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Abstract 65 

Objective: Evidence for effective management of shoulder impingement is limited. The present study 66 

aimed to quantify the clinical, neurophysiological, and biomechanical effects of a scapular motor 67 

control retraining for young individuals with shoulder impingement signs. Method: Sixteen adults 68 

with shoulder impingement signs (mean age 22 ± 1.6 years) underwent the intervention and 16 69 

healthy participants (24.8 ± 3.1years) provided reference data. Shoulder function and pain were 70 

assessed using the Shoulder Pain and Disability Index (SPADI) and other questionnaires. 71 

Electromyography (EMG) and 3-dimensional motion analysis was used to record muscle activation 72 

and kinematic data during arm elevation to 90° and lowering in three planes. Patients were assessed 73 

pre and post a 10-week motor control based intervention, utilising scapular orientation retraining. 74 

Results: Pre-intervention, patients reported pain and reduced function compared to the healthy 75 

participants (SPADI in patients 20 ± 9.2; healthy 0±0). Post-intervention the SPADI scores reduced 76 

significantly (p<0.001) by a mean of 10 points (±4). EMG showed delayed onset and early 77 

termination of serratus anterior and lower trapezius muscle activity pre-intervention, which improved 78 

significantly post-intervention (p<0.05-0.01). Pre-intervention, patients exhibited on average 4.6-7.4° 79 

less posterior tilt, which was significantly less in two arm elevation planes (p<0.05) than healthy 80 

participants. Post-intervention, upward rotation and posterior tilt increased significantly (p<0.05) 81 

during two arm movements, approaching the healthy values. Conclusions: A 10 week motor control 82 

intervention for shoulder impingement increased function and reduced pain. Recovery mechanisms 83 

were indicated by changes in muscle recruitment and scapular kinematics. The efficacy of the 84 

intervention requires further examined in a randomised control trial. 85 

Level of Evidence III 86 

Key Words; shoulder impingement, rehabilitation, biomechanics, electromyography, motor control, 87 

function.88 
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1. INTRODUCTION 89 

Shoulder disorders are the third most common musculoskeletal condition presenting in general 90 

practice, with a point prevalence of 7-26% 
22

. Symptoms are often persistent and recurrent, with 40-91 

50% of patients reporting persistent symptoms after 6 to 12 months 
47

 and 14% of patients continuing 92 

care after 2 years 
18

. Shoulder impingement has been shown to be the most common cause of shoulder 93 

pain, constituting 74% of cases 
31

. Shoulder impingement is a compression of subacromial tissues as a 94 

result of narrowing of the subacromial space 
26

.  The aetiology of subacromial can include anatomical 95 

and mechanical factors, rotator cuff pathology, glenohumeral instability, restrictive processes of the 96 

glenohumeral joint, imbalance of the muscles, and postural considerations 
17

. Impingement syndrome 97 

can cause functional disability and reduce quality of life 
25

 and may contribute to the development of 98 

rotator cuff disease 
26

. Several biomechanical and physiological factors have been highlighted in 99 

shoulder impingement patients 
19

,  including altered scapular movements 
19; 21

 and muscle activity 
20; 21

.   100 

 Physiotherapy is often the first line of management for shoulder impingement 
10

 but systematic 101 

reviews have found little evidence to support its efficacy 
8
. Since these reviews, recent evidence has 102 

demonstrated that motor control and strengthening exercises can improve function in shoulder 103 

impingement patients 
34

 but the evidence is limited to a small sample (n=8) single-subject study 104 

design 
34

. Re-aligning the scapula can change muscle recruitment patterns in patients with neck pain 
45

, 105 

but this has yet to be shown in shoulder pain.  Peripheral musculoskeletal impairments can be 106 

associated with cortical reorganisation 
30

 and movement retraining using the principles of motor 107 

learning can change motor control in athletes 
37

 and improve function in lower back pain patients 
36

. 108 

The aim of the present study was to examine the effects of a motor control based exercise intervention 109 

for young individuals with shoulder pain and impingement signs. To assess the efficacy of this 110 

intervention, function and pain outcomes were used, together with kinematic and neurophysiological 111 

measures to examine mechanisms of recovery. It was hypothesised that motor control exercises of the 112 

scapula would retrain muscle recruitment patterns and improve scapular kinematics, reducing 113 

subacromial impingement, thus improving function and reducing pain. 114 
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2. Materials and Methods 115 

2.1 Participants 116 

A sample of 16 young adults with shoulder pain (mean age 24.6 ± 1.6, range 18-34 years, 11 males) 117 

and 16 healthy age and sex matched participants (22 ± 3.1 years, range 22-29 years, 11 males) were 118 

recruited from the local community.  Inclusion criteria for shoulder pain were: current shoulder pain 119 

severe enough to limit activity for more than one week or requiring treatment; pain located in the sub-120 

acromial region; impingement signs.  Arm pain was commonly replicated with overhead arm 121 

evelation movements with combined shoulder rotation (e.g. throwing action). Mean duration of 122 

shoulder symptoms was 16 months (range 4-36 months).There was no significant difference between 123 

the healthy and shoulder pain groups for body weight (shoulder pain = 72.7kg ± 10.1, healthy = 124 

72.3kg ± 8.8,) or height (shoulder pain = 171.6cm ± 8.9, healthy = 174.6cm ± 8.6).  Written, informed 125 

consent was obtained from all participants and the study was approved by the Faculty of Health 126 

Science Ethics Committee, University of Southampton. 127 

Exclusion criteria: all participants - past or present neck or arm pain, previous traumatic shoulder 128 

injury, neurological disease, referred pain from the cervical or thoracic spine; gleno-humeral 129 

instability; more than 3 lifetime glucocorticoid shoulder injections and/or injection in the past 3 130 

months; current physiotherapy; contraindications for laboratory procedures (i.e. skin allergies). Those 131 

over 34 years were excluded to minimise the confounding influence of aging on rotator cuff 132 

tendinopathy.  133 

2.2 Screening for inclusion in the study 134 

Physical screening of participants with shoulder pain was conducted in order to define a clinical 135 

presentation of shoulder impingement using three clinical tests; Hawkins-Kennedy, Neer’s and 136 

Painful Arc (participants with 2/3 positive were included) 
3
. Diagnostic ultrasound imaging was 137 

conducted by a sonographer to exclude participants with complete rotator cuff tears and biceps 138 

tendinopathy. No tears (complete or partial) were found.  139 



6 

 

2.3 Motor Control Intervention 140 

The motor control retraining package was targeted at correcting movement impairments of the scapula 141 

by re-educating muscle recruitment. There were two components to the package:  142 

1) Motor control exercises to correct alignment and coordination, which involve a) learning optimal 143 

scapular orientation at rest and then controlling optimal orientation during active arm movements; b) 144 

muscle specific exercises for trapezius and serratus anterior 145 

 2) Manual therapy techniques commonly used in clinical practice to manage symptoms, e.g. used to 146 

lengthen tight muscles or reduce active trigger point pain presentations.  147 

During the motor control exercises, scapular position was optimised in relation to the thorax 
28

, 148 

initially by being altered manually by the therapist on a subject specific basis 
28; 45

.  This involved the 149 

therapist using observation and palpation to alter orientation/alignment of the scapula and clavicle 150 

using the following guidelines: Acromion should be higher than the superior medial border of scapula, 151 

the spine of the scapula should be 15-25° rotated in the coronal plane, medial border and inferior 152 

angle of scapula should be tight against the rib cage and the clavicle should have a slight posterior 153 

rotation in the frontal plane. The participant was then taught to actively reproduce this orientation 154 

using visual (in a mirror), auditory (from therapist) and kinaesthetic cues such as palpation 
5
. Once the 155 

scapula was placed into an optimal position, the participant was asked to control the orientation of the 156 

scapula whilst lifting their arm to 90° humeral elevation in the frontal, sagittal, and scapular planes. 157 

Movements were performed at a slow, controlled pace and repeated for 2 minutes (i.e. 10 times). 158 

Once the participant had regained sufficient control of scapular orientation during arm movements, 159 

muscle specific motor control exercises were introduced (after 4-6 weeks). These exercises required 160 

the participant to initiate and maintain the optimal scapular orientation whilst muscle specific 161 

recruitment of serratus anterior and lower trapezius.  162 

Retraining was performed at home twice a day for 10 weeks, with five follow up appointments with 163 

the physiotherapist during that time, to ensure the exercises were being performed appropriately. 164 
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Manual therapy techniques, such as trigger point therapy and pectoralis minor supine manual stretch 
2
 165 

were performed as necessary.  166 

2.4 Data Collection 167 

The shoulder pain group underwent two data collection sessions; immediately prior to and 168 

immediately post- the 10-week intervention (within 2 weeks). Healthy participants underwent one 169 

data collection session. The primary outcome measure of pain and function was the Shoulder Pain and 170 

Disability Index (SPADI) 
32

; other questionnaires included the Disabilities of Arm Shoulder and Hand 171 

(DASH) 
14

, Oxford Shoulder Score 
6
, Short-Form 36 (SF-36) 

43
, and visual analogue scale (VAS) of 172 

pain 
42

.  173 

Outcomes related to the mechanical aspect of the study included surface electromyography (EMG) of 174 

relevant scapulothoracic muscles and kinematic analysis of the shoulder complex during habitual 175 

active arm movements, i.e. without actively orientating the scapula prior to movement.  Three slow, 176 

controlled movements in the sagittal, scapular and frontal plane of arm elevation to 90° from rest (arm 177 

by side), followed by arm lowering back to rest were performed. The dominant arm of the healthy 178 

participants and the effected shoulder of the pain group (also dominant in all cases) were analysed. 179 

2.3.1 Scapular Kinematics and Electromyography 180 

Retroreflective marker data were recorded using a Vicon MX T-Series motion capture system (Vicon 181 

Motion Systems, Oxford UK) consisting of 12 cameras sampling at 100Hz.  An acromion marker 182 

cluster (AMC) was attached to the flat posterior portion of the acromion to measure scapular 183 

kinematics relative to the thorax (Figure 1). The AMC is known to be valid during arm elevation to 184 

120°
 39

 and lowering 
44

. The bony landmarks of posterior acromion (AA), root of medial spine (TS), 185 

and inferior angle (AI) were calibrated with respect to AMC before testing began using the calibrated 186 

anatomical systems technique (CAST) method 
4
. An anatomical local coordinate system was then 187 

constructed from these bony landmarks following the recommendations of the International Society of 188 

Biomechanics 
48

. 189 
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 190 

Figure 1. Acromion marker cluster location (AMC) and electromyography electrode placements. 191 

Retro-reflective markers were also attached to the participant’s thorax (sternal notch, xiphoid process, 192 

C7 and T8 vertebra). A cuff with a cluster of markers was also fastened to the upper arm to determine 193 

the amount of humeral movement. Bony landmarks of the medial and lateral epicondyles were 194 

calibrated with respect to the arm cluster using the CAST method and the gleno-humeral joint centre 195 

was estimated from the pivot point of the instantaneous helical axis between the humerus and scapula 196 

40
. The AMC, thoracic markers and upper arm cuff were applied by the same investigator (MW) and 197 

remained in situ during the testing protocol. Wireless surface EMG electrodes (Aurion ‘Zerowire’, 198 

Milan, Italy) were placed on upper, middle and lower trapezius, according to the SENIAM guidelines 199 

12
 and serratus anterior muscles according to Ludewig and Cook  

20
. EMG data were sampled at 200 

1000Hz and synchronised with kinematic data from the motion capture system. 201 

2.3.2 Data reduction of kinematic and EMG outputs 202 

Prior to further processing, all kinematic data were expressed in the thorax coordinate system. 203 

Scapular orientation with respect to the thorax was determined following a Euler angle rotation 204 

sequence of internal/external rotation (Y), upward/downward rotation (X), and anterior/posterior tilt (Z) 205 
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48
. Upward rotation angles were inverted to obtain more easily interpretable data, with an increase in 206 

value corresponding to upward rotation of the scapula. Humeral elevation with respect to the thorax 207 

was determined following a non-cardan rotation sequence of (Y) plane of elevation, (X) elevation, (Y) 208 

axial rotation 
7
. Vicon BodyBuilder v3.6 (Vicon Motion Systems, Oxford, UK) software was used for 209 

processing kinematic data, which were low-pass filtered using a zero-lag 4
th
 order Butterworth filter at 210 

2Hz using Matlab (Version R2010b, The Mathworks Inc, Massachusetts USA) software. 211 

 Post-processing of EMG signals involved low pass filtering at 20Hz, high pass filtering at 500Hz and 212 

rectification.  Onset and termination of muscle activity was determined using the On/Off methodology 213 

by visual interpretation 
13

 of the filtered rectified EMG signal, and the humeral angle where this 214 

occurred was noted. Kinematic and EMG activation and termination relative to arm elevation anlge 215 

data (after onset estimation) were resampled to 101 data points to enable the kinematic data to be 216 

expressed as a percentage of activity.  The mean value of three trials for all kinematic and EMG 217 

variables were used for statistical analysis. 218 

2.5 Statistical Analysis 219 

Descriptive statistics of the questionnaire data were presented as mean, standard deviation and range. 220 

Questionnaire data were compared pre- to post-intervention using paired t-tests. The change in score 221 

pre- to post-intervention was also compared to the minimally clinically important difference (MCID) 222 

33
. Scapulothoracic kinematic data were compared between healthy and pre-intervention groups at rest, 223 

90° of humeral elevation, and the end of the test (back to rest) using two factor mixed model repeated 224 

measures ANOVA with humeral elevation angle as a within-subject factor, and group as a between-225 

subject factor. Kinematic changes from pre- to post-intervention were assessed using a two factor 226 

repeated measures ANOVA with within-subject factors of humeral angle and intervention (pre/post). 227 

The humeral angles where onset and termination of muscle activity occurred was compared pre to 228 

post intervention using paired samples t-tests in the participants with shoulder pain, and between 229 

groups using independent samples t-tests. All data was checked for normal distribution prior to 230 

analysis using the Shapiro-Wilk test.  231 
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3. RESULTS 232 

3.1 Clinical Outcomes 233 

  Function and pain improved after 10 weeks of motor control intervention (Table 1). The Healthy 234 

control participants had full function and no pain. 235 

Table I. Clinical outcomes: Shoulder Pain and Disability Index (SPADI, 0-100),Disabilities of Arm 236 

Shoulder and Hand (DASH, 0-100), Oxford Shoulder Score (OSS, 0-48), Short-Form 36 (SF-36, 0-237 

100), visual analogue scale (VAS, 1-10) pain. 238 

Group SPADI SPADI  

(pain) 

DASH  OSS SF-36 

(phys) 

Pain  

(VAS) 

Healthy (n=16) 0 ±0  

0-0  

0 ±0  

0-0 

0 ±0.4  

0-1.4 

48 ±0  

48-48 

53.3 ±2.6 

53-62  

0 ±0  

0-0 

Pre-intervention 

(n=16) 

19.9 ±9.2 

5.4-34.5 

37.3 ±15.9 

12-68 

17.0 ±11.4 

5-49.2 

39.4 ±4.8 

27-47 

48.8 ±5.7 

36-58 

4.9 ±1.6 

3-8 

Post-intervention 

(n=16) 

10.1 ±7.8 

2.5-29 

19.4 ±14.2 

4-52 

7.8 ±6.4 

1.6-24.9 

44.1 ±2.9 

36-48 

52.6 ±4.7 

43-58 

1.5 ±1.2 

0-5 

Mean ± standard deviation and range.  239 

 240 

The SPADI scores improved by a mean of 10 (±7.4), these changes were statistically significant 241 

(p<0.001; Table 1) and met the MCID of 10 points 
33; 46

.  Pain scores on the 10-point VAS also 242 

reduced post-intervention with a mean reduction of 3.4 points (±1.5).  DASH improved by 9.2 (±10.3), 243 

whilst small improvements were also seen in the OSS (4.7±4) and SF-36 physical scores (3.8±4.9).  244 

3.2 Musculoskeletal Outcomes 245 

  The EMG and kinematic data showed some significant differences between healthy and shoulder 246 

pain participant’s pre-intervention, with improvements post-intervention.  247 

3.2.1 Electromyography 248 

Timing of muscle activation was delayed significantly (p<0.05) in patients pre-intervention compared 249 

to healthy controls, in both serratus anterior (arm elevation in frontal 23.3° ±16.6 vs. 14.3° ±1.3 and 250 
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sagittal planes 26° ±14.6 vs 19.7° ±4.5) and lower trapezius (frontal 29.8° ±17.1 vs. 18.3° ±7 and 251 

scapular planes 30.9° ±17 vs. 20.4° ±8.1). However, the most significant differences (p<0.05) in 252 

muscle activity patterns were seen in the early termination of activity in both muscles during arm 253 

lowering in all planes (apart from lower trapezius during frontal plane arm elevation) (Table 2). On 254 

average (across all movements) serratus anterior terminated 24.2° earlier in the arm lowering phase in 255 

the pre-intervention group compared to the healthy controls. The differences in lower trapezius 256 

termination were more modest with an average of 15° difference between groups. Upper and middle 257 

trapezius showed no significant differences between groups (p>0.05). 258 

 259 

Figure 2. Muscle activation timing in relation to arm position: (a) serratus anterior muscle activation 260 

onset during the elevation phase and termination during the lowering phase in the frontal plane. (b) 261 

lower trapezius onset and termination during arm movement in the sagittal plane. Mean and standard 262 

deviation (error bar) arm position of muscle onset and termination of muscle activity . Graph to show 263 

electromyography muscle activation relative to arm elevation angle in one participant prior to (c) and 264 

post- (d) the ten week intervention 265 
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Table II.   Muscle activation timing for serratus anterior and lower trapezius during arm elevation 266 

and lowering in the sagittal, scapular and frontal planes. Arm position (degrees) where muscle onset 267 

during the elevation phase, and termination of muscle activity during the lowering phase, are 268 

presented for the healthy control and shoulder impingement group pre- (Pre-M-C) and post (Post-M-269 

C intervention 270 

Phase Group Arm elevation (degrees) 

  Sagittal plane  Scapular plane  Frontal plane 

Serratus Anterior 

Elevation 

(muscle On) 

Healthy 14.3 ±1.3 16.5 ± 3.4 19.7 ± 4.5 

Pre-MC 23.3 ±16.6
#
 22.4 ± 14.1 26 ±14.6

 #
 

Post-MC 21.4 ± 13.6 20.7 ± 13.3 15.6 ± 2.7 

Lowering 

(muscle Off) 

Healthy 45.1 ± 12.9 40.1 ± 11.2 44.1 ± 5.8 

Pre-MC 60.3 ± 17.9
##

 68.8 ± 13.6
 ###

 66.7 ± 15.5
###

 

Post-MC 45.6 ± 10.8 *** 53 ± 17.1
 
** 46.9 ± 14.3

 
*** 

Lower Trapezius 

Elevation 

(muscle On) 

Healthy 18.3 ± 7 20.4 ± 8.1 29.5 ±10.9 

Pre-MC 29.8 ± 17.1
 ##

 30.9 ± 17
 #
 35.5 ± 18.9 

Post-MC 17 ± 4.3* 22.8 ± 13.3 30.5 ± 20 

Lowering 

(muscle Off) 

Healthy 46 ± 16.1 38.7 ± 12.4 56.9 ± 20 

Pre-MC 58.8 ± 16.3
 #
 61.2 ± 14.2

###
 66.5 ± 16.2 

Post-MC 42 ± 13.7 ** 50.7 ± 20* 59.3 ± 23 

Mean ± standard deviation. *Significant difference pre- to post intervention. 
#
Significant difference 271 

between healthy control and participants with pain. Significance level indicated by; *
/#
 p<0.05, **

/##
 272 

p<0.001, ***
/###

 p<0.0001. MC, motor control 273 

 274 

 Post-intervention the delayed onset of muscle activation reduced significantly (p<0.05) for serratus 275 

anterior (Figure 2a) during frontal plane arm elevation and lower trapezius during flexion (Figure 2b) 276 
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and was close to matching the arm elevation angle for the control group. There was also significantly 277 

increased (p<0.05) duration of activity to match that of the healthy group in both serratus anterior 278 

(arm lowering in all three planes) and lower trapezius (sagittal and scapular planes) with the largest 279 

gains coming in the lowering phase of the activity (Table 2).  280 

3.2.2 Kinematics 281 

Kinematic analysis of the scapular rotations showed significantly less posterior tilt in patients with 282 

shoulder pain pre-intervention compared to healthy control participants during arm elevation in the 283 

frontal and scapular planes (p<0.05), but not in the sagittal plane. There were no significant 284 

differences between healthy control and  pre-intervention groups for upward rotation or internal 285 

rotation. There was a general trend of impingement patients having less upward rotation and posterior 286 

tilt at 90° arm elevation in all three planes pre-intervention compared to the control group (Table 3).  287 

 288 
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Figure 3. Scapular kinematics:  (a) mean upward rotation from rest to 90° arm elevation (b) mean 289 

upward rotation from 90° arm elevation to rest (c) posterior tilt during sagittal plane arm movement 290 

from rest to 90° (d) posterior tilt during sagittal plane arm movement from 90° to rest. 291 

 292 

Table III. Scapular orientation (upward rotation and posterior tilt) at the start (0
o
), 90° arm elevation, 293 

and end point (0
o
) after lowering the arm during each plane of arm movement for the healthy group 294 

and shoulder impingement group pre- (Pre-M-C) and post (Post-M-C) motor control intervention.  295 

  Upward Rotation (deg.) Posterior Tilt (deg.) 

Plane of 

arm 

movement 

Arm 

pos. 
Healthy Pre-M-C Post M-C Healthy Pre-M-C Post M-C 

 Sagittal 

plane 

Start 
-2.7 ±   

3.6 

-4  ±     

7.1 

-2.3 ±        

5.5 

-11.3 ± 

4.1 

-12.3 ± 

3.7 

-11.3 ±  

3.8 

90 
18.3 ±  

5.9 

14.2 ±     

7 

19  ±        

6.9 

-0.7  ±  

6.5 

-5.3  ±  

6.9 

-2.5  ±   

5.9 

Rest 
-5.3  ±  

3.4 

-6.4  ±  

7.6 

-2.8 ±          

8.7 

-10.7 ± 

4.4 

-11.7 ± 

3.9 

-11.1 ±        

4 

 

Scapular 

plane  

Start 
-4  ±       

5.4 

-5.4  ±  

6.5 

-4.8 ±     

5.4 

-10.7 ± 

4.3 

-12.2 ± 

3.7 

-11   ±   

3.7 

90 
17.4 ±  

5.5 

14.1 ±  

5.9 

16.7 ±     

5.1 

2.4  ±   

7.9 

-5   ±    

5.1 

-2.2  ±   

5.5 

End 
-6  ±      

4.9 

-6.8  ±      

7 

-3.1  ±       

8 

-10.9 ± 

3.7 

-12.1 ± 

3.7 

-10.9 ±  

3.8 

 Frontal 

plane 

Start 
-5.1  ±  

3.3 

-5.5  ±  

6.5 

-4.2  ±    

6.6 

-10.8 ± 

3.6 

-12  ±   

3.4 

-10.4 ±  

3.5 

90 
17.9 ±  

6.1 

15.5 ±  

7.1 

15.3 ±     

6.5 

3.6 ±    

8.2 

-3.3  ±  

5.9 

0.4  ±    

5.1 

End 
-4.5  ±  

3.9 

-4.7 ±   

6.7 

-1.1  ±    

8.4 

-10.6 ± 

3.6 

-12.5 ± 

3.5 

-10.2 ±  

4.4 

Mean ± standard deviation. 296 
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 Post-intervention, upward rotation during arm elevation in the sagittal plane had increased 297 

significantly (p<0.05), on average by 4.8° at 90° arm elevation. The increase in upward rotation 298 

matched that of the healthy participants (Figure 3). There was also a significant increase (p<0.05) in 299 

posterior tilt during arm elevation in the frontal plane, with the greatest increases occurring at 90° arm 300 

elevation. Although general trends in increased upward rotation and posterior tilt were observed in the 301 

other glenohumeral movements, these were not found to be significant (Table 3).302 
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4. DISCUSSION 303 

The present study found that a 10 week motor control based intervention young adults with shoulder 304 

impingement signs improved function and reduced pain immediately post-intervention. The recovery 305 

mechanism appears to involve neurophysiological and biomechanical changes, with significant 306 

changes seen in muscle recruitment patterns previously shown to optimise scapular kinematics during 307 

humeral movements. These preliminary results provide an indication for the intervention efficacy in 308 

young adults with shoulder impingement. However, the evidence of effectiveness compared with 309 

other exercise approaches and the long-term effects over a wider age range need to be demonstrated 310 

by a randomised controlled trial (RCT).  311 

  The participants with shoulder impingement signs had pain and reduced function pre-intervention, as 312 

measured by the SPADI. These SPADI results changed significantly post-intervention reaching the 313 

MCID 
33

. However, the relatively high pre-intervention function (9 subjects with SPADI < 20) may 314 

have limited the scope for improvement due to a ceiling effect. The most comparable study to the 315 

present investigation was conducted by Roy et al 
34

,  which used a 4 week intervention in eight 316 

shoulder impingement patients 
34

. They found improvements in SPADI for 7/8 participants and small 317 

scapular kinematic changes in most, although no EMG was recorded in that particular study to 318 

highlight changes in motor control. There were, however, several differences between Roy et al 
34

 and 319 

the present study. Firstly, their participants were older with higher pain and disability scores at 320 

baseline (age = 46 years; SPADI = 43.3 ±17.4) compared to the present study (age = 24.6 years; 321 

SPADI = 19.2 ±9.2). Secondly, the intervention was delivered differently, with Roy et al 
34

 applying 322 

two consecutive periods of different exercise programmes (the second being motor control), whereas 323 

we assessed a predominantly motor control based intervention.  324 

The present study demonstrated how timing of muscle activation differs between shoulder pain 325 

participants and healthy participants. Delayed muscle onset has been shown during arm elevation 
27; 41

 326 

and significant co-activation of middle trapezius and serratus anterior has also been shown during the 327 

arm lowering 
9
 in shoulder impingement patients. There are, however, to our knowledge no other 328 
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reports of the early termination of muscle activity found in serratus anterior and lower trapezius 329 

during arm lowering, despite consensus on apparent altered muscle recruitment 
16

. This early 330 

switching off of activity could cause loss of scapular control and potential mechanical impingement 
19

, 331 

previously been termed as ‘kick out’ 
16

.  Previous authors have stressed that exercises focusing on the 332 

dynamic control of the shoulder can significantly improve symptoms of impingement, making 333 

specific reference to serratus anterior and lower trapezius 
23

. The present study has shown how a 334 

motor control intervention for shoulder impingement can alter muscle recruitment patterns in both of 335 

these key muscles. The most comparable findings were from another study by Roy et al 
35

 of the 336 

effect of one session of movement training in 33 participants, which involved motor strategies during 337 

a reaching task 
35

. They found EMG and kinematic changes at the end of the training but only the 338 

EMG changes remained 24 hours later, with no further follow-up.   339 

Although there is evidence to suggest exercise interventions can reduce shoulder impingement 340 

symptoms, there is minimal evidence of these interventions changing movement patterns of the 341 

scapula 
24

. Ludewig and Braman 
19

 highlighted the need to link exercise regimes with changes in 342 

scapular movement patterns and motor control 
19

. The present study has shown that in a small cohort 343 

of young shoulder impingement patients, motor control based exercises influenced scapular 344 

kinematics during arm movements to 90° elevation. The significance of the changes in kinematics 345 

between pre- and post-intervention were limited, with the only statistically significant changes seen in 346 

upward rotation of the scapula during sagittal plane arm elevation and scapular posterior tilt during 347 

frontal plane arm elevation. Other studies have also shown the difficulty in achieving a significant 348 

change in scapular kinematics 
24; 38

. The wide variation in data and the small study limited the present 349 

studies ability to identify statistical differences in kinematics. Lack of statistical significance could 350 

have also been influenced by errors in the motion analysis protocol. Previous research has shown 351 

visual observation of scapular dyskinesis had a high repeatability and sensitivity, which would be 352 

more clinically applicable 
38

.  353 

4.1 Limitations of the study 354 
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Whilst the number of participants (n=16) was greater than n=8 in the previous study of motor control 355 

retraining 
34

, the convenience sample used in the present study was underpowered. Other limitations 356 

of this and the previous study 
34

 were that they lacked a control intervention, blinding and follow up 357 

testing to assess the long-term effects. This study was not representative of the majority of patients 358 

typically presenting to general practitioners, predominantly aged 50-75 years 
1
, who have more 359 

chronic conditions. Clinical assessment of impingement signs provides an indication of impingement 360 

but do not indicate the mechanism of impingement. The use of repeat assessment before and after an 361 

injection of lidocaine solution may have increased the accuracy of diagnosis 
29

.  Limitations in both 362 

the outcome measures for the mechanistic aspect of the study are well recognised. The acromion 363 

marker cluster method in the measurement of scapular kinematics is prone to error due to skin 364 

movement artefact 
15

, and surface EMG is prone to cross-talk of muscle activity and poor reliability of 365 

magnitude measures (based on amplitude) between sessions.  Although evidence has been provided 366 

for the efficacy of the motor control concept, exercises were limited to 90° arm elevation, which is not 367 

in the functional range for some activities. This study also only focused on the painful shoulder of 368 

impingement participants and the dominant shoulder of the healthy controls. Analysis of the 369 

contralateral shoulder would have added to the scope of these findings, with the potential to examine 370 

bilateral asymmetries as a result of a more global change in the neural control of the muscles around 371 

the shoulder. However, previous studies have shown unilateral shoulder impingement can have 372 

bilateral effects on scapular kinematics 
11

.373 
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5. CONCLUSIONS 374 

The present findings suggest a 10 week motor control exercise intervention can improve function and 375 

pain in young adults with shoulder impingement signs. The findings also indicate that the recovery 376 

mechanism involves improvements in muscle recruitment patterns and scapular kinematics. Evidence 377 

of clinical effectiveness in the long-term compared with other exercise interventions needs to be 378 

confirmed by an RCT involving a wider age range of shoulder impingement patients and other 379 

intervention approaches. 380 

 381 

 382 
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