	 17	 2	 32	 23	 96	

PC-‐4	 10	 -‐	 10	 8	 8	 -‐	 -‐	 -‐	 8	 100	

PC-‐5	 81	 -‐	 81	 184	 116	 68	 23	 138	 23	 87	

PC-‐6	 20	 -‐	 20	 40	 40	 -‐	 6	 34	 -‐	 85	

PC-‐7	 167	 15	 190	 420	 387	 13	 39	 342	 39	 90	

Total	 365	 42	 415	 819	 769	 28	 85	 596	 138	 89	

Table 5.6: Events and invariants statistics for topology 1 and 2

PC	 Topology	 1	 PC	 Topology	 2	

Ref.	
level	

Invariants	 Events	 Invariants	 Events	 Refactored	
Events	

Reused	
Events	

PC-‐0	 1	 2	 1	 3	 2	 1	

PC-‐1	 3	 9	 4	 13	 4	 9	

PC-‐2	 7	 19	 9	 29	 20	 9	

PC-‐3	 10	 27	 14	 41	 28	 13	

PC-‐4	 3	 30	 1	 44	 28	 16	

PC-‐5	 10	 39	 20	 62	 46	 16	

PC-‐6	 9	 42	 19	 68	 52	 16	

PC-‐7	 14	 48	 28	 80	 64	 16	

we had to duplicate the events related to these components through refactoring. We

can define variation points as the connecting/shared events (events connecting boxes in

Figure 5.18). These variation points may vary for any different topology which means

these would behave differently unlike event duplication which are only refactored to

make these disjoint. We have shown the reuse statistics when modelling topology2 after

topology1, which clearly shows the amount of reuse achieved. This includes parts of

Event-B specification (events) as well as proofs so that the proof effort could also be

avoided.

This topology development approach seems feasible only when we need to duplicate a

couple of components or to model a couple of topologies. Imagine a case where we

have to model a topology having many instances of a component (e.g., 10 presses and

10 robots). This would become very hard to model, refine and manage the overall

development with the current state of tool support. One way to deal with the issue of

92 Chapter 5 Case Study - Production Cell

modelling any number of topologies with multiple replication of components is to raise

the abstraction level of our base topology model. We can specify generic components

and generic events in our model that could be specialised as and when required to model

various components of a particular topology through reuse and generic instantiation. For

example, we can have an event that models the transfer of blanks from one component

to another (i.e., passBlankBtwCpt1Cpt2) as shown below:

Event passBlankBtwCpt1Cpt2 =̂

any

b

where

grd1 : b ∈ blanks

grd2 : position(b) = Cpt1

grd1 : Cpt2 /∈ ran(position)

then

act1 : position(b) := Cpt2

end

This event could be specialised for passing blanks between any two components of the

plant where we could refactor Cpt1 and Cpt2 with feed belt and table and so on for the

rest of the components. This generic base topology could be refined to model internal

mechanise of a component. For example, in a refinement model, a generic event for

moving a component between two positions could be introduced. This event could then

be specialised for table or crane components, etc.

This experiment generated further tool requirements and also helped us suggest guide-

lines for users (discussed later) who would like to benefit from reuse when modelling

control systems in Event-B.

5.5 PC Controller-based

In the controller-based PC modelling, functional requirements for modelling the be-

haviour of each controller of the production cell were grouped together as a feature.

So, the requirements specification (given in Appendix A) was decomposed into various

controller features. We also generalised these requirements for each of the controller

so that we could model generic controllers; which could then be specialised and reused

for modelling various controllers of different physical components of the PC. Hence,

the controller-based modelling of PC was a result of decomposition plus generalisation.

Figure 5.26 shows Event-B refinement architecture for controller-based PC modelling.

Table 5.7 shows part of the requirements specification for the table feature of component-

based PC (column 1) and the movement feature for controller-based PC (column 2). This

Chapter 5 Case Study - Production Cell 93

shows how we can define the feature in terms of requirements for two styles of modelling

the PC, while making the features more reusable. The compositional requirements are

implemented while actually composing various components; this may include topological

information and how components are connected together. Similarly, Table 5.8 shows part

of the requirements specification for the crane feature of component-based PC (column

1) which can be modelled by specialising the requirements of the generic magnet feature

for controller-based PC (column 2). The controller-based PC models consisted of loader,

movement, rotation and magnet controllers. A member of PC product line could be

modelled by instantiating and composing these controller-based reusable features. These

features were then refined independently. We only discuss the refinement of magnet

and movement features below where we introduced sensors and actuators in various

refinement steps using the pattern for refining control systems as suggested in [51].

Figure 5.26: Controller-based PC modelling

5.5.1 Magnet Controller

At the abstract level, we have events for picking and dropping of blanks by a component.

A component which has not already picked a blank can do so and a component which

has picked a blank can drop it as shown below:

94 Chapter 5 Case Study - Production Cell

Table 5.7: Requirements description for Table and Movement features of PC

Table Component Generic Movement Controller
Req#6 - Move table upwards/downwards - Move a component from position A to
Req#6 - Rotate table clockwise/anti-clockwise position B and vice-versa
Req#9 - The table must not rotate clockwise if it is in
a position to deliver blanks (unloading position) Instantiation Requirements

Req#10 - Table must not rotate when its at low position - Extend/Retract Arm1
Req#11 - Table must not move down if it is rotated - Extend/Retract Arm2
(rotate backward first and then then move down) - Move Feed Belt/Deposit Belt
or if it is already not elevated - Move the Table upwards/ downwards

- Move Crane To and from Feed Belt/Deposit Belt

Compositional Requirements Compositional Requirements

Req#7 - Drop blank on table from feed belt when it is in - Extend/Retract Arm1 if robot is facing table or
the loading position (not elevated and not rotated) facing press while press is in middle position

- Extend/Retract Arm2 if robot is facing deposit
Req#8 - Robot picks blank from table when it is in or facing press while press is in lower position
unloading position (elevated and rotated) Table must not move down if its rotated (rotate

backward first and then move down) or if it is
already not elevated
- Crane should only move towards feed belt if it
is positioned on deposit belt and vice-versa

Table 5.8: Requirements description for Crane and Magnet features of PC

Crane Component Generic Magnet Controller
Req#35 - A travelling crane is used to bring the unforged - Pick and drop a blank
blanks back from the deposit belt to the feed belt
Req#36 - The crane has an electromagnet gripper to Instantiation Requirements

pick and drop the blank - Pick and drop functionality for Arm1
- Pick and drop functionality for Arm2
- Pick and drop functionality for Crane

Compositional Requirements Compositional Requirements

Req#39 - The crane picks a blank from deposit - Arm1 picks a blank from table and drops on
belt if there is one at the end of the belt the press when the press is in middle position

- Arm2 picks a blank from press and drops on
Req#40 - The crane drops a blank on to the feed the deposit belt
belt if it is not already full - Crane picks a blank from the deposit belt

and drops on the feed belt

Event XcompXPickBlank =̂

any

b

where

grd1 : XcompX /∈ ran(position)

grd2 : b ∈ dom(position)

then

act1 : position(b) := XcompX

end

Event XcompXDropBlank =̂

any

b

where

grd1 : XcompX ∈ ran(position)

grd2 : b ∈ dom(position)

then

act1 : position := position \
{b 7→ XcompX}

end

The notation ‘XcompX’ means a generic placeholder for a component which must be filled

with appropriate component during specialisation. So, this feature will be instantiated

to a specific component such as a crane or a robot arm. The model is quite abstract and

the details were added later in the refinements and during specialisation. Figure 5.27

shows how the two events of this abstract model are refined along with the introduction

of new events in three refinements steps.

Chapter 5 Case Study - Production Cell 95

Level_0
XcompXDropBlank

XcompXSensorOff XcompXStartMagnet XcompXSensorOn XcompXStopMagnet Level_1

Level_2

Level_3

XcompXPickBlank

XcompXStartMagnet XcompXStopMagnetXcompXSenseMagnetSensor XcompXSenseMagnetSensor

XcompXStartMagnetActXcompXStartMagnetCtrl XcompXStopMagnetActXcompXStopMagnetCtrl

Figure 5.27: Atomicity refinement of magnet controller

In the first refinement, we added sensor functionality for magnet which informs the

controller whether a blank has been picked up or dropped off. An electromagnet switch

acts as an actuator for the magnet which performs the pick and drop of blanks. Two

variables were introduced as following:

inv1 : XcompXMagnetSensor ∈ SENSOR

inv2 : XcompXMagnet ∈ ELECMAGNET

We also added events for starting and stopping the magnet and switching the sensor on

and off as shown below:

96 Chapter 5 Case Study - Production Cell

Event XcompXstartMagnet =̂

refines XcompXPickBlank

any

b

where

grd1 : XcompX /∈ ran(position)

grd2 : b ∈ dom(position)

grd3 : XcompXMagnet = drop

grd4 : XcompXMagnetSensor = off

then

act1 : position(b) := XcompX

act2 : XcompXMagnet := pick

end

Event XcompXsensorOn =̂

when

grd1 : XcompXMagnetSensor = off

grd2 : XcompXMagnet = pick

then

act1 : XcompXMagnetSensor := on

end

Event XcompXstopMagnet =̂

refines XcompXDropBlank

any

b

where

grd1 : XcompX ∈ ran(position)

grd2 : b ∈ dom(position)

grd3 : XcompXMagnet = pick

grd4 : XcompXMagnetSensor = on

then

act1 : position := position \ {b 7→
XcompX}

act2 : XcompXMagnet := drop

end

Event XcompXsensorOff =̂

when

grd1 : XcompXMagnetSensor = on

grd2 : XcompXMagnet = drop

then

act1 : XcompXMagnetSensor := off

end

In the second refinement, we differentiate between the actual and sensed values of the

sensors. So, a boolean variable XcompXMagSensorFlag (shown below) was introduced to

ensure that the magnet’s start event takes place when both the sensed and actual values

are same.

inv4 : XcompXMagSensorFlag = TRUE ⇒XcompXMagSensedVal = XcompXMagnetSensor

Similarly, in the third refinement, we refined the actuation mechanism where controller

sets the actuation of the motor before the motor actually starts moving. Here we split

the actuation events into two, i.e., a new event for setting the actuation of magnet by

the controller and a refined event for magnet to actuate accordingly. Figure 5.28 shows

invariants and events for the third refinement model of magnet controller. For example,

XcompXStartMagnetCtrl is a new event which tells the plant to start magnet for picking

a blank by turning on its flag and is then followed by the event XcompXStartMagnetAct

which actually picks the blanks. Similarly, XcompXStopMagnetCtrl is a new event to

stop magnet for dropping a blank by turning on its flag which then leads to the event

XcompXStopMagnetAct for actually dropping the blank. The sensor events occur after

a start or stop magnet event takes place. The refinement style is similar to that of the

press refinement discussed earlier, since both of these use the same refinement pattern

of [51].

Chapter 5 Case Study - Production Cell 97

INVARIANTS

inv1 : XcompXMagActStartFlag ∈ BOOL

inv2 : XcompXMagActStopFlag ∈ BOOL

inv3 : XcompXMagnetCtrl ∈ ELECMAGNET

inv4 : XcompXMagActStartFlag = TRUE ⇒ (XcompX /∈ ran(position) ∧ XcompXMagnet = drop
∧ XcompXMagSensedV al = off ∧XcompXMagSensorF lag = TRUE)

inv5 : XcompXMagActStopFlag = TRUE ⇒ (XcompX ∈ ran(position) ∧ XcompXMagnet = pick
∧ XcompXMagSensedV al = on ∧XcompXMagSensorF lag = TRUE)

Event XcompXStartMagnetCtrl =̂

any
b

where
grd1 : XcompX /∈ ran(position)
grd2 : b ∈ dom(position)
grd3 : XcompXMagnet = drop
grd4 : XcompXMagSensedVal = off
grd5 : XcompXMagSensorFlag = TRUE
grd6 : XcompXMagActStartFlag = FALSE
grd7 : XcompXMagActStopFlag = FALSE

then
act1 : XcompXMagnetCtrl := pick
act3 : XcompXMagActStartFlag := TRUE

end

Event XcompXStartMagnetAct =̂
refines XcompXstartMagnet

any
b

where
grd2 : b ∈ dom(position)
grd6 : XcompXMagActStartFlag = TRUE
grd7 : XcompXMagnetCtrl = pick

then
act1 : position(b) := XcompX
act2 : XcompXMagnet := XcompXMagnetCtrl
act3 : XcompXMagSensorFlag := FALSE
act4 : XcompXMagActStartFlag := FALSE

end

Event XcompXStopMagnetCtrl =̂

when
grd1 : XcompX ∈ ran(position)
grd3 : XcompXMagnet = pick
grd4 : XcompXMagSensedVal = on
grd5 : XcompXMagSensorFlag = TRUE
grd6 : XcompXMagActStopFlag = FALSE
grd7 : XcompXMagActStartFlag = FALSE

then
act2 : XcompXMagnetCtrl := drop
act3 : XcompXMagActStopFlag := TRUE

end

Event XcompXStopMagnetAct =̂
refines XcompXstopMagnet

any
b

where
grd2 : b ∈ dom(position)
grd6 : XcompXMagActStopFlag = TRUE
grd7 : XcompXMagnetCtrl = drop

then
act1 : position := position \ {b 7→ XcompX}
act2 : XcompXMagnet := XcompXMagnetCtrl
act3 : XcompXMagSensorFlag := FALSE
act4 : XcompXMagActStopFlag := FALSE

end

Event XcompXsensorOn =̂
extends XcompXsensorOn

when
grd1 : XcompXMagnetSensor = off

grd2 : XcompXMagnet = pick

grd3 : XcompXMagSensorFlag = FALSE

then
act1 : XcompXMagnetSensor := on

end

Event XcompXsensorOff =̂
extends XcompXsensorOff

when
grd1 : XcompXMagnetSensor = on

grd2 : XcompXMagnet = drop

grd3 : XcompXMagSensorFlag = FALSE

then
act1 : XcompXMagnetSensor := off

end

Event XcompXSenseMagnetSensor =̂
extends XcompXSenseMagnetSensor

when
grd1 : XcompXMagSensorFlag = FALSE

then
act1 : XcompXMagSensedVal := XcompXMagnetSensor

act2 : XcompXMagSensorFlag := TRUE

end

1

Figure 5.28: Magnet controller third refinement model

5.5.2 Movement Controller

The development structure of movement controller is similar to that of the magnet con-

troller. At the abstract level, we have events for moving a physical component forward

and backward between two positions (i.e., posA, posB), as shown below:

Event XcompXMoveToXposBX =̂

when

grd1 : XPosVarX = XposAX

then

act1 : XPosVarX := XposBX

end

Event XcompXMoveToXposAX =̂

when

grd1 : XPosVarX = XposBX

then

act1 : XPosVarX := XposAX

end

98 Chapter 5 Case Study - Production Cell

INVARIANTS

inv1 : XcompXmotor ∈ MOTOR

inv2 : XcompXSensorPosA ∈ SENSOR

inv3 : XcompXSensorPosB ∈ SENSOR

inv4 : XcompXSensorPosA = on ⇒ XcompXSensorPosB = off

inv5 : XcompXSensorPosB = on ⇒ XcompXSensorPosA = off

inv6 : XcompXmotor = stop ∧ XPosVarX = XposAX ⇒ XcompXSensorPosA = on

inv7 : XcompXmotor = stop ∧ XPosVarX = XposBX ⇒ XcompXSensorPosB = on

EVENTS
Event XcompXStartMotorFwd =̂

when
grd1 : XcompXSensorPosA = on
grd2 : XcompXmotor = stop

then
act1 : XcompXmotor := fwd

end

Event XcompXStopMotorFwd =̂
extends XcompXMoveToXpos2X

when
grd1 : XPosVarX = XposAX

grd2 : XcompXmotor = fwd
grd3 : XcompXSensorPosB = on

then
act1 : XPosVarX := XposBX

act2 : XcompXmotor := stop
end

Event XcompXStartMotorBwd =̂

when
grd1 : XcompXSensorPosB = on
grd2 : XcompXmotor = stop

then
act1 : XcompXmotor := bwd

end

Event XcompXStopMotorBwd =̂
extends XcompXMoveToXpos1X

when
grd1 : XPosVarX = XposBX

grd2 : XcompXmotor = bwd
grd3 : XcompXSensorPosA = on

then
act1 : XPosVarX := XposAX

act2 : XcompXmotor := stop
end

Event XcompXSensorPosBOn =̂

when
grd1 : XcompXSensorPosB = off
grd2 : XcompXSensorPosA = off

then
act1 : XcompXSensorPosB := on

end

Event XcompXSensorPosBOff =̂

when
grd1 : XcompXSensorPosB = on
grd2 : XcompXSensorPosA = off
grd3 : XcompXmotor = bwd

then
act1 : XcompXSensorPosB := off

end

Event XcompXSensorPosAOn =̂

when
grd1 : XcompXSensorPosA = off
grd2 : XcompXSensorPosB = off

then
act1 : XcompXSensorPosA := on

end

Event XcompXSensorPosAOff =̂

when
grd1 : XcompXSensorPosA = on
grd2 : XcompXSensorPosB = off
grd3 : XcompXmotor = fwd

then
act1 : XcompXSensorPosA := off

end

END

1

Figure 5.29: Movement controller events and invariants for first refinement

This feature will be instantiated to a specific component such as a crane or a table.

In case of crane feature, posA can become deposit belt and posB can be instantiated

as feed belt. During the first refinement, we added sensors for the two positions and a

motor for moving the component backward and forward. Events were added for starting

and stopping the motor at different positions and switching the sensors on and off.

Figure 5.29 shows events and invariant of the first refinement level. Here, we have events

for starting and stopping the motor in forward and backward direction and turning the

sensors on and off at positions A and B. In the second refinement, we differentiate

between the actual and sensed values of the sensors as discussed earlier. Using the

same refinement style of magnet controller, at third level of refinement, we differentiate

between setting the motor’s actuation by the controller from its actual movement.

Chapter 5 Case Study - Production Cell 99

CraneMagnetCtrl_0

CraneMagnetCtrl_1

CraneMagnetCtrl_2

CraneMagnetCtrl_3

CraneMoveVert_0

CraneMoveVert_1

CraneMoveVert_2

CraneMoveVert_3

CraneMoveHoriz_0

CraneMoveHoriz_1

CraneMoveHoriz_2

CraneMoveHoriz_3

Refines*

* An arrow head points to the abstract model and its tail to the refinement model.

Crane Spec Full

Crane Impl Full

Refines ?

+

+

Generic Magnet Ctrl Generic Movement
 Ctrl

Generic Instantiation

Figure 5.30: Crane instantiation

5.5.3 Instantiation & Composition

The magnet and movement controllers provide us refinement chains of generic Event-B

models for the two features. In order to model any component of the PC, we need

to instantiate and compose these chains of models. The composition is done in two

phases. In the first phase, we specialise and compose generic models to build a com-

ponent (e.g., crane or robot) and in the second phase, we compose all the components

while providing topological information. For example, if we want to model the crane

component, we have to specialise one instance of the magnet controller to pick and drop

blanks and two instances of the movement controllers for moving the crane horizontally

and vertically, as shown in Figure 5.30. In this example, we have three refinements in

each development which align well during the composition. This alignment issue (also

discussed in previous chapter) needs to be explored further to address the composition

of Event-B developments having different number of refinements. Figure 5.31 shows a

simple example where event PickBlank of magnet controller is specialised for the crane

component. Here the generic model parameter XcompX is replaced by crane, provided

both of these are of the same type. For now, we use X...X as a syntactic convention to

model a generic parameter, given that the current Rodin tool does not support generics.

This instantiation has no proof burden and the instantiated model will be correct by

construction. Figure 5.32 shows another example where event XcompXMoveToXposBX of

movement controller is specialised as craneMoveToPosFB event of the crane component,

for moving it from deposit belt to feed belt.

The composition of abstract level models from each refinement chain would give us an

abstract specification for the crane. We also had to do some guard strengthening and add

100 Chapter 5 Case Study - Production Cell

An Event-B Specification of MagnetCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MagnetCtrl 0

SEES Magnet CO

VARIABLES

position

INVARIANTS

inv1 : position ∈ BLANKS 7→ COMP

EVENTS

Initialisation

begin
act1 : position := ∅

end

Event XcompXPickBlank =̂

any
b

where
grd1 : XcompX /∈ ran(position)
grd2 : b ∈ dom(position)

then
act1 : position(b) := XcompX

end

Event cranePickBlank =̂

any
b

where
grd1 : crane /∈ ran(position)
grd2 : b ∈ dom(position)

then
act1 : position(b) := crane

end

END

An Event-B Specification of MagnetCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MagnetCtrl 0

SEES Magnet CO

VARIABLES

position

INVARIANTS

inv1 : position ∈ BLANKS 7→ COMP

EVENTS

Initialisation

begin
act1 : position := ∅

end

Event X comp XPickBlank =̂

any
b

where
grd1 : X comp X /∈ ran(position)
grd2 : b ∈ dom(position)

then
act1 : position(b) := X comp X

end

Event cranePickBlank =̂

any
b

where
grd1 : crane /∈ ran(position)
grd2 : b ∈ dom(position)

then
act1 : position(b) := crane

end

END

Figure 5.31: Event specialisation of magnet controller for crane

An Event-B Specification of MovementCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MovementCtrl 0
moves a component from posA to posB

SEES Move CO

VARIABLES

XPosVarX

INVARIANTS

inv1 : XPosVarX ∈ MOVPOS

EVENTS

Initialisation

begin
act1 : XPosVarX := Xpos1X

end

Event XcompXMoveToXposBX =̂

when
grd1 : XPosVarX = XposAX

then
act1 : XPosVarX := XposBX

end

Event craneMoveToPosFB =̂

when
grd1 : craneHorzPos = posDB
grd2 : crane ∈ ran(position)

then
act1 : craneHorzPos := posFB

end

An Event-B Specification of MovementCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MovementCtrl 0
moves a component from posA to posB

SEES Move CO

VARIABLES

X PosVar X

INVARIANTS

inv1 : X PosVar X ∈ MOVPOS

EVENTS

Initialisation

begin
act1 : X PosVar X := X pos1 X

end

Event craneMoveToPosFB =̂

when
grd1 : craneHorzPos = posDB

then
act1 : craneHorzPos := posFB

end

END

Figure 5.32: Event specialisation of movement controller for crane

some invariants during the composition. This would generate addition POs and some of

the exiting POs may also change that would require reproving. The composition of imple-

mentation level models for each refinement would provide us with the implementation of

the crane. Again extra guards for events and invariants were needed. Figure 5.33 shows

the events cranePickBlank and craneMoveToPosFB (of Figures 5.31 & 5.32) with ex-

tra guards added during the composition. For example, grd3 of cranePickBlank event

specifies the topological information that the crane can only pick a blank when it is po-

sitioned on the deposit belt. Similarly, grd2 of craneMoveToPosFB event in Figure 5.33

specifies that the crane can only move towards the feed belt if it has picked up a blank.

The guard grd2 of cranePickBlank event means it can pick any blank in the system.

Table 5.9 shows POs for three crane components and the crane model resulting from

their composition.

When we finally compose all the components to model the entire PC in the second phase

of composition, we will need to strengthen this guard to say that the crane can only

pick a blank from the deposit belt. Here we would need to give topological information

of PC in terms of how different components are connected to each other as discussed in

the components-based PC example earlier. Again by adding extra guards and invariants

in this second phase of composition may generate additional POs to be reproved.

We call this style of composition ‘feature composition’ where additional information

can be added during the composition. As of yet, this style of composition does not

guarantee refinement preservation between the composed abstract and implementation

models (see ‘refines?’ in Figure 5.30). In order to deal with this kind of composition,

we need the support for proof reuse. By this we mean to find a way of automatically

discharging composite POs with the help of already discharged POs of the components

being composed. This requires further work. Although, we will discuss an alternative

Chapter 5 Case Study - Production Cell 101

An Event-B Specification of MovementCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MovementCtrl 0
moves a component from posA to posB

SEES Move CO

VARIABLES

X PosVar X

INVARIANTS

inv1 : X PosVar X ∈ MOVPOS

EVENTS

Initialisation

begin
act1 : X PosVar X := X pos1 X

end

Event cranePickBlank =̂

any
b

where
grd1 : crane /∈ ran(position)
grd2 : b ∈ dom(position)
grd3 : craneHorzPos = posDB

then
act1 : position(b) := crane

end

END

An Event-B Specification of MovementCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MovementCtrl 0
moves a component from posA to posB

SEES Move CO

VARIABLES

X PosVar X

INVARIANTS

inv1 : X PosVar X ∈ MOVPOS

EVENTS

Initialisation

begin
act1 : X PosVar X := X pos1 X

end

Event craneMoveToPosFB =̂

when
grd1 : craneHorzPos = posDB
grd2 : crane ∈ ran(position)

then
act1 : craneHorzPos := posFB

end

Figure 5.33: Guard strengthening of events during composition

An Event-B Specification of MovementCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MovementCtrl 0
moves a component from posA to posB

SEES Move CO

VARIABLES

X PosVar X

INVARIANTS

inv1 : X PosVar X ∈ MOVPOS

EVENTS

Initialisation

begin
act1 : X PosVar X := X pos1 X

end

Event cranePickBlank =̂

any
b

where
grd1 : crane /∈ ran(position)
grd2 : b ∈ dom(position)
grd3 : craneHorzPos = posDB

then
act1 : position(b) := crane

end

END

An Event-B Specification of MovementCtrl 0
Creation Date: 11 Apr 2012 @ 02:56:50 PM

MACHINE MovementCtrl 0
moves a component from posA to posB

SEES Move CO

VARIABLES

X PosVar X

INVARIANTS

inv1 : X PosVar X ∈ MOVPOS

EVENTS

Initialisation

begin
act1 : X PosVar X := X pos1 X

end

Event craneMoveToPosFB =̂

when
grd1 : craneHorzPos = posDB
grd2 : crane ∈ ran(position)

then
act1 : craneHorzPos := posFB

end

Figure 5.34: Guard strengthening of events during composition

Table 5.9: Proof obligations statistics for crane development

Ref.	 level	 Crane	 Magnet	 Crane	 Movement	
Ver2cal	

Crane	 Movement	
Horizontal	

Crane	 Full	

L-‐0	 3	 -‐	 -‐	 3	

L-‐1	 -‐	 24	 24	 48	

L-‐2	 8	 16	 16	 37	

L-‐3	 20	 67	 67	 140	

approach in the next chapter where we can avoid reproof by following a particular

modelling pattern, that approach would not be feasible for modelling generic components

of PC due to its blank passing topological nature.

We had to use feature composition because the SED could not be applied here due

to the shared variables between the components being composed. Similarly, the SVD

approach is too constraining and could only be used here if we start with an abstract

model containing the functionality of both the magnet and movement features. We

could then decompose these into two developments (both having external events), refine

each of these, instantiate for the crane and compose to build the crane model. This

would require all the additional components being to be modelled in the same manner

which would limit the reuse and befit from genericity. The ATM case-study discussed in

the next chapter further explores these issues and suggests the modelling style through

102 Chapter 5 Case Study - Production Cell

which we could use existing techniques of Event-B to achieve partial reuse of existing

specifications, when modelling variants of a product line.

5.5.4 Evaluation

The controller-based PC modelling discussed above showed how we can improve reusabil-

ity by modelling a system as a set of generic features. These feature could then be

specialised for modelling various components of the system. These components when

composed together would result in a particular product of a product line. In compari-

son to the component-based approach discussed earlier, this style of modelling SPLs in

Event-B seems more appropriate for product line modelling because it provides more

reuse opportunities. This approach is modelled at a different abstraction level com-

pared to the component-based approach where reuse only lies in terms of components

and their connectivity. Here, we model and reuse fine-grained features as compared to

coarse-grained features of component-based PC.

For this approach, we had to generalise requirements and group these together to model

as features. We showed how generic features for movement and magnet controllers could

be instantiated and composed to model crane component of PC. These components along

with others could be instantiated and composed to model a robot and similarly rest of

the PC components. Once we have an integral model of the PC, this could again be

decomposed using any of the two decomposition techniques of Event-B (i.e., SVD/SED),

depending on how the system is to be implemented. This experiment requires us to

reprove the instantiated product since this middle-in loose-structured composition -

which we call feature composition - does not guarantee refinement preservation. We will

address this issue in the next chapter by suggesting a different approach when modelling

another case-study. We will also discuss how this approach could be generalised in our

suggested guidelines for future users in Chapter 7.

5.6 PC – Domain-specific SPL modelling through contexts

We also modelled a generic component-based PC which supports the two topologies

mentioned earlier. The variability is provided through the context which means the

machine for both the topologies will remain same and we could have a different topology

by just switching the contexts. Figure 5.35 shows this development architecture where a

generic product is specialised by switching the contexts to build specialised products. We

modelled the topology of PC in the context, i.e., we specify the physical components and

how these could be connected to each other. The machine is modelled in a generic way as

shown in Figure 5.36. The event passBlankBtwCpts models how a blank is passed from

one component to another and the event moveCpt models the movement of a component

Chapter 5 Case Study - Production Cell 103

M0C0

MnCn

SEES

SEES

M0C0_P1

MnCn_P1

SEES

SEES

M0C0_P2

MnCn_P2

SEES

SEES

Generic Development
of Product Line

Context Switching To Generate
Product Line Instances

Product 1 Product 2

Refines

RefinesRefines

Extends

Extends Extends

Figure 5.35: Development architecture for SPL modelling through context
switching

itself as the components of PC can have different positions (e.g., press moves between

three positions and table moves between two positions). The invariant ‘inv1’ defines

position of blank which can be at any one component at a time. The invariant ‘inv2’

specifies the position of a component which can be any one of its possible positions, e.g.,

press can be in low, mid or high position and table can be in up or down position.

The topological information is modelled in the contextual part at the bottom of the figure

where cptGraph defines the components graph, i.e., valid ways of connecting different

components. This is then used in ‘grd4’ of the passBlankBtwCpts event to make sure

that the blank is passed between connectable components. If we like to model a different

topology (e.g., topology2 as discussed earlier) with two robots and two presses, we would

simply need to modify the context, i.e., include these extra components to the set CPT

and update the component connectivity information accordingly in the cptGraph. We

can refine this model further to introduce sub-component functionality of a component.

For example, a robot has two sub-components for its arms. This could then allow us to

model a robot having three arms by modifying the context and using the same machine.

5.6.1 Evaluation

The advantage of modelling in this way is that we will not need to reprove a variant of

PC resulting from static variability through context switching. The disadvantage is that

104 Chapter 5 Case Study - Production Cell

the modeller may not visualise various events of the machine for a particular topology by

looking at the model unless the machine is animated. For example, in component-based

approach we have events for each component while passing a blank to another component

whereas in this approach we have only event reprsenting the same functionality. This

could be a useful domain modelling activity for exploring variability of a product line

in a distributed environment. This development could also be considered as a base for

a product line and all of its products must be derived from this base development and

then refined. Further work in this direction is required to explore this concept with

different case-studies.

Another possibility is to refine this generic model down to a level where we introduce

all the sensors and actuators; and in order to model a particular topology of PC, we

could then instantiate events as required and switch contexts accordingly. This again

would not need reproof effort unless additional information is required when instantiating

various events of the development.

In order to model

5.7 Conclusion

By modelling production cell in three different ways, we have explored to what extent we

can use existing Event-B tools and techniques for feature-based product line modelling.

This also enabled us to figure out the requirements for future tooling and techniques

(discussed in Chapter 7) that can further facilitate such development approach to benefit

from reuse of existing models and their proofs.

The first style of modelling – component-based – is a natural approach of modelling in

Event-B which used both types of decomposition techniques to reduce the complexity

of modelling and proving by decomposing large models into smaller sub-models. We

started with an integral model of PC and refined this up to four refinements. We

then decomposed this model into various physical components of PC. Each of these

components could then be refined separately. We only refined the press component of

PC where we introduced actuators and sensors to model it closer to implementation. In

order to explore variability, we modelled a variant of PC having two of the press and

robot components each. This provided us with another topology of PC. So, we could

specify the commonality and variability in terms of the components and the topology

that can be used to connect these components respectively. Further variants of PC

could be modelled by reusing existing models and altering the topology as required.

We have shown reuse statistics in terms of specification and proofs when modelling two

products of PC having different topologies. This clearly shows that we can significantly

reduce modelling and proof effort through reuse. The downside of this approach is

that the variability only exists in the number of components and their connections, i.e.,

Chapter 5 Case Study - Production Cell 1051

INVARIANTS

inv1 : blankPosition ∈ BLANKS 7→ CPT

inv2 : cptPosition ∈ CPT → POS

EVENTS

Event passBlankBtwCpts =̂

any

b, cpt1 , cpt2

where

grd1 : b ∈ BLANKS

grd2 : cpt1 ∈ CPT

grd3 : cpt2 ∈ CPT

grd4 : cpt1 7→ cpt2 ∈ cptGraph

grd5 : b ∈ dom(blankPosition)

grd6 : blankPosition(b) = cpt1

grd7 : cpt2 /∈ ran(blankPosition)

then

act1 : blankPosition(b) := cpt2

end

Event moveCpt =̂

any

pos1 , pos2 , cpt

where

grd1 : pos1 ∈ POS

grd2 : pos2 ∈ POS

grd3 : cptPosition(cpt) = pos1

then

act1 : cptPosition(cpt) := pos2

end

CONSTANTS

fb, tbl, arm1, arm2, pr, db, cr

cptGraph

AXIOMS

axm1 : partition(CPT , {fb}, {tbl}, {arm1}, {arm2}, {pr}, {db}, {cr})
axm2 : cptGraph ∈ CPT 7→ CPT

axm3 : cptGraph = {fb 7→ tbl , tbl 7→ arm1 , arm1 7→ pr , pr 7→ arm2 ,

arm2 7→ db, db 7→ cr}
axm4 : partition(POS , {up}, {down}, {low}, {mid}, {high})

Figure 5.36: Partial Event-B model of domain-specific modelling through con-
text switching

a variation of PC could be modelled through reuse by replicating the functionality of

existing components and how these would be connected to each other. In order to add

a new component, we will have to model the PC again from abstract specification and

doing the proof effort again. This approach is only feasible when we duplicate small

number of components, otherwise it becomes very difficult to manage the development

with the current tool support. This experiment helped us in exploring requirements

for instantiation and refactoring tool support that could be useful in automating this

approach.

The second approach of controller-based modelling is more feature-oriented as we have

106 Chapter 5 Case Study - Production Cell

modelled generic reusable features that could be instantiated and composed in different

ways to model different PC components and hence benefit from their reuse. We gen-

eralised the requirements of PC and grouped these into several features. These generic

features could then be modelled and refined independently. We could then specialise

and compose these generic features to model a product of PC product line. We call

the composition required in this modelling style as feature composition. This is a loose-

structured cut-and-paste composition type which suits the feature-based modelling. Spe-

cialisation of generic features does not require reproof effort but this composition does

not guarantee refinement preservation as we have to provide additional information dur-

ing composition. This approach could be very useful if we can figure out proof reuse

mechanism, i.e., how to discharge POs of composite model by analysing and reusing POs

of the models being composed? However, we can avoid this proof reuse problem by using

a modelling pattern suggested in the next chapter. Note that the existing composition

techniques of Event-B could not be applied in this style of modelling.

The third approach of modelling static variability through context switching allows us to

evaluate the scope of a product line and without doing the proof effort upfront. This is

another way of modelling component-based PC and suits the product line development

approach as we can figure out the common base for different variants (topologies) of the

PC, and the configuration or the variability can be embedded in the context. This could

be useful to foresee how a product line would evolve for a particular domain and later

on could be modelled in one of the two styles mentioned to build a database of reusable

features.

This work suggests that we can use existing tools and techniques to some extent for

feature-based development using Event-B. But there are certain restrictions of the ex-

isting (de)composition techniques which must be followed and that restricts the feature-

based development in terms of reuse. We have highlighted another form of composition

– feature composition – which provides a less restrictive and more suitable form of com-

position for feature-based development. It does not support proof reuse as of yet and

that requires further research work in future. In order to support our findings of the PC

case-study, we present another case-study in the next chapter. This will enable use to

explore any modelling patterns using existing (de)composition techniques of Event-B,

to generalise our feature-oriented modelling frameworks and suggest guidelines for SPL

modelling in Event-B for future users.

	5 Case Study - Production Cell
	5.1 Introduction
	5.2 Production Cell
	5.3 Roadmap
	5.4 PC Component-based
	5.4.1 Development Structure
	5.4.2 PC Abstract Model (PC_0)
	5.4.3 PC First Refinement (PC_1)
	5.4.4 PC Second Refinement (PC_2)
	5.4.5 PC Third Refinement (PC_3)
	5.4.6 PC Fourth Refinement (PC_4)
	5.4.7 Decomposition
	5.4.7.1 Shared-Variable Decomposition (SVD)
	5.4.7.2 Shared-Event Decomposition (SED)
	5.4.7.3 Discussion

	5.4.8 Press First Refinement Model (Press_1)
	5.4.9 Press Second Refinement Model (Press_2)
	5.4.10 Press Third Refinement Model (Press_3)
	5.4.11 Building Variants of PC
	5.4.12 Evaluation

	5.5 PC Controller-based
	5.5.1 Magnet Controller
	5.5.2 Movement Controller
	5.5.3 Instantiation & Composition
	5.5.4 Evaluation

	5.6 PC – Domain-specific SPL modelling through contexts
	5.6.1 Evaluation

	5.7 Conclusion

