
Modelling the Pacemaker in Event-B: Towards
Methodology for Reuse

Michael Poppleton, Abdolbaghi Rezazadeh

School of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK,
mrp@ecs.soton.ac.uk, ra3@ecs.soton.ac.uk

Abstract. The cardiac pacemaker is one of the system modelling problems posed
to the Formal Methods community by the Grand Challenge for Dependable Sys-
tems Evolution [11]. The pacemaker is an intricate safety-critical system that sup-
ports and moderates the dysfunctional heart’s intrinsic electrical control system.
This paper focusses on (i) the problem (requirements) domain specification and
its mapping to solution (implementation) domain models, (ii) the significant com-
monality of behaviour between its many operating modes, emphasising the po-
tential for reuse, and (iii) development and verification of models.
We introduce the problem and model three of the operating modes in the prob-
lem domain using a state machine notation. We then map each of these mod-
els into a solution domain state machine notation, designed as shorthand for a
refinement-based solution domain development in the Event-B formal language
and its RODIN toolkit.

1 Introduction

In 2007, the SQRL lab at McMaster University hosted the Pacemaker case study1 of
the international Grand Challenge for Dependable Systems Evolution [11]. This chal-
lenge to the software development and verification community was proposed by Tony
Hoare in 2005. The pacemaker is a particularly demanding device in engineering terms:
although the demands of control systems development are well known, the task of the
pacemaker is not to control the dysfunctional heart, rather to support and correct its
internal electrical control system.

A number of researchers have investigated the pacemaker as specified by Boston
Scientific [18]. The Z specification of [8] is concrete, defining pulse generator, sen-
sor, timing and battery power and associated behaviours, at one level of abstraction.
Verification comprises proving initialisation consistency and operation totality with the
ProofPower-Z tool. [14] use VDM++, a VDM variant with object-oriented and concur-
rent modelling, in an incremental process of producing abstract, sequential, concurrent,
and finally distributed real-time models. These are not formal refinements, and valida-
tion is not formal, but performed by by scenario-based testing tools.

[16], based on previous pacemaker modelling proposes a scheme for certifiable de-
velopment based on informal requirements structuring, formalization and proof, and

1 http://sqrl.mcmaster.ca/index.html



then validation and animation. These authors’ work [15] is closest to ours, using the
refinement-based method of Event-B and its Rodin toolkit. Each mode undertaken is
separately modelled and refined, again starting with the rather concrete concerns of
timing, and sensing and pacing implementation. One group [10] at least have modelled
the heart, to act as heart simulator and test-case generator for pacemaker models; a
co-simulation approach is also planned for the VDM++ work [14].

The electrocardiology domain where the pacemaker requirements are articulated, is
complex, e.g. [3, 7]. Initially, we chose to model required behaviour as state machines
over the state and transition concepts arising in the problem domain; we call these
problem models. Each problem model is “flat”, i.e. at a single abstraction level. The
modelling of various operating modes revealed considerable commonality of behaviour,
and thus potential for model reuse, between modes.

In parallel, initial Event-B (solution, or implementation domain) modelling was un-
dertaken, illustrated by a shorthand state machine representation - we call these solution
models. In this activity, requirements are layered into the development through stepwise
refinements. For dual-channel modes, the Event-B work suggested that a model design
of two communicating state machines - one each for atrial and ventricular channels
- was simple in structure and could capture much of the commonality of behaviour.
Whereas the initial problem model was a single state machine, we then produced a
version corresponding to the communicating two-machine solution domain state ma-
chines. The abstract solution-domain state machine is refined through more detailed
state machines, implementing the problem domain requirements in layers.

We have modelled the five modes AAI, VVI, VDD, DVI and DDD but only discuss
the first three here. These were selected for both learning and reuse reasons - AAI and
VVI are single-channel models, the latter three more complex dual-channel models.
DDD is effectively a composition of AAI, VDD and DVI. This work is distinct from
other approaches in the following aspects: (i) the distinction between problem-space
(electrocardiology) and solution-space (Event-B) state machine models, and the value
of a “co-modelling” approach, (ii) the emphasis on reuse, (iii) the use of refinement
to maintain abstraction, and incorporate timing some way down the chain, using the
design pattern of [5].

In sections 2, 3 we provide background on Event-B and electrocardiology respec-
tively. Section 4 introduces problem models for the simple, single-channel modes AAI
and VVI. It then introduces the corresponding solution models in state machine and
Event-B formats. Section 5 does the same for VDD mode. Section 6 concludes and also
describes ongoing and future work.

2 Event-B Basics

This section is a précis of parts of [1, 17], which define the Event-B language.
Event-B is designed for long-running reactive hardware/software systems that re-

spond to stimuli from user and/or environment. The set-theoretic language in first-order
logic (FOL) takes as semantic model a transition system labelled with event names. The
correctness of a model is defined by an invariant property, i.e. a predicate, or constraint,
which every state in the system must satisfy. More practically, every event in the system



must be shown to preserve this invariant; this verification requirement is expressed in a
number of proof obligations (POs). In practice this verification is performed either by
model checking or theorem proving (or both).

For modelling in Event-B the two units of structuring are the machine of dynamic
variables, events and their invariants, and the context of static data of sets, constants and
their axioms. Every machine may see one or more contexts. The unit of behaviour is the
event. An event e acting on (a list of) state variables v, subject to guard G(x, v) over
local variable x and action E(x, v), has syntax

e =̂ any x where G(x, v) then v := E(x, v) end

That is, when the state is such that the guard is true, this enables the action, or state
transition defined by E(x, v) for some value of x.

An event e works in a model (comprising a machine and at least one context) with
constants c and sets s subject to axioms (properties) P (s, c) and an invariant I(s, c, v).
Thus the event guard G and assignment with before-after predicate E take s, c as param-
eters. Two of the consistency proof obligations for event e are feasibility and invariant
preservation.

The refinement of a context is simply its elaboration, by the addition of new sets,
constants and axioms. The refinement of a machine includes both data and algorithm
refinement: variables v are replaced or supplemented (or both) by new ones w. Existing
events are transformed to work on the new variables, and new events can be defined;
that is, the behaviour of an abstract event e can be refined by some sequence of new
events. The new behaviour will usually reduce nondeterminism. When model N(w)
refines M(v), it also has an invariant J(s, c, v, w) which can include M ’s variables
v. This “gluing invariant”, or refinement relation, has the function of relating abstract
variables v to concrete ones w mathematically. [1] defines further proof obligations for
refinement.

The Rodin toolkit [2] for Event-B is a rich set of tools for model construction, anal-
ysis, verification and code generation; it comprises editors, syntax- and type-checking,
proof obligation generator, proof manager, model-checker, animators, and provers. Also,
composition, decomposition and other support plugins are available2.

3 Electrocardiology and pacemaker basics - M

The essential function of the heart - its beating in a purposeful pattern - is determined
by the pattern of electrical depolarization and associated contraction of specific heart
tissues. Fig. 1 shows the heart’s electrical system, comprising three elements [13]: (i)
the sinoatrial (SA) node, in the right atrium, (ii) the atrioventricular (AV) node, on the
interatrial septum close to the right ventricle, and (iii) the His-Purkinje fibres, in the
ventricle walls. A standard tool for measuring this electrical activity is the electrocar-
diogram (ECG), a graphic trace over a period of time taken noninvasively on the chest.
Fig. 2 shows a typical ECG, with a P wave (associated with atrial contraction), a QRS
complex (associated with ventricular contraction) and a T wave (associated with ven-
tricular relaxation).

2 http://www.event-b.org/



Fig. 1. Electrical structure of the heart [12] Fig. 2. ECG [6]

The control cycle of a normally functioning heart is as follows; we indicate the
ECG wave corresponding to each stage: (1) A signal arrives at the SA node, or the
heart’s “natural pacemaker”, causing contraction of the atria (P), (2) The ventricles fill,
and then the signal arrives at the AV node (the line segment between P and Q), (3)
The signal continues into the ventricular tissues through the His-Purkinje fibre system,
causing ventricular contraction, where the right ventricle contracts a brief interval after
the left (Q when signal is at His, R when signal is in the Purkinje system and left
ventricle contracts, S when right ventricle contracts), (4) The ventricular walls relax
and the ventricles expand (T).

To monitor and correct the dysfunctional heart, the pacemaker is a sealed battery-
powered electronic device implanted in the chest wall [3]. Depending on the design
(single or dual electrode, thus single- or dual-chamber operation) and operating mode,
the pacemaker can sense depolarization of atria and ventricles, and can deliver pacing
signals to atria and ventricles. It is a device that must support and moderate the intrinsic
control system of the heart, given the diagnosed dysfunction in that control system.
Modern pacemakers are reconfigurable (by resetting operating parameter values) and
reprogrammable (by changing operating mode) in service, in the patient’s body.

The pacemaker operating mode is described by a five-letter code - of which only the
first three are relevant to this paper - called the NBG code for pacing nomenclature [7].
The first position refers to the chamber(s) in which stimulation, or pacing, occurs: A
for atrium, V for ventricle, D for both chambers. The second refers to the chamber(s) in
which sensing occurs: the code is as for the first position. The third position refers to the
mode of sensing, i.e. the device’s behaviour in response to a sensed event. I indicates
that anticipated pacing is inhibited by a sensed event, T that pacing is triggered by a
sensed event (e.g. V pacing a suitable time after a sensed A event). D indicates a dual
mode (I for one chamber, T for the other) in a dual-chamber pacemaker.

Refractory periods are important in cardiac pacing: once depolarized, heart tissues
are refractory (unresponsive) to electrical stimulation for a certain period, until they are



repolarized. Separately, a pacemaker may employ refractory periods during which it
does not sense on A or V.

Fig. 3. Pacemaker timing intervals - DDD [10]

In this paper we consider only single-chamber modes AAI, VVI and the dual-
chamber mode VDD. The most sophisticated mode DDD senses both A and V, and
paces these chambers in inhibited manner i.e. only when no intrinsic pulse is sensed in
a chamber. DDD uses six time intervals3 - see Fig. 3:

1. LRI (lower rate interval): maximum interval between two ventricular beats, corre-
sponding to the minimum heart rate

2. AVI (atrioventricular interval): interval from atrial pace or sensed event to ventric-
ular pace

3. AEI (atrial escape interval): interval from from ventricular pace or sensed event to
atrial pace

4. PVARP (post-ventricular refractory period): the period after a sensed or paced ven-
tricular event, during which the atrial sensing circuit is refractory. This is to prevent
crosstalk, where the atrial sensor detects and misinterprets a ventricular signal

5. VRP (ventricular refractory period): the period after a sensed or paced ventricular
event, during which the ventricular sensing circuit is refractory

6. URI (upper rate interval): minimum interval between two ventricular beats, corre-
sponding to the maximum heart rate

4 AAI to VVI

In this section we introduce the simplest single-chamber modes AAI and VVI. We
describe the problem domain notation used and give models for these modes. Section
4.1 then shows the corresponding solution space state machine, as shorthand for an
Event-B model, to be constructed manually or using a tool such as the RODIN UML-B
plugin [19].

3 All intervals apart from URI are used by modes discussed in this paper.



The electrocardiology sources [7, 3] for this work describe the observable behaviour
of the pacemaker in terms of a single process of events of starting/stopping refractory
and sensing states, detecting an intrinsic A or V signal, and pacing A or V. This process
is naturally characterized in context of a timing diagram such as Fig. 3.

We produced single state machine models for AAI and VVI - see Figs. 4, 5. Each
of these models is flat, containing all requirements information at one abstraction level,
as opposed to the staged refinement process in Event-B. In parallel, abstract Event-
B models were being written for these modes in a style that could be described in
shorthand in state machine form.

In atrial inhibited pacing (AAI), only the atrial channel is paced and sensed - see
Fig. 4. An atrial event, paced or sensed, initiates the atrial refractory period (ARP), dur-
ing which time no pacing or sensing occurs. This event also initiates the LRI. After the
ARP expires, sensing is again activated. If no atrial event is sensed before the LRI ex-
pires, the atria are paced. This cycle is insensitive to ventricular events as the pacemaker
has no information about the ventricular channel.

For this model we consider only time interval events (start, elapse, stop) and pace-
maker actions (start/ stop sensing, pace). We model the pacemaker as a long-running,
cyclic process, or sequence of events, that occur in between quiescent states:

– Refractory Pacemaker is insensitive to any intrinsic heart signal
– Monitoring Pacemaker is sensing on this channel
– SensedIntSignal Pacemaker has just sensed an intrinsic signal on this channel;

state represents the time elapsed during the sensing of an intrinsic signal
– Pacing Pacemaker is pacing on this channel; state represents the time taken to

action the pace

 




















Fig. 4. Atrial inhibited pacing - AAI
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Fig. 5. Ventricular inhibited pacing - VVI

We annotate each arrow with the relevant problem domain event(s): this should
be understood as a single state transition that models these events happening together
atomically and instantaneously. If an arrow has more than one event, these are denoted
comma-separated. We abstract away the “sensing on/off” events, regarding them as
internal to state Monitoring. Similarly we abstract away/hide the “pacing” event in
state Pacing.



We describe AAI through Fig. 4. The start event results in state Refractory as a
convenient state, where an atrial event has just occurred. The LRI and ARP intervals
are started on entry to this state. After ARP expires ARP x, sensing (Monitoring in
this model) commences. The next event is either an intrinsic atrial signal iAs, or the
expiry of the LRI time interval LRI x, the latter resulting in a atrial pace. Both the
corresponding states Sensed IntSignal and Pacing are followed by events restarting
the LRI and ARP intervals LRI st, ARP st, and then once more entering Refractory.

Our first observation of the opportunity for model reuse is that the problem model
for VVI corresponding to Fig. 4 is produced by trivial refactoring into Fig. 5, replacing
the ARP with the ventricular refractory period VRP, and iAs with intrinsic ventricular
signal iVs. VVI behaviour is identical to AAI, on the complementary chambers to the
atria, subject to complementary time intervals. A similar trivial refactoring is applied to
the corresponding solution model Fig. 8.

4.1 AAI - solution domain Event-B development

Refinement-based Event-B modelling is a complementary approach to the flat process
modelling of the previous section. With reuse across modes in mind, we start from a
more abstract level, and layer features into our Event-B model in a stepwise manner
with refinement. We will thus construct an Event-B development including all require-
ments of the problem model of the previous section.

An abstract view of the pacemaker is that it monitors the heart condition, and at
certain times it may intervene by issuing a pacing pulse in the atrium or ventricle or
both. The precise details of how the pacemaker reacts to the heart condition depends on
the operation mode and the actual condition of the heart. For a basic mode such as AAI,
the three distinguishable states are Monitoring, Pacing and Refractory, the latter being
the quiescent state described in the previous section. Using these three basic states and
relevant transitions, an abstract model of a pacemaker is presented in Fig. 6.

 










Fig. 6. Solution space state machine: AAI

This state machine is directly translated to the Event-B model of Fig. 7 where the
state is represented by a state variable. The main value of this abstract model is that
it provides a basis for an understanding and verification of the pacemaker functionality
without the need to bring in complex timing aspects in the very early stage of modelling.



This abstract model will later be elaborated through stepwise refinement in Event-B to
ultimately include the detailed requirements of Fig. 4.

INVARIANTS
inv1 : state ∈ P(STATE)

Initialisation
begin

act1 : state := {Refractory}
end

Event Refractory b=
when

grd1 : state = Pacing
∨ state = Monitoring

then
act1 : state := {Refractory}

end

Event Monitor b=
when

grd1 : state = {Refractory}
then

act1 : state := Monitoring
end

Event Pace b=
when

grd1 : state = Monitoring
then

act1 : state := Pacing
end

Fig. 7. First Level Specification

As indicated in Figs. 6 and 7, the initial state is set to Refractory. From this initial
state the next state is Monitoring, representing the interval that the pacemaker monitors
the heart condition. Note that at this stage we have not specified how the monitoring
process is performed. This deliberately has been left out to allow us to have a very ab-
stract view of the pacemaker functionality. If the system is in the Monitoring state the
guards of both Refractory and Pace events are valid, indicating that a nondeterministic
choice between these two events is enabled. This means that at this stage we do not
specify under exactly what conditions the pacing should happen. If the Pace event hap-
pens then the following enabled event is the Refractory event, demonstrating the cyclic
behaviour of the system.

The next step is to address the two issues that we left out in the abstract model:
specifying how the pacemaker performs the monitoring task, and secondly specifying
under what condition pacing can take place. A state machine representation of this
refinement is presented in Fig. 8 and the textual Event-B refinement in Fig. 9. This
state machine corresponds to the problem model in Fig. 4; here the state is represented
by a state variable, and the the problem domain conceptual events become Event-B
state transition events, themselves placeholders for the time interval management at
lower refinement levels. The only structural changes to the graph are two modelling
details driven by the Event-B coding: elaboration of the Pacing state into sub-states,
and introducing Sensing as an explicit event.

In order to monitor the heart condition the pacemaker needs to sense intrinsic heart
signals. To model this, the Monitoring state is refined to two sub-states, namely Start-
Monitoring and SensedIntSignal - see Fig. 8. A Sensing event is introduced that can
repeatedly happen during the StartMonitoring sub-state. If any intrinsic signal is de-
tected, the intrinsic signal flag is set to true in the Sensing event and this in turn enables
the SensedIntSignal event, see Fig. 9. This event changes the state from StartMonitoring
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Fig. 8. Solution space state machine: AAI

to SensedIntSignal; a transitional state that can act as a placeholder for any extra evalu-
ation of the intrinsic signal before moving to the Refractory state. On the other hand, if
during StartMonitoring state, no intrinsic signal is sensed, then the pacemaker should
eventually issue a pace signal. This situation is captured in the guards of Start Pacing
event, which makes the transition from StartMonitoring state to the Pacing state more
deterministic than it was in the abstract level. Although the duration of the pace signal
is very short, it nevertheless takes some time. To reflect this we have refined the Pace
event of the abstract model into two events, Start Pacing and End Pacing, presented in
Fig. 9. The Start Pacing event is a direct refinement of the Pace event and the second
event is new. The pace signal flag is set to TRUE in the Start Pacing event to indicate
that the output signal is active and set back to FALSE in the End Pacing event to indicate
the end of pacing period.

The first two levels of Event-B modelling used set-based representation of the state
to enforce ordering between events without explicitly specifying any timing properties.
The second refinement, partially presented in Fig. 10, introduces the exact timing inter-
vals. Note that in this refinement we do not introduce any new events, therefore the state
machine representation of this refinement is identical to that of Fig. 8. We have adapted
the approach of [5] to model timing. This is a discrete time approach using a set of nat-
urals to model future event times, that allows the clock to advance nondeterministically
up to the next event time. Events in Event-B are atomic and their occurrences con-
ceptually take no time; thus time elapses in each state. Variable interval is a singleton
function mapping the current state to a time interval. In each event, the new state and
interval are set. Here to maintain reusability we have used generic values. For example,
the reader can see that in Fig 10 we have used Refractory Period and Alert Period.
These can be instantiated to ARP and LRI for AAI mode and to V RP and LRI for
VVI mode respectively. Events include guards over these time intervals to ensure time
elapses correctly before the system enters a new state and interval.

The guard of Clock event allows the clock to proceed up to the end of the current
interval for the current state, after which a correct state transition is necessary for time



INVARIANTS
inv01 : state1 ∈ STATE
inv02 : state1 ∈ state
inv08 : intrinsic signal ∈ BOOL
inv09 : pace signal ∈ BOOL

Initialisation
begin
act1 : state1 := Refractory
act02 : intrinsic signal := FALSE
act03 : pace signal := FALSE

end

Event Refractory b=
refines Refractory

when
grd01 : state1 = EndPacing
∨state1 = SensedIntSignal

then
act01 : state1 := Refractory

end

Event Start Monitoring b=
refines Monitor

when
grd01 : state1 = Refractory

then
act01 : state1 := StartMonitoring
act02 : intrinsic signal := FALSE

end

Event Sensing b=
when
grd01 : state1 = StartMonitoring
grd02 : intrinsic signal = FALSE

then
act01 : intrinsic signal :∈ BOOL

end

Event Sensed IntSignal b=
when
grd01 : state1 = StartMonitoring
grd02 : intrinsic signal = TRUE

then
act01 : state1 := SensedIntSignal

end

Event Start Pacing b=
refines Pace

when
grd01 : state1 = StartMonitoring
grd02 : intrinsic signal = FALSE
grd03 : pace signal = FALSE

then
act01 : state1 := StartPacing
act02 : pace signal := TRUE

end

Event End Pacing b=
when

grd01 : state1 = StartPacing
grd02 : pace signal = TRUE

then
act01 : pace signal := FALSE
act02 : state1 := EndPacing

end

Fig. 9. First Refinement: Introducing Sensing and Pacing

to progress. The main advantage of this approach is that unlike other approaches such
as [4], adding new events does not adversely enlarge the guard of Clock. Another ad-
vantage is that we can smoothly move from set-based sequencing of events to a more
precise model based on discrete time intervals.

By this stage all timing requirements presented in Fig. 4 are encoded into the Event-
B model. As indicated earlier, the Event-B models of this section can be used for either
of AAI or VVI modes just by renaming events and intervals. This is another advan-



INVARIANTS
inv10 : time ∈ N
inv11 : interval ∈ STATE 7→ N
inv12 : dom(interval) = {state1}

Initialisation
begin
act02 : intrinsic signal := FALSE
act03 : pace signal := FALSE
act04 : time := 0
act05 : interval := {Refractory 7→

Refractory Period}
end

Event Refractory b=
refines Refractory

when
grd01 : (SensedIntSignal ∈

dom(interval)
∧ time ≥
interval(SensedIntSignal))
∨ (EndPacing ∈ dom(interval)
∧ time ≥ interval(EndPacing))

then
act01 : interval := {Refractory 7→

(time + Refractory Period)}
end

Event Start Monitoring b=
refines Start Monitoring

when
grd01 : Refractory ∈ dom(interval)
grd02 : time ≥ interval(Refractory)

then
act01 : interval := {StartMonitoring 7→

(time + Alert Period)}
act02 : intrinsic signal := FALSE

end

Event Clock b=
any

new time
where
grd01 : interval 6= ∅
grd02 : new time ≤

min(ran(interval))
grd03 : new time > time

then
act01 : time := new time

end

Fig. 10. Second Refinement: Introducing Timing Properties

tage of our approach. In the next section we demonstrate how by combining a subset
of events and states from these two modes we can construct more complex models
representing other modes of operation in pacemakers.

5 VDD

As in section 4 we give a problem model for VDD; section 5.1 gives in part the corre-
sponding solution space state machine and Event-B models, to be constructed manually.

In VDD mode the ventricles are paced (V), both atrial and ventricular channels are
sensed (D), and both inhibited and triggered behaviours (D) are present. VDD mode
is known as P-synchronous pacing: V-pacing tracks, or follows, the P-wave (intrinsic
atrial signal), and V-pacing is inhibited by an R-wave (intrinsic ventricular signal). We
responded to the initial Event-B modelling by producing a problem model comprising
two cyclic synchronised state machines for the atrial and the ventricular channels - we
will call these A and V respectively, see Fig. 11.

Here we see more reuse opportunites. Firstly, each atrial model and each ventric-
ular model comprises an extended subgraph over the four states of AAI (Fig. 4) and
VVI (Fig. 5) respectively. Obviously, the annotations are new. For VDD, the atrial state
machine A is that of AAI without the Pacing state and its arrows, and with two new
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Fig. 11. VDD - atrium, ventricle processs

arrows into state Refractory. The ventricular state machine V is precisely that of VVI,
with two extra arrows from state Monitoring. Secondly, for all modes involving A,V
synchronisation, this is achieved by marking synchronising A,V event pairs (À and Á in
Fig. 11). Each of these synchronisations takes the CSP [9] meaning of shared events in
the two state machinees. That is, each instance of mark Á represents the same event, ac-
tioning a state transition simultaneously in each state machine depending on its current
state.

The reader may wish to refer to timing diagram Fig. 3 and the time interval defini-
tions of section 3, as well as Fig. 11 for this discussion. As before, in each channel we
have an intrinsic-signal-sensed event and state, a pacing state, and internal pacemaker
time interval events. We define both state machines to start at atrium intrinsic signal or
pace, with the AVI4 interval starting (AVI st). Thus A starts in Refractory state and V
in Monitoring state.

A remains Refractory until either (i) synchronising transition Á occurs because of
a ventricular paced or sensed event, or (ii) expiry of PVARP (PVARP x) - the latter
case arises when A is Refractory after a ventricular event and PVARP has started. In
this latter case A enters Monitoring, i.e. becomes enabled to sense any intrinsic atrial
signal. When Monitoring, synchronising transition Á can occur because of a ventricular
event. Otherwise, when sensing detects an intrinsic atrial signal (iAs, eg 2nd AS in Fig.
3), A moves to state SensedIntSignal, then on via starting AVI, and stopping LRI to
Refractory. The latter transition signals this atrial event to V via synchronisation À.

V starts in Monitoring state with AVI started. It can move to Pacing either (i) when
AVI expires after an atrial signal, or (ii) when LRI expires (LRI x). The latter will
happen, if after a ventricular signal or pace, no atrial signal is sensed within the LRI.
From Monitoring, sensing in V may detect an intrinsic V-signal iVs (e.g. 1st VS in Fig.
3) and enter state SensedIntSignal. Both Pacing and SensedIntSignal states tran-
sition to Refractory, signalling the ventricular event to A via synchronisation Á (e.g.
1st VP, 1st VS resp. in Fig. 3): AVI stops, PVARP, VRP and LRI start. The remaining
transition from Monitoring is an auto-transition, via synchronisation À indicating an
intrinsic atrial signal from A. Finally, if V is Refractory, on expiry of VRP it will go to
Monitoring.

4 In dual chamber modes the ARP is replaced by the AVI.



5.1 VDD - Event-B development

To develop an Event-B model of VVD mode we follow an approach very similar to
what we have presented in Section 4.1. Our aim is to maintain simplicity and compre-
hensibility while achieving a high level of reusability. To realise these goals, we use
solution state machine Fig. 6 and Event-B model Fig. 7 as templates and instantiate
them by postfixing necessary elements with the name of channels A and V.

In the most abstract level to model VVD mode we use a single Event-B machine.
However to achieve the above mentioned goals of comprehensibility and high level of
reuse, events of each channel are kept separate from each other. Accordingly we use
separate state variables to represent the state of each channel. Thus we use two state
variables, namely state a and state v, to represent the state of channels A and V re-
spectively. To model A channel we have Refractory A and Monitor A events, acting
on state a. Note that in VVD mode no atrial pacing is taking place. To model V chan-
nel we have Refractory V , Monitor V and Pace V events acting on state v. These
are five events and two state variables in total to represent VDD mode. This abstract
Event-B model is simple, so we skip further discussion of it and its corresponding state
machine. Instead, we focus on the first refinement where we introduce the synchroni-
sation between the two channels as well sensing of both channels and pacing of the V
channel.

The first refinement is illustrated by the solution-space state machine of Fig. 12,
and the corresponding Event-B model is presented in Fig. 13. This state machine cor-
responds to the problem state machine of Fig. 11. The synchronisations between the
two channels are introduced in the form of a flag for each channel: the ventricle-atrium
signal v2a signal, and the atrium-ventricle signal a2v signal. When a ventricular in-
trinsic signal, denoted by SensedIntSignal V event, is detected or a ventricular pace,
denoted by Start Pacing V event, happens then the v2a signal is set to TRUE . This
in turn causes A channel to re-enter a refractory state by executing Refractory2 A,
which also resets the v2a signal to FALSE. Similarly, sensing of an atrium intrin-
sic signal, denoted by SensedIntSignal A event, sets the a2v signal to TRUE.
This will cause the ventricle channels to re-enter StartMonitoring state by execut-
ing Start Monitoring2 V , which also resets a2v signal to FALSE.
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Fig. 12. VDD - solution space state machines



Event Refractory1 A b=
refines Refractory A

when
grd1 : state1 a = SensedIntSignal

then
act1 : state1 a := Refractory

end

Event Refractory2 A b=
refines Refractory A

when
grd01 : v2a signal = TRUE
grd02 : state1 a = Refractory

∨ state1 a = StartMonitoring
then

act01 : state1 a := Refractory
act02 : v2a signal := FALSE

end

Event SensedIntSignal A b=
when
grd01 : state1 a = StartMonitoring
grd02 : intrinsic signal a = TRUE

then
act01 : state1 a := SensedIntSignal
act02 : a2v signal := TRUE

end

Event Start Monitoring1 V b=
refines Monitor V

when
grd1 : state1 v = Refractory

then
act01 : state1 v := StartMonitoring
act02 : intrinsic signal v := FALSE

end

Event SensedIntSignal V b=
when
grd01 : state1 v = StartMonitoring
grd02 : intrinsic signal v = TRUE

then
act01 : state1 v := SensedIntSignal
act02 : v2a signal := TRUE

end

Event Start Pacing V b=
refines Pace V

when
grd01 : state1 v = StartMonitoring
grd02 : intrinsic signal v = FALSE
grd03 : pace signal v = FALSE

then
act01 : state1 v := StartPacing
act02 : v2a signal := TRUE
act03 : pace signal v := TRUE

end

Event Start Monitoring2 V b=
refines Monitor V

when
grd01 : a2v signal = TRUE
grd02 : state1 v = StartMonitoring

then
act01 : state1 v := StartMonitoring
act02 : a2v signal := FALSE
act03 : intrinsic signal v := FALSE

end

Fig. 13. First Refinement of VDD Mode: Introducing Synchronisation

In this refinement Refractory1 A and Start Monitoring1 V are ordinary re-
finements but Refractory2 A and Start Monitoring2 V are synchronisation events
representing transitions of Fig. 12. Note that we have used À and Á on the state machine
of Fig. 12 to demonstrate how synchronisations of Fig. 11 are implemented.

In a second refinement of VDD mode, timing is introduced. This stage is very sim-
ilar to the final part of Section 4.1 and we do not discuss it further here.



6 Conclusion and Related Work

This work is a methodological contribution to combining two interpretations of state
machines in a reuse-intensive setting with demanding timing requirements. We have
developed problem- and solution-domain models in state machines and Event-B for five
modes of the pacemaker, reporting here on AAI, VVI and VDD. These parallel efforts
have helped us to bridge the problem/requirements to solution/implementation space
gap. We have shown how state machines act both as succinct accounts of observable
pacemaker behaviour in terms of electrocardiology concepts, and as useful shorthands
for Event-B developments. Since the problem-domain model is flat, only part of its
information is used on the corresponding solution-domain model, which is then seen to
be the first refinement of a 3-layered development.

The idea of two communicating machines for atrial and ventricular channels emerged
naturally in the Event-B modelling, from reusing the AAI model in constructing VDD.
Significant commonality in VDD and other dual-channel mode models emerged, as
discussed in earlier sections. Thus, synchronising two-state-machine problem models
were produced for VDD, DVI and DDD. The correspondence of the AAI problem and
solution state machine models provided a guide for the construction of solution mod-
els for all modes. We have shown the design decision required to implement the ideal
atrial-ventricular channel synchronisation in the solution model.

The expressive power of abstraction and refinement in Event-B has enabled us to
give a simple state-based functional model, later applying current Event-B techniques
to model more intricate timing aspects. This is an advantage of our approach in compar-
ison to previous work. All proof obligations associated with the Event-B models have
been discharged using Rodin built-in provers. Clearly there is further design, verifica-
tion and refinement to be done, in particular aspects such as hysteresis and adaptive-rate
pacing yet to be covered in further refinements.

For the pacemaker application with its many modes, the problem and solution mod-
els represent useful repositories of requirements and formal models, respectively. They
are useful since the graphic notation is a shorthand, making the text of larger narra-
tive and Event-B models respectively more comprehensible. Further work is required
to define units of reuse in these models, and tool support to enable suitable refactoring
and generic instantiation. Other possible avenues to investigate are graphical animation
of the Event-B models using RODIN plugins, and the application of the RODIN state
machine plugin to the solution models. The latter would be a good platform for further
investigation of channel synchronisation design decisions, and ultimately, the mapping
of such decisions to code.
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[15] D. Méry and N.K. Singh. Functional Behavior of a Cardiac Pacing System. International
Journal of Discrete Event Control Systems (IJDECS), December 2010.
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