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Abstract— Stochastic optimization assisted joint Channel Estimatin  especially for a high number of users/antennas relying oad@aiure
(CE) and Multi-User Detection (MUD) were conceived and compred  Amplitude Modulation (QAM).

in the context of multi-user Multiple-Input Multiple-Outp ut (MIMO) ; S . -
aided Orthogonal Frequency-Division Multiplexing/SpaceDivision Mul- Fortunately, stochastic optimization algorithms are bégpaf find

tiple Access (OFDM/SDMA) systems. The development of stoabtic ing the gI(_)baIIy optimal solution wi_th a high probability aﬁractiqn
optimization algorithms, such as Genetic Algorithms (GA), Repeated Of the optimal ML MUD’s complexity, even for problems assateid
Weighted Boosting Search (RWBS), Particle Swarm Optimizdon (PSO)  with a non-smooth Cost Function (CF) exhibiting multiplecab
2%‘:@"3'gféﬁgg:i'n;"g:]ué'Oé‘or&]?nEu)nir(‘gfiof]“T:S'?aer‘ihw'c‘iernr'ﬂ;‘;ﬁtsd’&‘e\%? optima. The most popular algorithininclude Genetic Algorithms
the quantitative performance versus complexity comparisn of GA,’ (GA) [12], Rep.ea'Fed Welghted Boosting Sgarch (.RWBS) [;a},np
RWBS, PSO and DE techniques applied to joint CE and MUD is a Cle Swarm Optimization (PSO) [14] and Differential Evouti(DE)
challenging open issue at the time of writing, which has to awider [15]. More specifically, significant advances have been niadbe
bolth LheM‘S’S“”“QUS_'V@'UBd C%IOPt'”I"ZaEF’” prodb'em apl‘lj t:]‘_ed'scra_e' development of these stochastic optimization algorithimsluding
value JD optimization problem. In this study we fill this gap in single-user joint channel and data estimation [13,16], @B/&
the open literature. Our simulation results demonstrated hat stochastic . . o .
optimization assisted joint CE and MUD is capable of approahing MU'_D in the multl-use_r Code D'V'S'OI_" Multiple Access (CDM_A)
both the Cramer-Rao Lower Bound (CRLB) and the Bit Error Ratio  UpLink (UL) [17-20], in the SDMA aided OFDM UL [1,7,9], in
(BER) performance of the optimal ML-MUD, respectively, degite the  MUD assisted Space-Time Block Coding (STBC) [21, 22], in ©@E f
fact that |Its computational complexity is only a fraction of the optimal Multiple Input Multiple Output (MIMO) systems [23], in the Mti-
ML ity. L . . ' .
complextty o o User Transmission (MUT) aided DownLink (DL) [24, 25], in cireel
'”de’;_T_er_mS— olftt,hfgona' ffeq(useg&a)d'v'i'on ”;U'“F:,'ex'?_g (OIFtPM)v allocation [26, 27] as well as in a diverse range of otheriapfibns.
Space division muitiple access , Channel estimatiognmuitiuser P . . . .
detection, stochastic optimization algorithm. In general, the o.ptlmlzatlon prgblems in gommgnlcatlonsl ha
classified as: continuous and discrete optimization probleFor
example, the CIRs to be estimated are continuous-valueile we
I. INTRODUCTION transmitted signals are discrete. To the best of our knaydeao
performance versus complexity comparisons of GA, RWBS, BS®D
DE techniques applied to joint CE and MUD have been presented
the open literature.

Against this background, our new contribution is that weviie a

In recent years, multiple antennas have been employed botle a
transmitter and/or the receiver for achieving various giesgjoals [1],
such as maximizing the attainable multiplexing gain, mazing the
number of users supported or maximizing the achievablersitye . . S
gain. As one of the most wide-spread multiple antenna aigse Sperfo_rmanc_e Versus comple_><|_ty comparison of_stochastlmumtlon
tems, Orthogonal Frequency-Division Multiplexing/SphtDivision algorithms in the_(_:ontext of J_O'm CE and MU.D n _OD_FI\/_I/SD_MAsys
Multiple Access (OFDM/SDMA) [2] exploits the advantageshafth te_ms. More specifically, contlnupus stochast!c optlrmzaﬂlgorl_thms
OFDM and SDMA, which increase the attainable spectral efficy will be employeq for CE, relylng.on Continuous GA aSS'SIEd. CE
by sharing the same bandwidth and time slots by several usg?sGA'CE,)’ Continuous RWBS assisted ,CE (CRWBS'(,:E)’ Consnu
roaming in different geographical locations, which ardeténtiated PS0 assisted CE (CPSQ'CE) anq Contlnugus DE assisted C,E'(CDE

CE). By contrast, the discrete binary version of the corcegfing
stochastic optimization algorithms will be employed for BlUn-
voking Discrete Binary GA assisted MUD (DBGA-MUD), Diseret
Binary RWBS assisted MUD (DBRWBS-MUD), Discrete Binary PSO

ssisted MUD (DBPSO-MUD) and Discrete Binary DE assisted ML

UD (DBDE-MUD).

The rest of this paper is organized as follows. The systemeinufd
the multi-user OFDM/SDMA UL is described in Section Il. Seat
Il is devoted to the optimization problems of joint CE and BU
in the OFDM/SDMA systems considered. In Section IV, we will
1briefly characterize the proposed stochastic optimizagigorithms.

Our simulation results and discussions are presented itioc8e¢,
while our conclusions are offered in Section VI.

by their unique, user-specific 'spatial signature’, i.e.thgir Channel
Impulse Responses (CIRS).

More specifically, the transmitted signalsiéfsimultaneous single-
antenna aided UpLink (UL) Mobile Stations (MSs) are receive
by an array of antennas at the Base Station (BS), where Mul
User Detection (MUD) techniques are invoked for separatimg
signals of the different MSs with the aid of their unique, usgecific
'spatial signature’, i.e. CIRs. Naturally, for near-siegiser MUD
the CIRs have to be accurately estimated [1, 3]. Intensigearch
efforts have been devoted to developing efficient appraadbe
Channel Estimation (CE) in multi-user OFDM/SDMA systems [
4-6]. In order to achieve a near-optimal performance, jalEt and
signal detection schemes have recently received signifiesearch
attention [7-9]. The optimal solutions of CE and/or MUD, redyn
Maximum-likelihood (ML) CE and ML-MUD, are naturally desid. Il. SySTEMMODEL
However, we have to settle for suboptimal solutions due ® th In the OFDM/SDMA UL systemsU simultaneous users are
excessive computational complexity of the optimal ML simlog, equipped with a single transmission antenna, while the BBl@ys

Acknowledgments: The financial support of the EPSRC undeatispices 1There are numerous other stochastic optimization alguosttsuch as the
of the China-UK Science Bridge as well as of the RC-UK underltidia-UK  Ant Colony [10] and other evolutionary algorithms [11], fgiwen our limited
Advanced Technology centre initiative is gratefully acktexiged. space, we concentrate on the above four algorithms in thperpa
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Fig. 1. Uplink system model for Multi-user MIMO OFDM/SDMA.HE abbreviation of 'SOA’ represents 'stochastic optimaatalgorithm’ in this figure.

an array of Q antennas. All users simultaneously transmit their FurthermoreX“[s] € C**¥ is a diagonal matrix with elements

independent data streams, denotedWd;u = 1,2,---,U. The given by X"“[s, k], wherek = 1,2,--- | K, F* € C**L denotes

information bitsb™ are first encoded by a user-specific independetite FFT matrix [28], whilehg [s] € CH*! represents the CIR vector

Forward Error Correction (FEC) encoder, as seen in Fig. ¥ Tleontaining theL significant CIR coefficients.

bit stream output by the FEC encoder is grouped and modulatedlhe joint ML optimization defined in Equation (2) is compuat

to a stream ofM-QAM symbols. The modulated daf® of Fig. ally prohibitive, especially for high-dimensional multser systems

1 are then Serial to Parallel (S/P) converted and the pilotbeys employing many antennas and high-ordérQAM. The complexity

are embedded into the Frequency Domain (FD) representationof this optimization process may be reduced to a tractabiel ley

the OFDM symbol. These FD pilot symbols and their specifimvoking an iterative search loop, which explores first thére set of

allocation are known at the receiver and hence can be eagloipossible CIRsh[s] commencing from the initial estimate generated

for CE. The parallel modulated data are further fed to a @lasswith the aid of pilot symbolsand then the set of all the possible

K-point Inverse Fast Fourier Transform (IFFT) based modulat transmitted data symbolX|[s], while relying on theestimated CIRs

order to generate the Time-Domain (TD) modulated signaterAf which may be formulated as:

concatenating the Cyclic-Prefix (CP) &f., samples, the resultant (h[s], X[s]) = arg min [min J(h[s], X[s])]. (6)

sequence is transmitted through the MIMO channel and con&ed X[s] * hlsl

by the receiver's Additive White Gaussian Noise (AWGN). A. Channel Estimation

At the BS, as illustrated at the right-hand side of Fig. 1, the’ o

received signalyy, of antennag,q = 1,2,---,Q, are Parallel to When the channel statistics are unknown and the CIRs aretrea

Serial (P/S) converted and then the CPs are discarded fremy ev@S deterministic parameters, the ML CF may be minimizedirasgy

OFDM symbol. The resultant signals are fed into the corredpy that the CIRs were found with the aid of pilot symbols. Furthere,

Fast Fourier Transform (FFT)-based receiver of Fig. 1. Ygt, k] the CIRs ofhy[s] are valid for the signalsy,[s] recorded at the

denote the signal received by theth receiver antenna element ing-th receiver antenna. Hence, the CF of the channel estimagio

the k-th subcarrier of the-th OFDM symbol, which is given as the €quivalent to the minimization of

superposition of the different users’ channel-impairezkieed signal hy[s] = arg 11311[?] J(hg[s])

contributions plus tk{lje AWGN, expressed as: ! . 2

= argmin |Y4[s] — X thsH. 7

Yyls, k] = Hi[s, K| X"[s, k] + Wy[s, k], 1) & hals] H als] (5] ] @

u=1
where H{[s, k] denotes the FD-CHannel Transfer Function (FDB. The ML-MUD

CHTF) of the link between the-th user and the-th receiver antenna As a benefit of the CP, the OFDM/SDMA symbols do not overlap

in the k-th subcarrier of the-th OFDM sympol_. The receiye_d signalsand hence SDMA MUD processing can be applied on a per-carrier
are then forwarded to the_ StQChaSt'C optimization assigtied CE g [1,2]. Hence, the task of the MUD is to recover the tratisd
and MUD. Then the Log-Likelihood Ratios (LLRs) are genedaed signals X[s, k] € CU*! of the U users from the received signals

forwarded to thel/ independent FEC decoders. formulated in Equation (1). Each element Xfs, k], say X“[s, k],
belongs to a finite alphabe$ of size |S| = M. Hence there
are MY possible candidate solutionX[s,k]. The optimal ML-
In the context of the joint CE and MUD of the OFDM/SDMA \MuD exhaustively searches the full space&f to find a solution
systems, the optimization problems can be formulated besethe minimizing ||Y[s, k] — H[s, k| X[s, k||, which is equivalent to
Log-Likelihood Function (LLF) conditioned both on the miath[s] %
containing the CIR coefficients and on the users’ transohittata

I11. OPTIMIZATION PROBLEMS OFJOINT CE AND MUD

Xyr-mupls, k] =arg min  J(X][s, k])
X([s,k]leSU

X|s], which is given by =arg_ min Y [s, k] — H[s, k| X[s, K]||>.  (8)
Q X[s,k]€S ) o
J(h[s], X[s]) = Z HYq[s] _XT[S]th[S]H27 @) The fibove problem may also be viewed as a finite-alphabet-
et constrained least-squares (LS) problem [29], which is kntavbe a

where the received daf¥,[s] € C**! is a column vector hosting Nondeterministic Polynomial-time (NP)-hard problem.
the subcarrier-related variabl&g[s, k]. The transmitted data matrix

X[s] € CVE*K  the block-diagonal matriF € CVX*UL and the IV. STOCHASTICOPTIMIZATION AsSISTEDCE AND MUD
CIRsh,[s] € CYX*! are given by Let us now employ the above-mentioned continuous stochasti
X[s5] = [Xl[s],XQ[s], o 7XU[S]]T, (3) optimization algorithms for assisting CE, by invoking th®E-CE,

CRWBS-CE, CPSO-CE as well as CGA-CE techniques, which will
F = diag {Fl, F2, e ,FU} , (4) be combined with discrete binary stochastic optimizatilyodthms
T for assisting MUD, namely with the DBDE-MUD, DBRWBS-MUD,
hyls] = [h;T[S],hgT[8]7~" 7hgT[8]] . (5) DBPSO-MUD as well as DBGA-MUD. Given our limited space,



TABLE |
THE ALGORITHMIC PARAMETERS FOR THE STOCHASTIC OPTIMIZATION
ALGORITHMS ASSISTEDCE AND MUD

we will only briefly introduce the basic philosophy of the ctastic
optimization algorithms considered. Readers who are uifitarwith
these algorithms might like to consult their detailed ifiatons in

the references provided. Schemes Parameters Values
Population sizePs 100
. . . . . CDE-CE Greedy fact 0.1
A _BaS|c Philosophy of the Considered Stochastic OptiroizaAl- Aézztizeafng’te factoe 01
gorithms Population sizeP, 100
. . . CRWBS-CE Mutation paramete 0.001
The GA philosophy was developed by Holland [12], which cbnst Boosting Qeamh tin?e'g“bs 40
tutes an optimization and search technique inspired by tineiples Population sizePs 100
of genetics and natural selection. A salient feature of G#\shat CPSO-CE ggggl“g;:ﬁ;g"ggcg“or 2
they are capable of searching through the candidate solgface Population sizeP, 100
by gradually evolving a pseudo-random initial populatidmotigh CGA-CE Selection ratior, 0.5
th . . P Mutation probability M, 0.2
e affordable number of generations by appropriately ¢omg
indlivi R H it H Population sizePs 100
the Ind.IVIC.iL.Ja| candidate sollutlons upon exploiting thevgxai of the DBDE-ML-MUD Greedy facton o7
fittest individuals by selection, by crossover, by mutatiett. Adaptive update factoe 08
Chenet al.developed the RWBS [13] motivated by their experience Population sizeP; 100
with GAs and Adaptive Simulated Annealing (ASA). The basic DBRWBS-ML-MUD | Mutation probability M, | 0.5
. . . . Boosting search time%}, 40
philosophy of the RWBS algorithm is that by commencing from a Population sizeP, 100
initially randomly populated search-pool of the potensalutions, DBPSO-ML-MUD | Cognition learning factor | 0.1
RWBS strives for replacing the ’lowest-quality’ solutiorf the ?g;ﬁ;‘?oagns'%?dm 2635
population with the “best” potential solutions generatgdrature- DBGA-ML-MUD Selection ratior, 0.5
inspired combinations/mutations of the candidate sahstin the Mutation probability My, 0.15

pool, until the process converges. The process is coreditiy

an amalgam of the so-callechutation, evaluation, normalization,

weighting and constructiosteps [9]. considered in the context of multi-user OFDM/SDMA systerits.
The PSO algorithm [14] is also a population based stochasti@s assumed that the UL multi-user OFDM/SDMA system equippe

optimization technique inspired by mimicking the sociah&@egior of with Q = 4 antennas at the BS supportgéd= 4 MSs simultaneously

organisms such as fish schooling and bird flocking. The iddais transmitting their data in the UL to the BS. Moreover, a halke

are known agarticlesin PSO terminology. PSO has no evolutionaryRecursive Systematic Convolutional Code (RSC) having émerator

operators, such as the crossover and mutation. Insteaefjries its polynomial (7,5) and the constraint length'L = 3 is employed

search by attracting the independent variables referred fmarticles as FEC. For the sake of a fair comparison, a large number of

in PSO parlance to specific positions associated with higkedg, i.e. Monte-Carlo simulations have been run for finding the appat@

with near-ML solutions. This is carried out by adjusting fieticles’ algorithmic parameters for the stochastic optimizatiosisied joint

flight trajectory according to both their own and their comipas’ CE and MUD considered. A summary of the default values for the

past trajectory. various parameters used in our simulations is provided nela The
The DE algorithm [15] is a relatively new member in the familyalues of these parameters were set to the default valuesgihout

of Evolutionary Algorithms (EAs), which has its own disttive the paper, unless specified differently in the figures or i figure

features. Specifically, it mutates the candidate-solutientors by captions.

adding weighted, random difference-vectors to them, whashist Important observations may be inferred from Fig. 2 and Fig. 4

them in promptly approaching the globally optimal solution about the number oCF-Evals.and the reliability of the different
stochastic optimization assisted joint CE and MUD, where th
B. Computational Complexity reliability was quantified in terms of the probability of sessfully

identifying the ML solution. In order to have a unified criter of

A low-complexity search-termination criterion is constéd by | . o .
the number of CF Evaluations<CE-Evals), which may be readily successful identification’, we assume encountering agoéidhannel,

used for estimating the computational complexity imposear a i.e. that there is.no chgnngl—induced. impairments are.illeqﬁoé'hen
given population sizeP, terminated afters generations, the numberthe successful identification’ is defined as the conditidrhaving

. . - . . - —4
of CF-Evals. employed by the stochastic optimization algorithm& CF value, th'gh is within a margin fﬁ_(hq[_s]) < _10 and
for finding the solution representing the detected userghals J(Xls, k]) < 107" for the stochastic optimization assisted CE and

(or estimated CIRs) is equal t6P, x G) for the DE, for the MUD within the affordable computational CE)mpIexity. Quisatively,
GA as well as for the PSO, while it i§(P. + 2Th.) x G] for we fixed the number oEF-Evals.to 1.0 x 10° and5.0 x 10" for the

the RWBS, whereT}, is the number of boosting search steps atC an,d. MUD procedures, respectively. Otherwise, an “idieation
each generation [9]. By contrast, the numberQf-Evals. of the |ailure’ is declared. We can see from Fig. 2 that the CDE-Ctpen

optimum ML-MUD using exhaustive search is equivalent ko’ forms all the other three schemes and always arrives(ht[s]) <

for U/ MSs supported in the OFDM/SDMA UL in conjunction with 10~* within the maxirr:um affordable computational complex_ity of
M-QAM. Hence, in contrast to the ML solution, the complexitly OCF-EvaIs_. = 1.0 x 10 : By contras_t, thg (_:GA'C_E has a h'gher
the stochastic optimization assisted MUDs is not direcipehdent COMPutational complexity and yet, it exhibits a higher dedl ratio
on the number of bits/symbols in/-QAM and on the number of N estimating the CIRs within the pre-defined maximum afédnie

user supported, which indicates that they are particulbeyeficial 2Note that similar trends would also be observed in the prsset

in large-dimensional multi-user systems employing higlieo M- o iciic channels. However, it would be challenging torgethe 'successful

QAM. identification’ for the CE and MUD, since they both exhibitavkr-bound,

which is given by the CRLB and by the BER of the optimal ML-MU®&r the

V. SIMULATION RESULTS stochastic optimization assisted CE and the stochastienization assisted

. . . . . MUD, respectively. The achievable minima of the CFs depeisd an the

In this section, our simulation results are presented irerotd specific data conveyed by the OFDM symbols even at the sAg)EVo,
characterize the stochastic optimization assisted joltaBd MUD owning to the random nature of the AWGN.
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Fig. 2. Histogram of theCF-Evals. and failure times ratio of different
stochastic optimization algorithm assisted CEs. The dtyaiRatio’ on the
y-axis, represents the proportion of experiments imposeettain CF-Evals.
of the pre-defined maximum affordable complexifys(x G = 100 x 1000)
and failure times of the total times of independent expenisierespectively.
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Fig. 3. MSE performance versus the numbelCéf-Evals.for the different
stochastic optimization assisted CEs, which charactegze the convergence
speed of these schemes.

computational complexity oCF-Evals. = 1.0 x 10°. Observe in
Fig. 4 that DBGA-MUD is the 'winning’ MUD candidate, requig
the lowest number ofF-Evals, which is about3.14% of that of
the optimal ML-MUD. Additionally, the DBGA-MUD detected ¢h
users’ signals correctly with the highest probability witlthe pre-
defined maximum affordable computational complexityCét-Evals.
=5.0 x 10*.

Histogram of the CF-Evals.and failure times ratio of the stochastic optimization algorithms assisted MUD
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Fig. 4. Histogram of theCF-Evals. and failure times ratio of different
stochastic optimization algorithm assisted MUDs. The ¢jtiariRatio’ on
the y-axis, represents the proportion of experiments imposedrtain CF-
Evals. of the optimal ML-MUD (MY = 16%) and failure times of the total
times of independent experiments, respectively.
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Fig. 5. BER performance versus the numbeiCéf-Evals.for the different
stochastic optimization assisted MUDs, which charaatsrithe convergence
speed of these schemes. Note thatfgy No = 20d B, the optimal ML-MUD
attains an infinitesimally low BER, which is not shown in tliigure.

failing to find the ML solution, as seen from Fig. 4.

In order to provide an overall impression of the system'sqrer
mance, we portray the attainable MSE and BER performancagir6F
and Fig. 7, respectively. We evaluate the continuous-dasiechastic
optimization assisted CE at the affordable computationatexity
of both® CF-Evals.= 20000 and CF-Evals.= 50 000. We can see

In Fig. 3 and Fig. 5 we characterize the MSE and BER versus tf@m Fig. 6 that the CDE-CE and CRWBS-CE techniques exhibit
number of CF-Evals. for the stochastic optimization assisted joinf Similar performance at these two fixé€gF-Evals By contrast,

CE and MUDs atE;/No 14dB and E,/No = 20dB. The
achievable lower-bounds of the MSE for the continuous ststit
optimization assisted CE as well as for the BER of the disdo@tary
stochastic optimization assisted MUD are given by the CRh8 ly
the BER of the optimal ML-MUD, respectively. Similar trendse
also observed at other values B%/Ny. It can be seen from Fig.

at the affordable computational complexity 6F-Evals.= 20 000,

the achievable performance of the CPSO-CE and CGA-CE scheme

does not improve upon increasing th&/No value, in fact, it even
degrades at some valuesigf/Ny. Observe in Fig. 7 that as expected,
the performance of the discrete-valued binary stochagtienization
assisted MUD relying orCF-Evals.= 10000 is better than aCF-

3 that the CRWBS-CE and CDE-CE significantly outperform thEvals. = 5000, where the DBDE-MUD is capable of approaching
CPSO-CE and CGA-CE techniques, since the former two coaverg€ optimal ML-MUD's performance.

at a faster rate, requiring abo@F-Evals.~ 14 000. Observe in
Fig. 5 that the DBDE-MUD initially converges slowly. Howeyéts
convergence is the fastest afteF-Evals.~ 2500. Furthermore, the

SHere we evaluate the continuous-valued stochastic oitiniz assisted
CE’s performance at a computational complexity @F-Evals. = 20000

DBDE-MUD, DBRWBS-MUD and DBGA-MUD regimes correctly and CF-Evals. = 50000. By contrast, we characterize the discrete-valued

detect the users’ transmitted signalsial/ No = 20dB. By contrast,
the DBPSO-MUD exhibits error-floors @& FER ~ 8.72 x 10~2 and
BER =~ 2.93 x 107* for E,/No = 14dB and E;,/No = 20dB,
respectively, since the DBPSO-MUD has a higher probabitity

binary stochastic optimization assisted MUD’s perforneaata computational
complexity of CF-Evals.= 5000 and CF-Evals.= 10000. The reason for
this is that the discrete binary stochastic optimizatiosisied MUD requires

less CF-Evals.to detect the users’ transmitted signals, as seen from Fig. 3

and Fig. 5.
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Fig. 6. MSE performance of different continuous-valued chestic Fig. 7. BER performance of different discrete-valued bnatochastic

optimization assisted CEs using the parameters of Tablehe TRLB optimization assisted MUDs using the parameters of TablEhe discrete-
characterizes the best achievable performance of an wtb&stimator, hence valued binary stochastic optimization assisted MUDs ojtinthe objective
we include it as a lower bound benchmark. The more data is Imgélde CE, function of Equation (8) by exploiting their intrinsic ewtionary mechanism.
the lower the CRLB achieved by the CE [30]. Here we assumedhigtthe Hence the best achievable performance of them is the optitaMUD,

original pilots are available for CE. which is included as a lower bound benchmark.

VI. CONCLUSIONS

[13]

In this paper, we compared the achievable performance versu
computational complexity of the DE, RWBS, PSO and GA in thg4]

context of joint CE and MUD of ODFM/SDMA systems. The CGA-

CE imposed a higher computational complexity and exhibited [15)

slower convergence. By contrast, the CDE-CE performed despite
imposing the lowest computational complexity and achigvthe
highest convergence speed. Furthermore, the DBGA-MUD smgo
a lower computational complexity than the other three s@seand
exhibited a higher convergence speed. In conclusion, tse MSE

[16] H

[17]

and BER performance was attained by the DE technique in tﬂ%]

context of the system considered.
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