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Abstract

Inferences about the presence or absence of threshold type nonlinearities in TAR models are
conducted within models whose lag length has been estimated in a preliminary stage. Typically
the null hypothesis of linearity is then tested against a threshold alternative on which the
estimated lag length is imposed on each regime. In this paper we evaluate the properties of
test statistics for detecting the presence of threshold effects in autoregressive models when this
model uncertainty is taken into account. We show that this approach may lead to important
distortions when the underlying model has truly threshold effects by establishing the limiting
properties of the estimated lag length in the mispecified linear autoregressive fit and assessing
the impact of this model uncertainty on the power of the tests. We subsequently propose a
full model selection based approach designed to jointly detect the presence of threshold effects
and optimally specify its dynamics and compare its performance with the traditional test based
approach.
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1 Introduction

A vast body of the recent theoretical and applied econometrics literature has focused on tech-

niques for modelling economic time series within a nonlinear framework with the aim of explicitly

capturing regime specific behaviour and general types of asymmetries for which linear models are

inappropriate.

Although economic theory is often silent about the specific type of nonlinearities characterising

an economic variable it frequently points to models with switching regimes for capturing changing

dynamics across the business cycle for instance (see Potter (1995), Koop and Potter (1999), Al-

tissimo and Violante (2001), Hansen (1997, 1999, 2000), Caner and Hansen (2001) among numerous

others). In this context a popular family of models that has attracted considerable recent attention

is the class of threshold autoregressive models originally introduced by Tong (1983). Such models

aim to model nonlinear dynamics via piecewise linear specifications separated according to the

magnitude of a threshold variable. Despite being introduced in the early 70s it is only recently that

sufficiently general and formal estimation and inference tools have been proposed and continue to

being developed for such models. A sampling theory for testing for the presence of threshold effects

within general threshold models has for instance been proposed in Hansen (1996, 1997, 1999) and

subsequently extended to the case where the underlying series of interest might be characterised

by a unit root in its autoregressive polynomial in Caner and Hansen (2001). The asymptotic prop-

erties of estimators obtained from such models have been investigated in Hansen (2000), extending

earlier work of Chan (1990, 1993). Additional theoretical results related to testing for the presence

of threshold effects and the limiting properties of the resulting estimators have also been introduced

in Gonzalo and Pitarakis (2002) for the multiple regime case.

In the context of threshold models where the regimes involve linear autoregressions (SETAR

models) the common approach to inference and specification involves first fitting an appropriate

linear AR(p) model to the data using some standard model selection criterion such as the AIC,

BIC or HQ in order to select an appropriate lag length, say p̂. This linear model is subsequently

tested against a threshold specification that imposes the lag order p̂ in each regime. Although the

theoretical properties of tests for detecting the presence of threshold effects are now well understood

little is known about their behaviour in finite samples and more importantly about the influence

of the preliminary model selection stage on their large and finite sample behaviour. How does the
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use of an estimated lag length required in practice prior to implementing the tests of threshold

nonlinearity for instance affects the properties of the tests?

Our objectives in this paper are twofold. We will initially investigate the properties of the

lag length estimate obtained from a linear fit when the true underlying process is a threshold

autoregression. In a related paper, Yang (2002) investigated a similar issue in the context of a

stationary VAR model with a structural break in its constant term and established that in general

the lag length estimated from a linear VAR will overfit the true lag length. Highlighting the

theoretical properties of p̂ obtained in this fashion will then allow us to infer the consequences that

this preliminary estimation stage will have on the subsequent SupLM type tests for the presence

of threshold effects. We are particularly interested in the ability of the tests to detect the presence

of threshold effects (i.e. power) when the test statistic is constructed using p̂. Our next and key

objective is then to evaluate the properties of a full model selection based approach for assessing

the presence of SETAR type nonlinearities. This will then allow us to compare the relative merits

and shortcomings of both approaches for applied work.

The plan of the paper is as follows. Section 2 introduces the general model and assumptions

under which we will operate. Section 3 establishes the limiting behaviour of p̂ when the underlying

DGP is a SETAR model and subsequently explores the impact of the preliminary lag length estima-

tion stage on the commonly used tests for testing the null hypothesis of linearity againts a threshold

alernative. Section 4 introduces our model selection approach and compares its behaviour with the

standard test based approach. Section 5 concludes. All proofs are relegated to the appendix.

2 The Model and Assumptions

We consider the following two-regime threshold autoregression also commonly referred to as a

SETAR(2; p, p) model

yt =
{

φ10 + φ11yt−1 + . . . + φ1pyt−p + εt if yt−d ≤ γ
φ20 + φ21yt−1 + . . . + φ2pyt−p + εt if yt−d > γ,

(1)

where d ∈ D = {1, . . . , p} denotes the delay parameter, yt−d the threshold variable trigerring the

regime switches and γ the threshold parameter. The lag length p is such that p ≤ pmax for some

known upperbound pmax.

In what follows we assume that the lag polynomials characterising each regime have their
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roots lying strictly outside the unit circle and the threshold parameter is such that γ ∈ Γ with

Γ = {γ : −∞ < γ < γ < γ̄ < ∞}. The random disturbance term εt is taken to be a real valued

martingale difference sequence with respect to some increasing sequence of sigma fields Ft generated

by {(yj+1, εj+1), j ≤ t} with E|ε|4r < ∞ for some r > 1.

Letting X = [1 yt−1 . . . yt−p] denote the (T − p) × (p + 1) regressor matrix characterising each

regime, y = [yp+1, . . . , yT ] the (T − p) × 1 vector of observations on the dependent variable and

defining X1(γ, d) = X ∗ I(y−d ≤ γ) and X2(γ, d) = X ∗ I(y−d > γ) with I(y−d ≤ γ) and I(y−d > γ)

denoting the stacked vectors of indicator functions and ∗ the Hadamard product, we can reformulate

the model in (1) in matrix form as

y = X1(γ, d)φ1 + X2(γ, d)φ2 + ε (2)

where φ1 = (φ10, φ11, . . . , φ1p)′, φ2 = (φ20, φ21, . . . , φ2p)′ are (p× 1) parameter vectors. Noting that

given γ and d the model is linear in φ = (φ′1, φ
′
2)
′ the concentrated sum of squared errors function

can be written as

ST (γ, d) = y′y −
2∑

j=1

y′Xj(γ, d)(Xj(γ, d)′Xj(γ, d))−1Xj(γ, d)′y (3)

from which the least squares estimators of γ and d can be obtained as (γ̂, d̂) = arg minγ,d ST (γ, d)

and the slope parameter estimates are then obtained as φ̂ = φ̂(γ̂, d̂). For later use we let σ̂2(p)

denote the residual variance from the least squares estimation of the linear model y = Xφ1 +u (an

AR(p) here) fitted to SETAR data. Similarly we let σ̂2(γ, d|p) = ST (γ, d|p)/T denote the residual

variance obtained from fitting the SETAR(2; p, p) model. Throughout the rest of the paper we

will be operating under the following set of assumptions.

Assumptions As T →∞, uniformly over γ ∈ <

(i)
X1(γ)′X1(γ)

T

p→ G(γ, d) and
X ′X

T

p→ G,

(ii)
X ′ε

T

p→ 0,

(iii)
X ′ε√

T
= Op(1),

where G and G(γ, d) are finite symmetric positive definite matrices. G(γ, d) is an absolutely con-

tinuous and strictly increasing function of γ.
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Note that for notational parsimony we have omitted the dependence of the above matrices on

d ∈ D. Since D is finite convergence over d ∈ D is uniform. For later use, we also introduce the

following partitioned versions of X together with the limiting counterparts of the corresponding

sample moments. Letting p0 denote the true lag length of the SETAR model in (1), for p < p0 we let

X = [1 yt−1, . . . , yt−p, yt−(p+1), . . . , yt−p0 ] and the corresponding partitions of the limiting matrices

defined in (i) are written as G(γ) = [G1(γ) G2(γ)] and G = [G1 G2]. The dimensions of G1, G2,

G1(γ) and G2(γ) are (p0 +1)× (p +1), (p0 +1)× (p0− p), (p0 +1)× (p +1) and (p0 +1)× (p0− p)

respectively. We also write G1 = (G11 G21)′ with G11 and G21 denoting (p + 1) × (p + 1) and

(p0 − p) × (p + 1) dimensional matrices. For p > p0 we maintain X = [1, yt−1, . . . , yt−p0 ] and

define Z = [yt−(p0+1), . . . , yt−p]. Within this senario we formulate our assumptions as Z ′Z/T
p→ Q,

X ′Z/T
p→ L. Also, uniformly over γ ∈ <, X1(γ)′Z/T

p→ L(γ) also implying that X2(γ)′Z/T
p→

L−L(γ). Here Q and L are finite symmetric positive definite matrices. Matrix L(γ) is an abolutely

continuous and strictly increasing function of γ. Similarly, assumptions (ii)-(iii) specialises into

Z ′ε/T
p→ 0 and Z ′ε/

√
T = Op(1).

Assumptions (i)−(ii) above are law of large number type of conditions. They exclude integrated

processes and hold for instance if yt is strictly stationary and ergodic (see Hansen (1996, Lemma 1)).

In the context of the SETAR specification in (1) they will hold provided that the lag polynomials

characterising each regime have their roots outside the complex unit circle and the random error

term εt has a bounded and continuous density (see Hansen (1996, Lemma 1)). Assumption (iii) is

a central limit theorem type of result. It holds for instance under strict stationarity and ergodicity

of the sequence {yt, εt} combined with the requirement that εt is a martingale difference sequence

and finite fourth order moment conditions E|εt|4 < ∞ and E|ytεt|4 < ∞. In the context of model

(1) the stochastic boundedness requirement in (iii) holds provided that the two lag polynomials

have all their roots outside the complex unit circle and an m.d.s error sequence with a continuous

and bounded pdf.

3 Detecting Threshold Effects: Model Selection Followed by Test-
ing

The practical implementation of a test for the presence of threshold effects as in the specification

presented in (1) first involves selecting an appropriate linear autoregression, say AR(p̂). The latter
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is then tested against the SETAR(2; p̂, p̂) alternative via the null hypothesis H0 : φ1 = φ2. Since

the parameters γ and d are unidentified under this null hypothesis the test is conducted using

a functional such as maxγ,d JT (γ, d) where JT (γ, d) = T (σ̂2(p̂) − σ̂2(γ, d|p̂))/σ̂2(γ, d|p̂). Hansen

(1996, 1999) obtained the limiting distribution of this test statistic assuming correct specification

(i.e. p̂ = p0) and showed that the limiting behaviour of maxγ,d JT (γ, d) depends on the population

moments of the regressors and threshold variable and thus cannot be universally tabulated. Instead

a bootstrap model based approach has been proposed. In Hansen (1996) the author also provided

a limited Monte-Carlo study evaluating the finite sample behaviour of the above tests. From our

reading of the literature however it appears that little is known about the behaviour of the tests

for detecting threshold nonlinearity when model selection uncertainty is taken into account.

3.1 Large Sample Behaviour of p̂ under a SETAR DGP

If the true model is a linear autoregression, say AR(p0) and p̂ is a consistent estimator of p0 then

large sample inferences about the null hypothesis of linearity based on JT (γ, d) can naturally be used

by proceeding as if we knew the true lag length. This obviously does not preclude the possibility

of serious finite sample distortions due to the use of a contaminated p̂ in the computation of the

test statistic. The picture could be very different however if the true model has threshold effects

and we test the null hypothesis using p̂ obtained from a linear AR fit. Indeed if the true model

is a SETAR(2; p0, p0) for instance then estimating an optimal lag length within a linear AR(p)

specification may lead to estimated lag lengths that are far off the true p0 characterising each

regime of the underlying SETAR even asymptotically. If p̂ turns out to be substantially higher

than p0 for instance then the null hypothesis of linearity will be tested within an overfitted model

allowing more parameters than necessary to shift under the alternative, with potentially serious

consequences for the power properties of the tests. If p̂ undershoots the true lag length p0 on the

other hand then the null of linearity will be tested within a model with residual serial correlation

using inappropriate distributional results.

Here, our initial aim is to establish the large sample behaviour of p̂ estimated using a model

selection based approach within a linear autoregression when the true underlying model is in fact

a SETAR(2; p0, p0). Specifically, we assume that the lag length is estimated from a linear autore-

gression, say yt = φ0 + φ1yt−1 + . . . + φpyt−p + ut with p ∈ [1, pmax] and p0 ≤ pmax. The model

selection criteria used for the estimation of p in the linear autoregression take the general form
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IC(p) = log σ̂2(p) + cT
T (p + 1) where cT is a deterministic penalty term and σ̂2(p) =

∑T
t=1 û2

t /T

denotes the residual variance of the estimated AR(p) model. The lag length estimator is then

defined as p̂ = arg min1≤p≤pmax IC(p).

Before establishing the large sample behaviour of p̂ we initially investigate the properties of the

residual variance σ̂2(p) across p ∈ [1, . . . , p0, . . . , pmax] when the true DGP is a SETAR(2; p0, p0).

The result is summarised in the following lemma.

Lemma 1: Under assumptions (i)-(ii) and letting σ̂2(p) denote the residual variance from fitting

a linear AR(p) to a SETAR(2; p0, p0) DGP, we have as T →∞

σ̂2(p = p0)
p→ σ2

ε + (φ2 − φ1)′(G−G(γ))G−1G(γ)(φ2 − φ1), (4)

σ̂2(p < p0)− σ̂2(p0)
p→ f(γ)′G−1

22.1f(γ), (5)

and

σ̂2(p > p0)− σ̂2(p0)
p→ −(φ2 − φ1)′H(γ)′(Q− L′G−1L)−1H(γ)(φ2 − φ1). (6)

where f(γ) = φ′1[G2(γ)−G1(γ)G−1
11 G12] + φ′2[(G2 −G2(γ))− (G1 −G1(γ))G−1

11 G12], H(γ) = (L−

L(γ))− (G−G(γ))G−1L and G22.1 = G22 −G21G
−1
11 G12.

From the above lemma we note that the large sample behaviour of σ̂2(p) presented in (5) is conven-

tional in the sense that it is qualitatively similar to the behaviour one would observe even within

a purely linear framework in which an underparameterised AR is fitted to the data (e.g. fitting

an AR(1) to AR(2) data). The result in (6) on the other hand indicates that increasing the lin-

ear AR lag order beyond p0 may lead to a reduction in residual variance asymptotically. This

would clearly not have been the case within a purely linear framework in which we would have

σ̂2(p > p0)− σ̂2(p0) = op(1). The behaviour of p̂ = arg min1≤p≤pmax IC(p) in this framework is now

summarised in the following proposition.

Proposition 1 Under assumptions (i)-(iii) and the DGP in (1) we have as T → ∞, (a) P [p̂ <

p0] → 0 if cT /T → 0, (b) P [p̂ > p0] → 1 if cT = constant or cT →∞.

From the above proposition it is clear that when the true process is a SETAR(2; p0, p0) on which

we attempt to fit a linear AR(p) model, none of the conventional model selection criteria (i.e. the

AIC under cT = 2, the BIC under cT = lnT and the HQ under cT = 2 ln lnT ) will point to a lag
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length smaller than p0 since they all satisfy the requirement that cT /T → 0 as T → ∞. In the

present context of selecting an optimal lag length within a misspecified linear model and analogous

to its behaviour documented in the conventional lag length selection literature it is also clear from

Proposition 1b that an AIC type criterion with cT = 2 will point to lag lengths greater than p0

asymptotically. The behaviour of the BIC or HQ type criteria is clearly unusual. Indeed, the result

in part (b) of Proposition 1 indicates that both the BIC and HQ criteria will point to lag lengths

greater than the true lag length of p0 asymptotically since their penalty terms is such that cT →∞.

At this stage it is important to note that the above results are valid in large samples. In practice,

when dealing with finite samples it is natural to expect for instance that the decision frequencies

across the different model selection criteria will depend on the magnitudes of the true parameters

and in particular on the closeness of the true SETAR to a linear model. To shed further light on

this point we also explore the limiting properties of p̂ by considering the following local to linear

parameterisation of (1)

y = Xφ1 + X2(γ, d)λT + ε (7)

where λT = (φ2−φ1)/
√

T . Proceeding as before we initially establish the limiting behaviour of the

residual variance obtained from a linear AR(p) fit to data generated from (7) across the different

relevant magnitudes of p.

Lemma 2: Under assumptions (i)-(ii) and letting σ̂2(p) denote the residual variance obtained from

fitting a linear AR(p) to data generated from the SETAR(2; p0, p0) in (7) we have as T →∞

σ̂2(p = p0)
p→ σ2

ε , (8)

σ̂2(p < p0)− σ̂2(p0)
p→ φ′1(G2 −G1G

−1
11 G12)G−1

22.1(G2 −G1G
−1
11 G12)φ1, (9)

and

σ̂2(p > p0)− σ̂2(p0)
p→ 0. (10)

Unlike in the fixed parameter case the above lemma suggests that when the SETAR DGP is close

to a linear autoregression due to small shifts across the two regimes the residual variance from the

misspecified linear AR fit will behave in a conventional manner, converging to its true counterpart
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for both p = p0 and p > p0. Our subsequent result about the large sample behaviour of p̂ when the

DGP is given by (7) is summarised in the following Proposition.

Proposition 2 Under assumptions (i)-(iii), the SETAR(2; p0, p0) DGP in (7) and as T →∞ we

have P [p̂ = p0] → 1 if cT → ∞ and cT /T → 0. Specifically P [p̂ < p0] → 0 if cT /T → 0 and

P [p̂ > p0] → 0 if cT →∞.

Proposition 2 establishes the result that under a local alternative to the linear AR(p) model the

lag length estimated from a misspecified linear autoregression using either the BIC or HQ criterion

will be consistent for the true lag length characterising each regime of the true SETAR(2; p0, p0)

model. A direct consequence of the above result is that asymptotically the use of p̂ instead of p0 will

not affect the local power properties of the test of the null of linearity against a SETAR(2; p0, p0).

Having established the large sample properties of p̂ when the true DGP is given by a threshold

model we next focus on evaluating the properties of p̂ presented in Proposition 1 in small to

moderately sized samples. This is achieved through a set of Monte-Carlo experiments in which

SETAR specifications are used to generate the data. All our experiments are conducted using

N=2000 replications and the random error term is taken as a standard normal random variable

throughout.

We initially consider a SETAR(2; 2, 2) DGP taking the maximum allowed lag order as pmax = 6.

Results across the different lag lengths and the three commonly used model selection criteria are

presented in Table 1 which displays the empirical frequencies of selecting a specific lag order ranging

from 1 to 6. Across all model selection criteria and sample sizes p̂ is clearly seen to point to lag

orders much greater than the one characterising each regime of the SETAR DGP (here p0 = 2).

Although this would have been expected from a criterion such as the AIC it turns out that both

the BIC and HQ criteria also display a strong tendency to overfit in this context as suggested by

the result in Proposition 1.

Table 1 about here

In fact all three criteria appear to display a behaviour that is quantitatively very similar across

the different sample sizes. Under T = 400 for instance we note that close to 99% of the AIC, BIC

and HQ based decision frequencies are concentrated at orders greater than or equal to 4. It is also

worth noting that across all sample sizes none of the three criteria display any tendency to underfit.
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Even under T = 400 for instance the frequencies of selecting lag lengths smaller than p0 = 2 are

virtually zero for the AIC as well as the BIC and HQ.

Although under this DGP the finite sample behaviour of p̂ conforms with our large sample

analysis it is important to emphasise that the chosen parameterisation is such that both regimes

are far apart (if we take the mean of each AR regime as a distance metric for instance) and the AR

parameter corresponding to yt−2 is sufficiently large in at least one regime for its order to be picked

up by a statistical criterion sufficiently often. Our next concern therefore is to evaluate the finite

sample behaviour of the alternative criteria when the two regimes of the SETAR are“closer” and/or

the parameter configuration is such that the lagged right hand side variables enter the specification

with coefficients that are nearer to zero.

Our second set of DGPs is again given by a SETAR(2;2,2) with all its parameters allowed

to switch across the two regimes. This experiment is designed to explore the sensitivity of the

previously documented features of p̂ to alternative parameterisations that allow the parameters of

the two regimes to be closer to each other and closer to zero individually. The specific DGPs and

the corresponding finite sample behaviour of p̂ are presented in Table 2. From the first panel of

Table 2 it is again clear that a criterion such as the BIC will continue to overfit provided that the

AR parameters are sufficiently far away from zero and the two regimes sufficiently distant. In this

case we note that for both the BIC and HQ criteria the bulk of the frequencies are concentrated

around p = p0 + 1 = 3 across all sample sizes. All three model selection criteria appear to display

remarkably stable decision frequencies across all considered sample sizes. On average across all

sample sizes, approximately 62% of the AIC’s frequencies are concentrated ar p = p0 + 1 = 3 while

the figure is approximately 96% and 83% for the BIC and HQ respectively. For all three criteria

the bulk of the remaining frequencies is spread across lag lengths p > p0 = 3.

Looking at the second and third panels of Table 2 it becomes clear that the previous picture

changes drastically as the parameters characterising the two regimes are allowed to be closer. Here

we note that the BIC might display a significant tendency to underfit, pointing very often to lag

lengths that are smaller than p0 = 2.

Table 2 about here

Although this tendency declines as the sample size is allowed to increase (see Proposition 2),
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impractically large sample sizes might be needed for the BIC to move away from the smallest

possible lag length. The most drastic pattern can be seen from the bottom panel of Table 2. In

this latter case more than 90% of the BIC’s frequencies remain clustered at p = p0 − 1 = 1 for

both T = 200 and T = 400. Under this scenario even the AIC’s based decision frequencies are

clustered below p0 = 2 close to 55% of the times under both T = 200 and T = 400. Overall

for the AIC criterion we observe a clear decline of the frequency to underfit as T → ∞ across

all parameter configurations characterising models B to E. Under Model F for instance the AIC

points to p = 1 < p0 = 2 about 50% of the times when T = 200 but only 26% of the times under

T = 1000. The same is not true for either the BIC and HQ which appear to have much greater

difficulty moving away from the lowest possible lag length p = 1. Within the same model for

instance the BIC points to p = 1 close to 87% of the times when T=200 and this high frequency of

underfitting tends to persist as T increases equalling 76.95% under T=1000.

Based on the finite sample properties of the model selection criteria documented in Tables 1-2

it is difficult to conjecture which model selection criterion might be most appropriate for lag length

selection prior to linearity testing. Despite the documented large sample overfitting feature of

all criteria our simulation based results indicate that this feature might be materialising across all

sample sizes solely under the presence of ”strong” threshold effects. When the latter are ”weak” and

the parameters entering each regime kept small it appears that all three criteria might be pointing

to lag lengths smaller than p0 relatively often with potentially severe consequences for the properties

of the subsequent tests about the presence or absence of threshold effects. Overall however if we

take the natural view that underfitting will lead to greater distortions in any subsequent analysis

the choice of using the AIC criterion is clearly more appropriate than using either the BIC or HQ.

3.2 Impact of p̂ on Power

Our next objective is to evaluate how the contamination of p̂ documented above affects the be-

haviour of the commonly used test statistics for testing the null of AR type linearity against the

SETAR alternative. Based on our results in Proposition 2 we can infer the fact that the use of

the pre-estimation stage for selecting the optimal linear AR fit before implementing the test for

threshold type nonlinearity will have asymptotically no influence on the local power properties of

the tests. At the same time however Proposition 1 and our empirical results presented in Tables 1-2

point to the fact that the finite sample power properties of the tests could be substantially different
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relative to a scenario under which the tests are implemented on correctly specificed models Our

results in Table 2 also suggest that regardless of the model selection criterion used we might end

up with an underfitted specification if the two regimes charactering the SETAR model are close.

As a result inferences based on the limiting distribution that assumes a serially uncorrelated error

process will be misleading.

Here our aim is to understand the impact that the distortions about p̂ will have on the subse-

quent tests of the null hypothesis H0 : φ1 = φ2 against the SETAR alternative. For this purpose

we evaluate the finite sample properties of the SupLM test across the DGPs considered in Tables

1-2. Table 3 below presents the frequencies of rejection of the null hypothesis of linearity against

SETAR across the eight parameter configurations of a SETAR(2;2,2) DGP (coded A to E) using a

2.5% nominal significance level. The empirical power has been computed using the true lag length

(here p0 = 2) in the implementation of the test as well as the three estimated lag lengths obtained

via the AIC, BIC and HQ criteria.

Table 3 about here

The differences in the power properties of the test when implemented using p̂ as opposed to

using p0 are striking. Under both T = 200 and T = 400 we note substantial differences in empir-

ical power between the case where the test is implemented on a correctly specified model (setting

p0 = 2) without the use of a pre-estimated lag length and the case where p is estimated with a

model selection criterion prior to implementing the test. Across all parameter configurations power

declines by as much as 50 to 60% and occasionally by more when the lag length has been prees-

timated using a model selection criterion. Although less pronounced, these substantial differences

remain present even under T=400. The worst power performance is displayed when the lag length

is estimated via the BIC. Under Model D and T=400 for instance the BIC based SupLM test leads

to an empirical power of only 14% compared with 73% when the true lag has been used and 39%

for the AIC based SupLM.

Looking at the power estimates corresponding to a sample size of T=1000 it is again interest-

ing to note the substantial differences in power between the cases where the test is implemented

imposing p = p0 and the cases where p has been estimated using the three criteria. Under model

E for instance the estimated power of the test when p = p0 = 2 was used was 67.90%. The corre-
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sponding power when computed using p̂AIC and p̂BIC were 34.65% and 10.90% respectively. These

figures suggest that a test for threshold effects implemented on a model whose lag length has been

estimated via the BIC criterion will have a very strong tendency to fail to reject the null of linearity

if false. For the empirical power estimates corresponding to models A-C and for T=1000 we note

very similar magnitudes close to 100% under the use of a true lag length as well as when the test

has been implemented using p̂AIC , p̂BIC or p̂HQ. Looking at the behaviour of the p̂′s in Table 2

it is clear that for those three specifications and T=1000, the estimated lag lengths virtually never

pointed to an underfitted model. Focusing on models D-E however we can observe substantial

differences in power across the true and estimated lag lengths and the corresponding figures about

the behaviour of p̂ presented in Table 2 suggest that this must mainly be due to the fact that all

three criteria have a tendency to underfit under those scenarios.

In summary our results in this section have highlighted the severe distortions that will arise in

practice when the researcher’s goal is to specify a SETAR type of model following the traditional

approach of first selecting an optimal linear autoregression and subsequently testing the latter

against a SETAR with the same dynamics in each of its regimes. If the true model is a SETAR

for instance then the first stage involving the estimation of an appropriate lag length via some

model selection criteria may severely contaminate the properties of the subsequent test of the null

hypothesis of linearity. Overall our results indicate that the AIC criterion and to a lesser extent

the HQ are to be favoured in practice since they track the ”true” power most closely. From our

results in Table 3, it is also clear that assessing power using the true lag length will give a very

distorted picture of the reliability of the testing procedure.

4 A Model Selection Based Approach

As an alternative to the above standard testing procedure we now propose to view the problem of

detecting the potential presence of a SETAR type nonlinearity as a model selection problem. The

problem involves selecting an optimal model among a portfolio of specifications. The selection is

made via the optimisation of a penalised objective function. The objective function is such that

one of its components is a monotonic function of the model dimension (e.g. the residual variance)

and its other component penalises the increase or decrease of the first component caused by the

increase in the model dimension. Unlike the previous two stage based approach, in our model
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selection based inferences the pmax linear autoregressive specifications are included in the portfolio

of models to select from so that our purpose is not solely that of detecting the presence of linearity

against threshold effects as in Gonzalo and Pitarakis (2002) where the dynamics of the models were

assumed to be correctly specified and the goal was to estimate the number of regimes.

More formally, the model selection procedure will be based on the optimisation of the following

objective functions

IC(p) = log σ̂2(p) +
cT

T
(p + 1), (11)

IC(p, d; γ) = log σ̂2(p, d; γ) +
cT

T
(2p + 2), (12)

where σ̂2(p) is the residual variance from an AR(p) model and σ̂2(p, d; γ) denotes the residual

variance obtained from a SETAR(2; p, p) as in (1). Our objective is to select an optimal model

among a portfolio of models via the optimisation of the above penalised objective function. The

model selection procedure will lead to the choice of a linear autoregression if

min
p

IC(p) < min
p,d,γ

IC(p, d; γ)

with 1 ≤ p ≤ pmax, d ≤ p and γ ∈ Γ. If the above inequality is reversed for some configuration

{p, d, γ} it will then follow that the model selection rule points to a SETAR model with p̂, d̂ and

γ̂ obtained as minimisers of IC(p, d; γ). The implementation of the above approach is intuitively

simple. We use the objective function in (11) to determine the best linear model that minimises

IC(p) and the objective function in (12) to determine the optimal nonlinear specification amongst

all possible nonlinear specifications as indexed by the quantities {p, d, γ}. This then allows us to

decide between the optimal linear fit and the optimal nonlinear fit.

Before proceeding with the practical implementation of the model selection approach it is important

to highlight some of its advantages relative to the previously analysed test based approach. First

recall that the limiting distributions of test statistics such as the SupLM depend on a large number

of unknown parameters (e.g. moments of the regressors and threshold variable) and can therefore

not be tabulated. Inferences are instead conducted using a bootstrap based approach that allows the

construction of asymptotically valid p-values for testing the null of linearity against the threshold

alternative (see Hansen (1996)). The model selection approach described above on the other hand

does not require a simulation based approach in its implementation since the decision rules rely
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solely on the magnitudes of the penalty term cT . The merits of this penalty based approach to

inference in the context of nonlinear models has been established in Gonzalo and Pitarakis (2002)

in the context of determining the number of regimes characterising a multiple threshold model.

The use of a model selection approach to inference with criteria analogous to (11)-(12) has also

been advocated in numerous other areas of the econometric litearature, including the detection of

the number of breaks in the mean of a stationary series (Yao (1988)), the estimation of the rank

of a matrix (Cragg and Donald (1997)), the estimation of the cointegrating rank (Gonzalo and

Pitarakis (1998, 1999)) among numerous others. In the context of the model under study it is also

important to note that the full model selection procedure naturally accomodates the case where

the regimes characterising the SETAR model might have different dynamics.

We implement the model selection approach on the SETAR DGPs of Table 3. In the implemen-

tation of the model selection approach we let p ∈ [1, 6] and d ≤ p. As in the test based approach

we also let the threshold parameter γ ∈ Γ. The total number of competing models is given by

pmax(pmax +1)/2 nonlinear specifications and pmax linear ones. Thus under our choice of pmax = 6

we have a portfolio of 21+6 models to select from. Note that within our model selection framework

we require both regimes of the SETAR specification to be equal to p. Our key concern is that of

distinguishing between a linear AR and a nonlinear SETAR specification rather than achieving a

detailed specification of a SETAR model in case the latter turns out to be selected by our procedure.

Before proceeding with the interpretation of the empirical correct decision frequencies of the

model selection criteria when the DGPs are given by SETAR models it is important to be aware of

their behaviour under linear specifications. Indeed a strong ability of a criterion to detect SETAR

type nonlinearity could be due to a spurious tendency to systematically point to the nonlinear model

even when the DGP is a linear autoregression for instance. In the terminology of the traditional

testing approach it is important to evaluate the “size” properties of the model selection approach

prior to interpreting their ability to detect SETAR type nonlinearity. For this purpose we focused

on the individual regimes of some of our previous models coded A-E as linear models and evaluated

the number of times the three model selection criteria pointed to linear as opposed to nonlinear

models. Results for this set of experiments are presented in Table 4. Overall it is clear that both

the AIC and HQ criteria will be inappropriate for distinguishing between AR and SETAR models

since they display a very strong tendency to point to the SETAR model even when the true model

is linear. Under all sample sizes for instance the AIC criterion’s frequency of selection of a linear
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AR rarely exceeds 2%. Similarly, that of the HQ criterion is typically in the 55%-65% range. The

inappropriateness of the AIC and HQ penalties was also documented in Gonzalo and Pitarakis

(2002) in the context of selecting the number of regimes of a multiple threshold model.

Table 4 about here

The BIC on the other hand appears to display good finite sample properties in the sense that

even under moderately small sample sizes it is pointing to the linear models most of the time.

At the same time it does not appear to be artificially clustering its frequencies at linear models.

Throughout all our DGPs it displayed an ability to select the true linear specification about 90% of

the times under T=200, and more than 95% of the times under T=400 with the frequency tending

to 100% as T increases.

We next focus on the ability of the model selection criteria to detect SETAR nonlinearity and

compare their behaviour with the traditional SupLM based testing approach. Table 5 presents the

frequencies of selection of SETAR models as opposed to the linear AR specification. Comparing

the empirical correct decision frequencies based on the BIC criterion with the empirical power of

the SupLM test obtained either using estimated lag lengths or the true one we note substantial

gains in power in favour of the BIC based model selection approach.

Table 5 about here

Under T=200 for instance the model selection approach based on the BIC criterion led to correct

decision frequencies on average 10% higher than the ones obtained with the SupLM implemented

on the true model. For Model B for instance the SupLM based power of 45.90% (see Table 3) can

be compared with a BIC based correct decision frequency of 58.90%. More importantly when we

compare the model selection based decision frequencies with the empirical power of the SupLM

statistic implemented using estimated lag length we note gains of 50% or more in favour of the

BIC based full model selection based approach. This improvement occurs unanimously across all

DGPs. Under T=200 and Model C for instance, the SupLM based statistic implemented on a model

whose lag length has been estimated via the AIC and BIC led to an empirical power of 13.60% and

11.15% respectively. These figures can be compared with a correct decision frequency of 31.20%

when inferences are conducted with the BIC based full model selection approach. Although these
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power advantages tend to narrow down as the sample size increases they continue to persist even

under T=400 and T=1000.

5 Conclusions

In this paper we highlighted the limitation underlying the practical implementation of the tests of

the null hypothesis of linearity against a SETAR alternative. More specifically, we showed that the

uncertainty induced by the use of a pre-estimated lag length within a linear autoregression when

implementing the SupLM type tests can have drastic negative consequences on the power prop-

erties of the test. We then introduced a full model selection procedure designed to jointly detect

nonlinearity and at the same type establish the optimal specification in terms of its dynamics. Our

simulation experiments strongly confirm the advantages of this approach relative to the traditional

test based inferences. Based on our simulation results our analysis also indicates that when spec-

ifying a linear autoregression for the purpose of testing the model against a SETAR alternative,

the use of the AIC model selection criterion is to be favoured. On the other hand when adopting a

full model selection based approach the BIC criterion appears to lead to the most accurate results,

offering an excellent trade off between wrongly overfitting and wrongly underfitting. In further re-

search it will be interesting to extend our results to the case where the researcher does not want to

impose identical dynamics in each individual regime of the threshold specifications. This scenario

as well as the possibility of more than two regimes can in principle be handled by a full model

selection approach but at a great computational cost. It will also be interesting to further explore

our results about the impact of model selection on standard inferences along the lines of Pötscher

(1991), Hansen (2004) and references therein.
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Table 1. Linear Model Selection Under a Threshold DGP

yt =

{
−3 + 0.5yt−1 − 0.9yt−2 + εt yt−2 ≤ 1.5
2 + 0.3yt−1 + 0.2yt−2 + εt yt−2 > 1.5

T=200 T=400 T=1000 T=10000

AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

p = 1 0.20 1.30 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p = 2 3.95 6.95 5.20 0.45 1.15 1.30 0.05 0.10 0.10 0.00 0.00 0.00
p = 3 0.80 0.55 0.70 0.15 0.30 0.15 0.00 0.00 0.00 0.00 0.00 0.00
p = 4 52.65 73.60 64.15 36.60 72.50 54.70 13.80 53.20 29.95 0.00 0.00 0.00
p = 5 22.05 11.75 17.55 27.90 16.70 24.15 27.25 26.60 29.85 0.00 0.10 0.00
p = 6 20.35 5.85 11.75 34.90 9.35 20.25 58.90 20.10 40.10 100.00 99.00 100.00
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Table 2. Linear Model Selection Under a Threshold DGP

yt =

{
φ01 + φ11yt−1 − φ21yt−2 + εt yt−2 ≤ 0
φ02 − φ11yt−1 + φ21yt−2 + εt yt−2 > 0

T = 200 T = 400 T = 1000

Model A: φ01 = 0.5, φ02 = 0.1, φ11 = 0.7, φ21 = 0.3

AIC BIC HQ AIC BIC HQ AIC BIC HQ

p = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p = 2 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p = 3 65.25 94.35 82.75 62.05 95.95 83.30 57.20 96.40 82.90
p = 4 13.95 3.75 9.60 15.35 3.50 9.80 18.20 3.25 10.80
p = 5 7.55 0.90 3.30 9.20 0.30 3.10 11.55 0.25 3.85
p = 6 13.25 0.85 4.35 13.40 0.25 3.80 13.05 0.10 2.45

Model B: φ01 = 0.5, φ02 = 0.1, φ11 = 0.2, φ21 = −0.1

p = 1 6.95 27.70 14.20 0.35 7.00 1.70 0.00 0.05 0.00
p = 2 58.10 68.50 70.80 61.50 89.70 83.90 57.40 97.00 84.95
p = 3 13.95 2.90 8.80 16.15 2.75 9.30 19.85 2.60 11.05
p = 4 8.55 0.80 3.50 8.85 0.40 2.85 9.40 0.35 2.55
p = 5 6.35 0.05 1.60 6.60 0.15 1.45 7.30 0.00 1.05
p = 6 6.10 0.05 1.10 6.55 0.00 0.80 6.05 0.00 0.40

Model C: φ01 = 0.5, φ02 = 0.1, φ11 = 0.1, φ21 = 0.1

p = 1 17.35 49.80 31.25 4.70 28.85 11.85 0.05 1.80 0.40
p = 2 50.00 46.85 56.10 60.10 68.80 75.95 63.15 96.00 88.30
p = 3 12.60 2.60 7.30 14.05 1.95 7.45 15.65 2.05 7.60
p = 4 7.85 0.60 3.00 8.55 0.20 2.65 8.20 0.15 2.30
p = 5 7.00 0.10 1.55 6.50 0.20 1.50 7.20 0.00 0.95
p = 6 5.20 0.05 0.80 6.10 0.00 0.60 5.75 0.00 0.45

Model D: φ01 = 0.2, φ02 = 0.1, φ11 = 0.2, φ21 = −0.1

p = 1 49.90 87.10 72.15 42.95 86.45 68.60 26.05 76.95 52.10
p = 2 22.30 10.90 19.45 27.70 12.35 23.15 34.85 21.30 35.90
p = 3 10.50 1.55 4.75 11.95 1.15 5.15 17.85 1.70 8.60
p = 4 6.50 0.35 1.90 6.85 0.00 1.85 8.25 0.05 2.25
p = 5 5.45 0.05 0.85 5.10 0.05 0.95 7.25 0.00 0.80
p = 6 5.35 0.05 0.90 5.45 0.00 0.30 5.75 0.00 0.35

Model E: φ01 = 0.2, φ02 = 0.1, φ11 = 0.1, φ21 = 0.1

p = 1 55.70 91.15 76.50 52.65 91.85 76.65 42.85 89.15 70.15
p = 2 20.20 7.75 15.90 21.55 7.45 17.80 28.90 10.30 24.30
p = 3 8.50 0.80 3.80 8.75 0.60 3.25 10.55 0.50 3.40
p = 4 5.65 0.20 2.00 6.60 0.05 1.30 6.25 0.00 1.30
p = 5 5.70 0.05 1.15 5.60 0.05 0.75 6.50 0.05 0.70
p = 6 4.25 0.05 0.65 4.85 0.00 0.25 4.95 0.00 0.15
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Table 3. Power Properties of SupLM with True and Estimated Lag Lengths

yt =

{
φ01 + φ11yt−1 − φ21yt−2 + εt yt−2 ≤ 0
φ02 − φ11yt−1 + φ21yt−2 + εt yt−2 > 0

T = 200 T = 400 T = 1000

TRUE AIC BIC HQ TRUE AIC BIC HQ TRUE AIC BIC HQ

Model A: φ01 = 0.5, φ02 = 0.1, φ11 = 0.7, φ21 = 0.3

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Model B: φ01 = 0.5, φ02 = 0.1, φ11 = 0.2, φ21 = −0.1

45.90 33.30 32.70 36.30 89.00 82.00 82.00 86.00 99.95 100.00 99.90 100.00

Model C: φ01 = 0.5, φ02 = 0.1, φ11 = 0.1, φ21 = 0.1

21.40 13.60 11.15 13.90 57.00 47.00 41.00 49.00 99.05 98.05 97.15 98.45

Model D: φ01 = 0.2, φ02 = 0.1, φ11 = 0.2, φ21 = −0.1

32.55 12.60 7.45 10.30 73.00 39.00 14.00 25.00 99.85 74.30 26.30 49.30

Model E: φ01 = 0.2, φ02 = 0.1, φ11 = 0.1, φ21 = 0.1

8.30 4.75 3.90 4.15 22.00 10.00 5.00 7.00 67.90 34.65 10.90 22.05
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Table 4. Model Selection Based Correct Decision Frequencies under Linear DGPs

yt = φ01 + φ11yt−1 + φ21yt−2 + εt

T = 200 T = 400

AIC BIC HQ AIC BIC HQ

φ01 = 0.5, φ11 = 0.7, φ21 = −0.3

1.80 90.60 48.60 1.20 97.65 61.75

φ01 = 0.5, φ11 = 0.2, φ21 = 0.1

1.60 90.00 47.00 1.70 93.80 55.80

φ01 = 0.2, φ11 = 0.1, φ21 = −0.1

1.80 89.75 45.30 1.35 94.15 54.80
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Table 5. Model Selection Based Correct Decision Frequencies under SETAR DGPs

yt =

{
φ01 + φ11yt−1 − φ21yt−2 + εt yt−2 ≤ 0
φ02 − φ11yt−1 + φ21yt−2 + εt yt−2 > 0

T = 200 T = 400

AIC BIC HQ AIC BIC HQ

Model A: φ01 = 0.5, φ02 = 0.1, φ11 = 0.7, φ21 = 0.3

0.00 0.00 0.00 0.00 0.00 0.00

Model B: φ01 = 0.5, φ02 = 0.1, φ11 = 0.2, φ21 = −0.1

99.95 58.90 93.50 100.00 89.95 99.50

Model C: φ01 = 0.5, φ02 = 0.1, φ11 = 0.1, φ21 = 0.1

99.80 31.20 80.20 99.95 57.50 93.90

Model D: φ01 = 0.2, φ02 = 0.1, φ11 = 0.2, φ21 = −0.1

99.80 33.75 84.00 99.90 58.30 95.75

Model E: φ01 = 0.2, φ02 = 0.1, φ11 = 0.1, φ21 = 0.1

99.00 15.80 64.40 99.80 14.15 70.70
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APPENDIX

Proof of Lemma 1. We treat the case p > p0. With X = [1 yt−1, . . . , yt−p0 ] and Z =
[yt−(p0+1), . . . , yt−p] we let W denote the (T − p) × (p + 1) regressor matrix W = [X Z] and the
fitted AR(p) model is y = Wφ + u from which we have σ̂2(p > p0) = (y′y− y′W (W ′W )−1W ′y)/T .
Using standard least squares algebra we next note that we can reformulate σ̂2(p > p0) as

σ̂2(p > p0) =
1
T

(y′y − y′X(X ′X)−1X ′y − y′M(M ′M)−1M ′y) (13)

where M = Z − X(X ′X)−1X ′Z. Next observing that σ̂2(p0) = (y′y − y′X(X ′X)−1X ′y)/T and
applying appropriate normalisations we can write

σ̂2(p > p0)− σ̂2(p0) = −y′M

T

(
M ′M

T

)−1 M ′y

T
. (14)

Given that M ′M = Z ′Z − Z ′X(X ′X)−1X ′Z, using assumption (i) and the corresponding par-
titioned versions we have (M ′M/T )−1 p→ (Q − L′G−1L)−1. Next we write the true model as
y = Xφ1 + X2(γ)λ + ε with λ = (φ2 − φ1). We have

M ′y

T
=

[
Z ′X2(γ)

T
− Z ′X

T

(
X ′X

T

)−1 X ′X2(γ)
T

]
λ +

[
Z ′ε

T
− Z ′X

T

(
X ′X

T

)−1 X ′ε

T

]
.

From assumption (ii) we have X ′ε/T = op(1) and Z ′ε/T = op(1) leading to

M ′y

T
=

[
Z ′X2(γ)

T
− Z ′X

T

(
X ′X

T

)−1 X ′X2(γ)
T

]
λ + op(1). (15)

Since X ′X2(γ) = X2(γ)′X2(γ) assumption (i) and its specialised versions lead to the desired result
in (6). The proofs for the cases p = p0 and p < p0 follow identical lines and are omitted.

Proof of Proposition 1 We initially treat the underfitting case by showing that when the penalty
term is such that cT /T → 0 the corresponding model selection criteria used for choosing an op-
timal p within the linear AR(p) family of models will not point to a lag length below the true
p0 characterising the SETAR model in (2). This is achieved by establishing that for p < p0,
P [IC(p) < IC(p0)] → 0 as T →∞. We have

P [IC(p) < IC(p0)] = P

[
log

σ̂2(p)
σ̂2(p0)

<
cT

T
(p0 − p)

]
= P

[
σ̂2(p)− σ̂2(p0)

σ̂2(p0)
< e

cT
T

(p0−p) − 1
]

. (16)

Next, from Lemma 1, σ̂2(p < p0) − σ̂2(p0)
p→ ∆ > 0 with ∆ given by the right hand side of (5).

We thus have that (σ̂2(p < p0)− σ̂2(p0))/σ̂2(p0) converges to a strictly positive constant and since
when cT /T → 0 we have

[
e

cT
T

(p0−p) − 1
]
→ 0 the required result follows.

We next consider the case p > p0. We have

P [IC(p) < IC(p0)] = P

[
log

σ̂2(p0)
σ̂2(p)

>
cT

T
(p− p0)

]
= P

[
T (σ̂2(p0)− σ̂2(p))

σ̂2(p)
> T

(
e

cT
T

(p−p0) − 1
)]

(17)
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Using (14) above and the fact that y = Xφ1 + X2(γ)λ + ε we can write

T (σ̂2(p0)− σ̂2(p)) = y′M(M ′M)−1M ′y

= T (AT B−1
T AT ) (18)

with

AT =

(
λ′

X ′
2Z

T
− λ′

X ′
2X

T

(
X ′X

T

)−1 X ′Z

T

)
+

(
ε′Z√

T
− ε′X√

T

(
X ′X

T

)−1 X ′Z

T

)

and

BT =

(
Z ′Z

T
− Z ′X

T

(
X ′X

T

)−1 X ′Z

T

)−1

.

From assumptions (i) we have BT
p→ (Q− L′GL)−1 > 0. Also, using assumptions (i)-(iii) we have

that AT B−1
T AT = Op(1) and it therefore follows that T (σ̂2(p0) − σ̂2(p)) = Op(T ). Since the right

hand side in (17) is O(cT ) the required result follows.

Proof of Lemma 2. The result in (10) follows by noting that M ′y/T = Op(T− 1
2 ) in (14) when λ

is replaced by λT ≡ (φ2 − φ1)/
√

T .

Proof of Proposition 2. Follows by applying the result in Lemma 2 to the proof of Proposition
1.
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