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1 Background and a Key Assumption

The origins of many of the surrogate-based optimization techniques in use
today can be traced back to geology — more specifically to the science of geo-
statistics, which has played an important role in mining engineering. Although
the applications of geostatistics vary, the fundamental problem is usually for-
mulated as follows. The optimum location is sought for a mineral extraction
operation — this is usually the maximum ore grade area. The ore grade in
a given location can be obtained through drilling a borehole, but this is an
expensive operation so it must be comissioned sparingly. The geostatistical
solution is to build up a spatial model of ore grade distribution based on the
few known borehole values and use the predictions of this model as a guide
to identifying the best mining location, or, if the budget permits it, the most
informative locations for further boreholes.

The central assumption behind geostatistical models is that the ore grade in
a given location is correlated with that measured at a nearby borehole, as well
as with its distance from that borehole. Some argue that this is a false premise,
particularly for more relaxed definitions of ‘nearby’. In other sciences, however,
such specifically geological objections are of little consequence — if the response
functions being modeled can be assumed to behave in a smooth, continuous
manner, spatial statistics can be a very powerful tool in the optimization
of expensive black-box functions and the relevant techniques, developed in
geostatistics or elsewhere, can be deployed with few reservations. This is the
stance we adopt here.

We present two case studies highlighting the use of surrogate model-based
optimization algorithms in ‘real-world’ design problems (Sections 5 and 6),
preceded by a roundup of some of the key ingredients of these procedures
(Sections 2, 3 and 4). We begin by considering the issue of where to make the
initial measurements of the expensive objective function.

2 Sampling the Design Space

It almost goes without saying that the pre-requisite of a successful surrogate-
based optimization process is a surrogate f that generalizes reasonably well,
that is, it is capable of predicting fairly accurately at sites other than those
included in the sampling plan where the objective function value has been
evaluated directly. At the very least, the surrogate has to be capable of pre-
dicting the trends of the landscape accurately, while the precise scaling of the
surface is less important from an optimization perspective.

In turn, the generalization properties of the surrogate are intimately linked
with the space-filling properties of the sampling plan. It makes intuitive sense
to spread out the designs included in the initial sampling plan in a manner that
will give as uniform a coverage of the design domain D as possible. However,
the exact definition of ‘uniform’ is neither immediately obvious, nor is it always
easy to translate into obtaining an initial sample X = {x(1) x(®) . x(}.
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One of the reasons for this is the relative sparsity of these observations
— after all, at this stage we are usually aiming to build an approximation
that is just about accurate enough to give the optimization process an initial
handhold and to give us a general idea as to what the landscape is likely to
look like (in terms of general trends, multi-modality, range of values, etc.).

The other reason is the often very high number of design variables and this,
due to the ‘curse of dimensionality’ it brings with it, is a very significant aspect
that will make or break the subsequent optimization process too. It therefore
makes sense to minimize k, the number of design variables, at the outset. It is
worth bearing in mind that if a certain level of prediction accuracy is achieved
by sampling a one-variable space in n locations, to achieve the same sample
density in a k-dimensional space, n* observations are required. There are two
fundamental ways of reducing k: first, by a judicious parameterization of the
design and second, by screening [Welch et al (1992)] variables for their impact
on the objective function [see, for example, the work of Morris and Mitchell
(1995) on how to achieve the latter through a small number of observations
and with minimal assumptions regarding the objective function landscape].

With the set of £ important variables established, a small sampling plan
X = {xM,x® ... x(™} can be created, which, along with the model fitted to
the corresponding responses y(1) = f(x1), 4@ = f(x@)) .. .y = f(x™),
will form the starting point of the optimization process. Just how small should
this initial sampling plan be is an open question, though there is some empirical
evidence [Sébester et al (2003)] that a good, relatively problem-independent
choice might be around 30% of the overall computational budget.

We mentioned earlier the difficulties of defining the ‘space-fillingness’ of
sampling plans. A naive approach could be to use what statisticians call a
full factorial plan, which samples all variables at all levels, giving a uniform
grid. While uniform, such plans tend to require many points, especially if the
number of variables is high (the curse of dimensionality again!). They also
suffer from having bad projective properties, that is, when projected onto the
axes, many points will overlap. Latin hypercubes [McKay et al (1979)] offer a
cure for both of these problems, as they can be made up of any number of
points and the points are uniformly distributed along all of the axes.

An important point to be made here is that uniform projection properties
are desirable, but they do not equate to ‘space-fillingness’. Random Latin
hypercubes are easy to construct by collating random permutations, but some
of these will fill the space more uniformly than others and much effort has
been devoted over the last decades to finding a recipe for choosing the best
sampling plan across the space of all Latin hypercubes of a given size and
dimensionality.

We shall not delve into the details and comparative merits of Latin hyper-
cube sampling plan optimization techniques [see, e.g., Forrester et al (2008) for
more details on the former], we merely note that for the experiments described
here we adopt the widely used mazimin criterion introduced by Johnson et al
(1990), defined as follows. Let di,ds,...d,, be the list of the unique values
of distances between all possible pairs of points in a sampling plan X, sorted
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in ascending order. Further, let Ji,Js,...Jy, be defined such that J; is the
number of pairs of points in X separated by the distance d;. We will call X a
maximin plan amongst all available plans if it maximizes d; and, among plans
for which this is true, minimizes J;. It can be shown that this is equivalent to
the so-called D-optimality criterion used in linear regression.

3 Modeling Approaches

Once the sampling plan is constructed, we can build our initial approximation
f of the expensive objective function. There is an infinity of functions we
could conceive with the property that they reproduce (interpolate) the set of
observations {x(i) — gy = f(x(i)) li=1.. n} based on the sampling plan.
However, the vast majority of these functions would be nonsensical and they
would generalise very poorly — that is, they would be practically useless at
predicting the function value at other sites, which is, of course, their raison
d’etre.

One way of generating approximations with good generalisation properties
is to choose a class of parametric functions that tend to emulate well the types
of objective functions we are likely to wish to optimize. Fitting the function
to the data generated according to the sampling plan involves estimating the
parameters of such functions to maximize the generalisation properties of the
approximation [via, for example, cross-validation or likelihood mazimization,
see Hastie et al (2001), Cherkassky and Mulier (1998)].

In terms of the generic shape of the surrogate, a popular choice for ob-
jective functions that occur in engineering sciences is the linear combination
of basis functions of various shapes and supports. Perhaps the simplest such
formulation is that of the radial basis function approximator

fx) = Zwi(b(llx—xg)ll), (1)

where the bases ¢, which can take a variety of forms, are defined in terms
of the distance of the predicted point from a set of n;, basis function centres
X, (often chosen to coincide with the sampling plan points, thus allowing the
construction of an interpolating model).

From an optimization perspective, beyond good generalisation, the ap-
proximator should permit relatively straightforward computation of an error
measure, that is, another function $(x) that quantifies our confidence in the
values predicted by f If the responses we are fitting the function to are as-
sumed to be realisations of stochastic processes (an artifice often used even
when these points come from deterministic computer simulations), a Gaussian
radial basis function model can be used effectively to estimate prediction er-
rors — these predictors have the form of (1), with ¢(r) = exp (—(r?)/(2¢?)).
There is a single parameter that has to be estimated here, o, to maximize
the generalisation properties of the predictor. This can be a good thing, as it
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makes the training process quite easy — it is, essentially, a one dimensional op-
timization problem. On the other hand, it suggests, that the flexibility of the
model is somewhat limited. In other words, whether we choose the likelihood
maximization approach or some other parameter estimation technique, there
is only so much generalisation ability that we can achieve.

Kriging, one of the techniques originated in geostatistics, as discussed in
the introduction [named after mining engineer D. G. Krige, whose work in this
field stretches back to the 50s — see, for example, Krige (1951)] is a similarly
structured but more flexible model, which permits differential shape control in
all of the dimensions of the search space. A kriging predictor is thus far more
difficult to fit (at least & model parameters to estimate), but promises better
generalisation, a property that has undoubtedly contributed to the popularity
of the technique in the design optimization community, gaining momentum
from the late 90s onwards [see Jones et al (1998); Simpson and Mistree (2001);
Forrester and Keane (2008)].

Kriging also permits fitting to multiple sets of data representing the same
function, but at different levels of fidelity — this is possible via co-kriging
[Kennedy and O’Hagan (2000); Forrester et al (2007)], a formulation, which
can also be used to build a model based on a function and its gradients [Chung
and Alonso (2002)], on values of the same quantity obtained from different
sources [Krajewski (1987)], etc.

We are unlikely to find the global optimum simply by searching our surro-
gate of the objective function: the surrogate is likely to have some inaccuracies
and, depending on the level of sampling, may not contain the same basins of
attraction as the true function [Jones (2001)]. We therefore enhance the sur-
rogate by additional sampling of the objective function, and it is the selection
of the position of these infill points which we turn our attention to next.

4 Towards a Global Optimum
4.1 Balancing local exploitation with global exploration

The most obvious way to position an infill point is to exploit the information
at hand and place the point at the minimum of the surrogate. Such a strategy,
when coupled with an interpolating surrogate (e.g. a radial basis function),
will quickly descend into the basin of attraction (e.g., see Figure 1). However,
in multi-modal landscapes, this may well not be the global optimum. We need
a method that can branch out from the predicted minimum and explore other
areas of the landscape.

As we indicated earlier, Gaussian process based models allow us to calculate
error estimates for our surrogate, and we can use these to highlight areas
where we are the least certain about the shape of the landscape. Positioning
infill points in these areas will increase the global accuracy of the model,
improving its ability to identify the region of the global optimum. However,
a pure maximum estimated error based infill strategy will only explore the
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Fig. 1 A minimum Gaussian RBF prediction based infill strategy starting from a three
point sample followed by five infill points fails to find the global optimum of the function.

model, while we need some element of exploitation to find the bottom of the
lowest basin of attraction once the exploration has located it. The key to a
successful infill strategy is balancing exploration and exploitation. We must
never completely trust the model at a value of x where we have not sampled,
but we must trust it sufficiently to fully exploit promising basins of attraction.

A popular infill strategy in both academia and industry is to maximize the
expectation of the improvement [Matheron (1963)] over the best point found
so far:

-~

ElI(x)] = { (Wmin = 500))0 (222200 ) 1539 (L2200 ) if () > 0
0 if 5(x)=0
(2)
where @(.) and ¢(.) are the normal cumulative distribution function and prob-
ability density function (pdf) respectively, 7(x) is the Gaussian process based
prediction (its mean) and 5(x) is the estimated error. Figure 2 shows the
progress of a max{E[I(x)]} infill strategy which finds the region of the global
optimum of the function where pure exploitation failed in Figure 1.

This is an attractive infill criterion since, not only does it offer a good
balance between exploitation and exploration, it is also, in itself, an infor-
mative quantity of how the optimization is progressing. Caution should be
taken though, because the expected improvement is often lower than the ac-
tual improvement that might be obtained if the infill strategy were continued
further. This is because 5(x) is often an under estimator. As such, although
the expected improvement is a very good infill criterion, it is often a poor
convergence criterion. Because of its reliance on the Gaussian process error es-
timates, the method can be slow to stop exploiting and resume exploitation of
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Fig. 2 A max{FE[I(x)]} infill strategy starting from a three point sample converges towards
the global optimum of the function.
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Fig. 3 A Gaussian RBF goal seeking infill strategy starting from a three point sample
quickly finds the only region containing a value equal to or less than the goal.

deceptive functions if a local basin is not, in fact, the global optimum. In some
unlikely situations, where a deceptive function is compounded by an unlucky
sample, max{E[I(x)]} may in fact fail to find even a local optimum.

The frailties of max{ E[I(x)]} lead us to another infill strategy - goal seeking
[Jones (2001)]. If we are able to hazard a guess as to what the minimum value
of the objective function might be, or, at least, a value we would be happy with
— perhaps a percentage improvement in performance over a current product
— we can use this as a goal for the infill criterion to search for. We do this
using the notion of a conditional likelihood. We posit the hypothesis that our
prediction passes through our goal at a given x and maximize the likelihood
by varying the model parameters (e.g. the Gaussian kernel variance o2). We
can compare this to likelihoods of other x’s to find the x which maximizes
the likelihood conditional upon the prediction passing through the goal. We
position the next infill point at this x. This infill criterion is not reliant upon
accurate error estimates and is a stopping criterion in itself. Figure 3 shows
how a goal seeking approach, with a goal of f(x) = 5 finds the region of the
global optimum; the only region containing a value equal to or less than the
goal.
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4.2 Dealing with constraints

Let us now consider how constraints can be managed in a surrogate-based
global search. The most commonly used method of avoiding regions which
violate constraints is through the application of penalty functions. In most
cases penalty functions can be applied in the usual manner, the exception
being when using a max{E[I(x)]} or max{P[I(x)]} (probability of improve-
ment) based search. Here, ¢, should be replaced with the minimum observed
function value which satisfies the constraint.

A more elegant method of applying a constraint is to multiply F[I(x)] by
the probability of the constraint being met:

c—g(x)
Plg(x) <c =9 ( %) ) . (3)

where g(x) is the constraint function and c¢ is the constraint limit, i.e. the
constraint function must be below this value [Schonlau (1997)]. The first plot of
Figure 4 shows the one variable function from the previous examples along with
a constraint function (simply the negative of the objective minus a constant)
and Kriging predictions of the two based on the four sample points shown. The
dashed line represents the constraint limit. The second plot shows E[I(x)], the
third plot shows the probability of meeting the constraint, and the fourth plot
shows the product of these — our constrained expected improvement. Note
how multiplying by the probability forces the expectation away from = = 0.66
where it is known that the constraint is violated. In figure 5 we see that
the first and second infill point satisfy the constraint, but fail to find the
global optimum. The third infill point actually violates the constraint, but
improves both predictions in this area such that the fourth infill point, based
on the E[I(x)]P [g(x) < c] shown, is positioned on the right hand side of the
constraint boundary (the ninth infill point finds the, rather deceptive, global
optimum in this case). Note that in some situations this method will suffer
from the same problems as unconstrained max{ F[I(x)]} searches.

4.3 Multiple objective functions

Recently the literature has been very active on the subject of multi-objective
optimization, with multi-objective genetic algorithms such as NSGA-II [Deb
et al (2002)] proving popular. Such methods can be directly applied to the
search of surrogate model predictions. However, they can be slow or fail to
find all areas of non-dominated solutions — so-called Pareto optimal solutions.
Keane (2006) constructed a dual-objective probability of improvement for-
mulation (open to extension to further objectives) using a two dimensional
Gaussian probability density function of independent objectives:

(1)~
PIVi(2) < yi 1 Ya(a) < y3] = b <y;7y<>>
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Fig. 5 The build up of the constrained expected improvement after three infill points have
been applied.
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1, x2

Y y; )’ crt yr
objective function values for objective one and y7 is the corresponding set of
values for objective two.

(m)

Where yi = {yi } is the current set of non-dominated

The first plot in Figure 6 shows two Kriging predictions of two objective
functions (the first function is that used in the previous examples) based on a
four point initial sample. The first infill point (found in this case by maximizing
the related dual-objective expected improvement Keane (2006), which is more
appropriate for this simple 1D example, as probability of improvement tends to
exploitation in such simple problems) is to be placed at x = 0.52. The bottom
three plots in Figure 6 indicate why. They show the two dimensional pdfs
under the current Pareto front at x = 0.25,0.5,0.75. These pdfs are centred
around the Kriging predictions at these points ¥ (x), y2(x) and their variance
is the Kriging errors %(x),53(z). To find the probability of improvement over
the three non-dominated points, this pdf is integrated under the Pareto front
(to find the expected improvement we then find the moment of this area about
the closest non-dominated point to the centroid of the integral). It can be seen
in Figure 6 that the pdf at = 0.5 has the greatest area under the Pareto front
and an infill point is duly selected. Clearly this point is not Pareto optimal, but
following this the search finds the area of non-dominated points in the z = 0.25
region. Figure 7 shows the selection of the fourth infill point. Here there is a
high probability of improvement for x = 0.25 and x = 0.75 (there is virtually
no probability of improvement at x = 0.5 as we have already sampled near to
here). In fact the probability is marginally higher at @ = 0.25, but the longer
moment arm from the centroid of the pdf at x = 0.75 to the first dominated
point means that the infill point is placed at = = 0.74.

Clearly the ability to balance exploitation and exploitation in a multi-
objective sense when using surrogate models is an attractive prospect. The
method can also be extended to constrained optimization by a simple proba-
bility of feasibility multiple.

Having covered some of the key challenges and techniques of surrogate
model-based engineering design optimization, let us now revisit them once
more, this time in the light of some more complex case studies.
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Fig. 6 Initial Kringing predictions based on four sample points and the pdfs under the
Pareto front, indicating that the highest probability of improvement is in the = 0.5 region.
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Fig. 7 After three infill points the search finds the area of Pareto optimal solutions in the
x = 0.75 region based on the dual pdfs shown.

5 Aerodynamic Optimization of a Regional Airliner Wing

Let us consider the following wing design problem. The aircraft is a small
regional turboprop airliner, cruising at an altitude of 26,000 feet at a speed
of 260 knots, with a typical cruise weight of 10t. The aspect ratio and the
dihedral of the wing are fixed (at 10.3 and 7° respectively) and, as a result of
fuel capacity considerations, the volume of the wing is fixed too at 3.25 m?3.
The root and tip cross sections (which will determine all other cross sections
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through spanwise linear interpolation) must be designed for minimum cruise
drag (at the fixed lift value of 10t).

There are two essential pre-requisites for the solution of this problem: a
parametric wing geometry description and a drag prediction capability. We
discuss these next.

5.1 A Parametric Wing

Parametric lifting surface geometries are amongst the most widely studied
shapes in design optimization, efforts in this direction going back far beyond
the advent of computational design search (consider, for instance, the ubiq-
uitous NACA profiles of the 1930s). While a comprehensive review of the
correspondingly weighty literature on the subject would be misplaced here,
it is worth outlining at least the highest level of one of the many possible
taxonomies of existing approaches.

We could split parametric geometries into two broad categories. First, a
number of generic formulations can be applied to the description of lifting sur-
faces: Non-Uniform Rational B-Spline (NURBS) surfaces, a de facto standard
in CAD systems, are a frequently encountered example [see Samareh (2001)
for more]. The second category comprises models specific to aerodynamic de-
sign, that is, expressions whose structure was specifically designed to allow
the reproduction of (classes of) aerodynamic shapes. A classic example is the
‘bump’ function parameterization of Hicks and Henne (1978). The advantage
of the former category is seamless integration with CAD engines. The latter
group of techniques yields design spaces tailored to aerodynamic design appli-
cations, that is, design spaces that only include a relatively small percentage
of ‘aerodynamically nonsensical’ shapes — a key advantage when considered
in the light of the computational cost implications of searching unnecessarily
expansive design spaces’.

It is for this reason that here we opt for the second category. More specif-
ically, we define the airfoil sections by means of a Kulfan transformation [also
known as the Class-Shape Transformation or CST for short, see Kulfan (2008)],
using the ‘airfoil’ class function. CST is, essentially, a two level approximation
model, where a so-called class function captures the essential, shared features
of the family of shapes being considered (in this case, the family of airfoils),
with a set of shape functions approximating the more specific detail. In com-
mon with Kulfan’s original paper, we use a set of Bernstein polynomials as
shape functions, their chief attraction being that for any chosen order they
always add up to one, thus providing an obvious set of baseline values (with
all Bernstein coefficients set to one, the approximation will simply yield the
class function, a basic, symmetrical airfoil). Here is the Kulfan Transformation
of the upper surface of a generic airfoil (the lower surface being defined in the
same way):

1A hybrid approach is conceivable too, aimed at capturing the advantages of both classes
of models — see Sébester (2009).
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also adopt a supplementary term for the more effective shaping of the camber
line near the leading edge of the airfoil?>. One could potentially link a design
variable to each of the niip + 2 available degrees of freedom (n}p + nhp + 4,
considering both surfaces), but here we opt (arbitrarily) to work with a subset.
More specifically, choosing njp = 3 and njp = 4 (experience suggests that
lower parametric airfoil surfaces in this class require slightly more flexibility
than the upper surfaces), we fix the value of the first of the lower surface
coefficients (which, effectively, determines the lower leading edge radius) on
both the root and the tip airfoil. The remaining ten coefficients (per airfoil)
are allowed to deviate (up or down) from a set of central (baseline) values by
0.1 at the root and by 0.07 at the tip (the maximum deviations being limited
here for structural reasons). We take these central values from the the Kulfan
transformations of two classic airfoils: NACA63A418 (root) and NACA63A412
(tip).

We impose a proportionality link between the root and tip deviations.
Thus, for example, variable one (z1) will determine the deviations from the
baseline values of the first Bernstein coefficients on the upper surfaces of both
the root and tip airfoils, so

U?ROOT =014z %02+ vlllNACA63A418 (6)
and
VTP = 0,07 4+ 2 % 0.14 + pWNACAGALZ - where g1 € [0, 1], (7)

with variables two through ten defined in the same way. With the airfoil sec-
tions thus described (recall that the spanwise variation of the polynomial co-
efficients is linear) and the volume and the aspect ratio fixed, the ten design
variables unequivocally define the wing. Let us now consider the physics-based
analysis of candidate wing designs.

2 Note also that this formulation assumes a sharp trailing edge — a third term could be
added if a finite thickness trailing edge was needed.
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5.2 Notes on the Flow Analysis

In order to compute the cruise drag associated with instances of the parametric
geometry described above, we employ an inviscid, full-potential, three dimen-
sional flow solver developed by the Engineering Sciences Data Unit ESDU
(2002).

The code generates meshes via a conformal mapping scheme. The flow
equations are solved over this mesh through a finite difference algorithm in-
cluding a three-level multi-grid scheme. The finest grid, corresponding to the
original mesh of up to 115,200 cells is employed at the final stage of the com-
putation with medium and coarse grids, of 14,400 and 7,200 cells respectively,
employed in the preceding stages. Full convergence can typically be achieved
in around 800 iterations, with 200 iterations using the coarse grid and 100
using the medium grid. A post-processor evaluates both the trailing vortex
and wave drag components of a wing’s inviscid drag coefficient. Trailing vor-
tex drag is calculated using a method based on linearised theory and therefore
ignores the effects of rolling-up and downward deflection of the trailing vortex
sheet — this is “Model A” of Ashill and Fulker (1987). Wave drag is calculated
via both the “first-order” and the “improved” methods of Lock (1985).

As it stands the FP wing analysis package will only predict vortex and
wave drag. However, ESDU recently published a method for the prediction of
the viscous drag coefficient for a wing in shock-free and attached flow. This
can then be combined with the inviscid drag components from FP to obtain
a prediction of the total drag for a wing.

The viscous drag coefficient is estimated assuming fully attached, shock-
free flow, through another ESDU scheme [ESDU (2008)], whereby the wing’s
minimum profile drag coefficient, C'ppmino, increment in profile drag due to
twist, (ACD pmin e, lift-dependent viscous drag factor, K,;s. and lift coefficient
for minimum viscous drag, Cri, are estimated. These coefficients are then
used to calculate the viscous drag coefficient of a wing via

CDm'sc = CDPminO + (ACDPmin)s + Km'sc(CL - OLmin)27 (8)

where C7, is the lift coefficient of the wing.

The method has been validated against experimental drag polars for a
range of wings [ESDU (2008); Toal (2009)] and has been demonstrated to be
of suitable accuracy (for instance, it predicts the minimum drag coefficient of
the Brebner wing [Brebner and Wyatt (1961)] to within 9 counts).

5.3 Wing Design Search

We have indicated earlier that a one to two split in the sampling plan/update
sequence division of computational effort appears to work well across a spec-
trum of objective landscape modalities. In that spirit we allocated 30 of a
total budget of 90 runs of the full potential analysis code to a Morris-Mitchell-
optimal Latin hypercube sampling plan, with the remaining 60 allocated to a
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Fig. 8 Expected improvement-based optimization history. The airfoils are not shown to
scale — their vertical coordinates are exaggerated to highlight shape variations.

an expected improvement-based design exploration sequence, as per the for-
mulation described in Section 4.1, using a genetic algorithm / simplex local
search combination to find the global optimum of the expected improvement
landscape for the siting of the next infill point. The resulting optimization his-
tory, in terms of the current lowest drag (for 10t of lift), is depicted by Figure
8, which also highlights some of the representative designs obtained along the
way.

As shown by the pressure coefficient (Cp) contours of these representative
wings, the trend is towards larger (both in terms of span and chord), more
lightly and more uniformly loaded wings, with the airfoils getting progressively
thinner in the course of the search. Through the optimization procedure the
drag coefficient C'p drops considerably, from an initial value of 0.026 to an
optimum of 0.016.

We have indicated earlier that when a realistic goal is known in advance,
goal seeking can be considered as an alternative to expected improvement
updating of the kriging model. Figure 9 depicts the results of a goal seek-
ing procedure performed on the same wing design problem (and same initial
sampling plan as before), targeting a 40% cut on the total drag. As the com-
parative histories indicate, goal seeking does, in fact, produce a better result;
moreover, it finds this more quickly.

Such evidence, of course, is insufficient to draw far-reaching conclusions on
the comparative performances of expected improvement-based update cycles
and goal seeking. It is, nevertheless, an indication that the latter is a route
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Fig. 9 Expected improvement and goal seeking optimization histories compared. With a
target improvement of 40%, goal seeking finds a better optimum in fewer updates.

worth considering when a goal is available. We next move on to a multi-
objective problem, the optimal design of a low environmental impact house.

6 Minimizing Cost and Environmental Impact — a Case of
Multi-objective Trade-offs

Amidst increasing concerns about climate change, and a push to reduce global
COg4 emissions, the design of more efficient buildings has become increasingly
important. In the UK, the energy used in buildings accounts for nearly half
of total energy use [Communities and Government (2009)] and consequently
a large proportion of total CO5 emissions.

Substantial improvements in the energy efficiency of buildings are available,
but the design of low-energy buildings is a complex optimization problem,
with many variables interacting with each other in difficult-to-predict and
non-linear ways [Wright et al (2002); Coley and Schukat (2002)]. In addition,
energy-efficiency objectives often conflict with cost-minimization objectives
[Wang et al (2005)], and as such hinder the widespread adoption of low-energy
building designs.

This case-study focused on minimizing the COs emissions resulting from
the energy used to heat, light and cool a completed building. Other energy
uses in buildings (hot water, appliance use, cooking) are less affected by the
design of the building and so were omitted. The COs emissions resulting from
the construction of the building were also omitted.
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6.1 Building energy demands

The energy used to heat, light and cool a building of a given shape and size
is affected by many variables related to the design and specification of the
building. The effect of each of these design variables will depend on both
the use for which the building is intended, the geographical situation of the
building, and also the values of other variables. A summary of how these design
variables might be expected to affect energy demand in a building is presented
below.

— Glazing - Additional glazing will reduce the need for artificial lighting up to
a certain percentage of glazing, above which additional glazing will make
little difference to artificial lighting needs. Higher levels of glazing will
increase heat losses from the building if they are replacing well insulated
walls, but will also increase heat gains if placed facing the sun, leading to
opportunities for passive solar heating in winter, but also to overheating
risks in summer.

— Thermal mass - In some climates internal thermal mass can reduce heating
energy demands by storing heat won through solar gains if used in con-
junction with large southerly windows (in the northern hemisphere), but
otherwise may have little effect on heating energy use. Internal thermal
mass can also be used to reduce overheating problems in some climates.

— Window thermal resistance - Improving the thermal resistance of the glaz-
ing will decrease heat losses but in some instances will also decrease solar
gains and light transmission.

— Building air-tightness and ventilation - Decreasing air infiltration and ven-
tilation will tend to reduce the energy required to heat and cool a building.

— Insulation - Increasing insulation in the building envelope will tend to
decrease the need for heating and cooling the building.

The relative importance of each of the above design variables will vary
according to the latitude of the building, the local weather, the position of
the building relative to other buildings and obstacles, the efficiency of heating,
lighting and cooling appliances and the way in which the building is used.
Because of this, and because adjusting several of the above design variables
involves accepting a trade-off between a desired effect and an unintended and
contradictory effect (e.g. increasing window thermal resistance reduces heat
losses but also reduces solar heat gains), specifying the above design variables
at or near to optimum combinations is a difficult task.

6.2 Parametric house

The building design used for this case study is relatively simple, with a single
8m by 8m by 3.5m room oriented so that each wall faced due north, south,
east or west, and with a flat roof. The heating, lighting ventilation and cooling
use parameters and schedules for the building were set to mimic a house being
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Fig. 10 The building model used in Energy-+, showing the basic building shape, a 1.5 m
long shade over the southern window, and with construction elements shown schematically
according to the key.

lived in by a professional couple, with efficient lighting, heating and cooling.
The location of the building was set as London, UK. Assumptions were made
about the efficiency of plant and the CO2 emissions associated with gas and
electricity. The air infiltration rate was fixed.

The basic building model is shown in Figure 10 and the building variables
to be optimized were as follows:

— Southern wall glazing extent (to vary between 0% and 100% glazed),

— Southern glazing thermal resistance (U value to vary between 0.8 and 1.8
W-K=t.-m™2),

— insulation thickness on each aspect and on the roof and floor (6 variables,
to vary between 0 and 1 m thickness), and

— internal thermal mass thickness on the floor and north wall (2 variables,
to vary between 0 and 1 m thickness).

6.3 Notes on the CO5 and Cost analysis

A simple mathematical cost model was constructed based on industry-supplied
information on the costs of different standards of glazing, insulation (XPS
polystyrene), thermal mass (concrete blocks) and other material elements of
the wall construction. The simulation of the building’s energy demands was
made using Energy+, a well established and tested dynamic thermal simu-
lation engine [USDE (2010); Crawley et al (2001); Neymark et al (2002)].
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Fig. 11 COg2 values for designs simulated in the max E[I(x)]P [g(x) < c] infill criterion
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based optimization.

This tool couples local weather files with a user-defined model of the build-
ing construction and use, in order to calculate the energy being used to keep
the building within user defined ranges of temperature and light levels. These
calculations were made at 15minute intervals over the course of a whole year
to give annual demand for heating, cooling and lighting. These demands were
then used to generate figures for CO5 emissions from each source using a simple
mathematical model taking into account the plant efficiency and CO2 content
of different fuels.

6.4 Building design: constrained optimization

Our first optimization case assumes a maximum budget for insulation, thermal
mass, other wall materials and windows of £25,000. For this cost limit we
wish to minimize CO; emissions, as calculated by Energy+. With a budget
of 300 simulations we choose 100 initial sample points using, as for the wing
optimization, a Morris-Mitchell-optimal Latin hypercube. We follow this with
200 infill points found by maxmizing E[I(x)]P [g(x) < c] (see equation 3),
where ¢ = 25000. CO- values for designs simulated are shown in Figure 11,
where circled points represent designs which meet the £25,000 constraint.
Following the initial sample, only one out of 200 designs failed to meet
the constraint. The optimum design was found after only the 73" infill point,
indicating that the number of simulations used here is well in excess of that re-
quired to solve this problem. However, the large number of designs around the
same performance and price point do, in fact, have a good deal of variation in
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the design variables themselves. This is a particularly interesting result from a
design viewpoint, in that it indicates a plurality of solutions will be possible as
opposed to fixing rigid limits on permissible values of building variables. Given
that regulations for limiting carbon emissions from buildings are becoming in-
creasingly onerous, and that the search space for optimal solutions is so large,
it appears that this technique has the potential to offer the building designer
useful information. It is though likely to be preferable to display a CO5 and
cost tradeoff to the designer by considering the two as distinct objectives.

6.5 Building design: multi-objective optimization

Using on the same initial sampling plan, we now choose our 200 infill points
based on maximizing the dual objective probability of improvement (see equa-
tion 5). The results of this multi-objective optimization (Figure 12) show that
relatively large, and low cost, CO5 improvements could be made to the build-
ing design between the costs of £5,000 and £15,000, and that from this point
improvements in COs performance were much more costly. Note that, even
though we are optimizing across two objectives and using the same simula-
tion budget, the Pareto front passes through the best design found in the
constrained optimization (COg = 0.65¢/yr). The general trends in building
designs as we move up the ranked list of non-dominated designs are shown in
Figure 13.

The highest CO2 emission non-dominated designs had very low levels of
insulation on all aspects, low levels of thermal mass assigned to the floor
and north wall and large southern windows with low thermal resistance (high
U value). To reduce CO2 emissions from this point, non-dominated designs
involved decreasing southerly glazing extent, improving the thermal resistance
of the windows, increasing insulation thicknesses on all aspects and increasing
the total amount of thermal mass. Interestingly, the optimization does not tend
towards what would traditionally be viewed as high-performance windows.
Windows with a U value as low as 0.8 W - K~! . m™2 were available in the
optimization, but instead the lowest COy emission buildings show U values
of around 1.62 W - K~ - m™2. It appears the methodology is optimizing the
window U value to balance the conflicting objectives of increased solar gain
offered by poorly insulated windows and the decreased heat losses offered by
well insulated windows, and also to balance these performance variables with
cost.

An extremely important first step in the design of ‘green’ housing is the
ability to present the trade-off between cost and environmental impact in a
form understandable to the expert and the layperson alike. We believe that a
Pareto-type framework is ideal for this purpose and, while building this type
of trade-off model can often be prohibitively expensive, the above analysis
indicates, that a potentially affordable route is through a multi-objective ex-
pected improvement type scheme. In the interest of clarity we have presented
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Fig. 12 COg2/cost tradeoff produced by the dual objective probability of improvement infill
criterion based search. The dashed line at CO2 = 0.65t/yr indicates the best design found
for the £25,000 constrained optimization.

a relatively simple case study here, but the approach described here is scalable
to more expensive objectives and larger numbers of design variables.

7 Conclusions

The high computational expense of measures of merit, constraints drawing
awkward boundaries around design spaces and multiple, competing objectives
are some of the key challenges of design optimization. Over these pages we
have outlined a toolkit designed to tackle these problems through surrogate
modeling and we deployed these tools on two problems that, we believe, are
representative of modern, ‘real-world’ design problems. The techniques used
here do not represent the only viable strategy for tackling expensive, black-box
type search problems. They do, however, represent a distillation of the authors’
combined experience in tackling this class of problems and we hope that the
two case studies provide compelling evidence for the feasibility of surrogate
model-based global searches as an alternative to more conventional, direct
optimization methods. We also hope to have made a case for the generic nature
of the approaches described here — the success of this effort will be measured
by the reader considering to apply these methods to their own problems.
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