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Abstract— Stochastic optimization assisted joint Channel Estimation
(CE) and Multi-User Detection (MUD) were conceived and compared
in the context of multi-user Multiple-Input Multiple-Outp ut (MIMO)
aided Orthogonal Frequency-Division Multiplexing/SpaceDivision Mul-
tiple Access (OFDM/SDMA) systems. The development of stochastic
optimization algorithms, such as Genetic Algorithms (GA), Repeated
Weighted Boosting Search (RWBS), Particle Swarm Optimization (PSO)
and Differential Evolution (DE) has stimulated wide interests in the
signal processing and communication research community. However,
the quantitative performance versus complexity comparison of GA,
RWBS, PSO and DE techniques applied to joint CE and MUD is a
challenging open issue at the time of writing, which has to consider
both the continuous-valued CE optimization problem and thediscrete-
valued MUD optimization problem. In this study we fill this gap in
the open literature. Our simulation results demonstrated that stochastic
optimization assisted joint CE and MUD is capable of approaching
both the Cramer-Rao Lower Bound (CRLB) and the Bit Error Rati o
(BER) performance of the optimal ML-MUD, respectively, despite the
fact that its computational complexity is only a fraction of the optimal
ML complexity.

Index Terms— Orthogonal frequency division multiplexing (OFDM),
space division multiple access (SDMA), channel estimation, multiuser
detection, stochastic optimization algorithm.

I. I NTRODUCTION

In recent years, multiple antennas have been employed both at the
transmitter and/or the receiver for achieving various design goals [1],
such as maximizing the attainable multiplexing gain, maximizing the
number of users supported or maximizing the achievable diversity
gain. As one of the most wide-spread multiple antenna aided sys-
tems, Orthogonal Frequency-Division Multiplexing/Spatial Division
Multiple Access (OFDM/SDMA) [2] exploits the advantages ofboth
OFDM and SDMA, which increase the attainable spectral efficiency
by sharing the same bandwidth and time slots by several users
roaming in different geographical locations, which are differentiated
by their unique, user-specific ’spatial signature’, i.e. bytheir Channel
Impulse Responses (CIRs).

More specifically, the transmitted signals ofU simultaneous single-
antenna aided UpLink (UL) Mobile Stations (MSs) are received
by an array of antennas at the Base Station (BS), where Multi-
User Detection (MUD) techniques are invoked for separatingthe
signals of the different MSs with the aid of their unique, user-specific
’spatial signature’, i.e. CIRs. Naturally, for near-single-user MUD
the CIRs have to be accurately estimated [1, 3]. Intensive research
efforts have been devoted to developing efficient approaches for
Channel Estimation (CE) in multi-user OFDM/SDMA systems [1,
4–6]. In order to achieve a near-optimal performance, jointCE and
signal detection schemes have recently received significant research
attention [7–9]. The optimal solutions of CE and/or MUD, namely
Maximum-likelihood (ML) CE and ML-MUD, are naturally desired.
However, we have to settle for suboptimal solutions due to the
excessive computational complexity of the optimal ML solutions,
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especially for a high number of users/antennas relying on Quadrature
Amplitude Modulation (QAM).

Fortunately, stochastic optimization algorithms are capable of find-
ing the globally optimal solution with a high probability ata fraction
of the optimal ML MUD’s complexity, even for problems associated
with a non-smooth Cost Function (CF) exhibiting multiple local
optima. The most popular algorithms1 include Genetic Algorithms
(GA) [12], Repeated Weighted Boosting Search (RWBS) [13], Parti-
cle Swarm Optimization (PSO) [14] and Differential Evolution (DE)
[15]. More specifically, significant advances have been madein the
development of these stochastic optimization algorithms,including
single-user joint channel and data estimation [13, 16], CE and/or
MUD in the multi-user Code Division Multiple Access (CDMA)
UpLink (UL) [17–20], in the SDMA aided OFDM UL [1, 7, 9], in
MUD assisted Space-Time Block Coding (STBC) [21, 22], in CE for
Multiple Input Multiple Output (MIMO) systems [23], in the Multi-
User Transmission (MUT) aided DownLink (DL) [24, 25], in channel
allocation [26, 27] as well as in a diverse range of other applications.

In general, the optimization problems in communications may be
classified as: continuous and discrete optimization problems. For
example, the CIRs to be estimated are continuous-valued, while the
transmitted signals are discrete. To the best of our knowledge, no
performance versus complexity comparisons of GA, RWBS, PSOand
DE techniques applied to joint CE and MUD have been presentedin
the open literature.

Against this background, our new contribution is that we provide a
performance versus complexity comparison of stochastic optimization
algorithms in the context of joint CE and MUD in ODFM/SDMA sys-
tems. More specifically, continuous stochastic optimization algorithms
will be employed for CE, relying on Continuous GA assisted CE
(CGA-CE), Continuous RWBS assisted CE (CRWBS-CE), Continuous
PSO assisted CE (CPSO-CE) and Continuous DE assisted CE (CDE-
CE). By contrast, the discrete binary version of the corresponding
stochastic optimization algorithms will be employed for MUD, in-
voking Discrete Binary GA assisted MUD (DBGA-MUD), Discrete
Binary RWBS assisted MUD (DBRWBS-MUD), Discrete Binary PSO
assisted MUD (DBPSO-MUD) and Discrete Binary DE assisted ML-
MUD (DBDE-MUD).

The rest of this paper is organized as follows. The system model of
the multi-user OFDM/SDMA UL is described in Section II. Section
III is devoted to the optimization problems of joint CE and MUD
in the OFDM/SDMA systems considered. In Section IV, we will
briefly characterize the proposed stochastic optimizationalgorithms.
Our simulation results and discussions are presented in Section V,
while our conclusions are offered in Section VI.

II. SYSTEM MODEL

In the OFDM/SDMA UL systems,U simultaneous users are
equipped with a single transmission antenna, while the BS employs

1There are numerous other stochastic optimization algorithms, such as the
Ant Colony [10] and other evolutionary algorithms [11], butgiven our limited
space, we concentrate on the above four algorithms in this paper.
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Fig. 1. Uplink system model for Multi-user MIMO OFDM/SDMA. The abbreviation of ’SOA’ represents ’stochastic optimization algorithm’ in this figure.

an array of Q antennas. All users simultaneously transmit their
independent data streams, denoted bybu, u = 1, 2, · · · , U . The
information bitsbu are first encoded by a user-specific independent
Forward Error Correction (FEC) encoder, as seen in Fig. 1. The
bit stream output by the FEC encoder is grouped and modulated
to a stream ofM -QAM symbols. The modulated datãXu of Fig.
1 are then Serial to Parallel (S/P) converted and the pilot symbols
are embedded into the Frequency Domain (FD) representationof
the OFDM symbol. These FD pilot symbols and their specific
allocation are known at the receiver and hence can be exploited
for CE. The parallel modulated data are further fed to a classic
K-point Inverse Fast Fourier Transform (IFFT) based modulator in
order to generate the Time-Domain (TD) modulated signal. After
concatenating the Cyclic-Prefix (CP) ofKcp samples, the resultant
sequence is transmitted through the MIMO channel and contaminated
by the receiver’s Additive White Gaussian Noise (AWGN).

At the BS, as illustrated at the right-hand side of Fig. 1, the
received signalsyq of antennaq, q = 1, 2, · · · , Q, are Parallel to
Serial (P/S) converted and then the CPs are discarded from every
OFDM symbol. The resultant signals are fed into the corresponding
Fast Fourier Transform (FFT)-based receiver of Fig. 1. LetYq[s, k]
denote the signal received by theq-th receiver antenna element in
the k-th subcarrier of thes-th OFDM symbol, which is given as the
superposition of the different users’ channel-impaired received signal
contributions plus the AWGN, expressed as:

Yq[s, k] =

U
∑

u=1

Hu
q [s, k]Xu[s, k] + Wq[s, k], (1)

where Hu
q [s, k] denotes the FD-CHannel Transfer Function (FD-

CHTF) of the link between theu-th user and theq-th receiver antenna
in thek-th subcarrier of thes-th OFDM symbol. The received signals
are then forwarded to the stochastic optimization assistedjoint CE
and MUD. Then the Log-Likelihood Ratios (LLRs) are generated and
forwarded to theU independent FEC decoders.

III. O PTIMIZATION PROBLEMS OFJOINT CE AND MUD

In the context of the joint CE and MUD of the OFDM/SDMA
systems, the optimization problems can be formulated basedon the
Log-Likelihood Function (LLF) conditioned both on the matrix h[s]
containing the CIR coefficients and on the users’ transmitted data
X[s], which is given by

J(h[s], X[s]) =

Q
∑

q=1

∥

∥Yq[s] −X
T [s]Fhq[s]

∥

∥

2
, (2)

where the received dataYq[s] ∈ C
K×1 is a column vector hosting

the subcarrier-related variablesYq[s, k]. The transmitted data matrix
X[s] ∈ C

UK×K , the block-diagonal matrixF ∈ C
UK×UL and the

CIRs hq [s] ∈ C
UL×1 are given by

X[s] =
[

X
1[s],X2[s], · · · ,XU [s]

]T

, (3)

F = diag
{

F
1,F2, · · · ,FU

}

, (4)

hq [s] =
[

h
1 T
q [s], h2 T

q [s], · · · ,hU T
q [s]

]T

. (5)

Furthermore,Xu[s] ∈ C
K×K is a diagonal matrix with elements

given by Xu[s, k], wherek = 1, 2, · · · , K, Fu ∈ C
K×L denotes

the FFT matrix [28], whilehu
q [s] ∈ C

L×1 represents the CIR vector
containing theL significant CIR coefficients.

The joint ML optimization defined in Equation (2) is computation-
ally prohibitive, especially for high-dimensional multi-user systems
employing many antennas and high-orderM -QAM. The complexity
of this optimization process may be reduced to a tractable level by
invoking an iterative search loop, which explores first the entire set of
possible CIRsh[s] commencing from the initial estimate generated
with the aid of pilot symbolsand then the set of all the possible
transmitted data symbolsX[s], while relying on theestimated CIRs,
which may be formulated as:

(ĥ[s], X̂[s]) = arg min
X[s]

[

min
h[s]

J
(

h[s],X[s]
)]

. (6)

A. Channel Estimation

When the channel statistics are unknown and the CIRs are treated
as deterministic parameters, the ML CF may be minimized, assuming
that the CIRs were found with the aid of pilot symbols. Furthermore,
the CIRs of ĥq [s] are valid for the signalsYq[s] recorded at the
q-th receiver antenna. Hence, the CF of the channel estimation is
equivalent to the minimization of

ĥq [s] = arg min
hq [s]

J(hq [s])

= arg min
hq [s]

∥

∥

∥
Yq[s] − X

T [s]Fhq[s]
∥

∥

∥

2

. (7)

B. The ML-MUD

As a benefit of the CP, the OFDM/SDMA symbols do not overlap
and hence SDMA MUD processing can be applied on a per-carrier
basis [1, 2]. Hence, the task of the MUD is to recover the transmitted
signalsX[s, k] ∈ C

U×1 of the U users from the received signals
formulated in Equation (1). Each element ofX[s, k], sayXu[s, k],
belongs to a finite alphabetS of size |S| = M . Hence there
are MU possible candidate solutionŝX[s, k]. The optimal ML-
MUD exhaustively searches the full space ofSU to find a solution
minimizing ‖Y[s, k] − H[s, k]X[s, k]‖2, which is equivalent to

X̂ML−MUD[s, k] = arg min
X[s,k]∈SU

J(X[s, k])

= arg min
X[s,k]∈SU

‖Y[s, k] − H[s, k]X[s, k]‖2. (8)

The above problem may also be viewed as a finite-alphabet-
constrained least-squares (LS) problem [29], which is known to be a
Nondeterministic Polynomial-time (NP)-hard problem.

IV. STOCHASTICOPTIMIZATION ASSISTEDCE AND MUD

Let us now employ the above-mentioned continuous stochastic
optimization algorithms for assisting CE, by invoking the CDE-CE,
CRWBS-CE, CPSO-CE as well as CGA-CE techniques, which will
be combined with discrete binary stochastic optimization algorithms
for assisting MUD, namely with the DBDE-MUD, DBRWBS-MUD,
DBPSO-MUD as well as DBGA-MUD. Given our limited space,



3

we will only briefly introduce the basic philosophy of the stochastic
optimization algorithms considered. Readers who are unfamiliar with
these algorithms might like to consult their detailed illustrations in
the references provided.

A. Basic Philosophy of the Considered Stochastic Optimization Al-
gorithms

The GA philosophy was developed by Holland [12], which consti-
tutes an optimization and search technique inspired by the principles
of genetics and natural selection. A salient feature of GAs is that
they are capable of searching through the candidate solution space
by gradually evolving a pseudo-random initial population through
the affordable number of generations by appropriately combining
the individual candidate solutions upon exploiting the survival of the
fittest individuals by selection, by crossover, by mutation, etc.

Chenet al.developed the RWBS [13] motivated by their experience
with GAs and Adaptive Simulated Annealing (ASA). The basic
philosophy of the RWBS algorithm is that by commencing from an
initially randomly populated search-pool of the potentialsolutions,
RWBS strives for replacing the ’lowest-quality’ solutionsof the
population with the “best” potential solutions generated by nature-
inspired combinations/mutations of the candidate solutions in the
pool, until the process converges. The process is constituted by
an amalgam of the so-calledmutation, evaluation, normalization,
weighting and constructionsteps [9].

The PSO algorithm [14] is also a population based stochastic
optimization technique inspired by mimicking the social behavior of
organisms such as fish schooling and bird flocking. The individuals
are known asparticles in PSO terminology. PSO has no evolutionary
operators, such as the crossover and mutation. Instead, it refines its
search by attracting the independent variables referred toas particles
in PSO parlance to specific positions associated with high fitness, i.e.
with near-ML solutions. This is carried out by adjusting theparticles’
flight trajectory according to both their own and their companions’
past trajectory.

The DE algorithm [15] is a relatively new member in the family
of Evolutionary Algorithms (EAs), which has its own distinctive
features. Specifically, it mutates the candidate-solutionvectors by
adding weighted, random difference-vectors to them, whichassist
them in promptly approaching the globally optimal solution.

B. Computational Complexity

A low-complexity search-termination criterion is constituted by
the number of CF Evaluations (CF-Evals.), which may be readily
used for estimating the computational complexity imposed.For a
given population sizePs terminated afterG generations, the number
of CF-Evals. employed by the stochastic optimization algorithms
for finding the solution representing the detected users’ signals
(or estimated CIRs) is equal to(Ps × G) for the DE, for the
GA as well as for the PSO, while it is[(Ps + 2Tbs) × G] for
the RWBS, whereTbs is the number of boosting search steps at
each generation [9]. By contrast, the number ofCF-Evals. of the
optimum ML-MUD using exhaustive search is equivalent toMU

for U MSs supported in the OFDM/SDMA UL in conjunction with
M -QAM. Hence, in contrast to the ML solution, the complexity of
the stochastic optimization assisted MUDs is not directly dependent
on the number of bits/symbols inM -QAM and on the number of
user supported, which indicates that they are particularlybeneficial
in large-dimensional multi-user systems employing high-order M -
QAM.

V. SIMULATION RESULTS

In this section, our simulation results are presented in order to
characterize the stochastic optimization assisted joint CE and MUD

TABLE I
THE ALGORITHMIC PARAMETERS FOR THE STOCHASTIC OPTIMIZATION

ALGORITHMS ASSISTEDCE AND MUD

Schemes Parameters Values
Population sizePs 100

CDE-CE Greedy factorp 0.1
Adaptive update factorc 0.1
Population sizePs 100

CRWBS-CE Mutation parameterγ 0.001
Boosting search timesTbs 40
Population sizePs 100

CPSO-CE Cognition learning factor 2
Social learning factor 2
Population sizePs 100

CGA-CE Selection ratiors 0.5
Mutation probabilityMb 0.2

Population sizePs 100
DBDE-ML-MUD Greedy factorp 0.7

Adaptive update factorc 0.8
Population sizePs 100

DBRWBS-ML-MUD Mutation probabilityMb 0.5
Boosting search timesTbs 40
Population sizePs 100

DBPSO-ML-MUD Cognition learning factor 0.1
Social learning factor 0.3
Population sizePs 100

DBGA-ML-MUD Selection ratiors 0.5
Mutation probabilityMb 0.15

considered in the context of multi-user OFDM/SDMA systems.It
was assumed that the UL multi-user OFDM/SDMA system equipped
with Q = 4 antennas at the BS supportedU = 4 MSs simultaneously
transmitting their data in the UL to the BS. Moreover, a half-rate
Recursive Systematic Convolutional Code (RSC) having the generator
polynomial (7, 5) and the constraint lengthCL = 3 is employed
as FEC. For the sake of a fair comparison, a large number of
Monte-Carlo simulations have been run for finding the appropriate
algorithmic parameters for the stochastic optimization assisted joint
CE and MUD considered. A summary of the default values for the
various parameters used in our simulations is provided in Table I. The
values of these parameters were set to the default values throughout
the paper, unless specified differently in the figures or in the figure
captions.

Important observations may be inferred from Fig. 2 and Fig. 4
about the number ofCF-Evals. and the reliability of the different
stochastic optimization assisted joint CE and MUD, where the
reliability was quantified in terms of the probability of successfully
identifying the ML solution. In order to have a unified criterion of
’successful identification’, we assume encountering a perfect channel,
i.e. that there is no channel-induced impairments are imposed2. Then
the ’successful identification’ is defined as the condition of having
a CF value, which is within a margin ofJ(ĥq [s]) < 10−4 and
J(X̂[s, k]) < 10−4 for the stochastic optimization assisted CE and
MUD within the affordable computational complexity. Quantitatively,
we fixed the number ofCF-Evals.to 1.0×105 and5.0×104 for the
CE and MUD procedures, respectively. Otherwise, an ’identification
failure’ is declared. We can see from Fig. 2 that the CDE-CE outper-
forms all the other three schemes and always arrives atJ(ĥq [s]) <
10−4 within the maximum affordable computational complexity of
CF-Evals. = 1.0 × 105. By contrast, the CGA-CE has a higher
computational complexity and yet, it exhibits a higher failure ratio
in estimating the CIRs within the pre-defined maximum affordable

2Note that similar trends would also be observed in the presence of
statistic channels. However, it would be challenging to define the ’successful
identification’ for the CE and MUD, since they both exhibit a lower-bound,
which is given by the CRLB and by the BER of the optimal ML-MUD for the
stochastic optimization assisted CE and the stochastic optimization assisted
MUD, respectively. The achievable minima of the CFs depend also on the
specific data conveyed by the OFDM symbols even at the sameEb/N0,
owning to the random nature of the AWGN.
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Fig. 2. Histogram of theCF-Evals. and failure times ratio of different
stochastic optimization algorithm assisted CEs. The quantity ’Ratio’ on the
y-axis, represents the proportion of experiments imposed a certainCF-Evals.
of the pre-defined maximum affordable complexity (Ps ×G = 100 × 1000)
and failure times of the total times of independent experiments, respectively.
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computational complexity ofCF-Evals. = 1.0 × 105. Observe in
Fig. 4 that DBGA-MUD is the ’winning’ MUD candidate, requiring
the lowest number ofCF-Evals., which is about3.14% of that of
the optimal ML-MUD. Additionally, the DBGA-MUD detected the
users’ signals correctly with the highest probability within the pre-
defined maximum affordable computational complexity ofCF-Evals.
= 5.0 × 104.

In Fig. 3 and Fig. 5 we characterize the MSE and BER versus the
number ofCF-Evals. for the stochastic optimization assisted joint
CE and MUDs atEb/N0 = 14dB and Eb/N0 = 20dB. The
achievable lower-bounds of the MSE for the continuous stochastic
optimization assisted CE as well as for the BER of the discrete binary
stochastic optimization assisted MUD are given by the CRLB and by
the BER of the optimal ML-MUD, respectively. Similar trendsare
also observed at other values ofEb/N0. It can be seen from Fig.
3 that the CRWBS-CE and CDE-CE significantly outperform the
CPSO-CE and CGA-CE techniques, since the former two converge
at a faster rate, requiring aboutCF-Evals.≈ 14 000. Observe in
Fig. 5 that the DBDE-MUD initially converges slowly. However, its
convergence is the fastest afterCF-Evals.≈ 2500. Furthermore, the
DBDE-MUD, DBRWBS-MUD and DBGA-MUD regimes correctly
detect the users’ transmitted signals atEb/N0 = 20dB. By contrast,
the DBPSO-MUD exhibits error-floors atBER ≈ 8.72 × 10−3 and
BER ≈ 2.93 × 10−4 for Eb/N0 = 14dB and Eb/N0 = 20dB,
respectively, since the DBPSO-MUD has a higher probabilityof

CF-Evals.

Fig. 4. Histogram of theCF-Evals. and failure times ratio of different
stochastic optimization algorithm assisted MUDs. The quantity ’Ratio’ on
the y-axis, represents the proportion of experiments imposed a certain CF-
Evals.of the optimal ML-MUD (MU = 164) and failure times of the total
times of independent experiments, respectively.
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failing to find the ML solution, as seen from Fig. 4.
In order to provide an overall impression of the system’s perfor-

mance, we portray the attainable MSE and BER performance in Fig. 6
and Fig. 7, respectively. We evaluate the continuous-valued stochastic
optimization assisted CE at the affordable computational complexity
of both3 CF-Evals.= 20 000 and CF-Evals.= 50 000. We can see
from Fig. 6 that the CDE-CE and CRWBS-CE techniques exhibit
a similar performance at these two fixedCF-Evals. By contrast,
at the affordable computational complexity ofCF-Evals.= 20 000,
the achievable performance of the CPSO-CE and CGA-CE schemes
does not improve upon increasing theEb/N0 value, in fact, it even
degrades at some values ofEb/N0. Observe in Fig. 7 that as expected,
the performance of the discrete-valued binary stochastic optimization
assisted MUD relying onCF-Evals.= 10 000 is better than atCF-
Evals. = 5000, where the DBDE-MUD is capable of approaching
the optimal ML-MUD’s performance.

3Here we evaluate the continuous-valued stochastic optimization assisted
CE’s performance at a computational complexity ofCF-Evals. = 20 000
and CF-Evals. = 50 000. By contrast, we characterize the discrete-valued
binary stochastic optimization assisted MUD’s performance at a computational
complexity of CF-Evals.= 5000 and CF-Evals.= 10 000. The reason for
this is that the discrete binary stochastic optimization assisted MUD requires
less CF-Evals. to detect the users’ transmitted signals, as seen from Fig. 3
and Fig. 5.
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Fig. 6. MSE performance of different continuous-valued stochastic
optimization assisted CEs using the parameters of Table I. The CRLB
characterizes the best achievable performance of an unbiased estimator, hence
we include it as a lower bound benchmark. The more data is usedby the CE,
the lower the CRLB achieved by the CE [30]. Here we assume thatonly the
original pilots are available for CE.

VI. CONCLUSIONS

In this paper, we compared the achievable performance versus
computational complexity of the DE, RWBS, PSO and GA in the
context of joint CE and MUD of ODFM/SDMA systems. The CGA-
CE imposed a higher computational complexity and exhibiteda
slower convergence. By contrast, the CDE-CE performed best, despite
imposing the lowest computational complexity and achieving the
highest convergence speed. Furthermore, the DBGA-MUD imposed
a lower computational complexity than the other three schemes and
exhibited a higher convergence speed. In conclusion, the best MSE
and BER performance was attained by the DE technique in the
context of the system considered.
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