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Doctor of Philosophy

PROBABILISTIC MANUFACTURING VARIABILITY QUANTIFICATION FROM

MEASUREMENT DATA FOR ROBUST DESIGN OF TURBINE BLADES

by Nikita Thakur

Turbine blades are critical to the performance of an aircraft engine and their life is central to the

integrity of the engine. These blades, when manufactured, inevitably exhibit some deviations

in shape from the desired design specifications as a result of manufacturing variability. An

approach to characterizing these deviations may be made by analysing the blade measurements

for any changes from the datum design values. The measurement data, is however, always

affected by measurement errors that cloud these effects.

In the present study, a methodology is proposed that employs the probabilistic data anal-

ysis techniques of Principal Component Analysis (PCA) and Fast Fourier Transform (FFT)

analysis for de-noising the measurement data to capture the underlying effects of manufactur-

ing variability as manufacturing drift with time and blade to blade manufacturing error. An

approach using dimensionality reduction in the case of PCA and sub-selecting Fourier coef-

ficients in the case of FFT is proposed that uses prior knowledge on the measurement error.

A Free-Form Deformation (FFD) based methodology is then presented for characterizing the

3-dimensional (3-d) geometric variability in blade shapes from the limited number of available

measurements. This is followed by the application of a linear elasticity based approach for

generating and morphing 3-d volume meshes in FEA ready form. A finite element analysis

(FEA) of the resulting probable blade shapes indicates that the presence of manufacturing

variability reduces their mean life by about 1.7% relative to the nominal design with a maxi-

mum relative reduction in life of around 3.7%. The probabilistic estimates of manufacturing

perturbations are employed for robust design studies with the objectives of maximizing the

mean and nominal lives and minimizing the blade life variability. A comparison of the robust-

optimal solution with an optimal deterministic design is also performed. The designs explored

by the multiobjective optimization process are analysed to understand the effects of geometric

changes in turbine blades on the nominal values of life and the variations in blade life.
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L1 Lamé’s first parameter
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Chapter 1

Introduction

1.1 Motivation

Turbine blades are critical to the performance of gas turbine engines. Efficient design and

manufacture of turbine blades is an area of extensive research because of the contribution it

has in improving the overall efficiency of the engine. It may take months for an entire team of

analysts, design engineers and manufacturing engineers to design a turbine blade that meets

the expected life and performance specifications. However, the manufactured blades inevitably

exhibit some deviations from their desired shape due to the presence of manufacturing vari-

ability. This variability may result due to various contributing factors, e.g., changes in the

surrounding temperature and humidity levels while manufacturing, slight deviations from the

desired shape in the dies used for casting, wear and tear of the tools, hand-finishing operations

like polishing and grinding, human error, etc.

It is usually very expensive or perhaps even impossible to eliminate these sources of vari-

ability in the system. The resulting deviations or the geometric variability in the manufactured

shapes may lead to variations in the overall efficiency, performance and life of these blades from

their designed values. This has become an important issue in the aircraft engine manufactur-

ing industry. With the introduction of new market paradigms like Power By The Hour and

TotalCare contracts, engine manufacturers have undertaken the responsibility for providing

overall lifetime support to the engine, from the time the engine is delivered to the customer

until it goes out of service [1, 2, 3]. The implications of Power By The Hour contracts on

turbine blade lifing are clearly indicated in the recent work of Bagnall et al. [4]. The effects
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of manufacturing variability on turbine blade shapes may result in unpredictable behaviour of

these blades in operating conditions, reduced efficiency during operation, or even reduced life,

ultimately leading to company losses. This has lead to the increasing interest in identification

of the sources of manufacturing variability and estimation of their effects on blade life and

performance. If realistic estimations of these effects are available, this information may further

be used for seeking new turbine blade designs with improved performance and lifing robustness

in the face of manufacturing variability.

An approach to understanding the effects due to variations in the manufacturing processes

may be made by taking measurements on turbine blades and comparing this data with the

designed values to characterize any differences in shapes. The measurement data is, however,

inevitably clouded by measurement error due to the limitations of the measurement techniques.

Therefore, it becomes essential to filter out the measurement error from the measured dataset

to capture the underlying effects, and identify the sources of manufacturing variability. Tech-

niques may then be devised to use this information for estimating the 3-dimensional (3-d)

geometric variability observed in turbine blade shapes. These 3-d models may further be em-

ployed for quantifying the effects of the shape changes on turbine blade lifing properties. If

such methodologies can be designed to capture the effects of manufacturing variations from

measurement data, robust design studies may then follow in search of new designs with better

lifing characteristics and reduced variability in life due to manufacturing variations.

The focus of the present research is to devise methodologies for extracting information

from the measurement datasets in order to capture the underlying effects of manufacturing

variability. The sources of manufacturing variations are first segregated into manufacturing

drift with time and the blade to blade manufacturing error. A methodology that uses lim-

ited measurements for characterizing 3-d geometric variability in the manufactured shapes is

also proposed. The deformed geometries obtained from the application of this methodology

represent the probable shapes of manufactured parts. The information obtained from these

geometries is used for obtaining 3-d volume meshes in FEA ready form by mesh morphing.

These volume meshes are analysed for estimating the effects of manufacturing variability on

turbine blade life. Finally, robust design optimization studies are conducted to result in a

new turbine blade design that not only indicates an improved value of designed life, but also

demonstrates reduced variability in life in the presence of manufacturing variations.
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1.2 Background

In the recent past, there has been a lot of emphasis on capturing and modelling uncertainty

and performing probabilistic analyses during the design phase [5, 6]. Recently, the aircraft

propulsion industry has also extensively employed probabilistic design methods, driven largely

by the need to reduce risk through quantification of uncertainty [7, 8]. Sidwell [9] performed

probabilistic analysis on a commercial jet engine to quantify the variability in turbine blade

flow and oxidation life due to uncertainty in operating conditions. Moeckel [2] investigated

manufacturing variability and its effect on first-stage turbine blades using a parametric geome-

try model and a finite element thermal model. Garzon [10] applied statistical and probabilistic

techniques to assess the impact of geometric and operating condition uncertainty on axial

compressor performance. Kumar [1] proposed methods to represent and propagate geometric

uncertainty on compressor blades in order to quantify its impact on aerodynamic performance.

He also proposed methods for seeking robust optimal compressor blades that have reduced

sensitivities to geometric uncertainty caused due to erosion and manufacturing variations.

However, the research conducted so far in this area has been limited in its scope either due to

the unavailability of measurement data on the final manufactured parts, or, due to its focus

on improving the base design rather than identifying and characterizing the nature of manu-

facturing variabilities influencing the shapes of the final manufactured components. Also, the

focus of the research in the literature has been on quantifying the effects of manufacturing

variations on 2-d geometries generally using hypothetical values. The present work takes a

step further by using the limited available measurements for characterizing the 3-d geometric

variability in manufactured components and estimating its effects on the life of these parts.

The present research focuses on the implementation of probabilistic data analysis tech-

niques on measurement data in order to identify the sources of manufacturing variability and

estimate the probable actual measurements of manufactured parts. Methodologies making use

of geometry manipulation techniques are employed for estimating the 3-d geometric variabil-

ity observed in turbine blade shapes from the limited number of available measurements. A

linear elasticity solving (LES) based approach is then used for morphing the volume mesh of

the nominal blade model to obtain FE meshes for the probable manufactured blade shapes.

These meshes are employed for estimating the effects of manufacturing variability on the Low

Cycle Fatigue (LCF) life of hollow turbine blades at Maximum Take-Off (MTO) conditions.

The numerical studies presented are conducted on measurement data available on a randomly
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selected sample of turbine blades manufactured over a span of one year. The probabilistic

estimates of the effects of manufacturing variability are obtained in terms of the mean life

and standard deviation in life. Perturbations in the nominal design due to the casting process

are calculated and applied on a series of new designs for robust design study. In the end, a

robust-optimal solution is obtained that not only indicates improved values of nominal and

mean lives as compared to the base geometry, but also results in a reduced variability in life

caused by manufacturing perturbations.

The hollow turbine blades considered here are manufactured using a casting process which

involves procedures that can result in significant shape variations in these blades from their

nominal design. Blade casting is a complicated process involving a series of steps, e.g., design-

ing and creating the molds, pumping in the hot molten metal, cooling of the casts, extraction

of the blades from these molds, grinding, etc. In addition, certain less controllable parameters

like temperature and humidity levels of the surroundings, wear and tear of the tools, human

error, etc., also add to the manufacturing variations. Therefore, quantification and identifica-

tion of the nature and the sources of manufacturing variability is a significant task. Various

experimental methods and techniques, both destructive and non-destructive, may be employed

for this purpose.

A destructive technique may be slicing up sample blades and making internal and external

measurements on the blade slices. The implementation of this technique depends on the

number of blades available for cutting up which may be very expensive due to the high cost of

production of each blade. Besides, the technology and procedure used for slicing of the blades

has to be carefully selected in order to obtain pieces that are good enough for making precise

measurements. Also, the dimensions to be measured and compared with the base model need

to be selected and registered with great care.

One form of non-destructive technique would be experimentally obtaining and comparing

3-d scans of the blades with the nominal turbine blade model. This process involves highly-

powered X-ray micro-CT (Computed Tomography) scanners for the high density nickel alloy

blades being considered. Such powerful micro-CT scanners are not easily available. Even if

access to such scanners is available, obtaining 3-d scans on the blades with the desired resolution

is a very expensive and time-consuming process. Another non-destructive technique may be

physically making measurements on the external surfaces of the manufactured blades and

comparing these measurements with the design specifications. This is a relatively complicated
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process due to the highly complex shape of the turbine blades. Moreover, it gives no idea of the

internal variations in the blade shape, especially, for the hollow turbine blades which possess

internal design features that are used for blade cooling.

One of the non-destructive techniques used in production is via ultrasonic devices to mea-

sure the blade wall thicknesses. This technique uses ultrasonic beams to measure minimum

blade wall thicknesses at various cross-sectional planes and at various locations across each

plane to give an idea of the final shape of the manufactured blades. Besides using ultrasonic

measurement devices, some other non-destructive evaluation techniques that may be used for

measuring the wall thicknesses are, impulse-video-thermography [11], X-ray tomography [12]

which as discussed previously is highly dependent on the power of the machine available and

the density of the blade to be measured, and eddy current techniques [13]. Because of their

ready availability, the presented work uses ultrasonic minimum wall thickness measurement

data available on a randomly selected sample of hollow turbine blades manufactured over a

span of one year. Minimum wall thicknesses hold great importance during fatigue failure, and

hence, are measured during the blade inspection process.

The measurements taken through ultrasonic devices are easily corrupted by errors intro-

duced during the measurement process. Some of the sources of this measurement variability

are: 1) error in calibration of the measurement devices, 2) error in orientation of the blade

when it is held on top of the ultrasonic head, 3) error due to the measured surface being

out of view of the operator, 4) human error, etc. Therefore, it becomes essential to filter out

any measurement error/noise from the measured data before these thicknesses are compared

with the nominal design measurements. The estimated values of manufactured thicknesses

may then be used for deforming the nominal turbine blade model in order to obtain probable

representations of the manufactured shapes. This may be followed by generating FE meshes

on the perturbed geometries for lifing, thermal and stress analysis. The results obtained from

the proposed analysis will help develop an understanding of the effects of manufacturing varia-

tions on blade life variability. Information obtained from the proposed analysis may further be

employed for imposing relatively more realistic perturbations on the various competing base

designs to finally enable the selection of a robust nominal design.
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1.3 Objectives of the Thesis

The main objectives of the work presented in this thesis are :

1. To propose a practical methodology for de-noising routinely available measurement data

in order to capture the underlying effects of manufacturing variability in terms of the

manufacturing drift with time and the blade to blade manufacturing error. This method-

ology makes use of prior information available on measurement error for segregating the

random noise from measured datasets to result in probabilistic estimations of the true

values of measurements for the manufactured parts.

2. To characterize the 3-d geometric variability observed in turbine blade shapes from the

limited number of measurements available per blade. The 3-d representations are used

to estimate the effects of manufacturing variability on turbine blade life.

3. To apply the manufacturing perturbations obtained from the turbine blade measurement

data analysis for robust design optimization studies. The application of these perturba-

tions on each new design explored by the optimizer helps in obtaining relatively more

realistic estimates of the effects of manufacturing variations on blade life variability. It

also enables the trading-off between the two robustness metrics of mean life and standard

deviation in life against the nominal or designed values of life.

1.3.1 Probabilistic Measurement Data Analysis

A methodology that employs the probabilistic data analysis techniques of Principal Component

Analysis (PCA) and Fast Fourier Transform (FFT) analysis is proposed here for filtering

out the measurement error from one-off measurements taken on turbine blades manufactured

over a year. The one-off measurements consist of data collected during the blade inspection

process. Application of the PCA and FFT techniques on these measurements helps in capturing

the effects of manufacturing drift with time. An approach to dimensionality reduction in

case of PCA and sub-selecting the Fourier coefficients for FFT analysis is proposed that uses

prior knowledge available on the measurement error. Information on measurement noise is

collected from a repeated set of blade measurements taken on a randomly selected sample

of blades manufactured within the same week. These measurements account for most of the

random measurement error since they are taken at different measurement stations, by different
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operators, at different times of the day, and on different days. A statistical analysis of the

repeated measurement dataset is also conducted to estimate the blade to blade manufacturing

variations. The final collective data representing the effects of manufacturing drift with time

and the blade to blade manufacturing error is then used for characterizing the 3-d geometric

variability observed in turbine blade shapes from their datum/nominal design.

1.3.2 Representing 3-d Geometric Variability from Limited Measurement

Data

A Free-Form Deformation (FFD) based methodology is proposed for representing the 3-d geo-

metric variability observed in turbine blade shapes from the limited number of measurements

available per blade. Negligible influence of manufacturing variability is observed on the ex-

ternal blade airfoil geometry. Hence, it is assumed that the brunt of variations due to the

manufacturing processes is borne by the internal design features (core) of the blade. The

Sederberg and Parry [14] FFD technique is employed here in conjunction with non-linear opti-

mization to deform the nominal core geometry in order to generate different representations of

the probable manufactured core shapes. Filtered measurement data, obtained from the PCA

and FFT based methodology introduced in Section 1.3.1, is employed for this purpose. Al-

ternatives to the non-linear optimization process, i.e. constrained and unconstrained forms of

linear least-squares (LLS) solution, are also explored. The LLS techniques may be preferred if

greater deviations from the nominal geometry are sought as compared to the more regularized

deformations obtained from the non-linear optimization process.

Information obtained from the deformed core shapes is used for calculating the nodal

displacements to be applied to the surface mesh of the nominal core geometry. This aids in

morphing the nominal turbine blade volume mesh using a linear elasticity based approach

resulting in a series of morphed volume meshes in FEA ready form. Each of these morphed

meshes represent a probable manufactured blade shape. A finite element analysis (FEA) on

the morphed meshes is then conducted to estimate the effects of manufacturing variability on

turbine blade LCF life. These effects are quantified in terms of the mean value of probable

lives and the standard deviation in life.
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1.3.3 Robust Design of Turbine Blades against Manufacturing Variability

The manufacturing perturbations obtained from the application of the methodologies discussed

in Sections 1.3.1 and 1.3.2 above are finally used for robust design optimization of turbine

blades. New designs are sought with the objective of improving the mean and nominal lives

and reducing the standard deviation in life. A workflow is created in iSIGHT 3.5-1 [15] that

employs a combination of computer aided design (CAD), FEA, MATLAB, JAVA, CADfix [16]

and Parasolid [17] tools to change the design of the blades and then estimate the effects of

manufacturing variability on each of these new designs. Changes to the nominal design are

implemented by fixing the external blade geometry and translating and rotating the core in

the X and Y directions followed by FFD based core shape changes. If the new design so

created satisfies the minimum acceptability criterion on the nominal life, it is passed on to the

remaining components of the workflow that apply the FFD based manufacturing perturbations

to calculate the probable mean life and standard deviation in life. The values of nominal life,

mean life and standard deviation are fed as objective functions to a Nondominated Sorting

Genetic Algorithm (NSGA-II) [18] based optimizer. The results of the robust design study are

compared with the traditional approach of deterministic design optimization and show that

the optimal deterministic design may not always be the best solution. It also shows that with

a slight compromise in the mean and nominal values of life, significant improvements in the

blade life variability can be achieved.

1.4 Scope of the Thesis

The aim of the presented research is to identify, characterize and quantify the effects of manu-

facturing variations on a real life industrial problem. This work is focused on the manufacturing

variability in turbine blade shapes as a result of the blade casting process and its resultant

effects on the blade LCF life. A series of methodologies are devised based on existing and

well-established techniques for manufacturing variability analysis. This information is then

used for a robust design optimization study and its benefits compared with the traditional

approach of deterministic design optimization. An introduction to the mathematical concepts

behind the implementation of PCA, FFT analysis, FFD and LLS solution in perspective of the

present problem is provided in the subsequent chapters. The proposed technique for dimen-

sionality reduction and Fourier coefficient selection based on the prior information available on
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measurement error is also dicussed in detail. However, indepth mathematical formulations for

Multivariate Analysis of Variance (MANOVA), linear elasticity solving method, single objec-

tive non-linear optimization processes and NSGA-II are beyond the scope of the present work.

The focus of the research is on devising strategies to apply these approaches for the benefit of

the industrial design process rather than delving deeply into their underlying concepts. For

the interested readers, a relatively detailed explanation of MANOVA analysis is provided in

Appendix B. In the present case, MANOVA is used for a preliminary test to ascertain the

presence of manufacturing drift with time in the turbine blade measurements before proceed-

ing with the PCA and FFT based analysis. Usage of the response surface modelling (RSM)

techniques, specifically Kriging, in conjunction with the LPτ design of experiments (DOE)

approach is also explored for creating surrogate models in an effort to save the computational

cost required for the FEA runs. These techniques, however, do not prove to be helpful for

the current problem. A brief introduction to Kriging and LPτ DOE techniques is provided for

interested readers.

1.5 Layout of the Thesis

This thesis is organized as follows :

Chapter 2 explains the casting process used for manufacturing hollow turbine blades with

both internal and external design features. It also gives a brief description of the various

procedures used for blade inspection after casting. The information presented is based on a

first-hand experience at the shop floor and has been collected from regular discussions with the

design and manufacturing engineers working at the casting facility. Various possible sources

of geometric variability during the manufacturing process and measurement error during the

ultrasonic blade wall thickness inspection are also presented. The discussion concludes by

providing an insight into the benefits that a manufacturing variability analysis may offer at

the shop floor.

Chapter 3 proposes a methodology that employs probabilistic data analysis techniques of

PCA and FFT analysis for de-noising measurement data in order to capture the underlying

effects of manufacturing variability. It also proposes a technique for dimensionality reduction

in case of PCA, and selecting the threshold magnitude (TM) for discarding Fourier coefficients

in case of FFT, that uses prior information available on the measurement error. A brief histor-
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ical background on the PCA and FFT techniques and an introduction to their mathematical

concepts is provided. The usage of repeated measurement data for de-noising the one-off mea-

surements available in production is discussed in detail. This is followed by the application of

the proposed methodology to the turbine blade problem along with a summary of the main

results.

Chapter 4 proposes a FFD based methodology for representing the 3-d geometric variabil-

ity observed in turbine blade shapes from the limited number of measurements available per

blade. After an introduction to the development of the FFD technique, the main mathemat-

ical concepts behind the implementation of the Sederberg and Parry FFD technique [14] are

presented. This is followed by a discussion on the need for using an optimization process in

conjunction with FFD to obtain the best match to the probable manufactured core shape.

The objective function linking FFD with the non-linear optimization processes is formulated.

Alternatives to the optimization process, namely, constrained and unconstrained LLS solution

are also discussed. The results of LLS solution are compared with the shapes obtained from

the optimization process and show that using non-linear optimization in conjunction with FFD

results in more regularized geometries. In the end, the application of the proposed FFD based

methodology is demonstrated on turbine blade core shapes resulting in representations of the

3-d geometric changes caused by manufacturing variations.

Chapter 5 discusses the application of a linear elasticity based approach for mesh morphing.

A methodology is implemented that uses information obtained from the FFD analysis for

generating 3-d volume meshes on the probable manufactured turbine blades in FEA ready

form. The boundary conditions and mathematical formulations used for conducting turbine

blade lifing analysis at maximum take-off (MTO) conditions are presented. A mesh convergence

study is undertaken to estimate the appropriate mesh size for finite element analysis. This

is followed by numerical studies resulting in estimating the mean life and standard deviation

in life observed for the probable turbine blade shapes. The main findings of this study are

summarized at the end of the chapter.

Chapter 6 makes an attempt to generate RSMs for lifing predictions using the probabilistic

values of turbine blade measurements as inputs. An introduction to the LPτ design space sam-

pling technique is provided followed by a brief description of the Kriging approach for response

surface modeling. Different techniques used for validating the RSMs including the leave-one-

out cross-validation method are also discussed. Finally, the numerical studies conducted for
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the turbine blade problem are presented showing that creating RSMs is not very helpful in the

present case.

Chapter 7 describes a robust design optimization study for turbine blades in the presence

of manufacturing variability. The need for using robust design techniques in the industry when

creating new designs is discussed. An overview of the state of the art in robust design meth-

ods along with a detailed explanation of the approach for robust design using multiobjective

optimization is presented. This is followed by a brief introduction to the NSGA-II optimizer

and a detailed description of the iSIGHT workflow used for optimization studies in the present

case. A 3-d Pareto front obtained from the multiobjective optimization is analysed to select

robust-optimal solutions. Trade-off studies between the mean life and standard deviation in life

against the nominal turbine blade life are conducted. Results obtained from the deterministic

design optimization are compared with the optimal robust solution indicating that the optimal

deterministic design may not always be the best solution. Finally, the chapter concludes with

a summary of the main observations from the numerical studies conducted for the present

problem.

Chapter 8 concludes this thesis with a brief summary of the main observations of this

research. A mention is made of the contributions of this work to the literature and probable

directions for future research are outlined.



Chapter 2

Sources of Manufacturing

Variability and Measurement Error

in Turbine Blades

This chapter briefly outlines the procedure employed for manufacturing the turbine blades con-

sidered in this thesis. It also presents a brief discussion on the various measurement procedures

used for inspecting whether the manufactured blades are within the desired tolerance limits.

The discussion then moves on to explaining the need for manufacturing variability analysis

from the perspective of the benefits it may offer in improving the productivity at the shop

floor. Section 2.1 provides a brief introduction to the various manufacturing and measurement

processes based on a first-hand experience at the shop floor. It also explains the various proba-

ble sources of manufacturing variability and measurement error in the existing manufacturing

and measurement techniques, respectively. Section 2.2 deviates slightly from the objective of

the thesis presented in Chapter 1 and discusses the reasons for which a manufacturing vari-

ability analysis may be beneficial for the shop floor by providing valuable feedback on the

manufacturing and measurement processes being used at present.

2.1 Manufacturing and Measurement of Turbine Blades

Turbine blades, especially those with both internal and external design features, are very com-

plicated geometries to manufacture and to measure. Not much literature is available at present

12
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Figure 2.1: A typical turbine blade shape

with internal core passages.

on the various processes used for manufacturing

and measurement of turbine blades, probably due

to the proprietary nature of this information. The

aim of this section is to give a brief description

of the processes used for manufacturing turbine

blades, and discuss the various types of measure-

ments taken for blade inspection to ensure that

these blades are not defective. This is followed

by a discussion in Section 2.1.1 on the probable

sources of manufacturing variability introduced

into the turbine blade shapes. Section 2.1.2 dis-

cusses the possible sources of measurement error

that may be observed in the measurement data

taken on these blades. The knowledge presented

in this section is based on a first-hand experience

at the shop floor where hollow turbine blades are manufactured. Regular discussions on the

probable sources of manufacturing variability and measurement error have also been held with

the design and manufacturing engineers at the casting facility.

The sketch of a typical turbine blade shape with internal core passages is shown in

Figure 2.1. The solid lines mark the external blade surface and the dashed lines rep-

resent the core. A flowchart representation of the casting process used for manufactur-

Figure 2.2: Flowchart depicting the casting process used for manufacturing hollow turbine

blades.
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ing hollow turbine blades is shown in Figure 2.2. Manufacturing of turbine blades in-

volves a series of complex processes that need to be accomplished with precision in or-

der to ensure that a majority of the manufactured blades meet the design specifications.

Figure 2.3: Typical turbine blade wax model
held in the mold assembly. Courtesy: Rolls-

Royce plc., Derby.

It starts with creating the molds that are used

for casting the blades. Since the blades have

both internal and external design features, the

preparation of molds is in itself a fairly compli-

cated process. A separate core model is manu-

factured from ceramic based material for the

internal passages and assembled into a wax

model of the turbine blade. For this, the core

models are held in dies into which molten wax

is poured to create geometric representations

of the desired blades. During this process, suf-

ficient spacing is allowed for these core models

to expand or drift slightly from their nominal

positions so that the delicate ceramic models

do not break, bend or twist when the molten

wax is poured. The resultant wax models of

the blades are then measured on their external

surfaces using coordinate measuring machines

to check if all these models meet the design re-

quirements. This is followed by assembling a

few (typically 4) wax models together and coating the molding material over these assemblies

to create the final mold that will produce all these blades at one go. The wax models are

fixed in the assembly with their tip at the bottom end and root at the top end. This is done

to ensure the monocrystalline structure of the Nickel based alloy that is pumped later into

the molds from the bottom tip end. A pictorial representation of a typical turbine blade wax

model held in the mold assembly is shown in Figure 2.3.

Once the molds are ready, air is passed through them at high temperature and pressure

to melt and remove the inside wax. This results in creating hollows into which molten Nickel

alloy is pumped (tip first, as stated before) and left for solidification. In Figure 2.3, the fixed
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core print is a direct bond between the core and shell material. The floating core print has

a thin gap to allow for thermal expansion differences. At cast, the alloy is poured down the

empty downpole and sent through the runners to each of the blades in the mold assembly.

The alloy fills up through the starter (which also contains a filter although this is not formally

modelled) and up through the blade. On completion of the solidification process, the molds are

broken to take out the cast blades. These cast blades still have ceramic cores inside them which

are removed by chemical leaching, a process in which the ceramic material is dissolved using

suitable solvents. The cast blades so obtained are then ground to remove any irregularities on

the external blade surface, e.g., moldlines, flashing, etc.

The final blades obtained after grinding are measured using different measurement proce-

dures to check if they meet the desired design specifications. These measurements include:

• airfoil shape measurements,

• bow and twist measurements,

• blade wall thickness measurements,

• measurements for the trailing edge thickness and the blade platform thickness,

• internal passage hole measurements at the base of the blade,

• die penetration and X-ray scanning for cracks.

Coordinate measuring machines are used to plot the coordinates of the external aerofoil blade

surface to compare the profiles so obtained with the nominal aerofoil profiles. If the aerofoil

sections obtained are within the tolerance limits, the blades are accepted. The process of

grinding is used for removing any mouldlines and flashing from the cast blades. Bending or

twisting of blades is checked by measuring and comparing the coordinates of selected locations

along the pressure and suction surfaces across different planes along the length of the blade.

This is followed by measuring minimum blade wall thicknesses using ultrasonic measurement

devices such that the location to be measured is placed perpendicular to the ultrasonic head

and moved very slowly in a to and fro motion until the minimum thickness value is obtained

for that particular cross-section. The thicknesses of the trailing edge and blade platform, and

the positions of the holes formed by the core at the base of the blade are also measured and

checked. The die penetration technique is used to investigate the presence of any external
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or internal cracks that are visualized using X-ray scanning machines. Thus, each and every

blade that is manufactured goes through a collection of measurement procedures during the

inspection process. The blades are accepted if all the measurements taken are within the

specified tolerance limits or rejected otherwise. Also, if the die penetration and X-ray scanning

procedures reveal any cracks, the blades are rejected.

2.1.1 Sources of Manufacturing Variability

The various sources of manufacturing variability in the casting process include :

• While creating the wax models, the ceramic cores are held relatively loosely in the dies in

order to allow sufficient space for the cores to expand or deviate slightly from their base

positions when the molten wax is poured. This may cause the core models to deviate to

a much larger extent than expected.

• The high temperature and pressure at which air is passed through the final mold assembly

for wax removal may cause the ceramic models to deflect or deform slightly from their

desired shapes.

• The high temperature at which the molten metal is poured into the casts along with

the hydrostatic pressure exerted by the molten metal on the core may result in the core

becoming semi-plastic in nature and instigate undesirable deformations. As pointed out

in Section 2.1, the floating core print shown in Figure 2.3 supports the thermal expansion

differences that occur during this process.

• The ceramic core models may have air bubbles trapped inside them which may result

in increasing or decreasing the blade wall thicknesses. The high temperature of the

poured in molten metal may cause the air trapped inside the bubbles to expand and

hence reduce the blade wall thickness values, or, the hydrostatic pressure exerted by the

molten metal on the core may end up compressing these bubbles resulting in an increase

in the thickness values.

• Changes in the surrounding temperature and humidity levels and wear and tear of the

tools may cause manufacturing drift with time.

• The blade to blade variations caused by grinding cannot be ignored.
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2.1.2 Sources of Measurement Error

This section discusses the various probable sources of error in the ultrasonic wall thickness

measurement process. Other measurement processes are not discussed further since they are

beyond the scope of the present work. Some of the sources of measurement error presented

below may be common to all the measurement processes and others are only relevant to the

ultrasonic wall thickness measurement procedure. In brief, the various sources of measurement

error include :

• The blades are held by hand above the ultrasonic head while taking measurements. Non-

firm clamping of the blades may cause left and right misalignments of the blade and result

in inaccuracies.

• The ultrasonic measurement procedure may be considered to be slightly biased towards

over thick readings because any failure to preset the blade at right angles to the probe

may result in longer ultrasound paths in the sample being measured.

• The markings for the measurement locations on the blade surface are quite thick and

may lead to an offset from the plane across which measurements are being recorded.

• The pressure or suction surfaces across which measurements are being taken are hidden

from view of the operator, making it difficult to check if the measurements are being

recorded at the correct location and on the correct plane.

• The minimum thickness values are recorded by pressing a pedal once the ultrasonic device

encounters the least thickness value across a desired location. Since the same operator

who holds the blade above the ultrasonic head also presses the pedal, any misalignment

of the blade while pressing the pedal may result in over-thick readings.

• The ultrasonic measurement device may suffer from calibration error or may have its

ultrasonic head slightly tilted from its desired upright position. Since calibration errors

are an obvious source of measurement error, care is usually taken to avoid these errors.

• Last but not the least, human error is a possibility that may not be ignored.
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2.2 Need for Manufacturing Variability Analysis in improving

Productivity

The motivation behind conducting a manufacturing variability analysis on the turbine blades

has already been presented in Chapter 1, Section 1.1. Manufacturing the turbine blades is

not only a complicated process, but it is also very expensive with each blade costing around

£5,000-£10,000. Therefore, the number of acceptable blades manufactured in a particular

batch becomes very important. The higher the number of rejected blades coming out of the

manufacturing process, the greater is the monetary loss incurred by the company. Thus, identi-

fication of the sources of manufacturing variability and possible solutions to reduce or eliminate

this variability become highly desirable. Feasible modifications to the existing manufacturing

processes may then be proposed in order to reduce the effects of the observed manufacturing

variability. However, it is essential to be able to segregate measurement error from measure-

ment datasets to capture the underlying effects of manufacturing variability. There is also a

possibility that acceptable blades are being rejected due to measurement error. Therefore, it

becomes necessary to estimate the variability in measurements caused by measurement error,

identify its possible sources, and suggest any feasible improvements to the existing measure-

ment processes.



Chapter 3

Probabilistic Measurement Data

Analysis to Capture the Effects of

Manufacturing Variability

This chapter proposes a methodology for filtering noise from measurement datasets in order to

capture the underlying effects of manufacturing variability in terms of the manufacturing drift

with time and the blade to blade manufacturing error. To begin with, a Multivariate Analysis

of Variance (MANOVA) of the measurement data is conducted to ascertain the presence of

manufacturing variability. This is followed by the application of probabilistic data analysis

techniques, such as, Principal Component Analysis (PCA) and Discrete Fourier Transform

(DFT) analysis using the Fast Fourier Transform (FFT) algorithm, for de-noising measure-

ment data to capture the underlying effects of manufacturing variability. A technique for

dimensionality reduction in case of PCA, and, selecting the threshold magnitude (TM) in the

case of FFT is proposed that uses prior information available on the measurement error. Ap-

plication of the proposed methodology on turbine blade data results in the probable values of

actual measurements for these blades. These measurements may then be used for generating

3-d models of the turbine blade shapes for finite element analysis (FEA).

This chapter is organized as follows: In Section 3.1 we discuss the need for manufacturing

variability analysis for turbine blades. Section 3.2 presents the mathematical formulations for

the different probabilistic and statistical data analysis techniques implemented for the present

problem. It also gives a detailed mathematical explanation of the proposed dimensionality

19
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reduction technique that uses prior information on the measurement error. This is followed

by Section 3.3 that gives a detailed explanation of the proposed methodology for de-noising

measurement data using the PCA and FFT techniques, and, capturing the effects of man-

ufacturing variability in terms of the manufacturing drift with time and the blade to blade

manufacturing error. Section 3.4 discusses the application of the proposed methodology to the

turbine blade problem and presents the results obtained from the numerical studies. Finally,

the main observations are summarized in Section 3.5.

3.1 Need for capturing Manufacturing Variability

The ‘need’ for conducting a probabilistic analysis to characterize and quantify manufacturing

variability has been discussed in Chapters 1 and 2. In Section 1.1, we noted that the tur-

bine blades coming out of the manufacturing process exhibit variations in shape from their

designed/nominal shapes. Various factors may be contributing to these variations, e.g., slight

differences in the shapes of the molds used during the casting process, changes in the surround-

ing temperature and humidity levels when the blades are cast, hand-finishing operations such

as grinding and polishing, subjecting different blades to varying loads at the same or different

positions, wear and tear of the tools, etc. The variations observed in blade shapes may in turn

lead to bigger problems, such as, affecting the performance or the life of these turbine blades

during operation. It becomes essential therefore, to identify and estimate manufacturing vari-

ability and observe its effects on turbine blade life and performance in operating conditions.

As discussed in Section 1.2, the most obvious solution to this problem appears to be taking

measurements on the blades to get some idea of the manufactured blade shapes. However,

the measurement data may be clouded by measurement error, or, what is commonly known as

random error or noise. Therefore, segregation of this measurement error/noise from the mea-

surement dataset to capture the underlying manufacturing variability, and then, quantification

of this manufacturing variability along with identification of its various sources is a significant

task.

This chapter proposes a methodology based on existing de-noising techniques, namely PCA

and FFT, for filtering out the measurement error from measured data collected on turbine

blades coming out of the manufacturing process. The application of this methodology also

results in segregating the manufacturing variability so obtained into manufacturing drift with
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time, and the blade to blade manufacturing error. The presence of manufacturing drift with

time is ascertained by the usage of MANOVA on the measurement dataset. The resultant

probable manufactured blade measurements may then be used for obtaining 3-d representations

of the variations in turbine blade shapes as discussed further in Chapter 4.

3.2 Probabilistic Data Analysis Techniques

This section presents an overview of the mathematical aspects of PCA and FFT techniques. It

also gives a detailed explanation of the proposed techniques for dimensionality reduction that

use prior information on the measurement error. The usage of measurement error information

for selecting the TM when using FFT for de-noising measurement dataset is also discussed.

Here, TM refers to the threshold magnitude used as cut-off for discarding the Fourier coeffi-

cients.

Consider an m × n data matrix X, where m represents the number of blades measured

and n represents the number of measurements taken on each blade. This data matrix X

can further be divided into g time-based groups, namely, X1,X2,X3, · · · ,Xg with dimensions

m1 × n,m2 × n,m3 × n, · · · ,mg × n respectively, such that, m1 + m2 + m3 + · · · + mg = m.

In the present case, since the dataset X consisted of measurements taken on turbine blades

manufactured over a year, X was split into 12 time-based groups (g = 12) such that the blades

manufactured within the same month were grouped together. Subsequently, MANOVA (refer

Appendix B) may be applied on these groups to ascertain the presence of manufacturing drift

with time. This may be followed by the application of PCA and FFT techniques on each of

the g groups separately to obtain measurements capturing the effects of manufacturing drift

with time.

Information on measurement error was additionally collected through a specially designed

experiment in which r repeated trials of the same experiment on the same blade were conducted

by l different operators. This process was repeated for q randomly selected blades. It may

be noted that most of the random measurement errors have been taken into account in this

experiment since the same sample was measured at different stations, by different operators,

at different times of the day, and on different days. The measurement noise information can be

converted into a data matrix N, such that, each row is populated with the measurements on

the same blade and location and each column contains the measurements from the same trial.
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For each of the q blades, the repeated measurement data may be represented as a n×p matrix

N(j) (j = 1, 2, · · · , q), where n is the total number of measurement locations and p = l × r.

For the present problem, l = 3 and r = 4, therefore p = 12.

3.2.1 Principal Component Analysis (PCA)

Background

PCA is a non-parametric method for extracting relevant information from complex datasets

[19]. It is used for identifying patterns in data that highlight their similarities and differences,

and compressing this data with minimal loss of information [20]. PCA has been used for varied

applications such as face recognition in computer vision [20], gene expression analysis in bioin-

formatics [21], shape prediction of femoral heads from partial information in medical imaging

[22], reconstruction of human body shapes from range scans in computer graphics [23], etc.

In addition, PCA has proved to be particularly useful for data analysis in diverse fields like

oceanography [24, 25], climatology [26], geophysics [27, 28], geology [29], astronomy [30, 31],

etc. Lately, more complicated forms of PCA have been developed and demonstrated on varying

sets of data. Smidl and Quinn [32] proposed Bayesian PCA and demonstrated the advantages

of orthogonal variational PCA (OVPCA) on scintigraphic dynamic image sequences of kidneys.

Tipping and Bishop [33] demonstrated the advantages of Probabilistic PCA (PPCA) by its

application to a set of Tobamovirus data (a genus that contains viruses that infect plants).

Hagan, Roble, Russell and Mlynczak [28] made use of Complex PCA (CPCA) on satellite data

for planetary wave and tidal analysis in the middle atmosphere. The PCA technique, though

very popular in many fields of research, has not found many applications in the aircraft engine

manufacturing and design industry. One of the reasons may be lack of availability of measure-

ment data on aircraft engine components which is usually kept classified by the manufacturing

companies. Recently, some researchers in the aerospace research community have conducted

successful research in constructing high-fidelity models of manufacturing variability using PCA,

e.g., in 2003 Garzon and Darmofal [10, 7] used PCA to construct models of geometric vari-

ability suitable for probabilistic analysis and design from external surface measurements of an

ensemble of compressor rotor airfoils.

“The goal of principal component analysis is to compute the most meaningful basis to

re-express a noisy data set. The hope is that this new basis will filter out the noise and reveal
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hidden structure” [19]. The mathematics behind PCA and its various properties are explained

in great detail in the works of Shlens [19], Jolliffe [34] and Mandel [35]. In the present work, an

attempt is made to cover these mathematical formulations in a concise form. At this point, it

is essential to understand the important assumptions that PCA makes while performing data

analysis:

• It assumes that there exists a basis which is a linear combination of the original basis

that can be used to express the data set.

• It assumes that the measurement dataset comprising measurements of the same mea-

surement type/variable on different samples has a multivariate normal distribution.

• It assumes that the measurement noise in the input dataset is low as compared to the

actual measurement or input signal. Thus, the principal components (PCs) with larger

variances capture the dynamics of the input signal while the PCs with lower variances

capture noise.

• It assumes that all the PCs are orthogonal.

Mathematical Formulations

The mathematical formulations of PCA that follow are based on the paper by Shlens [19]. As

discussed before, we have a m × n data matrix X. Now, let us assume that X0 is a n × m

mean-centered input data matrix for PCA defined as,

X0 = XT −XT. (3.1)

In equation (3.1) above, XT is a n ×m data matrix in which each column is populated with

the mean values of each row from XT. Let Y be another n ×m matrix related to X0 by a

linear transformation L, such that,

LX0 = Y. (3.2)

The goal of PCA is to find an orthonormal matrix L such that the covariance matrix of Y,

CY ≡
1

n− 1
YYT, (3.3)
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is diagonalized. Rewriting equation (3.3) using (3.2) we get,

CY =
1

n− 1
(LX0)(LX0)T,

=
1

n− 1
LX0XT

0 LT,

=
1

n− 1
L(X0XT

0 )LT,

CY =
1

n− 1
LALT. (3.4)

In equation (3.4), A ≡ X0XT
0 is symmetric (by Theorem 1, Appendix A) and hence is diago-

nalized by an orthogonal matrix of its eigenvectors (by Theorem 3, Appendix A). Therefore,

A may be represented as,

A = EDET, (3.5)

where D is a diagonal matrix and E is a matrix of eigenvectors of A arranged as columns.

Now, we select the matrix L such that each row of this matrix is an eigenvector of X0XT
0 . This

implies, L ≡ ET. Substituting this relation into equation (3.5) it is observed that,

A = LTDL. (3.6)

We know that the inverse of an orthogonal matrix is its transpose, i.e. L−1 = LT (by Theorem

2, Appendix A). Using this relation and substituting equation (3.6) into equation (3.4), we

observe that L diagonalizes CY. This is proven as follows:

CY =
1

n− 1
LALT,

=
1

n− 1
L(LTDL)LT,

=
1

n− 1
(LLT)D(LLT),

=
1

n− 1
(LL−1)D(LL−1),

CY =
1

n− 1
D. (3.7)

In the expression above, the off-diagonal values of the matrix D are zero and the diagonal

values are ordered in terms of decreasing variance. Hence, the eigenvector corresponding to

maximum variance represents the first PC, the eigenvector corresponding to maximum variance

subject to it being orthogonal to the first PC represents the second PC, and so on. The results

of PCA may be summarized as follows:

• The PCs of X0 or the rows of L are the eigenvectors of X0XT
0 . These eigenvectors are

ordered in terms of decreasing variance.
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• The ith diagonal value of CY is the variance of X0 along its ith eigenvector.

For the present problem, PCA is applied separately to each of the g different time-based

groups, i.e., X1,X2,X3, · · · ,Xg, respectively. The mean values of the reconstructed measure-

ments obtained from each of the g groups result in g different blade shapes capturing the effects

of manufacturing drift with time. Please note that each blade shape is characterized by just n

measurement locations.

3.2.2 Dimensionality Reduction using Measurement Error Information

Background

Once PCA has been performed, the next issue is choosing the number of PCs to be retained

that would account for most of the variation in the input dataset [34, 36]. Numerous tech-

niques for dimensionality reduction are available in the literature. Some of these techniques

are, - 1) Cumulative Percentage of Total Variation, 2) Kaiser’s rule, 3) Scree Graph and the

Log-Eigenvalue Diagram, 4) Cross-Validatory Methods, 5) Partial Correlation, 6) Bayesian

model selection, 7) the forward orthogonal search(FOS)-maximizing overall dependancy(MOD)

or the FOS-MOD algorithm, etc. [34, 36, 37]. Many readymade packages are also available in

MATLAB which perform dimensionality reduction for a given dataset, e.g., Correlation dimen-

sion estimator, Nearest neighbour estimator, Maximum likelihood estimator, Eigenvalue-based

estimator, Packing numbers estimator, Geodesic minimum spanning tree (GMST) estimator,

etc. [38]. However, most of these techniques are useful when there is no prior knowledge of the

error that needs to be filtered out of the measurement dataset. If information on the measure-

ment error is available in advance, it is more desirable to use this knowledge for reducing the

dimensionality of the given dataset. The present work proposes an approach to dimensionality

reduction using measurement error information.

Mathematical Formulations

For the present case, information on the measurement error is collected from the repeated

measurements which have been formulated previously as matrices N(j), j = 1, 2, · · · , q. Thus,

if each row of N is represented by a vector nij , where i represents the measurement location
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number and j is the repeated trial number, then we have q matrices :

N(1) =


n11

...

nn1

 , · · · ,N(q) =


n1q

...

nnq

 . (3.8)

The variance of each row of N may be represented as the sum of the variance in the true value

of the variable (say vij) and the variance due to the measurement error (say eij),

V ar(nij) = V ar(vij) + V ar(eij), i = 1, ..., n, j = 1, ..., q. (3.9)

Now, the true value of the same variable for the same sample is constant, i.e. V ar(vij) = 0.

Substituting this in equation (3.9), we get,

V ar(nij) = V ar(eij), i = 1, ..., n, j = 1, ..., q. (3.10)

Assuming that the measurement error is random in nature, the variance of each row of N is

actually the variance due to the measurement error because the value of the true measurement

for the same blade at the same measurement location remains unchanged. Therefore, the

variance matrices for expression (3.8) are obtained as :

var(1) =


V ar(n11)

...

V ar(nn1)

 , · · · ,var(q) =


V ar(n1q)

...

V ar(nnq)

 , (3.11)

where, var(j) is the variance matrix for the jth sample, j = 1, 2, · · · , q. This variance data may

then be consolidated into one n× q variance matrix. The mean of each row of the consolidated

variance matrix would finally result in n different values, one each for the n different variables,

i.e.,

VARn×1 =
var(1) + var(2) + · · ·+ var(q − 1) + var(q)

q
. (3.12)

Now, taking the one-off measurements and performing PCA on this data, the reconstruction

error may be defined as,

Reconstruction Error = Original measurement− Reconstructed measurement. (3.13)

Assuming that the reconstructed measurements represent the probable true measurements

of the manufactured blades, the reconstruction error may then be assumed to represent the

measurement error. By selecting the new dimensionality of the measurement data, such that,



27 3.2 Probabilistic Data Analysis Techniques

Algorithm 1 Methodology for capturing Manufacturing Drift with time using PCA.

1. To start with, divide the one-off measurements comprising the data matrix X into g

time-based groups.

2. Perform PCA on each of the g time-based groups separately.

3. For each of the time-based groups X1,X2,X3, · · · ,Xg, increase the number of PCs from

1 to n in a stepwise manner and obtain the reconstructed measurements for all the samples

comprising that group.

4. Subtract the reconstructed measurements from the original measurement data for each

group to obtain the reconstruction error.

5. For each of the time-based groups, calculate the variance in the reconstruction error at

each measurement location and plot the measurement error variance vs. location number

plot as the number of PCs increase from 1 to n, respectively.

6. Now, calculate the mean variances VAR from the separated repeated measurement ex-

periment.

7. For each of the time-based groups, plot the values in the variance matrix VAR vs. location

number on the plot obtained in Step 5 above. This will result in g different variance plots

for the g different time-based groups.

8. For each group, observe which PC number gives a reconstruction error variance plot that

matches best with the threshold variance VAR plot. An easy way to determine this is

by calculating and comparing the overall means of the threshold variances VAR and the

reconstruction error variances. In the end, the dimensionality for the reconstructed dataset

is selected such that the difference between the overall means is minimized.

9. For each of the time-based groups, reconstruct the measurements using the reduced di-

mensionality as obtained from Step 8 above.

10. For each of the g groups, calculate the mean of the reconstructed measurements at each

of the measurement locations to eliminate the blade to blade manufacturing variations. This

will result in g different sets of n measurements, one from each group, capturing the effects

of manufacturing drift with time.
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the variance in the reconstruction error for each measurement is as close as possible to the

mean variance values VAR, we are able to estimate the true measurements of the turbine

blades. A stepwise algorithm for the application of PCA in conjunction with the proposed

dimensionality reduction technique for capturing the effects of manufacturing drift with time

is given in Algorithm 1.

3.2.3 Fast Fourier Transform (FFT) Analysis

Background

The Fast Fourier Transform (FFT) is a popular and very efficient algorithm for calculating

the Discrete Fourier Transform (DFT) of a sequence of N numbers [39]. The credit for the

discovery of FFT has been given to James W. Cooley and John W. Tukey in their work, “An

Algorithm for the Machine Calculation of Complex Fourier Series” in the year 1965 [40]. In

retrospect, it was discovered that an algorithm similar to the FFT was discovered by Carl

Friedrich Gauss as early as 1805 [39]. Gauss’ work however went largely unnoticed because

it was published in Latin, used ‘difficult to understand’ notation, and used real trigonometric

functions rather than complex exponentials [39]. Also, Burkhardt in 1904 and Goldstine in

1977 pointed out Gauss’ algorithm and suggested its connection with FFT but their works

were published in books primarily dealing with history and hence went unnoticed [39]. A

contributing factor to the popularity of the Cooley-Tukey algorithm was that they discovered

the FFT at the right time i.e. the advent of the computer revolution [41].

DFT is used widely for de-noising data in various fields of research, such as, acoustics

[42, 43, 44], bioinformatics [45], pure and applied physics [46], image processing [47], etc.

Recently, DFT has also found application to stress-strain problems in composite mechanics

aiding in the modelling of elastically highly heterogeneous bodies [48]. Much research work

has been devoted to developing variants of DFT which have proven to be more efficient than the

simple DFT for certain problems. A modification of DFT, called the Subband DFT [49] makes

use of the frequency-separation property of subsequences, eliminating the subsequences with

negligible energy contribution. The Quick Fourier Transform (QFT) uses symmetric properties

of the basis function to remove redundancies in the calculation of DFT [50]. Modified Discrete

Fourier Transform (MDFT) is another technique developed for denoising speech signals leading

to the improvement of speech communication quality [43]. Reducing the running cost of FFT
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computation has also been sought after by many researchers, including the IBM Thomas J.

Watson Research Center [51, 52], with added research work focussing on the development of

more efficient FFT algorithms [53, 54, 55, 56, 57, 58]. Not much literature is available on

the usage of FFT in the aircraft industry except certain cases where in-flight data has been

analysed using FFT based techniques [59, 60]. The present work proposes the application of

FFT for de-noising measurement data taken on aircraft engine turbine blades during the blade

inspection process. The formulations of FFT that follow are based on the book by Press,

Teukolsky, Vetterling and Flannery [61].

Mathematical Formulations

“A physical process can be described either in the time domain, by the values of some quantity

h as a function of time t, e.g., h(t), or else in the frequency domain, where the process is

specified by giving its amplitude H (generally a complex number indicating phase also) as a

function of frequency f, that is H(f), with −∞<f<∞” [61]. Fourier transform may be used

to convert h(t) to H(f) and vice-versa since they are two different representations of the same

function [61],

H(f) =
∫ ∞
−∞

h(t)e2πiftdt, (3.14)

h(t) =
∫ ∞
−∞

H(f)e−2πiftdf. (3.15)

The DFT takes a discrete signal in the time domain and transforms that signal into its discrete

frequency domain representation [62]. The mathematical formulations of DFT and the various

existing FFT algorithms have been explained in great detail in the literature [41, 61]. Let ∆t

denote the sampling time interval between N consecutive sampled values

hφ ≡ h(tφ), tφ ≡ φ∆t, φ = 0, 1, 2, · · · , N − 1. (3.16)

With N numbers of input, N independent numbers of output are produced. According to the

DFT technique, the estimates of the Fourier transform H(f) are sought only at the discrete

values,

fψ ≡
ψ

N∆t
, ψ = −N

2
, · · · , N

2
. (3.17)

Approximating the integral in (3.14) by a discrete sum using equations (3.16) and (3.17), we

get,

H(fψ) =
∫ ∞
−∞

h(t)e2πifψtdt ≈
N−1∑
φ=0

hφe
2πifψtφ∆t = ∆t

N−1∑
φ=0

hφe
2πiφψ/N . (3.18)
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The equation (3.18) above is called the discrete Fourier transform of the N points hφ and can

also be represented as,

Hψ ≡
N−1∑
φ=0

hφe
2πiφψ/N , (3.19)

where, H(fψ) = ∆tHψ. The formula for the discrete inverse Fourier transform, which recovers

the set of hφ’s exactly from Hψ’s is:

hφ =
1
N

N−1∑
ψ=0

Hψe
−2πiφψ/N . (3.20)

From equations (3.19) and (3.20), we observe that the routine for calculating discrete Fourier

transforms can also be used for calculating the inverse transforms with slight modification, the

only differences being:

• change of sign in the exponential, and

• division of the expression by N.

“The FFT operates by decomposing an N point time domain signal into N time domain

signals each composed of a single point. The second step is to calculate the N frequency spectra

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a

single frequency spectrum” [41]. It can be observed from equation (3.19) that the discrete

Fourier transform requires O(N2) computations. However, the fast Fourier transform (FFT)

algorithm helps to compute the DFT in O(Nlog2N) operations. Assuming, W ≡ e2πi/N , the

DFT of length N can be rewritten as the sum of two DFTs, each of length N/2 as follows:

Fφ =
N−1∑
j=0

e2πijφ/Nfj ,

=
N/2−1∑
j=0

e2πiφ(2j)/Nf2j +
N/2−1∑
j=0

e2πiφ(2j+1)/Nf2j+1,

=
N/2−1∑
j=0

e2πiφj/(N/2)f2j +W φ

N/2−1∑
j=0

e2πiφj/(N/2)f2j+1,

= F eφ +W φF oφ . (3.21)

In equation (3.21), we may observe that:

• F eφ denotes the φth component of the Fourier transform of length N/2 formed from the

even components of the original fj ’s,
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• F oφ denotes the φth component of the Fourier transform of length N/2 formed from the

odd components of the original fj ’s,

• φ varies from 0 to N, not just 0 to N/2 [61].

In order to perform FFT on the turbine blade measurement data, measurements taken on

the different blades in each group, i.e., X1,X2,X3, · · · ,Xg respectively, are sorted according

to the time of their manufacture. For example, lets assume that i represents the row number

and j represents the column number of any data matrix, say X1. Now i = 1, 2, · · · ,m1 and

j = 1, 2, · · · , n. Representing X1 in matrix form,

X1 =


x1;1,1 x1;1,2 x1;1,3 · · · x1;1,n

x1;2,1 x1;2,2 x1;2,3 · · · x1;2,n

...
...

... · · ·
...

x1;m1,1 x1;m1,2 x1;m1,3 · · · x1;m1,n

 . (3.22)

Data in this matrix is ordered such that the measurements on the blade manufactured at time

t1 are placed in row 1, the measurements on the blade manufactured at time t2 are placed in

row 2 and so on for time t1<t2. This data is then populated into a new matrix, XF1 of size

m1 ∗ n× 1 as represented below,

XF1 =
(
x1;1,1 x1;1,2 x1;1,3 · · · x1;m1,n−2 x1;m1,n−1 x1;m1,n

)
. (3.23)

A FFT is then executed on the data matrix XF1 and also on the re-ordered matrices obtained

from the other groups, i.e., XF2,XF3, XF4, · · · ,XFg. The threshold thicknesses for selecting

the value of TM are obtained by taking the means of the repeated measurements available in

matrices N(1), · · · ,N(q). The value of TM is selected such that the best match to the threshold

thicknesses is obtained. Here, TM refers to the absolute value used as cut-off for discarding the

Fourier coefficients. This is graphically illustarted in Figure 3.1. As seen in the figure, selecting

a value of TM = 22 results in discarding all the Fourier coefficients that have a magnitude less

than 22. In the example shown in Figure 3.1, only five Fourier coefficients are retained. For

the present case, this procedure of selecting the TM is repeated until the best match to the

threshold thicknesses is obtained. Once an appropriate value of TM is selected, the retained

Fourier coefficients are used to reconstruct the probable thickness values. The reconstructed

thicknesses obtained from the inverse FFT analysis of each of the g groups capture the effects

of manufacturing drift with time. The proposed application of this technique is demonstrated

further in Section 3.4.
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Figure 3.1: Graphical illustration of the selection of Fourier coefficients using TM.

3.3 Methodology for capturing Manufacturing Variability from

Measurement Data

This section discusses in detail the proposed methodology for filtering out the measurement

error from measurement data, and estimating the underlying manufacturing variability in

terms of the manufacturing drift with time and the blade to blade manufacturing error. By

manufacturing drift with time, we are referring to the drift in the manufactured blade shapes

that may be observed with the passage of time. This may be caused due to the wear and

tear of the tools employed during the manufacturing process, changes in the surrounding

temperature and humidity levels, etc. The blade to blade manufacturing error refers to the

inherent variations in the manufacturing process that may lead to subtle geometric differences

between two or more blades manufactured at the same time. Some of the causes of blade to

blade manufacturing error could be :

• Subjecting two or more blades to slightly different manufacturing loads at the same

location.

• Subjecting two or more blades to the same manufacturing load at slightly different loca-

tions.
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• Subtle differences in the shapes of the molds used for casting, etc.

The proposed methodology should not only be able to detect any sudden or abrupt changes

in the manufacturing process, but also mark out subtle changes in the blade shapes observed

with respect to time. A flowchart representation of the methodology is shown in Fig. 3.2.

Figure 3.2: Flowchart representation of the methodology proposed for filtering out the mea-

surement error from measurement data to capture the effects of manufacturing variability.

The one-off measurements shown in Figure 3.2 are taken on the turbine blades manufac-

tured over a span of one year. Hence, these measurements are influenced by manufacturing

drift with time, blade to blade manufacturing error and measurement error. However, the

repeated measurements are taken on blades manufactured within a week. Therefore, these

measurements contain negligible effects of the manufacturing drift with time and are majorly

influenced by the blade to blade manufacturing error and the measurement error. Measurement

error, as we know, is inevitable in any measurement procedure.

Assuming that the measurement error is random in nature, the mean of the p repeated

measurements on each of the q selected blades helps nullify any random error and result in

q sets of measurements capturing the effects of blade to blade manufacturing error. This

information on the blade to blade manufacturing error, when used as the threshold for cut-off

while executing PCA and FFT (as already explained in Section 3.2), helps in eliminating the
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measurement error from the original measurement data. Taking the mean of the reconstructed

measurements obtained from the application of PCA and FFT on each of the g different time-

based groups may further help in eliminating the blade to blade manufacturing error and result

in measurements capturing the effects of manufacturing drift with time.

The application of the methodology depicted in Figure 3.2 above results in q samples from

the repeated measurements capturing the blade to blade manufacturing error, and g samples

each from the application of PCA and FFT on the one-off measurements capturing the effects of

manufacturing drift with time. So, in total we have q+2g sets of blade measurements capturing

the cumulative effects of manufacturing variability. In some cases, however, FFT may result

in more than g samples when more than one value of TM satisfies the threshold criterion. The

application of the proposed methodology to the turbine blade problem is presented in detail

in the next section.

3.4 Capture of Manufacturing Variability in Turbine Blades

Ultrasonic minimum wall thickness measurements were available on 1050 hollow turbine blades

manufactured over a span of one year. These measurements were taken during the blade

inspection process after casting. Since the blades were hollow, they demonstrated both external

and internal design features. The measurements were taken such that the thicknesses were

measured across three cross-sections, - Tip (plane located close to the tip of the curved blade

surface), Mid (middle of the curved surface), and Root (plane located close to the root of

the curved blade surface). The three measurement cross-sections are marked in Figure 3.3(a)

which shows a typical CAD generated turbine blade model. Minimum wall thicknesses were

measured at six locations across each cross-section, - 1) pressure side leading edge (PS-LE), 2)

pressure side center (PS-CE), 3) pressure side trailing edge (PS-TE), 4) suction side trailing

edge (SS-TE), 5) suction side center (SS-CE), and, 6) suction side leading edge (SS-LE). The

cross-sectional locations of the six measurement positions are labelled in Figure 3.3(b) and also

numbered from 1-6. Therefore, the measurement process resulted in a total of n = 3× 6 = 18

measurements per blade for the m = 1050 blades. These measurements were consolidated into

a 1050 × 18 data matrix X, such that going by the numbering order shown in Figure 3.3(b),

columns 1-6 consisted of measurements taken at the Tip section, columns 7-12 contained

measurements taken at the Mid section, and columns 13-18 consisted of measurements taken
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(a) (b)

Figure 3.3: (a) Typical model of a turbine blade showing three cross-sections of measurement.

(b) Measurement locations across typical cross-section.

at the Root section. We shall follow the same scheme for numbering the measurement locations

from 1 to 18 throughout the discussion in this chapter.

Another set of repeated measurements were taken as part of a specially designed experiment

where q = 11 randomly selected blades were measured repeatedly at the 18 locations by l = 3

operators, r = 4 times each. This resulted in p = 12 repeated sets of 18 measurements on

each of the 11 blades. Data on each of these blades was consolidated in the form of matrices

N(j) (j = 1, 2, · · · , 11), as stated before in Section 3.2. Since the 11 blades selected for

this experiment were all manufactured within the same week, these measurements contained

negligible effects of manufacturing drift with time. The measurements were taken by different

operators, at different measurement stations, on different days and at different times of the

same day accounting for most of the random errors.

First of all, the one-off measurements were grouped according to the time of manufacture

of the blades on which these measurements were taken, resulting in g = 12 time-based groups.

Then, a MANOVA was conducted on these groups to observe if there were any marked dif-

ferences in measurements with passage of time. A mathematical description of MANOVA is

given in Appendix B. A scatter plot of C1 vs. C2 and a dendrogram plot of distance between

the g group means vs. group number obtained from MANOVA is shown in Figure 3.4. C1
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(a)

(b)

Figure 3.4: (a) Scatter plot, and (b) Dendrogram plot, obtained from MANOVA of the 12

time-based groups.
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is the linear combination of the columns of X that represents the maximum separation be-

tween the grouped datasets and C2 represents the maximum separation subject to it being

orthogonal to C1. Therefore, a scatter plot of C1 vs. C2 or a dendrogram plot of the group

means after a MANOVA analysis may help in determining any noticeable differences between

the measurements contained in each of the time-based groups (refer Appendix B). A scatter

plot of the 12 time-based groups is shown in Figure 3.4(a) and a dendrogram plot is shown

in Figure 3.4(b). The y-axis in the dendrogram plot is a measure of the differences between

each of the measurement groups. The groups that are closest to each other are connected

along the x-axis. Observing Figure 3.4, it becomes clear that while measurements in group 12

are markedly different from the remaining measurement data, groups 1-11 show more subtle

differences between each other. The major differences between group 12 and the remaining

groups were caused by the introduction of new airfoil blocks in the manufacturing process be-

fore the blades comprising group 12 were manufactured. Although this replacement of airfoil

blocks is a part of the standard process adherence to counter manufacturing drift with time,

it resulted in a reduction of around 17% in thickness values for all those blades that were

manufactured immediately after this change. A point to be noted here is that even though the

thicknesses were reduced by 17%, we are talking in terms of fractions of a millimeter (mm),

hence the delta deviations in thickness values were very small in magnitude. The subtle drift

in thickness values of blades comprising groups 1-11 indicates the presence of manufacturing

drift with time.

This was followed by the application of PCA and dimensionality reduction techniques on

each of the 12 time-based groups. As discussed before in Section 3.2.2, the mean variance

values, VAR, were used as the threshold for cut-off while selecting the number of PCs to be

retained for de-noising the measurement data. A plot of the VAR values vs. measurement

location for the present dataset is shown in Figure 3.5. It may be observed in Figure 3.5 that the

mean variance is maximum at positions 11, 12 and 13 which denote the Mid SS-CE, the Mid SS-

LE and the Root PS-LE. This may arise due to the large curvature of the blade surface at these

locations. It can also be observed that the measurement variability at the Tip and Root sections

is lower as compared to the Mid section. A possible reason for this could be difficulty in holding

the Mid section perpendicular to the ultrasonic beam head due to non-firm hold on the blade in

this region. The Tip section is closer to the shroud, and the Root section is closer to the blade

platform and firtree, allowing a relatively firmer hold by the operators at these cross-sections.
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Figure 3.5: Plot of threshold variance values VAR

vs. measurement location obtained from repeated

measurement dataset.

However, there are greater chances of

left and right misalignments of the blade

from the measurement markings at the

Mid section. Also, an important ob-

servation in the threshold variance val-

ues was that the magnitude of the ac-

tual wall thickness measurements was

approximately 10-20 times that of the

maximum value of standard deviation

calculated from these variances. This

observation implies that the measure-

ment variability affecting the measure-

ment datasets is small as compared to

the thickness values, and may indicate

that the operators are well trained. The

magnitude of variances is not shown in

Figure 3.5 due to proprietary issues.

Following Algorithm 1 given in Section 3.2.2, the variance plots for each of the 12 one-off

measurement groups were plotted to calculate the new dimensionality for each of these groups

separately. As an example, the variance plot obtained for group 3 is shown in Figure 3.6.

The figure shows the plot of the threshold variance, VAR, for each of the 18 measurement

locations. The overall mean of all these 18 variances, VAR, is also plotted as a staight line

parallel to the x-axis. Similarly, the variances in reconstruction error for each measurement

location and the overall mean variance as the number of PCs increases from 1 to 3 have

also been plotted. It may be noted that a PCA on each of the 12 groups actually results in

n = 18 PCs for each group. However, comparison of only the first 3 PCs has been depicted

in Figure 3.6 for ease of visualization. In Figure 3.6, PC = 1 implies that only the first

PC has been used for reconstructing the de-noised thickness values. PC = 2 implies that

the first two PCs have been used, and PC = 3 implies that the first three PCs have been

used to reconstruct the measurements. According to equation (3.13), reconstruction error is

the difference between the original measurements and the reconstructed measurements. As

already discussed in Section 3.2.2, our aim is to reduce the dimensionality of the measurement
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Figure 3.6: Variance plot for dimensionality reduction using PCA on the measurement data.

data such that the variances in the reconstruction error are as close as possible to the threshold

variances, VAR. On observing Figure 3.6, it may appear that the variances for PC = 1 are

closer to the threshold variances. However, a comparison of the overall mean variance plots

indicates that PC = 2 results in minimizing the differences between the reconstruction error

variances and the threshold variances. Therefore, the selected dimensionality for group 3 is

PC = 2. This means that for group 3, the measurements reconstructed using the first two PCs

capture the probable effects of manufacturing variability. These reconstructed measurements

contain the effects of both, manufacturing drift with time, and the blade to blade manufacturing

error. Taking means of reconstructed measurements at each measurement location for all the

blades comprising group 3 may, however, filter out the effects of blade to blade manufacturing

error and only capture the effects of manufacturing drift with time. Similarly, PCA and

dimensionality reduction can be performed on each of the 11 remaining time-based groups to

finally result in 11 more mean measurement sets, one from each group. In the end, we have

g = 12 mean measurements sets capturing the effects of manufacturing drift with time.
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Ideally, one would prefer to validate the results obtained from PCA with the true thickness

values. One way of measuring the true thicknesses would be taking computed tomography

(CT) scans on the turbine blades. However, this process needs highly powered X-ray CT

scanners for the high density nickel alloy blades which are not readily available. Moreover, CT

scanning contributes significant scanning errors which need to be filtered out from the scanned

data before these measurements can be trusted to represent the true thicknesses. This again

brings us back to the problem we are trying to solve using probabilistic techniques. Another

method of obtaining the true thicknesses would be slicing up the sample blades and taking

measurements on these slices. Not only is this cumbersome due to the lack of blades available

for cutting up, but also because of the difficulty in registering and measuring the measurement

locations for comparison. Therefore, it was considered appropriate to use an alternative de-

noising technique, i.e. FFT, on the same two measurement datasets and compare the results

obtained from FFT analysis with those obtained from PCA. FFT is a technique that is based

on completely different fundamentals as compared to PCA, but, both these techniques can be

used for the same objective of de-noising measurement data to reveal the underlying trends

in the estimates of actual measurements. This may also aid in the manufacturing variability

analysis by providing additional measurements capturing the effects of manufacturing drift

with time.

Like PCA, FFT analysis was also performed separately on each of the 12 time-based groups.

The application of FFT analysis on the blades comprising group 12 is demonstrated in Figure

3.7. Figure 3.7(a) shows the mean of threshold thicknesses and measured thicknesses plotted

in a time domain. Converting into the frequency domain, a FFT analysis is executed on

the measurement data to calculate the DFT of the noisy measurements. The value of TM

is increased in a step-wise manner and all the Fourier coefficients with absolute value less

than TM are discarded. The inverse FFT of this de-noised data reconstructs the probable

values of manufactured thicknesses. Figures 3.7(b), 3.7(c) and 3.7(d) show the reconstructed

thicknesses for TM = 4, TM = 6 and TM = 10, respectively. The final value of TM is selected

such that the reconstructed thicknesses match best with the threshold thicknesses. In Figure

3.7, TM = 4 appears to be the best choice. Similarly, measurement data in each of the other

11 groups was de-noised to result in 19 sets of reconstructed thicknesses capturing the effects

of manufacturing drift with time. One may wonder that why FFT resulted in 19 sets of

reconstructed measurements while PCA resulted only in 12. This is because, for some of the
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(a) (b)

(c) (d)

Figure 3.7: (a) Measurements ordered according to the time of blade manufacture. (b)

Smoothed measurement data when TM = 4. (c) Smoothed measurement data when TM

= 6. (d) Smoothed measurement data when TM = 10.

groups more than one values of TM satisfied the threshold criterion.

A comparison of the results obtained from the PCA and FFT analysis is shown in Figure

3.8 on the same scale. As we can observe, the reconstructed thicknesses obtained from both

PCA and FFT analysis possess similar patterns and their values when compared with the

nominal and mean threshold thicknesses suggest that our results are reasonably correct. The
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(a)

(b)

Figure 3.8: Results obtained from (a) PCA analysis, and (b) FFT analysis, compared with the

mean of threshold thicknesses and nominal thicknesses.
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reconstructed thicknesses closest to the mean threshold thickness values in both the plots are

obtained from group 12. This is because the 11 blades on which repeated measurements were

taken and the blades in group 12 were all manufactured shortly after the introduction of new

airfoil blocks. It can be seen that the reconstructed thicknesses obtained from groups 1-11

are on an average 17% thicker than the threshold thicknesses. This confirms that despite the

different times of manufacture of the blades, the threshold criteria for both PCA and FFT

techniques is sufficient to capture the effects of manufacturing drift with time. As discussed

before in Section 3.3, the threshold thicknesses used for the FFT analysis are actually the

means of the repeated measurements taken on the 11 blades. These thicknesses capture the

effects of the blade to blade manufacturing variation. Thus, in the end we have 11 + 12 + 19 =

42 sets of reconstructed measurements capturing the effects of manufacturing drift with time

and blade to blade manufacturing error. These measurements may now be used for generating

3-d representations of the probable manufactured turbine blade shapes for FE analysis.

3.5 Summary

In this chapter, a methodology based on well-established de-noising techniques, i.e., PCA and

FFT, was proposed for segregating measurement error from the measurement dataset to reveal

the underlying manufacturing variability. Application of the proposed methodology helped in

segregating the effects of manufacturing variability into manufacturing drift with time and

the blade to blade manufacturing error. A technique that makes use of prior information

on measurement error was proposed and implemented for dimensionality reduction in case of

PCA, and selecting the TM for FFT analysis. The variance plot obtained from the repeated

measurements while using this approach may also provide some extra information on the

sources and magnitude of measurement error. For example, for the present problem of analysing

hollow turbine blade data, it was observed that :

• The magnitude of measurement variability is maximum at the Mid section suction side

center, Mid section suction side LE, and Root section pressure side LE positions, possibly

due to the large curvature at these locations.

• Measurement variability is lower at the Tip and Root sections as compared to the Mid

section. A relatively firmer hold on the blade at the Tip and Root sections due to

the presence of shroud and firtree could possibly account for this difference. It may be
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possible that there is a larger left and right misalignment of the blade at the Mid section

when it is held perpendicular to the ultrasonic head.

• The magnitude of the variance due to measurement variability is relatively small as

compared to the magnitude of the wall thickness measurements. The thickness values

are 10-20 times greater than the maximum value of standard deviation observed in the

repeated measurements. This may indicate that the human error is relatively very small

and the operators are well trained.

Application of MANOVA on the time-based grouped datasets was not only able to capture

the sudden and abrupt changes in the manufacturing process, it also captured the subtle

differences in turbine blade measurements due to manufacturing drift with time. Analysis

using the proposed methodology resulted in a sample of 42 probable manufactured blade

measurements, 31 of which captured the effects of manufacturing drift with time, and the

remaining 11 captured the blade to blade manufacturing variations. These measurements may

now be used for generating 3-d representations of probable manufactured turbine blade shapes

for lifing, stress and thermal analysis.



Chapter 4

3-d Geometry Manipulation using

Limited Measurements

This chapter proposes a methodology based on the application of the Free-Form Deforma-

tion (FFD) approach in conjunction with optimization, or alternatively, linear least-squares

solution, to obtain deformed geometries of the turbine blade core models from the limited

number of available measurements. These deformed core models are representative of the

probable turbine blade core shapes coming out of the manufacturing process that are affected

by manufacturing variability. The chapter is organized as follows: In Section 4.1, the need for

approximating the deformations along the entire blade surface using limited number of mea-

surements is discussed. This is followed by Section 4.2 which provides a brief background on

FFD and discusses its mathematical formulations. Section 4.3 discusses the need for using an

optimization process in conjunction with FFD and formulates the objective function. Section

4.4 presents the formulations for minimizing the value of this objective function using non-

linear optimization. Following this, Section 4.5 discusses the constrained and unconstrained

forms of the linear least-squares solution approach that may be used as an alternative to the

optimization process. Finally, Section 4.7 presents the numerical studies conducted on the

turbine blade problem and Section 4.8 summarizes the results obtained from these studies.

45
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4.1 Need for 3-d Geometry Manipulation

In Chapter 3, we presented a methodology for de-noising factory measurement datasets to

obtain estimates of the true measurements for the turbine blades. It is then desirable to be

able to use these measurements for generating 3-d geometric representations for the probable

turbine blade shapes. The manual generation of a new model in a CAD tool for each and

every blade shape is not desirable since this process will be time consuming and would re-

quire significant manual intervention. This leads to the need for automatically morphing the

base/nominal geometry in order to generate 3-d models representing the different blade shapes

being manufactured. Due to the limited number of measurements available per blade, it is

very difficult to characterize the complete geometric variability along the entire length of the

blade. It becomes essential therefore to use geometry manipulation techniques, e.g. Free-Form

Deformation (FFD), that enable the use of a limited number of measurements to approximate

the deformations on the entire blade surface according to the flexibility decided by the user.

However, the process of identifying the best match to the expected blade shape cannot be

executed without a process to optimize the match between desired and actual shapes working

in conjunction with FFD.

In this study, the primary focus is on deforming the shape of the blade core passages. A

rough sketch of this core is given in Chapter 2, Figure 2.1. In a separate study conducted on the

external blade airfoil measurements, it was found that manufacturing variability has negligible

influence on the external airfoil shapes and the brunt of its effects is borne by the internal

core shape. Further details on this study will be presented in Section 4.6. Therefore, it was

considered appropriate to fix the external shape of the nominal turbine blade model, and deform

the base core in order to characterize the 3-d geometric variability. This chapter proposes the

application of the Sederberg and Parry FFD technique [14] for deforming a nominal core

surface mesh using the turbine blade measurement data obtained from the studies conducted

in Chapter 3. The deformations are implemented such that they are neither too global nor too

local in nature. The best match to the expected core shape is obtained by using an optimization

process in conjunction with the FFD approach. The deformed core surface meshes obtained

from this analysis may then be used for generating 3-d volume meshes on the probable turbine

blade shapes for FEA.
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4.2 Free-Form Deformation (FFD)

4.2.1 Background

Free-Form Deformation (FFD) is a very popular geometric deformation technique that allows

the user to conceptually embed an object, or several objects, in a parallelepiped of clear, flexible

plastic, and apply deformations to the plastic such that the embedded object is deformed in

a manner that is intuitively consistent with the motion of the plastic [14, 63, 64]. This clear,

flexible plastic is more commonly called the lattice of control points that enclose the object to

be deformed. FFD was first introduced by Sederberg and Parry in 1986 [14]. Sederberg and

Parry define the lattice as a trivariate tensor product of Bernstein polynomials such that the

control points are actually the coefficients of the polynomials. Changes in positions of these

control points deform the object embedded inside the lattice. Further advances to the FFD

technique were proposed by Coquillart in 1990, introducing an extension of the FFD technique

called Extended Free-Form Deformation (EFFD) [65]. This method uses arbitrarily shaped

lattices, enabling better control of the enclosed object for local deformations. The idea of having

better control of the object for local deformations was developed further by Hsu, Hughes and

Kaufman in 1992, who proposed a direct manipulation of free-form deformations such that

a point on an object may be selected by using a pointer and moved directly to the desired

location [66]. A very useful implementation of Directly Manipulated Free-Form Deformation

(DMFFD) is demonstrated by Frisch and Ertl [67] who have applied this technique for local

deformations in car crash simulations to perform finite element calculation. In 1994, Lamousin

and Waggenspack [64] introduced a Non-uniform Rational B-Splines (NURBS) based FFD

technique, sometimes also called the NFFD technique. NFFD enables the division of the lattice

associated with the object into an arbitrary number of non-uniform sections as opposed to

Sederberg’s and Parry’s FFD which requires that the divisions are uniform in nature. Further

to this, Noble and Clapworthy [68] demonstrated the use of NFFD for direct manipulation of

surfaces such that NFFD weights were used to add local details/deformations. The use of FFD

has not been limited to static objects, but has been extended further for animation synthesis

in the form of dynamic FFD [69] in which control points evolve automatically through time in

accordance with mechanical principles, enabling smooth animated movements.

Although, most of the FFD related work available in the literature is focused on gaining

better control of the deformations using direct manipulation or NURBS-based FFD techniques
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etc., a recent work by Singh and Kokkevis [70] proposes the use of surface-oriented FFD for

skinning animated characters such that the space deformed by the lattice is not the volume

enclosed by the control points, but is based on a distance metric from the surface defined by

the control point structure. FFD techniques have also found wide applications in aerodynamic

shape parameterization and optimization problems [71, 72, 73, 74], however, its use for charac-

terizing geometric variability from the limited number of available measurements, especially in

the aircraft engine manufacturing industry, remains relatively unexplored. The present work

proposes the application of the Sederberg and Parry FFD technique [14] for 3-d manipulation

of the nominal turbine blade core surface mesh, using the limited number of available measure-

ments, for characterizing the geometric variations caused due to the presence of manufacturing

variability.

4.2.2 Mathematical Formulations

Before considering the mathematics behind the FFD approach, the reader needs to be familiar

with Bezier curves [75, 76] and possess a basic understanding of solid modeling [77]. This

section discusses the mathematical formulation of the FFD technique proposed by Sederberg

and Parry [14] in 1986.

FFD is defined in terms of a trivariate tensor product of Bernstein polynomials where the

control points form the co-efficients of the polynomials. First of all, a local coordinate system

is imposed upon the parallelopiped structure enclosing the object such that any point P has

(s, t, u) coordinates in this system,

P = P0 + sS + tT + uU, (4.1)

where, P0 is the origin of the local coordinate system. The (s, t, u) coordinates of P can be

found by the vector solution,

s =
T×U.(P−P0)

T×U.S
, t =

S×U.(P−P0)
S×U.T

, u =
S×T.(P−P0)

S×T.U
. (4.2)

It may be noted that for any point on the interior of the parallelopiped, 0 < s < 1, 0 < t < 1

and 0 < u < 1. Now, a grid of control points (Gijk) is imposed upon the parallelopiped

structure such that it is divided into α + 1 planes in the S direction, β + 1 planes in the

T direction, and γ + 1 planes in the U direction. For the Sederberg and Parry approach,

these control points need to be uniformly spaced along each direction in accordance with the
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expression below :

Gijk = P0 +
i

α
S +

j

β
T +

k

γ
U, i = 0, · · · , α, j = 0, · · · , β, k = 0, · · · , γ. (4.3)

Here, Gijk is a vector containing the Cartesian coordinates of the control points for the nominal

model. The positions of these coordinates can be varied to deform the model enclosed in this

control point lattice structure. For the present problem, an optimization process was employed

for deforming the nominal model by varying these control point coordinates within the specified

lower and upper bounds, such that, the best match to the expected measurements was obtained.

Details of this methodology are further presented in Sections 4.3, 4.4 and 4.6 that follow. The

deformation function Pffd is defined by a trivariate tensor product Bernstein polynomial,

Pffd =
α∑
i=0

α
i

 (1− s)α−isi
 β∑
j=0

β
j

 (1− t)β−jtj
 γ∑
k=0

γ
k

 (1− u)γ−kukGijk

 , (4.4)

where, Pffd is a vector containing the Cartesian coordinates of the displaced point.

4.3 Formulation of the Objective function for Mesh Deforma-

tions

As discussed in Sections 4.1 and 4.2, the present work proposes the application of the FFD

technique for generating a set of probable core shapes for turbine blades from the limited

number of measurements available per blade. The deformed core meshes so generated will

characterize the 3-d geometric variations that arise due to the presence of manufacturing vari-

ability. However, the task of obtaining the best match of the core shape to the probable actual

blade measurements cannot be executed without a matching process working in conjunction

with FFD. This is because the lattice control points in FFD are located on the parallelepiped

structure enclosing the object to be deformed, and not essentially placed on the surface of the

object itself (unless the object is a cube or a cuboid). Consequently, it is not easy to establish

a direct relationship between the displaced coordinates of a control point and the relative de-

formation that takes place on the surface of the object as a result of this displacement. One

may argue here that the DMFFD approach (discussed in Section 4.2.1) may overcome this

problem. However, the DMFFD technique is more suitable for localized deformations. For the

present problem, a balance between the local and global deformations was desired since the

exact nature of deformations was uncertain due to the unavailability of further information.
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However, the FFD process can be modified to induce the desired flexibility in the deforma-

tion process by changing the number of lattice control point planes along any of the x-, y- or

z-directions. The deformations are relatively more global when the number of control point

planes are reduced, and an increase in the number of these planes results in relatively localized

geometry manipulation.

The problem of finding the best possible match to the expected core shape can be solved

by selecting the coordinates of the measurement points on the nominal mesh, and using FFD

to move these coordinates such that they get as close as possible to their expected values.

The objective function for this optimization process may be defined as the sum of squared

differences between the deformed positions of the selected points and their desired positions.

This may be mathematically represented as below :

f(xg,yg) =
n∑
i=1

[
(xd,i(xg,yg)− xe,i)2 + (yd,i(xg,yg)− ye,i)2

]
, i = 1, · · · , n, (4.5)

where,

n = number of selected points on the object (in our case, the number of measurement points),

xd,i = deformed x-coordinate position of the ith point,

xe,i = desired (or expected) x-coordinate position of the ith point,

yd,i = deformed y-coordinate position of the ith point,

ye,i = desired (or expected) y-coordinate position of the ith point,

xg = vector containing x-coordinates of the control points,

yg = vector containing y-coordinates of the control points.

4.4 Optimization with FFD

It may be noted in equation (4.5) that the objective function is non-linear in nature and hence

the most obvious approach seems to be using one, or a combination of, non-linear optimization

algorithms to solve the current problem. The focus of the present work is on using the already

existing non-linear optimizers available in standard optimization packages, like iSIGHT [15]

(for results obtained from iSIGHT, refer to Section 4.7), or as built-in functions in MATLAB.

These tools are preferred since they are readily available and widely accepted in the aircraft

engine manufacturing industry.
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For the present case, our aim is to minimize the objective function (f(xg,yg)) such that

the control point coordinates, xg and yg, are varied between ±10mm from their respective

nominal positions. Since the present problem does not involve any constraints, the optimization

problem can be formulated as :

min
xg,yg

f(xg,yg) such that lbx ≤ xg ≤ ubx and lby ≤ yg ≤ uby, (4.6)

where, the nominal positions of the control points are used as the initial estimate. In expression

(4.6) above :

lbx = vector containing the lower bounds for the x-coordinates of the control points,

ubx = vector containing the upper bounds for the x-coordinates of the control points,

lby = vector containing the lower bounds for the y-coordinates of the control points,

uby = vector containing the upper bounds for the y-coordinates of the control points.

The final outcome of this optimization is the control point positions that minimize the difference

between the deformed coordinate positions and the desired/expected coordinate positions of

the selected measurement points. These new control point positions are then used to obtain

the deformed mesh representing the probable manufactured core shape. This process can be

repeated several times to apply different deformations to the nominal core each time.

4.5 Linear Least-Squares Solution

Another approach to solving the same problem as discussed in Sections 4.3 and 4.4 is to use

a linear least-squares (LLS) solution in place of the optimization process. The advantage of

using linear least-squares approach is that it results in a more exact solution to the FFD

problem. On the other hand, the optimization process leads to relatively more regularized

geometries as compared to the LLS approach. A constrained formulation of the LLS problem

(as discussed in Section 4.5.2) can help in trade-off studies between the objective function as

formulated in equation (4.5) and the delta deformations from the nominal model. However,

caution needs to be exercised since in some cases the LLS approach may lead to over-fitting

of the resultant geometry. This section discusses various formulations of the LLS solution

that may replace the optimization process in accordance with the requirements of the user.

For the present problem, the optimization procedure was considered sufficient to obtain the

deformed geometries since the manufactured shapes are not expected to deviate a lot from the
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nominal design, and hence, more regularized solutions are desirable. However, the formulations

discussed in Sections 4.5.1 and 4.5.2 may prove to be useful in cases where exact solutions to

the shape matching problem, or, trade-off between the objective function and deviation from

the nominal model are considered important.

It may be recalled that the final objective of the optimization process is to find suitable

positions of the control points that would deform the nominal core mesh to its expected man-

ufactured shapes. Now, as seen in expression (4.5), the objective function for the present

problem is quadratic, but the expression for calculating the value of the deformation function,

Pffd, is linear in nature. This may be noted by re-writing equation (4.4) as below :

Pffd =
α∑
i=0

Bα
i (s)

 β∑
j=0

Bβ
j (t)

[
γ∑
k=0

Bγ
k (u)Gijk

] , (4.7)

where, Bα
i (s), Bβ

j (t) and Bγ
k (u) are the Bernstein polynomials for the s, t and u coordinates,

respectively. Let us assume that we are displacing v lattice control points, such that,

Gijk =


xg,1 yg,1 zg,1

...
...

...

xg,v yg,v zg,v

 , (4.8)

where, xg,1, · · · , xg,v are the coordinates of the control points along the S direction,

yg,1, · · · , yg,v are the coordinates of the control points along the T direction, and, zg,1, · · · , zg,v

are the coordinates of the control points along the U direction. Now substituting equation

(4.8) in equation (4.7), and expanding equation (4.7), we get,

Pffd(xg) = Bα
0 (s) ∗Bβ

0 (t) ∗Bγ
0 (u) ∗ xg,1 + · · · +Bα

α(s) ∗Bβ
β (t) ∗Bγ

γ (u) ∗ xg,v, (4.9)

Pffd(yg) = Bα
0 (s) ∗Bβ

0 (t) ∗Bγ
0 (u) ∗ yg,1 + · · · +Bα

α(s) ∗Bβ
β (t) ∗Bγ

γ (u) ∗ yg,v,(4.10)

Pffd(zg) = Bα
0 (s) ∗Bβ

0 (t) ∗Bγ
0 (u) ∗ zg,1 + · · · +Bα

α(s) ∗Bβ
β (t) ∗Bγ

γ (u) ∗ zg,v.(4.11)

In the above equations, Pffd(xg) gives the x-coordinate of the deformed point along the global

X-axis, Pffd(yg) gives the y-coordinate of the deformed point along the global Y-axis, and,

Pffd(zg) gives the z-coordinate of the deformed point along the global Z-axis. Now, if our

objective is to deform n such selected points, we will have n equations with v unknowns along

each of the X, Y and Z-axis respectively. It is apparent from equations (4.9), (4.10) and (4.11)

that the n equations for each axis may be solved independently to obtain the v values which

will form the columns of the matrix Gijk. Hence, this becomes a linear least-squares problem

with n equations and v unknowns.
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4.5.1 Bound-constrained Linear Least-Squares Solution

Using equation (4.9), the expression for the bound-constrained formulation of the linear-least

squares solution can be written as :

min
xg

‖Cxg − d‖22 such that lbx ≤ xg ≤ ubx. (4.12)

Here, the matrix C contains the product of the Bernstein polynomials as shown in equation

(4.9) and d is defined as the vector containing the expected values of x-coordinates for the

selected points. Thus, the expression Cxg−d accounts for the difference between the deformed

model and the expected shape of the model. The nominal x-coordinates of the control points

are selected as the starting point. These control points are varied in between ±10mm from

their nominal positions, i.e., by a magnitude of 10mm in either direction from the nominal

coordinate values. The end result is a vector containing the x-coordinates of the control

points that minimize the difference between the deformed x-coordinates of the selected points

and the expected values of these coordinates. Similarly, expression (4.12) can also be used for

obtaining the y- and z-coordinates of the control points for achieving the expected deformations

in accordance with equations (4.10) and (4.11).

4.5.2 Constrained Linear Least-Squares Solution

The solution described in Section 4.5.1 works well for overdetermined problems with no con-

straints, i.e., in cases where n>v. However if n<v, the problem becomes that of finding a

minimum norm solution to an underdetermined system of linear equations because there may

be an infinite number of solutions to xg that satisfy Cxg−d = 0. In such cases, it is often use-

ful to find a unique solution to xg that would minimize the deformation of the base geometry

since too much distortion of the deformed model from the base design would not be desirable.

If, in equation (4.12) the expression Cxg−d is replaced by xg−xg0, where xg0 is a vector

defining the nominal coordinate values of the control points, the problem becomes that of

minimizing ‖∆xg‖22 instead of minimizing ‖Cxg − d‖22. Minimizing ‖∆xg‖22 will ensure that

the solution we seek returns a deformed model that is as close as possible to the base model.

This is desirable for problems in which the deformed geometry is not expected to deviate too

much from the base geometry. It is also important that the condition Cxg − d = 0 is not

ignored. A possible solution is using this condition as a constraint for the given problem.
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Figure 4.1: ‖∆xg‖2 vs. ‖Cxg − d‖22 plot.

Defining this condition as an equality con-

straint might prove to be too stringent for most

problems, since an exact solution of the equa-

tion Cxg − d = 0 may not be feasible. An

alternative way of formulating this condition

is as a pair of inequalities such that a value ±δ

is selected as the threshold. This value may be

selected based on experience and the nature

of the problem at hand. It may be noted how-

ever that an increase in the value of δ increases

Cxg−d, and decreases ∆xg. This implies that

a decrease in deviation of the geometry from

the base model results in increasing the differ-

ences between the deformed shape and the expected shape. This may be represented in the

form of a plot between ‖∆xg‖2 and ‖Cxg − d‖22 as shown in Figure 4.1.

Now, we need to establish the threshold constraint on Cxg − d. This is given as,

−δ ≤ Cxg − d ≤ δ, (4.13)

=⇒ Cxg − d ≤ δ and − δ ≤ Cxg − d, (4.14)

=⇒ Cxg − d ≤ δ and −Cxg + d ≤ δ, (4.15)

=⇒ Cxg ≤ δ + d and −Cxg ≤ δ − d. (4.16)

Equation (4.16) may be represented in matrix form as below : +C

−C

xg ≤

 δ + d

δ − d

 . (4.17)

Following this, the constrained formulation of the proposed solver becomes :

min
xg

‖xg − xg0‖22 such that


 +C

−C

xg ≤

 δ + d

δ − d

 , and

lbx ≤ xg ≤ ubx.

 (4.18)

Here, the initial guess for xg needs to contain the local x-coordinates of the control points that

satisfy the inequality constraint defined in equation (4.17). In cases where it is not easy to find

a vector that satisfies the inequality constraint, it may be better to stick to the unconstrained
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linear least-squares solution, especially if the value of Cxg − d obtained is acceptable for the

problem being analysed. Expression (4.18) may similarly be used for obtaining the solutions

for the y- and z-coordinates of the control points in accordance with equations (4.10) and

(4.11). Further details on this analysis are presented in Section 4.7.

4.6 Methodology for 3-d Geometry Manipulation using Lim-

ited Measurements

A flowchart representation of the methodology proposed for characterizing 3-d geometric vari-

ability in turbine blade core shapes using the limited number of available measurements is

shown in Figure 4.2. As discussed previously in Chapter 3 Section 3.4, measurement data

available on turbine blades was analysed using a methodology based on the PCA and FFT

techniques for estimating the true thicknesses of the manufactured blades. These estimates

were obtained in the form of 18 sets of minimum wall thickness measurements for 42 different

blade shapes, capturing the effects of manufacturing variability. It is now desirable to use these

measurements for estimating the probable complete 3-d geometric variability in the turbine

blade shapes coming out of the manufacturing process.

Before applying any deformations to the nominal turbine blade model, it is essential to

understand whether both the external blade airfoils and the internal cores are affected by

manufacturing variability, or, only one of these surfaces show any changes. For this, a separate

study was conducted in which measurements were taken on the external airfoil surfaces at

different planes along the length of the blade using coordinate measuring machines. These

airfoil shapes were then superimposed upon each other and showed that all the cross-sections

for the different blades almost identically overlapped each other. This implies that the brunt

of manufacturing variability is borne by the internal core surface of the blade. Actually, this

does not come as a surprise if we recall the turbine blade casting process and various sources of

manufacturing variability discussed in Chapter 2, Section 2.1. Therefore, it is considered more

appropriate to fix the external blade shape and only deform the internal core for characterizing

the 3-d geometric variability observed in the turbine blades.

A 3-d computer aided design (CAD) model of the nominal geometry and a volume mesh

for FEA on this model were available. The coordinates of the 18 measurement locations

for the nominal turbine blade shape were calculated using an embedded script in the CAD
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Figure 4.2: Flowchart representation of the methodology proposed for characterizing geometric

variability in turbine blade core shapes using limited measurements.

model. It is assumed that the measurements obtained for the 42 probable turbine blade

shapes are taken at these same locations, since it is almost impossible to obtain the exact

measurement location coordinates for all the blades that are being manufactured and measured

at the shop floor. This assumption may be supported by the fact that since FFD encourages

smooth deformations, and the real measurement positions may be located somewhere close

to the mapped measurement positions, the nodes adjacent to the mapped location will also

undergo approximately similar displacements and in the same direction. Therefore, the (x,y,z)

coordinates of the 18 measurement locations are mapped onto the surface mesh of the core

which is extracted from the turbine blade volume mesh using the FEA tool.

The core surface mesh is fed into the FFD process and the nominal positions of the lattice

control points are determined. These control point positions are then varied by the optimizer

(or the linear least-squares solver) working in conjunction with the FFD process for minimizing

the shape matching objective function. Once the optimization process has converged, the

resultant optimal lattice control point positions are used for deforming the nominal core to its

probable manufactured shape. This process may be repeated several times (42 times in the

present case) for obtaining the 3-d geometric variability in turbine blade cores as a result of
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manufacturing variations.

4.7 Estimating 3-d Geometric Variability due to Manufactur-

ing Variations

This section discusses in detail the application of the proposed methodology on the available

hollow turbine blade data. Input data for the numerical studies presented in this section

was obtained from the probabilistic data analysis studies conducted in Chapter 3 Section 3.4.

As already noted, ultrasonic minimum wall thickness measurements on a randomly selected

sample of 1050 turbine blades was analysed using the PCA and FFT techniques. This study

resulted in a set of 18 thicknesses for 42 sets of reconstructed blade shapes capturing the

effects of manufacturing drift with time and the blade to blade manufacturing error. The

measurement locations for these 18 thickness values have already been discussed in Section

3.4. Volume meshes on these 42 reconstructed blades were required in order to conduct a

detailed lifing, thermal and stress analysis of the probable manufactured turbine blade shapes.

It was necessary therefore to recreate the perturbed geometries from the limited number of

measurements available per blade.

As discussed in Section 4.6, it was observed that the effects of variations due to the manufac-

turing processes are mostly borne by the internal core shape, while the external airfoil surface

remains relatively unchanged. Therefore, it seemed appropriate to deform the nominal core

surface mesh in order to characterize the 3-d geometric variations resulting due to the presence

of manufacturing variability. The challenge now is to use only 18 measurements available per

blade for predicting the variations in shape of the entire core. According to the methodology

proposed in Section 4.6, the surface mesh for the nominal core was extracted from the turbine

blade volume mesh using the FEA tool. The Sederberg and Parry FFD approach [14] was im-

plemented on the extracted core mesh, such that, α = 2, β = 1 and γ = 7 control point planes

were selected along the X, Y and Z-axis respectively. This creates 3 control point planes along

the X-axis, 2 along the Y-axis, and 8 along the Z-axis. The resulting lattice of control points

enclosing the core is shown in Figure 4.3. The analogy of selecting 6 control points along each

cross-section may be compared to that of 6 measurement locations along the Tip, Mid and Root

sections. Numbering the latticial planes as 1-8 from bottom to top of the core along the Z-axis,

the control points on planes 4-7 were displaced in the x- and y-directions by the optimization
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(a) (b)

Figure 4.3: (a) Front view of the core, and (b) cross-sectional view of the core, showing the

FFD lattice of control points.

Figure 4.4: Locations of planes 4–7 along Z-

axis relative to the Tip, Mid and Root mea-

surement cross-sections.

process keeping all the remaining control

points fixed. This was done since planes 4-7

are closest to the Tip, Mid and Root cross-

sections along which measurements were avail-

able. Therefore, it was decided to restrict the

deformations to the surface around these cross-

sections rather than deforming the core along

its entire length where no measurements were

available and the nature of deformations was

uncertain.

The positions of planes 4-7 along the Z-axis

relative to the Tip, Mid and Root measurement

cross-sections is shown in Figure 4.4. It may

be noted in Figure 4.4 that plane 7 is very close

to the Tip, plane 4 is very close to the Root,

but, planes 5 and 6 are almost at equal distances around the Mid section. The latticial planes

are not located directly on the Tip, Mid and Root planes because the Sederberg and Parry
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FFD technique [14] allows the placement of only equidistant planes along the three axis. This

limitation may be overcome by using the NURBS based FFD [64] approach that allows the

selection of non-equidistant latticial planes. However, we adopted the Sederberg and Parry

FFD [14] technique for its mathematical simplicity and ease of implementation. Also, selection

of a balanced number of planes in the region of interest helps ensure smooth deformations of

the core surface.

It may be noted here that the flexibility of the FFD process is closely related to the

number of control point planes selected for implementing the deformations. For example, in

the present case, selecting a large number of closely spaced control point planes along the

Z-axis may result in localized deformations. Conversely, selecting a smaller number of well

spaced-out planes results in deformations that are more global in nature. For the present

case, measurement data was available only across the Tip, Mid and Root cross-sections. This

data may not be sufficient to predict if there are any localized deformations observed on

the manufactured core shapes. In order to understand the exact nature of deformations, i.e.

whether they are global or local in nature, it would be useful to conduct 3-d X-ray CT scans

on a few randomly selected turbine blade samples. Understanding the exact nature of these

deformations may enable a better selection of the number and location of the control point

planes that should be displaced for implementing realistic deformations. However, for the

purpose of the present research, selecting four control point planes along the length of the core

for deforming the nominal geometry was considered appropriate due to the lack of availability

of further information.

Some examples of deformed cores obtained from the proposed application of the FFD

approach are shown in Figure 4.5. Figure 4.5(a) shows a nominal core with no deformation.

Figure 4.5(b) shows a core with increased leg thickness obtained by moving the control points

away from the core surface. Placement of this core in the nominal turbine blade model will

decrease the minimum blade wall thicknesses. Figure 4.5(c) shows a core with reduced leg

thickness obtained by moving the control points towards the core surface. Placement of this

core in the nominal turbine blade model will increase the minimum blade wall thickness values.

In order to deform the nominal mesh on the core surface to the desired manufactured

core shapes, an optimization process was performed in conjunction with FFD such that the 6

control points along the planes numbered 4-7 were displaced along the x- and y-directions. This

resulted in a total of 2× (4× 6) = 48 variables for the optimization process and one objective
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(a) (b) (c)

Figure 4.5: (a) Nominal core with no deformation. (b) Deformed core with increased leg

thickness obtained by moving the control points away from the core. (c) Deformed core with

decreased leg thickness obtained by moving the control points towards the core.

function as defined in equation (4.5). Various optimizers available in iSIGHT 9.0 [15] were tried

for the present problem, but the best value of f(xg,yg) = 0.006 was obtained from an iSIGHT

advisory optimization plan that used a combination of two non-linear optimizers - Step1 :

LSGRG2 (a Generalized Reduced Gradient based optimizer), and Step2: NLPQL (a Sequential

Quadratic Programming based optimizer). These techniques have been well-established and

widely accepted over time and relevant details can be found in any standard textbook on

optimization [78, 79]. The solution was attained after 4118 evaluations in approximately 3

hours. The resultant plot of the objective function vs. number of evaluations is shown in

Figure 4.6. It was noticed that most of the time in iSIGHT was consumed for reading the

input from, and writing the output into, ‘.txt’ files, which was highly undesirable. Hence,

it was preferred to use the built-in optimizers available in MATLAB since the input and

output variables were internally available within the program that initiated the optimization

process. Hence, a Sequential Quadratic Programming based constrained non-linear optimizer

available in MATLAB, called ‘fmincon’, was selected for this purpose. ‘fmincon’ attempts to

find a constrained minimum of a scalar nonlinear function of several variables starting at an

initial estimate. Further details on this technique are readily available in the cited literature

[80, 81, 82, 83, 84, 85, 86]. It was observed that ‘fmincon’ produced the best results giving
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Figure 4.6: Plot of objective function vs. num-

ber of evaluations obtained from iSIGHT.

Figure 4.7: Plot of objective function vs. num-

ber of evaluations obtained from MATLAB.

the same value of f(xg,yg) = 0.006 as obtained from iSIGHT, but, in merely 5-7 seconds and

around 4500 evaluations. A plot of the convergence history of the objective function obtained

from this analysis is shown in Figure 4.7. Thus, the MATLAB optimizer definitely offered a

much quicker solution to the same problem with the same precision and hence was preferred

over iSIGHT.

Once the optimization studies were completed, it was desired to explore the capabilities of

the linear least-squares solution approach for the given problem, as discussed in Section 4.5.

There were n = 18 equations and v = 48 unknowns for the present case along each of the

X, Y and Z-axis. A built in linear least-squares solver available in MATLAB, called ‘lsqlin’,

was employed for this purpose, first in its unconstrained form as discussed in Section 4.5.1.

Details on this technique are available in the cited literature [87, 86]. Using the unconstrained

formulation of ‘lsqlin’, a value of f(xg,yg) = 0.0005 was obtained in 3-5 seconds. Although the

present problem does not have any constraints, yet it is underdetermined in nature with the

number of equations (18) less than the number of unknowns (48). Consequently, it appeared

more appropriate to use the constrained linear least-squares approach for obtaining the dis-

placed coordinates of the control points. However, the constrained form of linear least-squares

approach could not be implemented without prior knowledge of the control point coordinates

that satisfied the inequality constraint given in expression (4.17) and as discussed in Section



62 4.7 Estimating 3-d Geometric Variability due to Manufacturing Variations

4.5.2. These coordinates were needed as inputs for the initial estimate of the vector xg. Since

finding a suitable vector for the initial estimate of xg was relatively more complicated, it was

replaced by the end result for xg obtained from the unconstrained formulation of the linear

least-squares problem.

Figure 4.8: Displacement of control points

(‖∆xg‖2 +
∥∥∆yg

∥∥
2
) vs. objective function

(‖Cxg − d‖22 +
∥∥Cyg − d

∥∥2

2
) plot obtained

from constrained linear least-squares solution.

Following this, the value of δ was increased

in steps from 0.016 to 0.5 and the results ob-

tained for ‖∆xg‖2+
∥∥∆yg

∥∥
2

and ‖Cxg − d‖22+∥∥Cyg − d
∥∥2

2
were noted. The resultant plot of

the displacement of control points (‖∆xg‖2 +∥∥∆yg

∥∥
2
) vs. objective function (‖Cxg − d‖22+∥∥Cyg − d
∥∥2

2
) is shown in Figure 4.8. It may

be observed that this curve looks similar to

the expected curve in Figure 4.1. The value

of ‖Cxg − d‖22 +
∥∥Cyg − d

∥∥2

2
decreases as the

displacement of control points from the base

position increases. For a value of ‖∆xg‖2 +∥∥∆yg

∥∥
2

= 30.99, ‖Cxg − d‖22+
∥∥Cyg − d

∥∥2

2
=

0.008 and for ‖∆xg‖2 +
∥∥∆yg

∥∥
2

= 0.37,

‖Cxg − d‖22 +
∥∥Cyg − d

∥∥2

2
= 0.87. Looking

at the curve, it appears that the best solution

is obtained for a value of ‖∆xg‖2 +
∥∥∆yg

∥∥
2

=

30.99 with the value of objective function equal to 0.008. This is comparable with the results

obtained from the optimizer based approaches discussed previously in this section. However,

the problem of estimating the value of the starting point for a constrained linear least-squares

solution remains unsolved.

The option that appeared better than non-linear optimization was the unconstrained linear-

least squares (LLS) solution. Not only did it result in a lower value of the objective function,

it also took relatively less time for convergence as compared to the optimization process.

However, it was observed that the application of unconstrained LLS solver to the present

problem resulted in relatively greater distortions in the core shapes from the nominal core

geometry. In comparison, the core shapes obtained from non-linear optimization were more

regularized. This is demonstrated in Table 4.1 which compares the percentage displacements
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in the x- and y-coordinates of the FFD control points relative to their nominal positions,

obtained for the same set of expected measurements from the two competing techniques. As

we can observe in the table, the LLS solution results in greater displacements from the nominal

for most of the coordinate positions. Relatively, there a smaller number of coordinates for

which the optimizer has resulted in greater displacements than the LLS solution. For a few

coordinate positions, the same amount of displacements can be seen from both the techniques.

The average values of percentage displacements indicate that the unconstrained LLS solution

resulted in almost double the amount of deformations from the nominal core in both X and

Y directions as compared to the non-linear optimization process. However, feeding in the

gradient information to the optimizer resulted in the same solution as given by the linear

least-squares approach. As stated before, the constrained LLS solution may help in this case

since it allows a trade-off between the displacements of control points and the objective function

values, provided, the starting point satisfying the inequality constraints is known in advance.

This information was, however, not easily available for the current problem. For the present

case, the deformed geometries were not expected to deviate a lot from their nominal shape.

Hence, a more regularized solution from the optimization problem was sought. This led to the

selection of ‘fmincon’ as the final optimizer to be used in conjunction with FFD for obtaining

the deformed core shapes that would capture the effects of manufacturing variability.

According to the methodology proposed in Section 4.6, FFD aided by optimization was

applied to the nominal core surface mesh using the reconstructed measurements available on

the 42 blades. As already discussed in Section 4.6, the coordinates of the measurement locations

for the base core were calculated using the embedded script available in the nominal turbine

blade CAD model. These 18 (x,y,z) coordinates were mapped onto the base core surface mesh

extracted from the turbine blade volume mesh. It was assumed that the measurement locations

remain unchanged for all the deformed geometries. The deformed Tip, Mid and Root cross-

sections obtained from the application of the proposed methodology on the nominal core mesh

are shown in Figure 4.9. The figure also compares the deformed cross-sections with the nominal

for two out of the 42 reconstructed blades. It can be observed that the deformed cross-sections,

for both blade 1 and blade 2, agree to a good extent with each other. This is desirable because

the blades coming out of the manufacturing process are expected to be similar to each other.

Also, the surfaces at the Tip section suction side almost overlap the nominal surface for both

the deformed cores. This is interesting to note since the suction side at Tip section is the



64 4.7 Estimating 3-d Geometric Variability due to Manufacturing Variations

Table 4.1: Comparison of percentage displacements in the FFD control point coordinates rel-

ative to their nominal positions, obtained from the non-linear optimization and unconstrained

LLS solution.

i xg,i xg,i yg,i yg,i

Coordinate no. (Optimization) (LLS solution) (Optimization) (LLS solution)

1 79.40% 78.38% 82.90% 82.90%

2 1.67% 37.92% 22.35% 82.90%

3 45.36% 81.67% 48.45% 82.90%

4 6.35% 12.49% 27.58% 40.08%

5 81.69% 81.69% 47.10% 161.17%

6 20.12% 1.94% 71.15% 79.66%

7 58.99% 81.69% 22.97% 204.72%

8 18.01% 17.81% 91.92% 184.88%

9 550.45% 742.00% 41.13% 36.59%

10 207.76% 565.75% 24.94% 82.90%

11 157.25% 737.99% 10.70% 14.16%

12 395.74% 367.16% 48.67% 82.90%

13 543.73% 687.53% 54.41% 63.07%

14 97.28% 78.85% 108.60% 204.72%

15 371.59% 742.01% 82.65% 109.43%

16 94.22% 191.43% 159.06% 204.72%

17 28.60% 14.16% 52.29% 21.95%

18 85.54% 104.75% 6.12% 82.90%

19 39.42% 23.01% 34.70% 48.66%

20 104.75% 104.75% 6.43% 38.28%

21 5.96% 82.66% 15.92% 4.29%

22 3.27% 104.75% 64.29% 54.18%

23 7.56% 47.36% 51.33% 204.72%

24 7.99% 29.42% 73.84% 166.75%

Average = 125.53% 209.05% 52.06% 97.48%
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Deformed Tip plane compared with nominal for (a) blade 1, and (b) blade 2.

Deformed Mid plane compared with nominal for (c) blade 1, and (d) blade 2. Deformed

ROOT plane compared with nominal for (e) blade 1, and (f) blade 2.
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critical region for blade failure. Therefore, special care is taken while manufacturing to ensure

that this region meets the design specifications. These observations indicate that the proposed

methodology for characterizing 3-d geometric variability from the limited number of available

measurements seems to work fairly well for the present problem. The deformed core meshes

obtained from this study may be used further for generating morphed volume meshes for the

probable manufactured turbine blade shapes. These volume meshes may then be used for lifing

calculations, thermal and stress analysis.

4.8 Summary

In this chapter, a methodology was proposed for characterizing 3-d geometric variability from

the limited number of available measurements, and, its application demonstrated on hollow

turbine blades. A Free-Form Deformation based approach was implemented for generating the

deformed core meshes for a sample of 42 reconstructed blades capturing the effects of manu-

facturing variability. Measurement data on each of these blades was available in the form of

minimum wall thickness measurements across 18 locations per blade. The necessity of using

an optimization process in conjunction with FFD for obtaining the best match to the probable

manufactured core shape was also discussed. Various non-linear optimizers avaiable in differ-

ent packages were tried for the present problem and the best solutions were obtained from a

combination of LSGRG2 and NLPQL in iSIGHT, and ‘fmincon’ in MATLAB. While iSIGHT

9.0 returned a value of the objective function equal to 0.006 in 4118 evaluations and approxi-

mately 3 hours, ‘fmincon’ required only 5-7 seconds to converge to the same value of objective

function in around 4500 evaluations. Alternative approaches to non-linear optimization, i.e.,

constrained and unconstrained forms of linear least-squares solution, were also explored. It

was observed that although the linear least-squares approach may prove to be useful for a

variety of problems, the non-linear optimizer was better suited for obtaining more regularized

geometries which was desirable for the present study.

Finally, the non-linear optimization process was used in conjunction with FFD in order to

obtain the deformed core geometries for the probable manufactured blade shapes. The Tip,

Mid and Root cross-sections of the resultant core geometries were compared with the nominal

cross-sections. It was observed that the deformations in the reconstructed geometries seemed

to agree to a good extent with each other. This is desirable since the shapes of the turbine
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blades manufactured at the shop floor are expected to be similar to each other. It was also

observed that the suction side surfaces at the Tip section for the deformed models overlapped

the nominal model. Since this region is critical to blade failure, it is particularly ensured during

the manufacturing process that this surface meets the design specifications. These observations

indicate that the proposed approach for characterizing 3-d geometric variability from limited

measurements seems appropriate for obtaining fair estimates of the manufactured shapes. The

deformed core meshes obtained from this analysis can then be used further for generating 3-d

volume meshes in FEA ready form for the probable manufactured turbine blades.



Chapter 5

Lifing Analysis and Linear Elasticity

based Mesh Morphing

This chapter proposes the application of a linear elasticity based mesh morphing approach

for obtaining morphed volume meshes on the turbine blade models in FEA ready form. The

methodology implemented for mesh morphing is more commonly used in the study of fluid-

structure interactions and has found some recent applications in medical engineering. However,

its usage is still being explored for problems involving structural analysis. The chapter also

gives a detailed explanation of the boundary conditions applied for lifing analysis and the

results obtained from this analysis on the morphed meshes representing the probable turbine

blade shapes manufactured at the shop floor. In addition, results from a mesh convergence

study are also presented in order to determine the most appropriate mesh density for FE

analysis.

The chapter is organized as follows : Section 5.1 discusses the need for mesh morphing

algorithms and conducting a FE analysis for determining the effects of manufacturing vari-

ability. Section 5.2 describes in detail the boundary conditions applied for estimating life on

the probable turbine blade shapes. It also presents the mathematical formulations for lifing

calculations. This is followed by Section 5.3, which presents the results from the mesh con-

vergence study in detail. Section 5.4 discusses the application of the linear elasticity based

mesh morphing approach for the present case. Following this, Section 5.5 presents the results

obtained from the numerical studies conducted for the present problem. In the end, Section

5.6 concludes this chapter discussing its main contributions and results.

68
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5.1 Need for Mesh Morphing and Lifing Analysis

In Chapter 3, turbine blade inspection data taken on blades manufactured over a year was

analysed to capture the effects of manufacturing drift with time and the blade to blade man-

ufacturing error. The probable values of actual blade thicknesses so obtained were used in

Chapter 4 for characterizing 3-d geometric variability in turbine blade shapes due to the pres-

ence of manufacturing variability. It was observed that the brunt of manufacturing variability

is borne by the internal core shapes, whereas the external blade airfoils showed negligible

changes in their profiles. Geometric variability in the internal core shapes was estimated us-

ing a FFD based approach that was used to deform the surface mesh for the nominal core

to produce deformed meshes representing the probable manufactured core shapes. However,

manufacturing variability analysis is incomplete without determining its effects on the blade

life or performance in operating conditions. This leads to the need for generating FE meshes

on the probable turbine blade shapes for lifing, thermal and stress analysis.

One approach to solving this problem is creating 3-d CAD models representing the differ-

ent turbine blade shapes, exporting these models to the FEA tool, and meshing each model

separately. However, this process is time consuming and labour intensive, hence, best avoided.

Moreover, following this procedure for complicated shapes, such as turbine blades with both

external and internal design features, may lead to additional complexity involved in the transfer

of clean deformed geometries from the CAD package to the FEA tools. Therefore, a prefer-

able solution to this problem is the usage of mesh morphing techniques which are available in

abundance in the literature [88, 89, 90, 91, 92, 93]. Morphing the nominal mesh to produce

representations of the probable manufactured turbine blades results in volume meshes in FEA

ready form. These meshes may then be analysed for understanding the effects of geometric

variations on turbine blade properties and performance. The focus of the present study is on

estimating the effects of geometric variations, caused due to the presence of manufacturing

variability, on the low cycle fatigue (LCF) life of turbine blades.
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5.2 Boundary Conditions and Mathematical Formulations for

Lifing Analysis

The aim of the present study is to estimate the effects of manufacturing variability on the

LCF life of turbine blades at maximum take-off (MTO) conditions. Low cycle fatigue damage

results from the application of cyclic stresses with high stress amplitudes at low frequencies

usually resulting in a life of less than 1000 cycles. The MTO condition occurs only once per

flight cycle, hence, for the MTO analysis, the number of cycles actually represents the life of

turbine blades in terms of the number of flight cycles. This section presents the mathematical

formulations and boundary conditions applied for a 3-d stress analysis of turbine blades for

calculating the reserve factor (Rfact) which gives an indication of the LCF life, such that,

Nlife = Ncritical life ∗ Rfact. (5.1)

Here, Ncritical life represents the number of flight cycles for which the turbine blades are de-

signed. In equation (5.1) above, the value of Rfact is given as,

Rfact =
∣∣∣∣material fatigue strength

worst principal stress

∣∣∣∣ at temperature T0. (5.2)

It is clear from equation (5.1) that Rfact is equal to the normalized value of life. Therefore,

Rfact will be referred to as the normalized turbine blade life in the subsequent discussions.

The fatigue strength for the material at different temperatures was obtained from a test

specimen and the worst principal stress was calculated from FE analysis. For obtaining the

material fatigue strength at different temperatures (T0), different test specimens made from

the same material were subjected to cyclic stresses with different amplitudes at different tem-

peratures. The number of cycles after which the blade failed due to elasto-plastic and creep

deformations were recorded indicating the relationship between the stress amplitudes and blade

life at different temperatures. Now, the stress amplitudes that the blade is able to withstand

as the temperature varies were recorded for a value of life equal to Ncritical life. These stresses

indicate the values of material fatigue strength at different temperatures for the designed value

of life. If the value of Rfact = 1, the blade life is equal to the designed life. If Rfact>1, the

blade has a greater life than the designed life and if Rfact<1, the blade indicates a lesser life

than the life for which it is designed. The value of the worst principal stress in equation (5.2)

is the value of first principal stress (σ1) since the tensile stresses are responsible for fatigue

failure in the single crystal turbine blades.
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A typical turbine blade volume mesh and the contour plots of the analysis temperature

applied for the present problem are shown in Figure 5.1. The values (contour key) of the

(a) (b)

Figure 5.1: (a) A typical turbine blade volume mesh. (b) Contour plots for the analysis

temperature.

analysis temperature have not been shown due to the proprietary nature of this information.

The temperatures increase as the contour colours change from blue to green to yellow to

red. The temperature profile for the MTO condition was interpolated from a thermal analysis

results file. The temperatures on the blade profile were predicted by a thermal FE analysis, the

results of this analysis were validated by engine tests. The mapped values of the temperatures

(tmap) at different nodes of the blade model were applied using a parameter bldt defined as,

bldt = tmap× thot, (5.3)

in degrees Kelvin (K). thot is a scaling factor for engine running conditions. For MTO condi-

tions, thot = 1. The gas loads acting on the pressure and suction side airfoil surfaces and the

fillets present between the airfoil and adjoining features (i.e. the shroud and the platform),

were also available in their scaled form in the form of data files. These loads were applied to



72 5.3 Mesh Convergence Study

Figure 5.2: Normal and fixed restraints applied to the firtree faces of a typical turbine blade

model.

the turbine blade models using a scaling factor pf = 3.27. The shaft speed was specified using

a scaling factor nf = 1. Note that the actual values of the pressure loads and shaft speed

applied for the present problem have not been discussed due to the proprietary nature of this

information. The purpose of the scaling factors is to simulate different engine running condi-

tions. The values of scaling factors stated above were used for simulating the MTO condition.

These values can be changed to represent different engine running conditions that need to be

considered for the stress analysis. Normal and fixed restraints were applied to the firtree faces

as shown in Figure 5.2. Once the boundary conditions were applied as stated above, the FEA

models were ready for fatigue life analysis. The results obtained from the lifing analysis with

different meshes are presented further in Sections 5.3 and 5.5.

5.3 Mesh Convergence Study

Before proceeding with the FEA studies, it was essential to estimate the appropriate mesh size

needed on the turbine blade models in order to achieve acceptable accuracy in the results. It

is well-known that in FE modeling, a finer mesh typically results in a more accurate solution
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but requires larger computation time. Therefore, one always faces the problem of looking for a

trade-off between solution accuracy and the required computation time. A typical mesh on a

turbine blade model is shown in Figure 5.1(a). In order to conduct a mesh sensitivity analysis,

five different 10 node tetrahedral volume meshes were generated on the nominal turbine blade

model, such that :

• Mesh 1 consisted of 49,934 elements with 85,592 nodes.

• Mesh 2 consisted of 76,642 elements with 125,872 nodes.

• Mesh 3 consisted of 80,271 elements with 131,207 nodes.

• Mesh 4 consisted of 124,540 elements with 201,017 nodes.

• Mesh 5 consisted of 127,661 elements with 205,891 nodes.

Boundary conditions, as stated before in Section 5.2, were applied on each of these meshes

and a FEA conducted for obtaining the values of nominal life. Figure 5.3(a) shows the plot

of normalized nominal turbine blade life vs. mesh size, and, Figure 5.3(b) shows a plot of the

average percentage of stress error in the critical region vs. mesh size. As we can observe in

(a) (b)

Figure 5.3: Plots of (a) nominal life vs. mesh size , and (b) average stress error vs. mesh size.

Figure 5.3(a), the nominal life for Mesh 1 = 1.41, Mesh 2 = 1.44, Mesh 3 = 1.45, Mesh 4 =

1.45 and Mesh 5 = 1.45. Therefore, the value of Rfact seems to have converged for meshes 3,
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4 and 5. Observing Figure 5.3(b), the average percentage of stress error around the critical

region for Mesh 1 = 17%, Mesh2 = 11.12%, Mesh 3 = 10.99%, Mesh 4 = 10.68% and Mesh 5

= 10.64%. The percentage of stress error was calculated using the formula,

Percentage Stress Error (%) =
∣∣∣∣ stress error
worst principal stress

∣∣∣∣ ∗ 100. (5.4)

According to turbine blade manufacturing company guidelines, the maximum acceptable stress

error in the blade volume mesh is around 10%. The stress error represents the mesh discretiza-

tion error and is a measure of the skewness of the elements constituting the FE mesh. The

stresses on the nodes of a FE mesh can be represented in two forms - 1) The average stress

based on the surrounding elements so that the stress contour is continuous across elements,

or, 2) The non-averaged stress where the stress reported on each element is only based on the

displacement of its own nodes. The difference between these two types of stresses accounts for

the mesh discretization error. If the mesh is fine enough such that two neighboring elements

have perfectly continuous stress contours, the averaged and non-averaged stresses will become

equal and the stress error at each node will be zero. In Figure 5.3, since the solution has

already converged for Mesh 3, it is not worth considering meshes 4 and 5 for the FE analysis.

Selecting any of the meshes 4 or 5 will only add to the required computational time without

affecting the accuracy of results. Now, the choice is to be made between meshes 1, 2 and 3.

The average stress error for Mesh 1 is unacceptably high as compared to the acceptable stress

error value of around 10%. However, the average stress error observed for Mesh 2 is around

11.12% which is fairly close to the threshold value. The nominal life calculations for meshes 2

and 3 were conducted using a single node of a computer cluster with Intel quad core processors,

2.8 GHz clock rate and 32GB RAM/node using 8 processes in parallel. The time taken for

the entire FE analysis on Mesh 2 was around 17 minutes and on Mesh 3 was approximately

18 minutes. Finally, Mesh 3 was found to be most appropriate for the present study. The

solution had already converged for this mesh, it took about the same computation time as

Mesh 2, and, it also demonstrated an acceptable value of stress errors. Therefore, this mesh

was used further for the variability analysis in turbine blade lives.

5.4 Linear Elasticity based approach for Mesh Morphing

As discussed earlier in Section 5.1, the analysis of manufacturing variability is incomplete with-

out being able to determine its effects on the component’s life, performance, etc. Going back
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to the CAD packages and creating multiple models for complicated geometries representing

the different manufactured shapes may require months of effort, even by experienced users.

Therefore, it is desirable to morph the nominal mesh multiple times for generating the desired

shapes and obtaining 3-d meshes in FEA ready form for lifing, thermal and stress analysis.

For the present case, it was observed that most of the geometric changes due to manu-

facturing variations are observed in the internal core shapes and the external blade surface

remains relatively unchanged. This information was employed in Chapter 4 for characterizing

3-d geometric variability in the turbine blade shapes by deforming the nominal core using a

FFD based approach. Multiple representations of the deformed cores were obtained in the

form of core surface meshes representing their probable manufactured shapes. It is now desir-

able to be able to use this information for morphing the volume mesh on the nominal turbine

blade model to obtain 3-d volume meshes for the probable turbine blade shapes. For this, the

linear elasticity based mesh morphing approach proposed by Stein et al. [89] was implemented.

Although many alternative mesh morphing techniques are readily available in the literature

[90, 91, 92, 93] for solving similar problems, this technique was preferred for its simplicity and

ease of implementation.

5.4.1 Mathematical Formulations

The linear elasticity based mesh morphing approach is widely used in the study of fluid-

structure interactions [89, 94, 95] and has also found some recent applications in medical

engineering [96]. It attempts to find the displaced positions of the internal nodes in a FE

volume mesh such that the displacements applied to the external surface act as boundary

conditions. The motion of the internal nodes is governed by the linear elasticity equations

[89] such that the connectivity of the mesh remains unchanged. The equilibrium equation

governing the displacements of the internal nodes in the blade volume mesh is given as,

∇.σT + f = 0, (5.5)

where, f is the external body force applied and σ is the Cauchy stress tensor defined as,

σ = L1(trε)It + 2L2ε. (5.6)

In equation (5.6) above, L1 and L2 are the Lamé constants. L1 is also called the Lamé’s

first parameter and simplifies the stiffness matrix in Hooke’s law. L2, also called the Lamé’s
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second parameter, is the shear modulus. Relationships between the Lamé parameters, Young’s

modulus (E) and Poisson’s ratio (ν) are given by the expressions :

L1 =
Eν

(1 + ν)(1− 2ν)
and L2 =

E

2(1 + ν)
. (5.7)

In expression (5.6), It is the identity tensor and tr is the trace of ε, where ε is given by the

strain-displacement equation,

ε =
1
2

[
∇w + (∇w)T

]
. (5.8)

In the equation above, w is the displacement field. For the present problem, all nodes on the

external blade surface are fixed with zero displacements in the x-, y- and z-directions. The

displacements for the nodes on the core surface are defined as the difference between the nodal

coordinates of the nominal core and the deformed core obtained from the FFD solution as

discussed in Chapter 4.

The basic idea of this discussion is just to give an introduction to the mesh morphing

strategy implemented for the present problem. The proposed mesh morphing technique can

easily be applied on structural components using any standard FEA tools. Further details

on this technique and the linear elasticity theory can be found in the cited literature [89, 94,

95, 96, 97, 98]. Alternative mesh morphing techniques are excluded from the scope of the

presented research.

5.4.2 Mesh Morphing Methodology

A flowchart representation of the methodology implemented for morphing the turbine blade

volume mesh is shown in Figure 5.4. As depicted in the figure, a volume mesh on the nominal

turbine blade model is generated in the FEA tool. Surface meshes on the core and external

blade surface are extracted from the nominal mesh. Fixed restraints are applied to the nodes

on the external blade surface. The nominal core surface mesh is deformed using a FFD based

approach as discussed in Chapter 4. This mesh is deformed multiple times in order to generate

the different probable manufactured core geometries.

For each of the deformed core geometries, differences between the nodal (x,y,z) coordinates

of the deformed surface mesh and the nominal core mesh are calculated. These delta values

are applied as nodal displacements on the core surface of the nominal blade volume mesh. This

is followed by a linear elasticity analysis for each of the deformed cores resulting in multiple

morphed volume meshes representing the probable manufactured turbine blades. The resultant
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morphed meshes may then be used for estimating the effects of manufacturing variability on

turbine blade properties.

Figure 5.4: Flowchart representation of the methodology implemented for mesh morphing of

the turbine blade volume meshes for FEA.

For example, in order to conduct a lifing analysis, boundary conditions are applied to each

of these morphed meshes according to the description in Section 5.2. Then, a 3-d stress analysis

is conducted on each mesh in order to calculate the value of Rfact for the different probable

turbine blade shapes. Calculating the mean and standard deviation for the values of Rfact

obtained from all the morphed meshes aids in estimating the variability in turbine blade life

due to manufacturing variations.

5.5 Turbine Blade Lifing Analysis

This section discusses the numerical studies conducted for determining the effects of the manu-

facturing variations on turbine blade life. The input data for lifing analysis was obtained in the

form of 42 deformed cores as a result of the studies conducted in Chapter 4. As stated before
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Figure 5.5: Critical region of blade failure.

in Section 5.3, a 10 node tetrahedral volume mesh with a mesh size of 80,271 elements and

131,207 nodes was generated on the nominal turbine blade model for FE analysis. Boundary

conditions were applied on this mesh in accordance with the description in Section 5.2, followed

by a 3-d stress analysis for MTO conditions. The FE analysis resulted in a normalized value

of 1.448 for the nominal life. The critical region of blade failure obtained from this analysis is

shown in Figure 5.5. As seen in the figure, possible failure due to fatigue stress is observed at

the fillet joining the airfoil section to the shroud on the suction side leading edge.

In the next step, the surface mesh for the core was extracted from the nominal turbine

blade volume mesh. The core surface mesh had 19,116 nodes. Displacements for these nodes

were obtained by calculating the difference between the nodal (x,y,z) coordinates for each of

the 42 deformed core meshes and the nominal core mesh. This was followed by extracting

the external blade surface mesh from the nominal turbine blade volume mesh. The extracted

surface mesh for the external shape of the blade consisted of 33,691 nodes. Fixed restraints

were applied to all these nodes in order to restrict any shifting of the external surface during

mesh morphing.
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Following this, the nominal turbine blade volume mesh was taken and morphed 42 times

by fixing the external blade surface nodes and moving the internal core surface nodes by the

prescribed displacements. The linear elasticity solver available within the FEA tool was used

for this purpose. The entire procedure of loading the nominal blade volume mesh, applying

fixed restraints on the external blade surface, applying nodal displacements on the internal core

surface and executing the linear elasticity solution for obtaining morphed meshes took around

32-37 minutes on a single node of a computer cluster with Intel quad core processors, using 8

processes in parallel at 2.8 GHz clock rate and 32GB RAM/node. To speed up the analysis,

42 runs were sent in parallel for the deformed geometries on different nodes of the computer

cluster which resulted in generating all the morphed meshes in around the same time.

Figure 5.6: Histogram indicating the effect of manufacturing variability on normalized turbine

blade life.

The morphed meshes obtained from the linear elasticity solving process were subsequently

analysed using FEA for obtaining estimations of life for the probable manufactured turbine

blades. Figure 5.6 shows the results obtained from the lifing analysis on the 42 meshes. It can

be observed that the geometric variations introduced by replacing the nominal core with the

deformed cores has resulted in reducing the turbine blade life in most cases due to the presence

of manufacturing variability. This meets our expectations because although the nominal life is
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expected to be within the range of the maximum and minimum lives, most of the manufacturing

variations are expected to reduce the blade life in comparison to its designed life. The figure also

shows that for a couple of blades, the presence of manufacturing variations have demonstrated

a positive effect by improving the blade life. On a normalized scale, these blades were designed

for an average life of 1.448, but the mean life of the probable manufactured blades is observed

to be 1.424 which is around 1.7% lower relative to the designed life. Also, the normalized

value of life for the reconstructed blades varies between 1.395 and 1.465, the former being

approximately 3.7% lower relative to the nominal life. The standard deviation in life for these

blades was calculated as 0.0138.

5.6 Summary

In this chapter, a linear elasticity based mesh morphing approach was used in order to obtain

morphed volume meshes for different turbine blade shapes in FEA ready form. Information

obtained from FFD analysis in the form of deformed core surface meshes was used for generating

3-d volume meshes representing the probable manufactured turbine blade shapes. A mesh

convergence study was conducted to explore the reliability of the results obtained from different

meshes generated on the nominal turbine blade model. A 10 node tetrahedral mesh comprising

80,271 elements was selected as the preferred mesh size for the present problem. A 3-d stress

analysis at MTO conditions was conducted on the 42 morphed meshes obtained from the linear

elasticity solves. The results indicated that the mean life of the probable manufactured blade

shapes was around 1.7% lower relative to the designed life, with, a maximum relative reduction

of around 3.7% for turbine blades manufactured over a span of one year. The calculated value

of standard deviation for the 42 analysed shapes was around 0.0138.



Chapter 6

Response Surface Models for Lifing

Predictions

This chapter explores the application of response surface modeling techniques as a replacement

during optimization for the computationally expensive FE calculations for the turbine blade

lifing analysis problem. Here, the LPτ DOE technique is used for generating the initial set

of design points that are employed for generating RSM or surrogate models using the kriging

approach. The organization of the chapter is as follows : Section 6.1 discusses the need for

generating surrogate models in view of the problem at hand. Sections 6.2 and 6.3 give a concise

introduction to the LPτ technique and kriging, respectively. Section 6.4 briefly discusses the

various model validation techniques that may be used for testing the reliability of response

surface models (RSMs). This is followed by a detailed discussion in Section 6.5 of the numerical

studies conducted for the current problem. The results and conclusions from the numerical

studies are summarized in Section 6.6.

6.1 Need for Response Surface Models (RSMs)

Chapter 5 presented the effects of manufacturing variations on turbine blade lifing properties.

The volume mesh on the nominal turbine blade model was morphed 42 times in order to

generate representations of the probable manufactured turbine blades. A FE analysis was

conducted on each of these morphed meshes resulting in estimations of the probable mean life

and standard deviation in life. In order to reduce meshing errors in the lifing predictions, a

81
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mesh size of approximately 80,271 elements was used for each of the 42 morphed meshes. FE

calculations on these meshes were run in parallel on 42 different nodes of a computer cluster

with Intel quad core processors, 2.8 GHz clock rate and 32GB RAM/node using 8 processes in

parallel. Due to the parallel runs, the wait time required by the user was around 37 minutes.

However, the total computation time consumed for the entire analysis was around 37 × 42 =

1554 minutes, i.e., around 1 day and 2 hours.

Given that a methodology for estimating the mean and standard deviation in life is avail-

able, it is desirable to use this information for robust design studies with the objective of

improving the mean life and minimizing the standard deviation in life. A detailed explanation

of the robust design methodology is provided later in Chapter 7. If we decide to follow the

mesh morphing approach discussed in Chapter 5, implementation of the robust design study

would involve repeated FEA calculations on each of the new nominal designs for estimating

the mean value of life and its standard deviation. Since these values will need to be calculated

over and over for possibly thousands of designs, the process becomes computationally very

expensive. This leads to the desire to use response surface models (RSMs) if at all possible.

Response surface or surrogate modeling techniques provide approximate or meta- models

as computationally cheap alternatives to the original high-fidelity models, i.e., FEA models

in our case. These methods generate approximations of the high-fidelity models by analysing

an initial set of design points, together with the output/response values obtained for these

points from the computational studies. This makes it very important to efficiently sample

the parameter space for producing the initial design point dataset from which information is

extracted for the surrogate models.

6.2 Design Space Sampling

Many efficient design space sampling techniques, commonly referred to as the design of exper-

iments (DOE) techniques, are available in the literature [99, 100, 79]. These DOE techniques

are broadly divided into two categories: 1) classical DOE approaches, and 2) modern DOE

methods. Classical DOE approaches tend to generate design points at the extremes of the

parameter space and offer more reliable trend extraction in the presence of randomness and

non-repeatability [99]. Some examples of these techniques include, the central composite de-

sign, full- and fractional-factorial design, etc. On the other hand, modern DOE methods
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produce space filling design points since they are designed for use with deterministic computer

simulations for which the non-repeatability component can be ignored [99]. Some examples

of modern DOE techniques are, the quasi-Monte Carlo sampling, orthogonal array sampling,

Latin hypercube sampling, etc.

A very popular technique in quasi-Monte Carlo sampling is the LPτ sequence. LPτ was

first introduced by Sobol in 1967 [101]. It is a good example of quasi-random low-discrepancy

sequences. “The term discrepancy refers to a quantitative measure of how much the distribu-

tion of samples deviates from an ideal uniform distribution” [99, 79]. Thus, low-discrepancy

sequences try to sample the parameter space such that the design points are close to a uniform

distribution. Quasi-random techniques use deterministic algorithms to generate the design

points in a n-dimensional space [99, 79, 1]. Figure 6.1 shows an example of 100 design points

generated in a 2-dimensional space using the LPτ algorithm. A detailed exposition of this

technique can be found in the cited literature [101, 102, 103, 104, 105].

Figure 6.1: A sequence of 100 design points generated in 2-dimensional space using the LPτ

technique.

It was considered desirable to use the LPτ approach for the present problem, not only

because it gives a good coverage of the design space, but also because it allows additional

points to be added to the existing design points without the need for repositioning the existing
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points [79]. This was considered important for the turbine blade problem because of the high

probability of meshing errors at different design points leading to failure in lifing predictions.

Further details on this analysis will be presented in Section 6.5.

6.3 Kriging

Kriging is a popular surrogate modeling technique developed by the French mathematician,

Georges Matheron [106], based on the work of D.G. Krige [107]. The application of kriging

for constructing approximations of computer models was first demonstrated by Sacks et al.

[108] in 1989. Kriging has been used widely in conjunction with space filling DOE techniques

for aerospace design optimization studies [1, 109, 110, 111, 79]. A detailed explanation of

this technique can easily be found in the existing literature [112, 113, 114, 115, 111]. The

mathematical description of Kriging that follows is based on the work of Jones et al. [113].

Let us assume, we have evaluated the output values for a dataset consisting of n variables

at m different design points using the full computational model. Denote each design point by

x(i) = (x(i)
1 , · · · , x(i)

n ), the associated function value may be written as y(i) = y(x(i)), where

i = 1, · · · ,m are the m samples. The model used to predict the response at any value x is

then given as,

y(x(i)) = µ+ ε(x(i)), i = 1, · · · ,m. (6.1)

In the equation above, µ is the mean of the stochastic process and ε(x(i))’s are normally

distributed “error” terms with zero mean and variance σ2. The correlation between the “errors”

at points x(i) and x(j) is given as,

Corr
[
ε(x(i)), ε(x(j))

]
= exp

[
−d(x(i),x(j))

]
, (6.2)

where, d(x(i),x(j)) represents the weighted distance formula, such that,

d(x(i),x(j)) =
n∑
h=1

θh

∣∣∣x(i)
h − x

(j)
h

∣∣∣ph . (6.3)

In equation (6.3) above, θh and ph are hyperparameters that are tuned using the input-output

data available on the existing design points. The parameter θh measures the importance or

‘activity’ of the variable xh. A large value of θh implies that xh exercises more influence on

the response variable, and vice-versa. The exponent ph is related to the smoothness of the

function in the h coordinate direction. Values of ph near 1 imply less smoothness, and ph = 2



85 6.4 Model Validation

corresponds to smooth functions. It can be observed in equation (6.2), that the correlation

becomes near 1 as the distance between x(i) and x(j) becomes very small. Similarly, the

correlation will approach zero when the distance between the two points becomes very large.

The Kriging model has 2n + 2 parameters, i.e., µ, σ2, θ1, · · · , θn and p1, · · · , pn. These

parameters are estimated by maximizing the likelihood of the sample. If y = (y1, · · · , ym)T

denotes the vector of observed function values, R denotes the m × m matrix whose (i, j)th

entry is Corr
[
ε(x(i)), ε(x(j))

]
, and 1 denotes the m-vector of ones, then the likelihood function

is given as :
1

(2π)n/2(σ2)n/2 |R|
1
2

exp
[
−(y− 1µ)TR−1(y− 1µ)

2σ2

]
. (6.4)

In the expression above, the estimates of µ and σ2 are given by the equations,

µ̂ =
1TR−1y
1TR−11

, (6.5)

and

σ̂2 =
(y− 1µ̂)TR−1(y− 1µ̂)

m
. (6.6)

By substituting equations (6.5) and (6.6) into expression (6.4), the ‘concentrated likelihood

function’ is obtained that depends only on the hyperparameters θh and ph, where h = 1, · · · , n.

This function is maximized to estimate the values of θh and ph for the given data. Equations

(6.5) and (6.6) are then used to obtain the estimates µ̂ and σ̂2. For the present problem,

the hyperparameters were tuned using the entire set of initial design points. Hyperparameter

tuning and generation of the kriging based RSMs was implemented using the OPTIONS design

exploration system [116]. Application of this approach to the current problem is discussed

further in Section 6.5.

6.4 Model Validation

Once the RSM has been constructed, the next step involves assessing the quality of the surro-

gate model through model validation studies. There are various ways of validating metamodels

:

• Separate ‘training’ and ‘testing’ datasets may be created on which the responses are

already known. The ‘training’ dataset is used for generating the RSM. The points in the

‘testing’ dataset may then be employed for comparing the predictions made by the RSM

with the known outputs.
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• The leave-one-out cross-validation procedure may be used which involves leaving one

observation out of the initial set of design points and using the remaining points for

generating the RSM. The response predicted by this RSM at the ‘left-out’ design point

is then compared with the known output value. This process is repeated for every point

in the initial dataset to assess the quality of the approximate models. Normally, the

hyperparameters used are fixed at those obtained for the full dataset.

• The k-fold cross-validation procedure may be used which is essentially the same as leave-

one-out procedure except that k instead of 1 design points are ‘left-out’. This test is

thought to be more rigorous than the leave-one-out type of cross-validation.

For the present problem, the leave-one-out cross-validation procedure was preferred over the

other two because of the limitation in terms of the number of available initial design points.

Details of this study will be presented in Section 6.5 that follows.

6.5 RSMs for the Turbine Blade Problem

The methodologies used for perturbing the nominal mesh, and using FEA for estimating the

mean and standard deviation in life, have already been presented in Chapters 4 and 5 respec-

tively. It was now desired to perform robust design optimization studies in search of a new

nominal turbine blade model which not only resulted in a better mean life, but also reduced

the standard deviation in life due to manufacturing variations. This meant that thousands of

new nominal designs were to be explored for their nominal and mean lives, and standard de-

viation. As discussed before in Section 6.1, the computation time required for mesh morphing

and lifing calculations on each blade was around 37 minutes. This meant that a total compu-

tation time of around 1 day and 2 hours was required for conducting the lifing analysis on the

entire set of 42 perturbed geometries per nominal design. This was undesirable because of the

high cost and time associated with each run. Therefore, it was considered more appropriate

to generate RSMs which would give reliable predictions of the blade life for a given set of 18

thicknesses that defined its geometric properties. The positioning of these 18 thickness values

on the turbine blade model has already been discussed in Chapter 3, Section 3.4.

The probabilistic studies conducted in Chapter 3 left us with 42 sets of 18 thicknesses

capturing the probable effects of manufacturing variations. This data consisted of an inappro-

priate number of design points for generating surrogate models because we were looking at an
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18-dimensional parameter space with only 42 design points. As a rule of thumb, the number of

initial design points needed for generating approximate models are around 10 times the number

of dimensions [113]. This led to the addition of 158 design points to the existing dataset of 42

blades using the LPτ DOE technique. The lower and upper thickness specification limits used

during the blade inspection process were used as the lower and upper bounds for randomly

generating a set of 500 points, in 5 steps of 100 points each. One may wonder here of the need

for 500 points when only 158 additional points are required. This was done to make up for

the lack of knowledge of the design feasibility in the existing parameter space. For example, in

the present case, the FE tool was able to successfully perform lifing calculations for only 100

out of the first 230 design points. All the remaining 130 design points failed due to meshing

errors. Such failures are unavoidable when automated mesh generation tools are dealing with

significant shape changes and highly complicated geometries.

Figure 6.2: Correlation plot for the predicted

vs. actual values of Rfact for the 18 variables

- 200 blade data.

Figure 6.3: Correlation plot for the predicted

vs. actual values of nodal Rfact for the 18 vari-

ables - 200 blade data.

The final dataset consisting of 200 design points (each design point consisted of a vector

of 18 variables), and the value of Rfact for each of these points, was used for generating a

surrogate model using the kriging approach. As discussed before in Section 6.4, the leave-one-

out cross-validation procedure was used in the present case for assessing the reliability of the

RSM. A correlation plot of the predicted vs. actual values of Rfact for this data is shown in
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Figure 6.2. As we can observe in the figure, the surrogate model is not modeling the data very

well and shows a squared correlation coefficient (R2) value of 0.1909. Values of R2 closer to 1

indicate excellent reliability and those closer to zero indicate very poor reliability of the RSM.

Even though, in general, the critical region of the turbine blade does not change from

blade to blade, the node indicating the minimum value of life may change from one model

to another. This variability in the nodal positions may add to the complexity of model-

ing the data. In order to make the problem simpler, a trial was conducted to model this

data such that the value of Rfact at the same selected node was to be predicted. If this

worked, the idea was to create multiple RSMs, different RSMs predicting Rfact for differ-

ent nodes in the critical region, and take the minimum of these predicted values for esti-

mating life. The correlation plot of the predicted vs. actual values of Rfact at a selected

Figure 6.4: Correlation plot for the predicted vs.

actual values of nodal worst principal stress for

the 18 variables - 200 blade data.

node for the previously generated 200-blade

dataset is shown in Figure 6.3. It is sur-

prising to see that the approximate model

produced from this data is slightly more un-

reliable, with R2 = 0.0481, as compared to

Figure 6.2. Following this, an attempt was

made to simplify the problem further by

trying to model the worst principal stress at

a selected node as a response for the differ-

ent input values of 18 thicknesses. Parallel

RSMs could then be used for predicting the

worst principal stress at different nodes in

the critical region. According to the for-

mula in equation (5.2), the maximum of

these values could then be used to predict

the life for a particular design point. The

correlation plot for this data is shown in

Figure 6.4 where the same 200 design points

were used to model a RSM for stress predictions. The R2 value in this case is not any better

than those observed in Figures 6.2 and 6.3.

The unreliability of the surrogate models for the 200-blade data may be explained because it
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is an attempt to model a series of complicated processes. A simplified flowchart representation

of these processes and the order in which they are executed is shown in Figure 6.5. As seen

Figure 6.5: Simplified flowchart representation of the processes being modeled by kriging.

in the flowchart, 18 thicknesses representing the geometric variations are used to calculate the

expected FFD control point positions for the deformed core model. These expected control

point coordinates are fed into the FFD process which works in conjunction with optimization

to result in the final optimized positions for the control points. The optimal control point

coordinates are then employed by FFD to regenerate the 3-d core geometry. Details of this

methodology have already been presented in Chapter 4. Nodal displacements calculated from

the deformed core geometries are used for mesh morphing in the FEA tool using linear elasticity

based approach. FE lifing calculations are then performed on the morphed volume meshes

resulting in the worst principal stress and Rfact values. This study has also been discussed in

detail previously in Chapter 5.

Until now, our expectation from kriging was to model these entire series of complex pro-

cesses and relate the 18 thickness values to the output Rfact or worst principal stress values,

which may be too much to ask. Following this realization, it was considered more appropriate

to use the optimized values of FFD control points as inputs (x) and then try to generate

surrogates for life or stress predictions. The dashed box in Figure 6.5 encloses the truncated

series of processes to be modeled by kriging in this fresh attempt. It would still be beneficial

if the RSMs in this case proved to be reliable since the majority of the computation time

was consumed by the FE calculations involved in mesh morphing and lifing estimations. The

time consumed by the FFD and optimization methodology was not more than 2-3 minutes
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per design point. However, the number of FFD control points used for core deformations still

posed a major problem.

As noted before in Chapter 4 Section 4.7, 24 control points were moved in the x- and

y-coordinate directions to deform the nominal core. This converted into 48 variables that

were involved in the optimization and free-form deformation process. It is commonly found

that it is difficult to set up surrogate models using kriging for more than 10-20 variables and

the approach also becomes numerically expensive for more than a few hundred data points

[109]. Moreover, the generation of 480 initial design points needed in this case meant analysis

of around 1100 random points for estimating the required output values from the compu-

tational model. This was practically infeasible. In order to overcome this problem, it was

decided to analyse the effect of geometric changes around each variable plane in the FFD

Figure 6.6: Correlation plot for the predicted vs.

actual values of Rfact for the 12 variables - 120

blade data.

process (refer Figure 4.4) on the output life.

The idea now was to model the effects on life

due to the geometric changes introduced by

varying the control points on each of the

variable Planes 4-7, separately. This would

result in generating 4 different RSMs, one

for each latticial plane. These 4 RSMs could

be run in parallel to predict the value of life.

An average of the values of lives predicted

by these 4 surrogate models could give us an

estimation of the expected life for the whole

turbine blade model.

To start with, the FFD process was

modified such that only the control points

on Plane 7 (refer Figure 4.4), which was

closest to the Tip section, were allowed to

vary and all the remaining latticial planes

were fixed. A new 120-blade dataset was

produced consisting of the output values, i.e. Rfact, and their corresponding 12-variable in-

put vectors. One of the challenges faced while creating this initial design data was that the

lower and upper bounds of the control points were not known. Thus, LPτ could not be used
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directly to generate the initial design points. Instead, the 500 design point data produced

previously using the lower and upper design specifications on the 18 thickness values was used

to overcome this problem. Using the same values of expected thicknesses as generated for

the 500 point data, FFD was employed such that only the 6 control points on Plane 7 were

moved by the optimization process. Since the remaining 18 control points on Planes 4-6 were

fixed, the converged value of objective function for each design point was much greater now.

However, this helped in obtaining fair estimations of the control point positions and hence of

the 12 variables in each case. The reduced deformation due to limited movement of control

points also improved the success rate of FEA. Output values for 120 design points were ob-

tained only from the first 134 points in the parameter space. A correlation plot obtained from

the leave-one-out validation of the RSM generated from this data is shown in Figure 6.6. As

seen in the figure, kriging is still not modeling the data very well with a squared correlation

coefficient value of only 0.5422.

Figure 6.7: Correlation plot for the predicted

vs. actual values of nodal Rfact for the 12 vari-

ables - 120 blade data.

Figure 6.8: Correlation plot for the predicted

vs. actual values of nodal worst principal stress

for the 12 variables - 120 blade data.

Going back to the simplifications adopted for the 18-variable 200-blade data, surrogates

were generated for predicting the nodal life and nodal worst principal stresses. Correlation

plots obtained from these metamodels are shown in Figures 6.7 and 6.8. Even though the

R2 values look much better for these plots, the scatter in the points is still not acceptable
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especially because the variations sought in Rfact are very small in magnitude. Referring back

to Chapter 5, it was observed that the mean life of the probable manufactured turbine blades

was 1.424 which is around 1.7% lower relative to the nominal life of 1.448 for which these

blades were designed. Looking at the scatter of points in Figures 6.7 and 6.8, prediction errors

of this magnitude are highly undesirable especially when accuracy upto the third decimal place

is sought.

There is no doubt that if the RSMs had given more reliable predictions for the turbine

blade problem, it would have saved a lot of computational effort and time. However, the use

of multiple surrogates has the following disadvantages :

• Errors from the four different RSMs predicting the effects of control point movements in

Planes 4-7 on the output would have accumulated in the final calculated response value

adding to the unreliability of the surrogate models.

• Executing free-form deformations on the core by moving the control points on one plane

at a time would not have accounted for the interaction effects observed when moving all

the control points together. As noted before in Chapter 4 Section 4.3, displacement of the

control point at one plane may also result in some form of relatively lesser deformation of

the core at the adjacent plane. This, however, may not apply to cases where the control

point planes are sufficiently far apart (which is not true for our problem). For such cases,

the proposed approach may actually prove useful subject to the condition that a reliable

RSM is produced.

• Due to the high dimensionality of the present problem (further reduction in dimension-

ality being impractical), the large number of the initial design points required for kriging

was undesirable. 134 points were explored to generate the first set of 120 design points.

If the effects of movements in Planes 5-7 were also to be explored, similar datasets would

be required for each plane separately adding to the computational costs.

A detailed description of the various reasons due to which it may become difficult to

generate RSMs for complicated problems is given in the recent work of Loeppky, Sacks and

Welch [117]. Failure of the various RSM techniques for predicting fatigue life has been noticed

before in the work of Rao [118]. The probable causes of failure to generate surrogate models for

the present problem may be the high dimensionality of the problem and the erratic behaviour

of the code in the design space. It has already been stated before that in order to obtain the
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output values for 200 design points, around 500 points were sampled from the design space due

to the low success rate of the code. This implies that the design space is not uniformly sampled

since the regions where the code fails remain unexplored. In such cases, it may be extremely

difficult to generate reliable RSMs even when large sample sizes are used for generating the

surrogate models.

In the end, the response surface modeling studies presented in this section lead to the

conclusion that for the present problem, it is better to stick to the full computational model

for a more realistic representation and more accurate estimation of the desired output values.

A summary of this discussion is presented in the following section.

6.6 Summary

Kriging in combination with the LPτ DOE technique was used for generating RSMs for the

turbine blade problem. In addition to the original more complicated problem of modeling the

relationship between the 18 thickness values and the output values of life, simpler variants

of this problem were tried with the objective of obtaining more reliable surrogate models.

Cross-validation using the leave-one-out method indicated that kriging was not able to model

the data very well, resulting in unacceptable scatter in the correlation plots. The studies

conducted in this chapter help us conclude that realistic and more accurate solutions for the

present problem would be obtained by using the computational models directly while replacing

them with RSMs is not helpful in this case.
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Robust Design of Turbine Blades

against Manufacturing Variability

This chapter presents a detailed description of the methodology used for the direct robust

design optimization of turbine blades against manufacturing variability. The series of method-

ologies proposed in Chapters 3, 4 and 5 are all knitted together and integrated into an iSIGHT

workflow that takes a nominal design and returns the mean life and standard deviation in life

for this design. This workflow is further integrated with an existing iSIGHT workflow that

changes the basic core design of the turbine blades with aid from the CAD and FEA tools

and performs a deterministic analysis to predict the nominal life for each new design. The

overall integrated workflow uses a combination of design and analysis tools, including, CAD,

MATLAB, FFD, CADFIX, FEA and JAVA. The driver of this workflow is the nondominated

sorting genetic algorithm (NSGA-II) which is used to implement a tri-objective optimization

with the aim of maximizing the nominal and mean lives and minimizing the standard devi-

ation in life. The results obtained from the multiobjective optimization are analysed using

3-d Pareto front plots and the selected robust-optimal solution is compared with the optimal

deterministic design and the starting/base geometry.

The organization of this chapter is as follows : Section 7.1 expresses the need for robust

design studies in aerospace design engineering. Section 7.2 gives a brief overview of the existing

robust design approaches and formulates the current problem as a multiobjective robust design

optimization problem. Section 7.3 discusses the application of NSGA-II for multiobjective

optimization. Section 7.4 presents a detailed description of the methodology implemented for

94



95 7.1 Need for Robust Design

seeking a robust solution in the context of the current problem. A detailed description of the

iSIGHT workflow used for the present problem and the results of the robust design study are

presented in Section 7.5. The main inferences from the study are summarized in Section 7.6.

7.1 Need for Robust Design

Traditional procedures for aerospace design are based on a combination of factors of safety

and knockdown factors. These procedures have several shortcomings, e.g., they are difficult to

apply to new designs with unconventional configurations, they do not provide any measures

of consistency in performance, they usually lead to overdesigning of the components resulting

in excessive weight, etc. [6]. One of the early approaches designed to improve manufacturing

processes and eliminate defects was the Six Sigma method which has been widely employed

by many companies including Motorola, General Electric (GE), Honeywell, etc. [119]. Most of

the existing design optimization procedures in the aerospace industry are focused on improving

the nominal performance of the system using deterministic design. This may lead to optimized

solutions that have good nominal performance but poor off-design characteristics.

It has been repeatedly discussed in the previous chapters that manufacturing variability

inevitably leads to geometric variations in the manufactured parts from their design intent.

This geometric variability may lead to inappropriate lifing characteristics during operation,

subsequently leading to company losses. The earlier we are able to quantify and reduce the

effects of these variations in the design cycle, the better. The estimation of these variations

and relative insensitivity to their presence becomes even more important for aircraft engine

manufacturing companies because of the huge amounts of money involved in each new engine

design and manufacture. This leads to the need for the inclusion of robust design methodolo-

gies in the current design process. The robust design approach seeks a design that is relatively

insensitive to uncontrollable sources of variation present in the system’s environment [120].

Although robust design methods are recently gaining popularity in the aerospace design com-

munity [6, 121, 79, 122, 123], they are not always used in the industry due to the following

reasons :

• the industry feels more comfortable with traditional deterministic design approaches,

• robust design methods are quite complex and computationally expensive, and
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• techniques for obtaining realistic estimations of manufacturing variability are still in their

development stages [6].

However, if realistic estimates of the sources and nature of manufacturing variations, and, sim-

ulation models with acceptable accuracy, are available, the benefits of robust design method-

ologies can be realized in :

• minimizing the variations in overall performance and lifing characteristics,

• reducing the maintenance costs during operation,

• increasing the confidence in design analysis tools, and

• reducing the design cycle time and cost [6].

In the present problem, probabilistic estimates of the effects of manufacturing variability on

turbine blade life were available. The methodologies used for estimating the probable mean life

and standard deviation in life for blades manufactured over a year have already been presented

in Chapters 3, 4 and 5. It was, therefore, desirable to apply these techniques for robust design

studies in search of a better turbine blade design with improved mean and nominal lives and

reduced value of standard deviation in life. The methodology implemented for robust design

optimization is discussed in detail in Section 7.4 and its benefits with respect to the current

problem are highlighted in Section 7.5.

7.2 Robust Design Methods

7.2.1 Overview

The term robust parameter design was coined by Genichi Taguchi to describe an approach to

industrial problem solving that may be employed for reducing product variability in the pres-

ence of environmental sources of variation [124]. Taguchi envisioned a three-stage process of,

system design, parameter design and tolerance design, for design optimization [125]. System

design is used to determine the feasible design space for the optimization problem. The param-

eter design stage involves reduction of variability in the product performance by choosing levels

of the control factors (design variables) that make the product relatively insensitive to changes

in the noise factors [124]. Noise factors represent the effects of various sources of variation that
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are difficult or expensive to control, e.g., changes in the surrounding temperature and humidity

levels, wear and tear of tools in the manufacturing process, changes in properties of raw mate-

rials, etc. Control factors represent the design variables that the designer is free to manipulate

[79]. The parameter design stage is also popularly known as robust design optimization. The

optimal design obtained from this stage can be fine-tuned by the application of tolerance design

approaches such that the desired performance requirements are met by adjusting the lower and

upper design tolerance values. Some examples of the application of tolerance design to turbine

and fan blades are available in the cited literature [2, 126]. Eliminating products which fail to

meet the tolerance design specifications is carried out at the production stage, and hence, is

relatively expensive. This leads to the gaining popularity of robust design methods.

Although Taguchi’s design philosophy is widely applied and appreciated [120, 123, 127],

the benefits and efficacy of his techniques have always been a subject of debate [128, 129, 125].

Welch et al. [130] pointed out that the number of experimental runs required for Taguchi’s

“inner-outer” array experiment are prohibitively expensive and proposed a “combined array”

approach to overcome this limitation. Shoemaker et al. [129] also supported the combined array

approach and highlighted that Taguchi’s “product array” approach requires a large number

of runs, is unable to perform well for non-linear functions, and does not allow estimation

of control factor interactions. Box and Jones [131] and Myers et al. [132] suggested the

use of response surface modeling techniques as alternatives to the Taguchi parameter design

approach. These techniques, are however, only as accurate as the response surface models. This

was followed by the application of statistical approaches for robust design optimization. Huyse

and Lewis [133] identified the risk associated with a particular design as the expected value of

the perceived loss, and the best design was chosen such that the overall risk was minimized.

Ben-Tal and Nemirovski [134] proposed the optimal minmax approach which minimizes the

worst-case compliance. It was subsequently argued that the minmax optimization methods

are too conservative because they are formulated to prevent against the worst-case scenarios

[125]. In contrast, the Bayes’ decision principle used by Huyse and Lewis [133] is essentially

concerned with the average-case performance since only the mean objective is minimized [79].

Recently, the concept of probabilistic robustness has been introduced that takes the probability

distribution and probability density into account in order to search for the optimal solution

that satisfies the design requirements in maximal probability [135]. A comprehensive survey

of the state-of-the-art in robust design optimization can be found in the recent work of Beyer
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and Sendhoff [136].

7.2.2 Robust Design using Multiobjective Optimization

A central issue in robust design study is choosing the objectives, or robustness metrics, to be

used during the optimization process. Early attempts at finding robust solutions were aimed

at minimizing only one objective, i.e., either the expectation of the output function in its

neighbourhood (mean value) [137, 138], or the variance in the output function [139]. Garzon

[10] explored two approaches for obtaining robust optimal solutions. In the first approach,

he minimized the mean value of the loss function. The target of the second approach was to

minimize the variability in loss function with mean loss as a constraint. Das [140] pointed

out the drawbacks of choosing only the mean or only the variance of a function as the ro-

bustness metric. Choosing only the mean may result in cancelling the positive and negative

deviations in the value of the function around a target value and hence result in a non-robust

solution. Choosing only the variance may lead to a design with reduced variability but poor

performance characteristics. Therefore, Das [140] proposed bi-objective formulations for the

robust optimization problems such that trade-offs between ‘optimality’ and ‘robustness’ could

be achieved. The three possible combinations of objective functions that he suggested are:

• expectation of the function (mean) and variance,

• expectation of the function (mean) and its original value (nominal), and

• original value of the function (nominal) and variance.

Das [140] himself preferred to use the combination of mean and nominal values of the output

function for trade-off analysis. Many recent works have used the mean and standard deviation

as objective functions for robust design problems [141, 142, 143, 144]. Keane [110] compares

several optimization strategies for robust design of turbine blade airfoils. He demonstrates

that although using the mean value of the output function yields better results than the de-

terministic optimal solution, the results obtained from a bi-objective optimization of standard

deviation vs. mean lead to significantly more robust solutions.

In the present research, two robustness metrics,i.e., mean life and standard deviation in

life were traded-off against nominal life. The usage of three objectives for trade-off analysis

has been employed before in the work of Das [140] where violation of soft inequalities was
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used as the third objective along with the mean and nominal function values. Since the

beginning of our discussion on the present problem, it has been argued that the nominal life

may not represent the actual life of the components coming out of the manufacturing process.

(Note: A probabilistic representation of the lifing distribution for the manufactured blades

under consideration is shown in Chapter 5, Figure 5.6.) However, the value of nominal life

holds great importance from an industrial perspective since most of the design specifications

are based on this value. Out of our three objective functions, the interest of the design and

manufacturing engineers is captured more by the nominal life since most of their assumptions

are based on the deterministic analysis of new designs. Besides, using the mean function value

may (in some cases) lead to slightly incorrect estimations. For example, in the present case, the

value of mean life may be underestimated if any of the 42 perturbations due to manufacturing

variability fail during the FEA. This may also lead to underestimating the standard deviation,

however, this can be countered by adding a penalty value for every failed mesh when the

designs are studied. Therefore, it becomes clear that using the nominal value for robust design

optimization provides with at least one consistent robustness metric. At the same time, the

value of mean life cannot be ignored since it represents the probable actual value of average

life for the turbine blades. Assuming that most of the 42 perturbed geometries considered here

are successful through the FEA process, a design for which the mean life deviates too much

from the nominal life may not be preferable. Also, leaving out the standard deviation may

not be recommended when the aim is to obtain significant improvements in robustness. Using

three objectives for the robust design search was considered even more desirable for the present

problem since the tri-objective formulation did not add to the computational cost. Even if the

nominal life was not set up as an objective function, the nominal designs were still required

for computing the mean and standard deviation (std). In addition, a check on the nominal life

was imposed in the integrated iSIGHT workflow, such that, the mean and standard deviation

in life were calculated only for the designs that satisfied a minimum acceptability criterion. A

detailed description of this analysis and its results will be presented further in Sections 7.4 and

7.5, respectively.

The concept of trade-off between mean, nominal and std can be explained in more detail

with the help of Figure 7.1. Let us assume that x is a vector of design variables that varies in the

range ∆x due to the associated noise. Now, let f(x) be our output function of interest, defined

by the curve shown in Figure 7.1, such that a maximum value of this function is desirable.
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Figure 7.1: A comparison of robust design (Point R) with the optimal deterministic design

(Point D).

Point S in the figure represents the starting point, Point D represents the deterministic optimal

solution obtained by maximizing the nominal value of f(x), and, Point R represents the optimal

robust solution. As we can see in the figure, the best mean and nominal values of f(x) are

observed at point D. But, any noise in the parameter values at x1 result in much larger

variability in the function f(x) at this point, which is highly undesirable. In contrast, a slight

compromise in the mean and nominal values of f(x) by selecting the parameter setting at x2

may result in a more robust solution at Point R with reduced variability in the output function.

Note that in the example shown in Figure 7.1, the nominal value of f(x) is assumed to be a part

of the observed distribution of f(x) when the effects of noise factors are added. Thus, mean

and nominal values do not appear to be in much competition. However, this was done for ease

of illustration, and in reality, this may or may not be true. Noticeable differences between the

mean and nominal values of a function may be observed in cases where the noise factors lead

to either positive or negative shifts in the output distribution as a whole, or, in cases where

the distribution is skewed or asymmetric.



101 7.3 Nondominated Sorting Genetic Algorithm (NSGA-II)

7.3 Nondominated Sorting Genetic Algorithm (NSGA-II)

The preceding section discussed the formulation of the robust design problem as a multiob-

jective optimization problem. The presence of multiple objectives in a problem give rise to

multiple solutions, also known as the Pareto-optimal set. By Pareto-optimal set, we mean

a set of solutions where no one solution is superior to any other, i.e., all solutions are non-

dominated. In other words, for a point that lies on the Pareto front, improvement in the value

of one objective function cannot be attained without worsening the value of atleast one of the

remaining objective functions.

One of the classical methods used for multiobjective optimization is the weighted-sum

approach. According to this approach, a weighted sum of all the objectives is minimized using

single objective optimization and the optimal solution, thus obtained, becomes a part of the

Pareto set. This process is repeated for different settings of the weights until a sufficient

number of Pareto-optimal points are generated. The major drawbacks of this method are :

• it is computationally expensive,

• it succeeds in getting points from the Pareto front only when the Pareto curve is convex,

and

• even for a convex Pareto curve, an even spread of weights does not produce an even

spread of points on the curve [145].

In contrast, genetic algorithms (GAs) work with a population of solutions. Therefore, a single

run of a multiobjective GA may result in capturing a number of Pareto-optimal solutions. This

property of GAs makes them naturally suited to solving multiobjective optimization problems

[146]. Schaffer [147] was probably the first to recognize the possibility of using GAs in search

of multiple non-dominated solutions and proposed an approach called the Vector Evaluated

Genetic Algorithm (VEGA). However, VEGA usually leads to finding the extreme points

on the Pareto front for which one objective function is optimal at a time[148]. Following the

VEGA approach, several multiobjective evolutionary algorithms were developed, e.g., Multiple

Objective Genetic Algorithms (MOGA) [149], Niched Pareto Genetic Algorithm (NPGA) [148],

Nondominated Sorting Genetic Algorithm (NSGA) [18], etc. An overview of these techniques

can be found in the cited literature [150, 151, 79].

The elitism based Nondominated Sorting Genetic Algorithm (NSGA-II) proposed by Deb
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et al. in 2002 [18] is used for the present problem. The NSGA-II uses a fast nondominated

sorting procedure that requires O(MN2) computations, where M is the number of objectives

and N is the population size. In addition, it replaces the sharing function approach with a

crowded-comparison approach that does not require any user-defined parameter for maintain-

ing diversity among population members. Numerous instances of the successful application of

NSGA-II for robust design studies are available in the literature [1, 79, 110, 118, 152].

7.4 Methodology

A simplistic flowchart representation of the methodology adopted for the robust design op-

timization of turbine blades is shown in Figure 7.2. As discussed before in Section 7.3, the

Figure 7.2: A simplistic flowchart representation of the robust design methodology adopted

for the turbine blade problem.

NSGA-II optimizer is employed for the present problem with the objective of maximizing the

nominal life and mean life and minimizing the standard deviation (std) in life. With no changes

to the external blade geometry, a combination of CAD and FFD tools is employed for mod-

ifying the core shape and position in order to changing the design of the turbine blade. The

position of the core is allowed four degrees of freedom in the form of translation and rotation
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around the X- and Y-axis. The shape of the core is governed by a further set of 18 FFD

control points that are allowed to move in the X and Y directions. This results in 18× 2 = 36

variables controlling the core shape. In combination, we have a total of 36 + 4 = 40 variables

defining the core position and shape for each new nominal design.

The effects of translating the core in the positive and negative directions along the X- and

Y-axis are shown in Figure 7.3. As can be observed in Figure 7.3(a), translating the core in

(a) (b)

Figure 7.3: Shift in the core position relative to the base design when the core is translated

along the (a) X-axis, and (b) Y-axis, by ±0.6 units.

the positive X direction shifts it towards the trailing edge (TE), and translating the core in

the negative X direction produces a shift towards the leading edge (LE). Figure 7.3(b) shows

that a translation along the positive Y direction shifts the core towards the pressure surface

(PS), and, translating the core in the negative Y direction produces a shift towards the suction

surface (SS). Similarly, rotating the core around the X-axis in the positive direction causes an

incremental shift in the core towards the SS, while rotating the core in the negative X direction
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causes the core to shift towards the PS. A positive rotation around the Y-axis results in an

incremental shift in the core towards the TE, while a negative rotation causes the core to shift

towards the LE. The term incremental shift has been used because the deviations of the core

from the base profile increase from the top (Tip) end towards the bottom (Root) end since the

centre of rotation is located at the tip of the blade. This is done in alliance with the fact that

the tip end of the blade is fixed when the molten metal is pumped into the casts during blade

manufacture (refer Chapter2, Section 2.1).

The effects of changing the core shape using FFD control points have already been discussed

in great detail in Chapter 4. However, the major difference while using FFD for changing the

design as opposed to modeling manufacturing variations is that the base core is enclosed by 5

lattice control point (lcp) planes along the Z-axis. Out of these 5 planes, the control points on

the 3 central planes are allowed to move along the X- and Y-axis. This introduces relatively

more global deformations as compared to the 8 lattice control point structure that was used

in Chapter 4 for simulating the effects of manufacturing variations.

The 40 variables defining the core shape and position are repeatedly altered by the optimizer

to produce a new nominal design for each run of the integrated workflow. A volume mesh on

this nominal design is created by the FEA tool and analysed for estimating the nominal life.

This mesh is then transferred to a subflow that applies the FFD based deformations and LES

based mesh morphing repeatedly to the nominal mesh in order to generate the 42 probable

manufactured blade shapes for which the probable values of life are calculated. The mean of

these probable lives represents the mean life and the standard deviation of these values is a

representative of the blade life variability. Detailed descriptions of the application of FFD and

LES based methodologies for simulating the effects of manufacturing variability have already

been provided in Chapters 4 and 5, respectively. Here, an important point to note is that

while the core is enclosed by 5 FFD lcp planes along the Z-axis to change the design intent,

8 lcp planes are used along the same axis for applying the manufacturing perturbations. As

stated before, this ensures that the deformations involved in changing the nominal design are

relatively more global in nature as compared to the effects of manufacturing variations. The

delta values of the manufacturing perturbations to be applied on each new nominal design

are obtained by calculating the difference between the nominal thicknesses for the original

nominal design considered in Chapter 5 and the 42 sets of thickness values obtained from the

measurement data analysis. In the end, the mean and standard deviation of the 42 probable
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lives are passed on to the optimizer along with the value of nominal life for the optimization

process. Finally, the entire set of designs explored by the NSGA-II algorithm are plotted in

the objective function space and the Pareto-optimal set is identified for trade-off analysis.

7.5 Robust Design Optimization of Turbine Blades

This section presents a detailed description of the numerical studies conducted for the present

problem. The integrated workflow used for robust design optimization of turbine blades is

presented in Section 7.5.1. Parts of the workflow are zoomed in and details of the working

of each component are explained in Appendix C, Sections C.1 and C.2. The results of the

deterministic optimization are presented in Section 7.5.2. In the end, the results of the robust

design study are plotted in the objective function space and the Pareto-optimal designs are

identified in Section 7.5.3. The geometric differences between the base design, the optimal

deterministic design and the Pareto-optimal designs are also analysed. The selected robust

solution is compared with the base design for any shifts in the critical region or changes in the

stress distribution.

In the discussions that follow, the base design refers to the nominal turbine blade design

that is used as the starting point for the robust design study. The design of the blade is

changed by modifying the core shape and position for this base design in order to produce new

nominal designs for each run. The term std refers to the standard deviation in blade life due

to the effects of manufacturing variability on each of the new nominal designs.

7.5.1 Integrated Robust Design Workflow

As per the methodology discussed in Section 7.4, the integrated robust design workflow (IRDW)

employed for the turbine blade problem is shown in Figure 7.4. The zoomed in views of the

IRDW can be seen in Apppendix C, Figures C.1 and C.2. This workflow was created in

iSIGHT version 3.5-1 [15]. The NSGA-II optimizer available in the OPTIONS package [116]

was used for multiobjective optimization. As discussed before in Sections 7.3 and 7.4, the aim

of the optimizaton process was to maximize the mean and nominal lives and minimize the

standard deviation. The OPTIONS-NSGA2 package is formulated, such that it minimizes all

the objectives in a multiobjective optimization loop. Therefore, negative values of the nominal

and mean lives were passed onto the optimizer as objective function values and it was set to
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minimize all the three objective functions.

In Figure 7.4, dashed boxes have been used to demarcate the parts of the integrated work-

flow changing the design (CDI), and that performing the manufacturing variability analysis

(MVA). The FE analysis for generating the mesh on the nominal turbine blade and estimat-

ing the value of life for this blade was executed on a single node of a computer cluster with

dual Intel quad core processors, 2.8 GHz clock rate and 32GB RAM/node using 8 processes

in parallel. Similarly, the FE runs for the LES based mesh morphing and lifing calcula-

tions on the 42 perturbed geometries were executed on the same computer cluster using 42

nodes in parallel. All the remaining components of the workflow were executed on a Intel

2 Quad Core machine with 2.8 GHz clock rate and 8GB RAM. Adding up the total time

taken for the execution of all these processes, each run of the IRDW for a new design took

around 35-40 minutes using a 10 node tetrahedral mesh size of around 45,351 elements and

Figure 7.5: A 45,351 element 10 node tetrahe-

dral mesh created on the turbine blade model.

76,841 nodes. Note that, a coarser mesh was

used for the present study in order to save

the computation time required for each run.

An example of this mesh is shown in Figure

7.5. It has already been discussed in Chap-

ter 5 Section 5.3, that a mesh size of around

80,000 elements is more appropriate for obtain-

ing more accurate results on the turbine blade

models. However, it was considered imprac-

tical to use larger mesh sizes for the robust

design study because an increase in the mesh

size would make the computational time pro-

hibitively expensive. The main purpose of the

present study was to prove that the proposed

robust design methodology works for the tur-

bine blade problem. Hence, a trade-off between

accuracy and computational time was deemed

necessary. It was also discussed in Chapter 6

that it is much more desirable to use RSMs in

order to save the computational cost. However,
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the results of the RSM studies presented in Section 6.5 clearly indicated that using RSMs in

lieu of FE models was not an option in the present case.

A check was imposed upon the nominal life of the turbine blade model between the CDI and

MVA workflows. The component implementing this check is marked in Figure 7.4. Only those

designs that possessed a value of Rfact ≥ 1.2 were allowed to pass on to the MVA workflow.

This check was imposed in order to avoid unnecessary computations on uninteresting designs.

The nominal life for the base design estimated from the coarser mesh was around 1.282. Any

designs that demonstrated a value of Rfact a lot worse that this value were assumed to be

uninteresting for the designer. A detailed description of the working of each component in the

CDI and MVA workflows is given in Appendix C, Sections C.1 and C.2.

7.5.2 Optimal Deterministic Design

Before moving on to the robust design study, it is essential to understand the benefits offered

by a standard design optimization strategy wherein only the nominal performance is optimized.

Since the effect of manufacturing perturbations is not taken into account during deterministic

optimization, it is expected that the optimal design obtained from this study may lead to poor

off-design characteristics. In order to investigate this further, a single objective optimization

was performed for the turbine blade problem using negative values of nominal life as objective

function values. The negative values were sent to the optimizer with the aim of minimizing

the objective function which in turn would lead to maximizing the nominal life. The genetic

algorithm (GA) available in the OPTIONS package [116] was employed as the optimizer for

the present study. The CDI workflow was set to run for 10 generations, with a population size

of 101 in each generation. However, convergence in the objective function values was observed

much before the completion of the scheduled 10 generations. Although the workflow was

stopped at the beginning of its eighth generation, the best values of nominal life were observed

in the fourth generation itself. A plot showing the nominal Rfact vs. the explored design

number obtained from GA is shown in Figure 7.6. The point showing the best nominal life is

marked as Optimum point in the figure. The nominal life for the base design, which was also

used as the starting point for the present study, was around 1.282. The nominal life observed

for the optimal deterministic design was approximately 1.342, which implies an improvement

of about 4.68% relative to the base design. This was highly desirable. However, it was observed

that 17 out of the 42 perturbations failed for the Optimum point because the core protruded
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Figure 7.6: A plot showing the nominal life vs. explored design number obtained from GA.

out of the blade surface for these perturbations. Hence, a comparison between the std for the

base design, and, the value of std calculated only from the 25 successful perturbations of the

Optimum point, was not justified. The fact that most of the cores in the perturbed geometries

protruded out of the blade was an indication that the nominal core for the Optimum point

was too close to the blade surface. This is demonstrated in Figure 7.7(a), which compares the

geometries for the base design and the optimal deterministic design. As we can observe in

the figure, the core for the optimal deterministic design has moved dangerously close to the

external blade airfoil surface at the trailing edge, especially between the Tip and Mid sections.

Following this analysis, the optimal point was rejected and the next best point obtained

from the optimization results was considered for comparison. This point is marked in Figure

7.6 as the next best point and the geometry for this point is compared with the base design in

Figure 7.7(b). As we can observe in Figure 7.7(b), the geometry for the next best point looks

much more realistic than that for the Optimum point. The nominal life obtained from this

geometry was around 1.335, which indicates an improvement of around 4.13% relative to the

base geometry. The std for the base design, without adding any penalties, was around 0.02543.
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The std calculated for the next best point was approximately 0.01026, with 39 out of the 42

perturbed geometries successful through the FEA. Hence, the std for the next best point was

reduced by around 59.65% relative to the base design which was promising.

(a) (b)

Figure 7.7: Comparison of the (a) Optimum point, and (b) the next best point, with the base

design.

From the results of the deterministic optimization study, we can conclude that the geometry

showing the best nominal life may not necessarily be the best design. In fact, in the present

study, the optimal design obtained from the deterministic optimization of turbine blades was

most undesirable due to the core deviating too close to the blade surface. As a result, this design

could not withstand the perturbations introduced by manufacturing variability. However, the

next best design point obtained from the optimization study did show some promise with a
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good improvement in the nominal life, and, reduced variations in the probable values of life

due to manufacturing perturbations. Next, it is appropriate to explore whether the robust

design optimization can prove to be of greater benefit for the present problem.

7.5.3 Pareto-optimal Solutions

For the robust design study, the IRDW was set to run for 35 generations with a population

size of 101 in each generation. The Pareto-optimal set of points obtained at every generation

were compared to check for convergence of the objective function values. The workflow was

stopped when no improvements in the Pareto-optimal points were observed. As a result of this

Figure 7.8: A 3-d plot of the successful design points plotted in the objective function space

showing the Pareto front.

study, around 2367 design points were explored by the optimizer. However, due to the high

failure rate of the runs, only 741 design points were successful through the entire workflow.
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Most of the design points failed because the automated meshing routine was very sensitive

to changes in the nominal geometry, and, because the large deviations in the core resulted in

protrusions of the core geometry from the blade surface. The objective function values for the

741 successful design points are plotted in Figure 7.8. A zoomed in view of this plot in the

region of interest is shown in Figure 7.9. For ease of trade-off analysis, 2-d views of Figure

7.9 are plotted in Figure 7.10. It was discussed in Section 7.5.1, that the aim of the robust

Figure 7.9: A zoomed in view of the plot shown in Figure 7.8 focusing on the region of interest.

design study was to maximize the mean and nominal lives and minimize the standard deviation

in life (std). However, the NSGA-II optimizer in the OPTIONS package [116] is formulated,

such that, it minimizes all the objectives in a multiobjective optimization process. Therefore,

negative values of mean and nominal lives were passed on to the optimizer as objective function

values. Hence, the plots in Figures 7.8, 7.9 and 7.10 show the mean and nominal values of

Rfact plotted on a negative scale. The more negative these values are, the better are the mean
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(a) (b)

(c)

Figure 7.10: Plot of (a) standard deviation vs. mean life, (b) standard deviation vs. nominal

life, and (c) nominal life vs. mean life, showing the explored design points along with the

Pareto front.



114 7.5 Robust Design Optimization of Turbine Blades

life and nominal life.

Figures 7.9 and 7.10 show that there are two prominent clusters of points in the objec-

tive function space. These clusters are marked as Cluster 1 and Cluster 2. The figures also

indicate the starting/base design point for the optimization process. The design points con-

stituting both the clusters show marked improvements in standard deviation as compared to

the starting geometry. The standard deviation in life for the base design is around 0.02543,

whereas, the average value of std for the two clusters is around 0.004 which implies an im-

provement of around 84% relative to the starting design point. Cluster 1 shows much better

values of mean and nominal life as compared to the base geometry. On the other hand, the

points in Cluster 2 show worse values of mean and nominal life relative to the starting point.

Figure 7.11: A comparison of the nominal designs

picked up from Cluster 1 and Cluster 2 with the

base geometry.

The nominal and mean lives for the base

geometry were around 1.282 and 1.273, re-

spectively. From Figure 7.10, the points

in Cluster 1 show an average mean life of

around 1.305 and an average nominal life

of around 1.320. On the other hand, Clus-

ter 2 shows an average mean life of around

1.215 and an average nominal life of approx-

imately 1.245.

The observations made so far give an in-

dication that the base geometry can pos-

sibly be modified into two new sets of ge-

ometries, both giving considerable improve-

ments in standard deviation. One of these

sets will improve the nominal and mean

lives, whereas, the other set will worsen

these values. It is expected that the ge-

ometries belonging to the same set will

show similar deviations from the base de-

sign. However, designs from Cluster 1 when

compared with Cluster 2 will be different.

This was analysed by picking up a few de-
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signs on the Pareto front from both the clusters and comparing them with the starting geom-

etry. It has been discussed before in Section 7.4, that only the core shape and position were

modified to bring changes to the nominal design while the external blade geometry was left

unchanged. The deviations in the core shape for the designs picked up from the two clusters

are compared with the base design in Figure 7.11. The black cross-sections define the base

geometry, the blue curves represent the nominal designs picked up from the Pareto front in

Cluster 1, and, the red cross-sectional curves mark the nominal geometries picked up from the

Pareto front in Cluster 2. As we can observe in the figure, the Tip section for these geometries

remains unchanged while significant differences can be noticed at the remaining cross-sections.

The core geometries from Cluster 1 tend to drift more towards the suction surface and LE,

whereas, the cores from Cluster 2 tend to deviate more towards the pressure surface. The cores

Figure 7.12: A plot of the successful design points explored by the optimizer with penalties

added to standard deviation.
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constituting Cluster 2 also drift towards the LE but to a relatively lesser degree as compared

to the geometries from Cluster 1. However, one source of problem that can be easily noticed is

that the red cross-sections have drifted very close to the external blade airfoil geometry. This

means that there is a high possibility that the core will protrude out of the blade surface due to

the effects of manufacturing variability. If this is true, then most of the perturbed geometries

for these designs should have failed in the MVA workflow. Following this realization, the num-

ber of perturbed geometries that passed through the MVA workflow for the nominal designs

picked up from Cluster 2 were analysed. It was observed that for most of these designs, only

5-12 morphed geometries did not fail during the FEA. This explains why the nominal designs

from Cluster 2 indicated a low value of standard deviation. Hence, it was considered essential

to add a penalty value to the std for each new design, in accordance with the number of failed

Figure 7.13: A zoomed in view of the plot shown in Figure 7.12 focusing on the region of

interest.
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(a) (b)

(c)

Figure 7.14: Plot of (a) standard deviation vs. mean life, (b) standard deviation vs. nominal

life, and (c) nominal life vs. mean life, showing the explored design points and the Pareto front

with penalties added to std.
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perturbations for that design in the MVA workflow.

In order to add the penalties, first, the current 741 design points were taken. Then, a

penalty value of 0.001 per failed manufacturing perturbation was added to the std calcu-

lated for these points. This penalty value would need to be different for different problems

based on experience and the problem at hand. For the present case, a penalty value of

Figure 7.15: A comparison of the nominal de-

signs, all of which indicated a 100% success

through the MVA workflow. The black cross-

sections represent the starting geometry, the blue

curves represent the designs on the new Pareto

front, and, the red cross-sections represent the

geometries that were originally a part of Cluster

2.

0.001 was considered appropriate. Follow-

ing this, the IRDW was modified to add

this penalty value to the calculated value of

std for each new nominal design. Then, the

IRDW was re-run from the 24th generation

onwards, for 5 more generations, with the

same population size of 101 for each gener-

ation. A total of 505 new designs were ex-

plored with no improvement in the Pareto-

optimal solutions. Hence, it was assumed

that our optimization problem has already

converged to the best possible results. The

resultant plot of the explored design points

and the Pareto front obtained from these

points is shown in Figure 7.12. A zoomed in

view of this plot in the region of interest in

shown in Figure 7.13. For ease of trade-off

analysis, 2-d views of Figure 7.13 are shown

in Figure 7.14. Adding the penalty values

to the std ensured that only those designs,

for which most of the morphed geome-

tries passed through the MVA workflow,

were ranked higher in the objective function

space. All the designs on the Pareto front in

Figures 7.13 and 7.14 demonstrated a suc-

cess rate of 100% through the MVA work-

flow, i.e., all the 42 perturbed geometries
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were successful through the FEA for these designs. Still, there were a couple of designs that

were originally a part of Cluster 2 and indicated a 100% success through the MVA workflow.

These designs, however, had higher values of std as compared to the Pareto-optimal solutions.

A couple of these designs are compared with the Pareto-optimal solutions and the base ge-

ometry in Figure 7.15. As we can observe in the figure, the differences between the red and

blue core geometries are slightly similar to what was seen before in Figure 7.11. The blue

cross-sections have drifted towards the suction surface and LE resulting in better mean and

nominal lives as compared to the starting geometry. On the other hand, the red cross-sections

tend to shift towards the pressure surface and TE leading to relatively good values of std,

but, much worse mean and nominal lives when compared with the base design. Also, the Tip

section for all geometries remains unchanged, while, noticeable differences can be observed at

the remaining geometric sections. This time, the red cross-sections do not drift very close to

the external blade surface, which explains the 100% success rate observed through the MVA

workflow.

The final selected robust-optimal solution for the present problem is marked in Figures

7.13 and 7.14. This design indicates the best values of std and mean life and a relatively good

improvement in nominal life as well. Although, three more designs on the Pareto front show

better values of nominal life, their std is almost double than that of the selected design. Table

7.1 compares the nominal life, mean life and std for the starting geometry, the best solution

from deterministic optimization (next best point), and the selected robust-optimal solution.

The approximate percentage improvements relative to the base design in the nominal life,

mean life and std for the selected deterministic solution and the robust-optimal design are

shown in Table 7.2. Looking at the values in these tables, it becomes clear that while the

selected deterministic design gives us better improvements in life, a slight compromise on

these values may result in a relatively much lower value of std. The variability in life observed

for the robust optimal solution is around 27.5% lesser than that for the selected deterministic

solution. Also, it may be recalled that the deterministic optimization procedure actually leads

to a design that indicated the best value of nominal life observed so far, but, was unable

to withstand the effects of manufacturing variability due to the core deviating too close to

the blade surface. This risk can be avoided in robust design optimization by including the

variability in life as the objective function. Of course, other options on the Pareto front are

also available for the designer if one objective function is considered more important than the
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Table 7.1: Values of nominal life, mean life and std (without penalties) for the base geometry,

the selected deterministic solution and the robust-optimal solution.

Blade geometry Nominal Life Mean Life std

Base design 1.282 1.273 0.02543

Selected deterministic solution 1.335 1.320 0.01026

Optimal robust solution 1.326 1.313 0.00327

Table 7.2: Improvement in the nominal life, mean life and std of the selected deterministic

design and the optimal robust design relative to the base geometry.

Blade geometry Nominal Life Mean Life std

Selected deterministic solution 4.13% 3.69% 59.65%

Optimal robust solution 3.43% 3.14% 87.14%

other. For example, in the present scenario, if the point indicating the best value of nominal life

is selected from the Pareto front, it leads to an improvement of around 4.06% in the nominal

life, 3.14% improvement in the mean life and 79% reduction in std relative to the base design.

This results in a value of nominal life closer to the selected deterministic solution, but a lesser

improvement in std relative to the selected optimal robust design. It is this property of Pareto-

optimal solutions that makes them highly desirable. Any solution from the Pareto front can

be selected depending upon the weight given to each objective function. All the designs on the

Pareto front may be considered as good designs.

It was discussed before in Section 7.5.1, that coarser meshes were used for FEA during

the blade design optimization studies in order to save the computational costs. The average

mesh size used was around 45,000 elements, whereas, the mesh convergence study indicated

that meshes with around 80,000 elements resulted in more accurate solutions for the turbine

blade models. Once the optimal deterministic and robust design solutions were obtained,

it was desired to analyse these geometries using finer meshes and compare the results for

more accurate estimations of the possible gains from the robust-optimal solution. Therefore,

meshes with around 80,000 elements were created on the base design, the selected deterministic

solution and the robust-optimal design and analysed for the effects of manufacturing variability
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using the same FEA codes. The results of this study are presented in Table 7.3 and the

percentage gains in the mean life, nominal life and std are shown in Table 7.4. As we can

Table 7.3: Values of nominal life, mean life and std (without penalties) for the base design, the

selected deterministic design and the robust-optimal solution obtained from a mesh of around

80,000 elements.

Blade geometry Nominal Life Mean Life std

Base design 1.371 1.348 0.00981

Selected deterministic solution 1.404 1.391 0.00699

Optimal robust solution 1.399 1.389 0.00419

Table 7.4: Improvement in the nominal life, mean life and std of the selected deterministic

design and the optimal robust solution relative to the base geometry obtained from a FEA of

the finer meshes.

Blade geometry Nominal Life Mean Life std

Selected deterministic solution 2.41% 3.13% 28.72%

Optimal robust solution 2.05% 3.03% 57.23%

observe in these tables, the percentage gains that can be expected in the mean life, nominal life

and standard deviation have reduced as compared to the observations made from the coarser

meshes. However, these results still support the fact that the robust design optimization

process can lead to around 28.51% further reduction in the std for the turbine blade models

under study as compared to the traditional approach of deterministic design optimization.

The gains in the nominal and mean lives obtained from the two designs are also similar. Note

that the base design used here is different from the nominal design analysed in Chapter 5,

Section 5.5. The starting geometry used for optimization studies was obtained by modifying

the original CAD model to introduce parametric changes required for the implementation of

the FFD process for blade design changes. This accounts for the differences in results obtained

from the lifing analysis of the two geometries. The purpose of the study presented in this

section was to prove that the proposed approach for robust design optimization works for the

present problem and this is demonstrated in the results presented in Tables 7.3 and 7.4.
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The geometries for the robust-optimal design, the selected deterministic solution and the

base design are compared in Figure 7.16. In agreement with our observations in Figures 7.11

and 7.15, the core for the robust design has drifted towards the suction surface and LE resulting

in improving the nominal and mean lives and reducing the value of std. By comparison, the

core geometry for the deterministic design also tends to deviate towards the suction surface

improving the nominal and mean lives, but, the drift in its shape towards the TE appears

to affect the standard deviation. Some conclusions that we can make from our observations

Figure 7.16: A comparison of the robust-optimal

design and the selected deterministic design with

the base geometry.

in Figures 7.11, 7.15 and 7.16 are : 1) mov-

ing the core towards the suction surface im-

proves the nominal and mean lives, 2) mov-

ing the core towards the leading edge re-

duces the standard deviation in life, 3) mov-

ing the core towards the pressure surface

reduces the nominal and mean lives, and 4)

moving the core towards the trailing edge

increases the standard deviation in life, even

though it is much better than the standard

deviation for the base design. It can also be

deduced from the observations so far that

the nominal life and mean life are not much

in competition with each other for the tur-

bine blade problem as might be expected.

Finally, it is worth checking whether

there are any shifts in the critical region for

the base geometry and the robust-optimal

solution. It is also interesting to observe

the changes in the stress distribution for

the two blades. Figures 7.17(a) and 7.18(a)

show the critical region of blade failure for

the base design and the robust design, re-

spectively. The yellow coloured contours

in these two figures indicate the location of
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(a) (b)

Figure 7.17: (a) Contour plots for the value of Rfact, and (b) contour plots for the worst

principal stress distribution in the critical region, on the base turbine blade design.

(a) (b)

Figure 7.18: (a) Contour plots for the value of Rfact, and (b) contour plots for the worst

principal stress distribution in the critical region, on the selected robust turbine blade design.
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the critical region. It is observed that there is no shift in the critical region for the robust

turbine blade design. If anything, this region has only become slightly smaller for the robust-

optimal solution as compared to the base design. The stress distribution for the two designs in

the critical region is shown in Figures 7.17(b) and 7.18(b). The value of worst principal stress

increases as the contours change their color from dark blue to dark red. It can be observed

in Figure 7.17(b), that the value of the stress in the critical region is higher and more con-

centrated for the base turbine blade design. On the other hand, the contour plots for Figure

7.18(b) show that the worst principal stress in the critical region is lower and more distributed

as compared to Figure 7.17(b). These figures indicate that the robust turbine blade design

improves its nominal life and reduces its variability in life by distributing the stress from the

critical region to the adjacent blade volume. The worst principal stress for the nominal design

is higher and more concentrated in and around the critical region resulting in early blade failure

and increased variability in life as compared to the robust solution.

7.6 Summary

In this chapter, a robust design study of hollow turbine blade was conducted with the aim

of improving the nominal and mean lives and reducing the variability in life in the presence

of manufacturing variability. A workflow was created in iSIGHT that used a combination of

FFD, MATLAB, JAVA, LES solvers and FEA solvers for estimating the mean life and standard

deviation in life for manufacturing variability analysis. This workflow was integrated with an

existing iSIGHT workflow that employed CAD tools and FFD for changing the design. In the

end, the integrated workflow was used for the robust design optimization of turbine blades.

The design of the blade was changed for each new run of the workflow, and the effects of

manufacturing variability were estimated by calculating the values of mean life and standard

deviation in life.

A separate study was conducted in which a deterministic optimal solution for the turbine

blade problem was sought. Results of the deterministic optimization study indicated that the

design with best value of nominal life may not always be the best solution. For example, in the

present case, the optimal deterministic solution resulted in a 4.68% improvement in life relative

to the base design. However, this design was unable to withstand the effects of manufacturing

variability since the core protruded out of the blade surface for 17 out of the 42 perturbed
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designs considered. The next best solution from the deterministic optimization showed some

promise, with an improvement of around 4.13% in the nominal life, and a reduction of around

59.65% in the standard deviation relative to to the base design.

The robust design study resulted in an optimal solution that had an improvement of around

3.43% in the nominal life, a 3.14% improvement in the mean life and a reduction of around

87.14% in the standard deviation relative to the base design. This meant that a slight compro-

mise in the values of mean and nominal lives could lead to a further reduction of around 27.5%

in the standard deviation if the robust design was preferred over the selected deterministic

design. More accurate predictions of the nominal life, mean life and standard deviation in life

were obtained by a finite element analysis of the finer meshes generated on the base geome-

try, the next best design from the deterministic design optimization, and the robust-optimal

solution. These results indicated that the improvements in nominal and mean lives obtained

from the selected deterministic design and the optimal robust design were not very different.

However, the robust solution still resulted in a further reduction of around 28.5% in the blade

life variability as compared to the selected deterministic design. It was also noted that there

were no shifts in the critical region for the robust turbine blade geometry. The stress profile

plots indicated that the base geometry showed a lower value of life because the stress in the

critical region was high and more concentrated. In comparison, the robust solution indicated

a reduced variability and improved value of nominal life since the stress in the critical region

was relatively less and more distributed to the adjacent blade volume.

A detailed analysis of the different geometries obtained from the robust design study and

the deterministic optimization indicated the following :

• Deviations in the core towards the suction surface tend to improve the nominal and mean

lives.

• Moving the core towards the leading edge reduces the standard deviation in life.

• Drifts in the core towards the pressure surface reduce the nominal and mean lives.

• Moving the core towards the trailing edge increases the standard deviation in life, but,

this value is usually observed to be much better than the standard deviation for the base

design.



Chapter 8

Conclusions and Future Research

This chapter concludes this thesis with a brief synopsis of the inferences derived from the

present research, and its contributions to the field of uncertainty analysis and robust design. A

brief description of the probable directions for future research, in continuation with the present

analysis, is also presented.

8.1 Research Summary

The purpose of the present research work was to estimate the effects of manufacturing vari-

ability on hollow turbine blades from the measurement data available on a randomly selected

sample of these blades. A methodology based on the application of existing probabilistic tech-

niques, i.e., PCA and FFT, was proposed to filter out measurement error from the measurement

dataset and capture the effects of manufacturing variability in terms of the manufacturing drift

with time, and the blade to blade manufacturing variations. Once the probable values of actual

variations were obtained, it was possible to use this data for characterizing the 3-d effects of

manufacturing variability on turbine blade shapes. It was found that the variations due to

manufacturing processes had negligible effects on the external blade airfoil geometry. Hence,

a FFD based methodology that worked in conjunction with non-linear optimization was pro-

posed in order to produce probable manufactured core shapes from the limited number of

available measurements. Information obtained from FFD on the deformed core geometries

was then used to morph the nominal blade volume mesh resulting in 3-d representations of

the probable manufactured turbine blades. These morphed volume meshes were used for lifing

and stress calculations using FEA tools to quantify the effects of manufacturing variability on

126
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turbine blade life.

The results from the probabilistic measurement data analysis were used to calculate the

delta perturbations affecting the nominal geometry due to variations in the casting process.

These perturbations were used for a robust design optimization study by using a combination

of FFD and mesh morphing methodologies. The designed shape of the turbine blade was

changed by modifying the core shape and position and the effects of manufacturing variability

on these new nominal designs were quantified by applying the delta perturbations. In the end,

a robust-optimal solution was obtained that not only demonstrated a reduced variability in

life, but also indicated considerable improvements in the mean and nominal lives as compared

to the base turbine blade design.
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Manufacturing and Measurement Processes

The casting process used for manufacturing the hollow turbine blades has been explained in

detail. An insight into the various processes used for manufacturing the turbine blades helped

in understanding the various sources of manufacturing variability. The possible sources of

geometric variations in the blades were identified as :

• Unwanted deviations in the core position due to the buffer space allowed for core move-

ment when the molten wax is poured into the dies.

• Unwanted deformations in the core shape when hot air at high pressure is passed through

the mold assembly for wax removal.

• Thermal expansion of the core when molten metal is pumped into the casts, and unde-

sirable core deformations due to the high hydrostatic pressure of the molten metal.

• The possibility of trapped air bubbles inside the ceramic core models which may expand

due to the high temperature, or, contract due to the high hydrostatic pressure of the

molten metal.

• Wear and tear of tools and changes in the surrounding temperature and humidity levels

may cause some manufacturing drift with time.

Different procedures used for blade inspection were also presented. The ultrasonic blade

wall thickness measurement process was described in detail. Various sources of measurement

error that may be affecting the measurement data during ultrasonic wall thickness inspection

are briefly summarized as follows:

• Non-firm clamping of the blades over the ultrasonic head may lead to left and right

misalignments of the blade resulting in over-thick readings.

• Thick markings indicating the measurement cross-sections on the blade surface may lead

to offsets in the measurement planes.

• The surfaces across which measurements are being taken are hidden from the view of the

operator leading to inaccuracies.

• Any misalignment of the blade while pressing the pedal for recording the measurements

may lead to measurement error.
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• Human error remains a possibility that cannot be ignored.

Manufacturing Variability Analysis

A de-noising methodology that employs PCA and FFT is proposed for filtering out the mea-

surement error from the measured data and capturing the underlying effects of manufacturing

variability. A technique for dimensionality reduction in case of PCA, and threshold selection

in case of FFT, was proposed that uses prior information available on the measurement error.

This prior knowledge on the measurement variability was obtained by a statistical analysis of

repeated measurements taken on a randomly selected sample of turbine blades. In the end, the

effects of manufacturing variability were captured in terms of the manufacturing drift with time

and the blade to blade manufacturing variations. Variance plots obtained from the repeated

measurements indicated the following :

• A large curvature in the external airfoil surface leads to greater measurement error.

• A relatively firmer hold on the blade while taking measurements reduces the measurement

variability.

• The variability in measurements is relatively small as compared to the magnitude of

thicknesses, indicating, that the operators taking these measurements are well-trained.

Application of the proposed methodology to the turbine blade ultrasonic wall thickness

measurement data resulted in 42 sets of 18 thickness measurements. These 42 sets are rep-

resentative of the typical thicknesses of the blades coming out of the manufacturing process.

31 of these blades were obtained from the application of PCA and FFT techniques on the

measurement data and captured the effects of manufacturing drift with time. The remaining

11 blades were obtained from a statistical data analysis of the repeated measurements and

represented the effects of blade to blade manufacturing variations.

3-d Geometry Manipulation using Limited Measurements

A FFD based methodology was proposed, that works in conjunction with non-linear optimiza-

tion, for manipulating 3-d geometries from a limited number of available measurements. This

methodology was devised to characterize the 3-d geometric variability in turbine blade shapes,

from the 42 sets of 18 thickness measurements available per blade. In a separate study, it was
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observed that the variations in manufacturing processes have negligible effects on the external

blade airfoil geometry. This implies that the brunt of manufacturing variability is borne by

the internal core shapes. In order to characterize these variations, the proposed FFD based

methodology was employed along with non-linear optimization to obtain the best matches to

the probable manufactured core shapes. Alternatives to non-linear optimization, e.g., con-

strained and unconstrained forms of linear least-squares solution, were also explored. It was

found that although the linear least-squares approach may prove to be useful for a variety of

problems, the non-linear optimization method was well-suited for the present problem due to

its ability to generate more regularized geometries. This was desirable since the blades are not

expected to deviate greatly from their base design.

The application of the proposed methodology resulted in 42 different geometries repre-

senting the probable manufactured core shapes. The deformed cores were compared with the

nominal core and it was found that the manipulated geometries agreed quite well with each

other. This is desirable since similar deviations from the nominal are expected in the man-

ufactured shapes. It was also observed that the suction surface at the Tip section for the

deformed and nominal cores almost overlapped each other. This area is the critical region of

blade failure. Hence, special care is taken during blade manufacture to ensure that the critical

region meets the design specifications. All these observations indicated that the proposed FFD

based approach worked fairly well for the present problem.

Linear Elasticity based Mesh Morphing

An approach that employs a linear elasticity solving (LES) based method was used for mor-

phing the nominal turbine blade volume mesh multiple times. Using this approach, probable

representations of the manufactured turbine blades were obtained in FEA ready form. The

application of the FFD based methodology for the 42 sets of thickness measurements resulted

in deformed core surface meshes for each of these measurement sets. The nodal displacements

to be applied on the core surface were calculated by subtracting the nodal coordinates of the

deformed core surface from the nodal coordinates of the nominal core mesh. Keeping the

external geometry fixed, these displacements were applied to the nodes on the internal core

surface of the turbine blade volume mesh. This was followed by running the linear elasticity

solver available within the FEA tool for obtaining 42 different volume meshes representing the

probable manufactured turbine blade shapes.
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Effects of Manufacturing Variability on Turbine Blade Life

The 42 turbine blade volume meshes obtained from the application of the LES based approach

were analysed using FEA to estimate the effects of manufacturing variability on the blade

life. As expected, no shifts in the critical region were observed for the perturbed geometries.

The presence of manufacturing variations resulted in reducing the life for most of the probable

turbine blade shapes. However, they also demonstrated some positive effects on a couple

of blades by slightly improving their values of life. On a normalized scale, the blades were

designed for an average life of 1.448, but, the mean life of the probable manufactured blades

was observed to be around 1.424, which is approximately 1.7% lower relative to the designed

life. Also, the normalized life for the reconstructed blades varied between 1.395 and 1.465, the

former being approximately 3.7% lower relative to the nominal life. The standard deviation in

life was calculated to be around 0.0138.

Response Surface Models for Lifing Predictions

An effort was made to create response surface models (RSMs) for predicting the turbine blade

life from the 18 thickness measurements, since, the computational time required for the FEA

runs was relatively high. Kriging in combination with the LPτ DOE technique was implemented

to generate surrogates for modeling the relationship between the 18 input thicknesses and the

output values of life. A leave-one-out cross-validation test was performed on the resulting RSM

and it was shown that the scatter in the correlation plots was unacceptably high. Simpler

variants of the original, more complicated problem, were also tried with no success. This study

led to the conclusion that generating reliable RSMs was not an option for the present problem,

and more accurate results could be obtained for the turbine blade lifing analysis by using the

full computational models.

Robust Design of Turbine Blade against Manufacturing Variability

The robust design optimization of turbine blades was performed by using an iSIGHT workflow

that employed a combination of tools, including, CAD, FFD, FEA, MATLAB, JAVA, CADfix,

Parasolid and LES solvers. This workflow permitted changes in the design of the blades

by modifying the core shape and position. Every new geometry was then analysed using

computational models for estimating the probable values of mean life and standard deviation
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in life due to the presence of manufacturing variability. The objective of the robust design

study was to seek a turbine blade design with improved mean and nominal lives and reduced

variability in the values of life as compared to the base design.

The benefits of selecting an optimal deterministic design were explored by running a par-

allel optimization study with the single objective of improving the nominal life. It was noted

that selecting the optimal deterministic design may not be the best solution to the current

problem, since the core geometry for this design was dangerously close to the external blade

airfoil surface. As a result of this closeness, the core protruded out of the blade surface for 17

out of the 42 perturbed geometries that represented the effects of manufacturing variations.

This was followed by picking up the next best design point obtained from the deterministic

optimization study. This design appeared to be relatively more reliable as 39 out of the 42

perturbations passed successfully though the FEA. Hence, it was selected for comparison with

the robust-optimal solution. The selected deterministic design indicated an improvement in

nominal life of around 2.41%, and a 3.13% improvement in mean life, relative to the base

design. The reduction in standard deviation for this design was observed to be around 28.72%

relative to the base geometry. In comparison, the optimal robust solution demonstrated a

relative improvement in the nominal and mean lives of around 2.05% and 3.03% respectively,

as compared to the base design. The relative reduction observed in standard deviation for the

robust-optimal solution was around 57.23%, which is around 28.5% lesser than that obtained

from the selected deterministic design. Therefore, the robust-optimal solution definitely of-

ferred greater reductions in the turbine blade life variability, provided a slight compromise in

the nominal and mean lives was acceptable.

Examination of the critical region for the base model and the optimal robust design indi-

cated that there were no shifts in the critical region. In fact, the critical area for the robust

solution was slightly smaller than that for the base design. Also, the stress profile plots for

the two geometries indicated that the worst principal stress for the base geometry was higher

and more concentrated in the critical region leading to a lesser value of mean and nominal

lives as compared to the robust solution. On the other hand, the robust turbine blade design

demonstrated relatively more distributed values of worst principal stress in the critical region

resulting in improved nominal and mean lives and reduced standard deviation.

An indepth study of the base and deformed geometries indicated the following:

• Deviations in the core towards the suction surface tend to improve the nominal and mean
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lives.

• Moving the core towards the leading edge reduces the standard deviation in life.

• Drifts in the core towards the pressure surface reduce the nominal and mean lives.

• Moving the core towards the trailing edge increases the standard deviation in life, but,

this value is usually observed to be much better than the standard deviation for the base

design.

8.2 Future Research

Future research work could look for improvements in the techniques used for manufacturing

variability quantification, and reducing the computational effort required for robust design

studies of complicated parts. Some directions for future research are outlined below:

• In the present work, manufacturing variability was captured as the effects due to manufac-

turing drift with time and the blade to blade manufacturing error. It may be interesting

to segregate the manufacturing variations caused by individual procedures that consti-

tute the manufacturing process. The procedures leading to the most geometric variations

may then be identified. This may be followed by making suitable suggestions for improve-

ment in the current manufacturing processes. Finally, it may lead to a reduction of the

sources, and hence the effects, of manufacturing variability.

• In the current research work, manufacturing variability was only accounted for by a

limited number of available measurements. A FFD based methodology was implemented

for characterizing the geometric variability from the limited measurements by maintaining

a balance between the global and local deformations. It may be interesting to obtain

more accurate representations of the manufactured shapes by collecting X-ray scans on

these parts. The scanned data may then be analysed using PCA based techniques to

characterize the geometric variability more accurately.

• The FFD based methodology proposed in the present work analysed the effects of man-

ufacturing variability on the internal core shape. Fortunately, negligible effects of vari-

ations due to the manufacturing processes were observed on the external blade airfoil

geometry. For some cases, it is highly probable that the sources of geometric variability
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lead to deviations in both the external and internal shapes of complicated parts. In

that case, it becomes essential to characterize the coupled behaviour of 3-d geometric

variations. This leads to the need for more sophisticated methodologies for geometry

manipulation that may be implemented for simulating the coupled behaviour of 3-d vari-

ations in both the external and internal geometries.

• For the turbine blade problem, it was desirable to create RSMs for reducing computa-

tional costs. However, the leave-one-out cross validation procedure indicated that gener-

ating reliable RSMs for the present problem was not an option. Unsuccessful attempts

were made to break down the more complicated problem of modeling the relationship

between the blade measurements and lifing predictions, to its simpler variants. It may be

an interesting proposition to break down the problem further into each of the individual

processes involved in estimating the value of life starting from the thickness measure-

ments. Efforts may then be made to generate a series of RSMs, each representing one

procedure at a time, from the network of methodologies used for the current problem.

These surrogates may then be stitched together to result in a complicated network of

approximate models that may be more reliable than the current RSMs. Although creat-

ing too many surrogates adds to the prediction error due to the cumulative error effects,

exploring this option may lead to saving considerable computational costs if successful.

• Since the RSMs generated for the present case did not prove to be very reliable, a sensi-

tivity analysis was not performed for the current problem. It may, however, prove to be

very interesting to find out which of the measurements taken on the turbine blades affect

their life the most. Suitable recommendations may then be made to focus on the more

important measurements during blade inspection, resulting in saving the measurement

costs.



Appendix A

Linear Algebra

The theorems presented in this chapter are based on the paper by Shlens [19].

A.1 Theorem 1

If X0 is any matrix, the matrices X0XT
0 and XT

0 X0 are both symmetric.

For a matrix to be symmetric, it should be equal to its transpose. Hence, taking the

transpose of X0XT
0 we obtain,

(X0XT
0 )T = XTT

0 XT
0 = X0XT

0 . (A.1)

Similarly, for XT
0 X0 we obtain,

(XT
0 X0)T = XT

0 XTT
0 = XT

0 X0. (A.2)

A.2 Theorem 2

If L is an orthogonal matrix, then L−1 = LT.

Let L be an n× n matrix such that,

L =
(
l1 l2 l3 · · · ln

)
, (A.3)

where li is the ith column matrix. By definition of an inverse matrix, we know that,

L−1L = I, (A.4)
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where I is the identity matrix. Therefore, a proof that LTL = I should be sufficient to prove

that LT = L−1. Now,

LTL =



l1

l2

l3
...

ln


(
l1 l2 l3 · · · ln

)
=



l1.l1 l1.l2 l1.l3 · · · l1.ln

l2.l1 l2.l2 l2.l3 · · · l2.ln

l3.l1 l3.l2 l3.l3 · · · l3.ln
...

...
...

...
...

ln.l1 ln.l2 ln.l3 · · · ln.ln


. (A.5)

But, the columns of an orthogonal matrix are orthogonal to each other. Thus, the dot product

of any two columns is zero and the dot product of a column with itself is one. Substituting

this in expression (A.5) we obtain,

LTL =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1


= I. (A.6)

Comparing equations (A.4) and (A.6), we can observe that LT = L−1.

A.3 Theorem 3

A symmetric matrix is diagonalized by a matrix of its orthonormal eigenvectors.

Let A be a square n×n symmetric matrix with associated eigenvectors, E = [e1 e2 · · · en],

where the ith column of E is the eigenvector ei. According to this theorem, there exists a di-

agonal matrix D such that A = EDET.

First, lets assume that A is some matrix, not necessarily symmetric, which has independent

eigenvectors {e1, e2, · · · , en} constituting the matrix E such that, E = [e1 e2 · · · en]. Let

D be the diagonal matrix where the ith eigenvalue is placed in the iith position.

Now, multiplying A by E and E by D we obtain,

AE =
(
Ae1 Ae2 · · · Aen

)
, and (A.7)

ED =
(
λ1e1 λ2e2 · · · λnen

)
. (A.8)
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Now, according to the definition of eigenvalue equation, Aei = λiei for all i. Hence AE = ED.

Rearranging this expression results in A = EDE−1. This implies that any matrix can be

orthogonally diagonalized if and only if that matrix’s eigenvectors are all linearly independent.

Let λ1 and λ2 be distinct eigenvalues for the eigenvectors e1 and e2 of some symmetric

matrix. Now,

λ1e1.e2 = (λ1e1)Te2,

= (Ae1)Te2,

= eT1 ATe2,

= eT1 Ae2,

= eT1 (λ2e2),

λ1e1.e2 = λ2e1.e2, or

(λ1 − λ2)e1.e2 = 0. (A.9)

Since we have assumed that we are taking distinct eigenvalues, equation (A.9) implies that

e1.e2 = 0. This means that the eigenvectors of a symmetric matrix are orthogonal.

Going back to our original assumption that A is a symmetric matrix, by the proof above

we know that the eigenvectors of A are all orthogonal. This implies that E is an orthogonal

matrix. Therefore, by Theorem 1, ET = E−1 and the final result can be written as,

A = EDET (A.10)

Thus, we can state that a symmetric matrix is diagonalized by a matrix of its eigenvectors.



Appendix B

Multivariate Analysis of Variance

(MANOVA)

B.1 Background

Multivariate Analysis of Variance (MANOVA) is simply an extension of the Analysis of Vari-

ance (ANOVA) technique, with the difference that while ANOVA is used in problems with

one dependant variable, MANOVA does the same for multiple dependant variables [153]. The

purpose of ANOVA is to quantitatively estimate the relative contribution each parameter (in-

dependent variable) variation makes to the overall response (dependant variable) variation

[154]. Comparatively, MANOVA is preferred in two major situations: 1) when a single, over-

all statistical test is desired on several correlated dependant variables instead of performing

multiple individual tests, and, 2) when it is important to explore how independent variables

influence some patterning of response on the dependant variables [155]. Testing of the multiple

dependant variables is accomplished by creating new dependant variables that maximize group

differences. These new dependant variables are linear combinations of the original dependant

variables [153].

The key assumptions made by MANOVA are :

• it assumes normal distribution of the dependant variable within the groups to be tested.

Although, it is robust to non-normality caused by skewness, transformation or removal

of outliers should be done before performing MANOVA,
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• it assumes the existence of linear relationships among all pairs of dependant variables,

all pairs of covariates, and all dependant variable-covariate pairs in each group,

• it assumes that the dependant variables have equal variance across the range of indepen-

dent variables and their covariances are homogeneous across each group [153].

It is important to notice that MANOVA also has certain limitations [153] :

• It is extremely sensitive to outliers. In the presence of outliers, it may result in a Type

I error (rejection of the null hypothesis when it is true) or a Type II error (failure to

reject the null hypothesis when it is false) without indicating the nature of error in the

analysis.

• If there is a high correlation between dependant variables, one dependant variable be-

comes a near-linear combination of the other dependant variable leading to statistical

redundancy.

• MANOVA is more complicated as compared to ANOVA and hence there may be some

ambiguity about which parameter value affects each dependant variable.

All these assumptions and limitations however, do not undermine the importance of MANOVA

as an efficient statistical technique. It has been used successfully in various kinds of research,

e.g., the study of evolutionary change in terms of genetic variation [156], study of the influence

of days and months on market prices in the electricity market [157], analysis of information

contained in speech signals about the linguistic message, the speaker and the communication

channel [158], etc.

Simplifying things further, we may also state that ANOVA is used to test whether the

means for two or more groups are taken from the same sampling distribution. On the other

hand, MANOVA is used to test whether the vectors of means (since every set of measurements

for each dependant variable has its own mean) for two or more groups are sampled from the

same sampling distribution [155]. A detailed exposition of ANOVA/MANOVA techniques

along with their mathematical formulations and practical applications are available in great

detail in various textbooks in the literature [159, 160, 161, 154].
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B.2 Mathematical Formulations

The following discussion presents the basic mathematics behind ANOVA and then moves on to

explaining MANOVA and its direct relationship with ANOVA. The mathematical formulations

of ANOVA and MANOVA that follow are based on the book by Harris [159].

Let us assume that our input data matrix X is divided into g groups such that m1 = m2 =

m3 = · · · = mg = m0 and n = 1, i.e., each group has only one measurement variable. Please

note that in reality the values of m1,m2,m3, · · · ,mg may be different and n 6= 1. Here, the

sample size is assumed to be m0 for all the g groups for ease of explanation. n = 1 is assumed

for explaining the working of the ANOVA technique first. Now, the null hypothesis may be

stated as :

H0 : µ1 = µ2 = · · · = µg, (B.1)

where, µ is the standard symbol for group mean. If this null hypothesis is true, then on an

average we would obtain,

X1 = X2 = · · · = Xg. (B.2)

The next task is to select a single statistic that will summarize how far the sample means

depart from the equality implied by H0. In this case, let us adopt the sample variance of the

g means,

s2
X

=
g∑
j=0

(Xj −X)2/(g − 1). (B.3)

In equation (B.3) above, X means the overall mean matrix of the cumulative data. The second

thing we need to know is whether the magnitude of the differences among the sample means

(as measured by the variances of X) is consistent with the assumption of identical population

means. A basis for comparison is provided by the well-known relationship between the variance

of a population and the variance of means of samples drawn from that population,

V ar
X

2 =
V ar

m0
, (B.4)

where m0 is the size of the sample on which each mean is calculated. Following this, it may be

informative to compare the ratio of the direct estimate of V ar
X

2 , with an estimate of V ar
X

2

assuming H0, as given below :

F =
s2
X

s2w/m0
, (B.5)
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where,

s2
X

=
{

(X1 −X)2 + (X2 −X)2 + · · ·+ (Xg −X)2
}
/(g − 1), (B.6)

s2w =
{∑

(X1 −X1)2 +
∑

(X2 −X2)2 + · · ·+
∑

(Xg −Xg)2
}
/(M − g). (B.7)

Here, s2
X

denotes the sample variance in between groups, s2w denotes the sample variance within

groups, and the total number of measurements are denoted by M = m0g. Using expressions

(B.5), (B.6) and (B.7) above, we may re-write the equation for F as,

F =

∑
m0j(Xj −X)2/(g − 1)∑∑

(Xj −Xj)2/(M − g)
=

SSb/(g − 1)
SSw/(M − g)

=
MSb
MSw

, (B.8)

where, the symbol SS stands for sum of squares, MS stands for mean squares, subscript b

stands for between groups and subscript w stands for within groups. Equation (B.8) represents

the expression of the F statistic for univariate ANOVA. In this case, H0 is true when F ≈ 1.

However, if F>1, then the alternative hypothesis is applicable to the case under study.

Now, applying the same theory to MANOVA and going back to our original data matrix X

where we have n 6= 1 measured variables within each of the g groups, we obtain the expression

for F as,

F (c) =
MSb,C
MSw,C

=

∑
m0j(Cj − C)2/(g − 1)∑∑

(Cj − Cj)2/(M − g)
=

cTBc
cTWc

(
M − g
g − 1

)
, (B.9)

where MSb,C is the mean square between groups and MSw,C is the within group mean square

for the dependant variable C. C is given by,

C = c1X1 + c2X2 + · · ·+ cnXn = Xc, (B.10)

where c is the matrix containing coefficients by which the original measured variables are mul-

tiplied. Recall that the testing of multiple dependant variables in MANOVA is accomplished

by creating new dependant variables that are linear combinations of the original measured vari-

ables. In equation (B.9), B is the between-group SSCP (sums of squares and cross-products)

matrix,

B =



SSb;1 SPb;1,2 SPb;1,3 · · · SPb;1,n

SPb;1,2 SSb;2 SPb;2,3 · · · SPb;2,n

SPb;1,3 SPb;2,3 SSb;3 · · · SPb;3,n
...

...
... · · ·

...

SPb;1,n SPb;2,n SPb;3,n · · · SSb;n


, (B.11)
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where,

SPb;r,s =
∑

m0j(Xj,r −Xr)(Xj,s −Xs) (B.12)

and,

SSb;r = SPb;r,r =
∑

m0j(Xj,r −Xr)2, (B.13)

on variable r in group j, such that s = 1, 2, · · · , n. W is the within-group covariance matrix

and is given as,

SPw;r,s =
∑∑

(Xj,r −Xr)(Xj,s −Xs). (B.14)

The overall objective is to determine the value of c such that F(c) is maximized. The subse-

quent values of C (also called the canonical variables) give us an idea of the separation between

groups. For example, in our case, C1 is the linear combination of the columns of X that rep-

resents the maximum separation between groups and C2 represents the maximum separation

subject to it being orthogonal to C1, and so on. Therefore, a scatter plot of C1 vs. C2 or a

dendrogram plot of the group means after a MANOVA analysis may help in determining any

noticeable differences between the measurements contained in each of the time-based groups.
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CDI and MVA Workflows

C.1 Changing the Blade Design

A zoomed in view of the CDI workflow is shown in Figure C.1. A detailed description of its

various components and the logic of the workflow is given below:

• Prologue: This component contains a JAVA script that is used for initializing parallel

runs of the CDI workflow. For the current workflow, this component was disabled because

a lot of computational resources were already being consumed by the parallel runs of the

MVA workflow.

• Assign default: This component assigns high default values to the nominal life, mean

life and std. Since our objective is to minimize the three objectives, high default values

are assigned to these variables so that the optimizer is not misled.

• Data Exchanger: This acts as a preprocessor for the FFD process. The values of the

design variables are written into files by this component in the format required by the

FFD.

• FFD: This component extracts the core from the base model and performs FFD to

produce a new core shape on the basis of the values held by the 40 design variables.

• Generate Deformed Core: This is a CAD based component that takes the solid blade

model (without any internal passages) and performs a Boolean subtraction of the newly

produced core from this solid model resulting in a fresh nominal geometry.
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• Check bladeout exp: This component consists of a JAVA script that checks if the blade

geometry file has been created successfully by the previous component. Based on the

availability of this file, it assigns a value of 1 or 0 to the variable errflag1. errflag1 = 1

implies that the geometry file has not been created. In that case, the rest of the workflow

is not executed due to the conditional statement following this component. The workflow

carries on as normal if the value of errflag1 6= 1.

• Calculator1: This is a dummy component that helps in skipping the rest of the workflow

if the geometry file is not created by the CAD tool.

• Read & Check Thicknesses: This component measures the 18 thickness values on

the new nominal design. It then checks if any of these 18 values are negative or zero.

Zero or negative values imply that the core has protruded out of the blade surface, and

in that case, the rest of the workflow is skipped by applying a conditional check on the

value of errflag.

• Calculator: This is a dummy component that assists in skipping the remainder of the

workflow if the core has protruded out of the blade surface.

• Create Parasolid Model and Cadfix Translator Script: These two components

use Parasolid and CADfix to fix any mismatching faces in the nominal geometry model

created by the CAD tool. These mismatches may have occurred when the base core was

picked up and modified by the FFD process in order to create a new core model. Such

problems in the geometry usually lead to failure of the meshing routines in the FEA tool.

The repaired geometry model obtained from these components is finally converted into

a format readable by the FEA tool and passed on.

• Epilogue: This component consists of a JAVA script that aids the Prologue in parallel

execution. As stated before, the Prologue and Epilogue were disabled in the current

workflow.

• Run SC03: This component consists of a batch script that generates a mesh on the

new design and performs FE calculations for estimating the value of nominal life.

• Check nominal life: This component consists of a JAVA script that checks if the

nominal life is greater than or equal to 1.2. If this condition is satisfied, a value 0 is
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assigned to errflag life which allows the nominal mesh to pass through to the MVA

workflow.

The workflow explained in this section was developed as a separate work package in the Com-

putational Engineering and Design Group, University of Southampton in collaboration with

Rolls-Royce plc. The purpose of this workflow was to change the design of the turbine blades.

Further details on the execution of various components and processes constituting this work-

flow are beyond the scope of the present work. For the technical details of this workflow, the

reader is referred to the RR technical report [162].

C.2 Accounting for Manufacturing Variations

A zoomed in view of the MVA workflow is shown in Figure C.2. Various components of this

workflow are described as follows:

• manuf life: This component is the main driver for the MVA workflow. It picks up the

nominal mesh from the CDI workflow and passes it on to the various components of the

MVA workflow.

• Get gbp file: This component is a preprocessor that creates the files needed for the

FEA.

• Prep SC03: This component is also essentially a preprocessing unit. It extracts the core

surface and blade surface meshes from the volume mesh of the nominal turbine blade.

These surface meshes are used later for FFD and mesh morphing.

• Prep MATLAB: This component is a preprocessor that uses a MATLAB script for

creating the input files needed for the FFD process. If the execution of the MATLAB

script fails, a value of -1.0 is passed on to exit code prepmatlab which takes the control

of the workflow to the next run, without executing the subsequent components.

• calc coords: This component calculates the perturbations to be applied to each new

nominal mesh based on the thickness values of the new model.

• Uncertainty: This is the main driver for another subflow in the loop. This subflow

is responsible for applying the 42 sets of manufacturing perturbations to the nominal
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mesh and performing FEA for estimating the probable values of life. The subflow can

be executed in parallel or in series based on the settings of this component.

• FFD life: This component performs a series of functions. First, it executes the FFD and

non-linear optimization on the nominal core in order to generate the probable manufac-

tured core shapes. It then extracts the nodal displacements to be applied to the nominal

core for each new shape of the core. This is followed by the application of the LES based

approach for morphing the blade volume mesh. Finally, FEA is carried out to estimate

the life for each probable shape of the turbine blades. The default value assigned to the

blade life is 100. If any of the 42 meshes fail, care is taken that these default values are

not passed on to the next component by imposing a check on the value of life.

• Life each: This component consists of a JAVA script that picks up the value of life

for each successful run of FFD life and writes it into a file that is needed by the next

component.

• Life all: This component executes a JAVA script that picks up the values of life from

the files created by Life each and populates these values into an array.

• calc mean std: This component picks up the array containing the values of life for each

probable manufactured blade shape and calculates the mean and standard deviation.

• Check n: This component imposes a check on the number of meshes that went success-

fully through the FE analysis. If this number is zero, default values are assigned to the

mean life and std, or else, these values remain unchanged. This component was modified

later to add a penalty value to the standard deviation depending on the number of failed

meshes.

The details on the implementation of the FFD and LES based methodologies and the FE

analysis for estimating the effects of manufacturing variability on turbine blade life have already

been presented in Chapters 4 and 5. The values of mean life and std calculated from this

workflow for each new nominal design were passed on to NSGA-II for the optimization process.



Appendix D

Codes for PCA and FFT Analysis

The codes for PCA and FFT analysis were written in MATLAB. These codes pick up the mea-

surement data, filter out the measurement error from this data based on the threshold values,

and finally reconstruct the measurements capturing the effects of manufacturing variability

with time.

D.1 PCA Analysis

%Step 1 - Load the group data

X = load(‘data.txt’);

%Step 2 - Calculation of the Empirical Mean

MeanData = mean(X,2);

U = MeanData;

%Step 3 - Calculation of the deviations from the Mean

[n,m] = size(X);

uh = repmat(U,1,m);

B = X - uh;

%Step 4 - Calculation of the Covariance Matrix

c = B*B’;

C = c/(m-1);

%Step 5 - Finding the EigenValues and EigenVectors of the Covariance matrix

[EigVec,EigVal] = eigs(C, n);

V = EigVec;
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open threshold_variance_plot.fig %Open the threshold variance plot

pause

hold on;

%Reconstruction

for j = 1:n

vec = V(:,1:j);

for i = 1:1:m

a = vec\B(:,i);

error(:,i) = B(:,i)-(vec*a);

recon_blade(:,i) = vec*a + U; %Reconstructed blades

end;

%For getting the mean blade per group

mean_blade = mean(recon_blade,2);

%Plot the variance per measurement position for each group

variance = var(error,0,2);

plot(variance,‘b--’);

%This portion of the code is used for visual examination of

%dimensionality reduction and for determining the correct dimensionality

%by comparing the means of mean variances.

pause

mean_var = mean(variance)*ones(1,n);

plot(mean_var,‘r--’);

pause

end;
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D.2 FFT Analysis

clear all;

close all;

timestamp = load(‘Timestamp.txt’); %Load the timestamp of manufacturing

time = mat2cell(timestamp,[length(timestamp)],[3 3]);

load data.txt; %Load measurement data for all the blades comprising one group

[n m] = size(data);

x = [time{1,2} data];

x = sortrows(x); %Sort the data according to time of manufacture

%Perform Fourier Transform

z = reshape(x,n*m,1);

plot(z(1:n*m),‘b+-’);

y = fft(z);

Pyy = y.*conj(y);

for i=1:m*n

if abs(y(i))<TM %selected a value of TM based on data

y(i) = 0;

end;

end;

iy = real(ifft(y));

hold on

plot(iy(1:m*n),‘rx-’);



Appendix E

Codes for Free Form Deformation

(FFD)

The codes for FFD were written in MATLAB. These codes were divided into two modules.

The first module, ‘ffd.m’, encloses the geometry in lattice control points, initializes all the

variables needed for the optimization process, calls the optimizer and invokes a subroutine

for performing the objective function calculations. Finally, this code picks up the optimal

values of control points and reconstructs the whole deformed geometry. The second module,

‘optffd.m’, is a subroutine that is invoked by ffd.m for obtaining the deformed coordinates of

the measurement points and calculating the objective function value based on these deformed

positions. This module is run repeatedly by the optimizer until the convergence of the objective

function is achieved.

E.1 Main Module

This is the main module, ‘ffd.m’.

clear all;

close all;

global l; %declaring global variables to pass on to ffdfunction

global m;

global n;
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global Bk;

global Bj;

global Bi;

global LatticeCtrlPts;

global Bk_new;

global Bj_new;

global Bi_new;

global expected;

%load the coordinates of the core surface mesh

cord = load(‘Core_coordinates.txt’);

X = cord(:,1);

Y = cord(:,2);

Z = cord(:,3);

%input file is ready

%Calculating the center point of solid

max_x = max(X);

min_x = min(X);

max_y = max(Y);

min_y = min(Y);

max_z = max(Z);

min_z = min(Z);

Cntr_x = (max_x + min_x)/2;

Cntr_y = (max_y + min_y)/2;

Cntr_z = (max_z + min_z)/2;

%Calculating half dimensions/radius along each axis

HalfDimX = (max_x - min_x)/2;

HalfDimY = (max_y - min_y)/2;

HalfDimZ = (max_z - min_z)/2;
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%Calculate the LatticeOrigin

LatticeOrigin_x = Cntr_x - HalfDimX;

LatticeOrigin_y = Cntr_y - HalfDimY;

LatticeOrigin_z = Cntr_z - HalfDimZ;

LatticeOrigin = [LatticeOrigin_x LatticeOrigin_y LatticeOrigin_z];

%Number of intervals to subdivide along each axis

NumIntX = 2;

NumIntY = 1;

NumIntZ = 7;

%Calculate actual dimension of solid

DimX = HalfDimX*2;

DimY = HalfDimY*2;

DimZ = HalfDimZ*2;

%Calculate step vectors along each axis

StepInX = DimX / NumIntX;

StepInY = DimY / NumIntY;

StepInZ = DimZ / NumIntZ;

%Find co-ordinates of lattice control points

NumIntZ_mod = NumIntZ;

k = 1;

TempX = LatticeOrigin_x;

for i = 1:NumIntX+1

TempY = LatticeOrigin_y;

for j = 1:NumIntY+1

TempZ = LatticeOrigin_z;

for k = k:NumIntZ_mod+1

LatticeCtrlPts(k,1) = TempX;

LatticeCtrlPts(k,2) = TempY;
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LatticeCtrlPts(k,3) = TempZ;

TempZ = TempZ + StepInZ;

end;

TempY = TempY + StepInY;

NumIntZ_mod = NumIntZ + k;

k = k + 1;

end;

TempX = TempX + StepInX;

end;

%Finding (s,t,u) points for the co-ordinates defining the solid

for i = 1:length(X)

stu(i,1) = (X(i,1) - LatticeOrigin(1))/DimX;

stu(i,2) = (Y(i,1) - LatticeOrigin(2))/DimY;

stu(i,3) = (Z(i,1) - LatticeOrigin(3))/DimZ;

end;

%Calculate the Bernstein basis functions

s = stu(:,1);

t = stu(:,2);

u = stu(:,3);

l = NumIntX;

m = NumIntY;

n = NumIntZ;

for r = 1:length(s)

for k = 0:n

f(k+1) = factorial(n)/(factorial(n-k)*factorial(k));

Bk(r,k+1) = f(k+1)*((1-u(r))^(n-k))*(u(r)^k);

end;
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for j = 0:m

f(j+1) = factorial(m)/(factorial(m-j)*factorial(j));

Bj(r,j+1) = f(j+1)*((1-t(r))^(m-j))*(t(r)^j);

end;

for i = 0:l

f(i+1) = factorial(l)/(factorial(l-i)*factorial(i));

Bi(r,i+1) = f(i+1)*((1-s(r))^(l-i))*(s(r)^i);

end;

end;

%load index of the measurement locations

index = load(’index_nodes.txt’);

Bk_new = Bk(index,:);

Bj_new = Bj(index,:);

Bi_new = Bi(index,:);

%initializing the 48 variables for lower and upper bound calculations

init_controlpts(1:4,:) = LatticeCtrlPts(4:7,:);

init_controlpts(5:8,:) = LatticeCtrlPts(12:15,:);

init_controlpts(9:12,:) = LatticeCtrlPts(20:23,:);

init_controlpts(13:16,:) = LatticeCtrlPts(28:31,:);

init_controlpts(17:20,:) = LatticeCtrlPts(36:39,:);

init_controlpts(21:24,:) = LatticeCtrlPts(44:47,:);

%calculating the lower bounds for 24 variables

lb_variables = init_controlpts - (10*ones(24,2));

%calculating the upper bounds for 24 variables

ub_variables = init_controlpts + (10*ones(24,2));
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%calculating the lb and ub for all 48 lattice control points

lb(1:3,:) = LatticeCtrlPts(1:3,:);

lb(4:7,:) = lb_variables(1:4,:);

lb(8:11,:) = LatticeCtrlPts(8:11,:);

lb(12:15,:) = lb_variables(5:8,:);

lb(16:19,:) = LatticeCtrlPts(16:19,:);

lb(20:23,:) = lb_variables(9:12,:);

lb(24:27,:) = LatticeCtrlPts(24:27,:);

lb(28:31,:) = lb_variables(13:16,:);

lb(32:35,:) = LatticeCtrlPts(32:35,:);

lb(36:39,:) = lb_variables(17:20,:);

lb(40:43,:) = LatticeCtrlPts(40:43,:);

lb(44:47,:) = lb_variables(21:24,:);

lb(48,:) = LatticeCtrlPts(48,:);

ub(1:3,:) = LatticeCtrlPts(1:3,:);

ub(4:7,:) = ub_variables(1:4,:);

ub(8:11,:) = LatticeCtrlPts(8:11,:);

ub(12:15,:) = ub_variables(5:8,:);

ub(16:19,:) = LatticeCtrlPts(16:19,:);

ub(20:23,:) = ub_variables(9:12,:);

ub(24:27,:) = LatticeCtrlPts(24:27,:);

ub(28:31,:) = ub_variables(13:16,:);

ub(32:35,:) = LatticeCtrlPts(32:35,:);

ub(36:39,:) = ub_variables(17:20,:);

ub(40:43,:) = LatticeCtrlPts(40:43,:);

ub(44:47,:) = ub_variables(21:24,:);

ub(48,:) = LatticeCtrlPts(48,:);

%Load the desired coordinates of measurement points

expected = load(‘Expected_xy.txt’);

%call the subroutine for optimization
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fun = @optffd;

init_lcp = LatticeCtrlPts(:,1:2);

[final_controlpts,fval,exitflag,output] = fmincon(fun,init_lcp,[],[],[],[],lb,

ub);

%Optimal lcp positions obtained

New_LatticeCtrlPts = [final_controlpts LatticeCtrlPts(:,3)];

%Reconstruct the deformed core coordinates

for r = 1:length(Bk)

p = 1; New_X(r,1:3) = 0;

for i = 0:l

New_X1(r,1:3) =0;

for j = 0:m

New_X2(r,1:3) = 0;

for k = 0:n

New_X2(r,1) = New_X2(r,1) + (Bk(r,k+1)*New_LatticeCtrlPts(p,1));

New_X2(r,2) = New_X2(r,2) + (Bk(r,k+1)*New_LatticeCtrlPts(p,2));

New_X2(r,3) = New_X2(r,3) + (Bk(r,k+1)*New_LatticeCtrlPts(p,3));

p = p+1;

end;

New_X1(r,1) = New_X1(r,1) + New_X2(r,1)*Bj(r,j+1);

New_X1(r,2) = New_X1(r,2) + New_X2(r,2)*Bj(r,j+1);

New_X1(r,3) = New_X1(r,3) + New_X2(r,3)*Bj(r,j+1);

end;

New_X(r,1) = New_X(r,1) + New_X1(r,1)*Bi(r,i+1);

New_X(r,2) = New_X(r,2) + New_X1(r,2)*Bi(r,i+1);

New_X(r,3) = New_X(r,3) + New_X1(r,3)*Bi(r,i+1);

end;

end;

%clearing the global variables

clear global l;

clear global m;

clear global n;



159 E.2 Subroutine

clear global Bk;

clear global Bj;

clear global Bi;

clear global LatticeCtrlPts;

clear global Bk_new;

clear global Bj_new;

clear global Bi_new;

clear global expected;

E.2 Subroutine

This is the subroutine, ‘optffd.m’, called by the main module.

function Objective = optffd(controlpts)

global l; %passing the global variables

global m;

global n;

global Bk;

global Bj;

global Bi;

global LatticeCtrlPts;

global Bk_new;

global Bj_new;

global Bi_new;

global expected;

%Modify LatticeCtrlPts to deform

LatticeCtrlPts = [controlpts LatticeCtrlPts(:,3)];

%Calculate the new coordinates for measurement points

for r = 1:length(Bk_new)
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p = 1; New_X(r,1:3) = 0;

for i = 0:l

New_X1(r,1:3) =0;

for j = 0:m

New_X2(r,1:3) = 0;

for k = 0:n

New_X2(r,1) = New_X2(r,1) + (Bk_new(r,k+1)*LatticeCtrlPts(p,1));

New_X2(r,2) = New_X2(r,2) + (Bk_new(r,k+1)*LatticeCtrlPts(p,2));

New_X2(r,3) = New_X2(r,3) + (Bk_new(r,k+1)*LatticeCtrlPts(p,3));

p = p+1;

end;

New_X1(r,1) = New_X1(r,1) + New_X2(r,1)*Bj_new(r,j+1);

New_X1(r,2) = New_X1(r,2) + New_X2(r,2)*Bj_new(r,j+1);

New_X1(r,3) = New_X1(r,3) + New_X2(r,3)*Bj_new(r,j+1);

end;

New_X(r,1) = New_X(r,1) + New_X1(r,1)*Bi_new(r,i+1);

New_X(r,2) = New_X(r,2) + New_X1(r,2)*Bi_new(r,i+1);

New_X(r,3) = New_X(r,3) + New_X1(r,3)*Bi_new(r,i+1);

end;

end;

%Calculate the Objective function for the expected (x,y) values and

%deformed (x,y) positions of nodes in the morphed mesh.

Objective = 0;

for i = 1:length(New_X)

Objective = Objective + ((New_X(i,1)-expected(i,1))^2 +

(New_X(i,2)-expected(i,2))^2);

end;
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[76] K. M. Neuerburg, Bézier Curves, in: Proceedings of the Louisiana-Mississippi Section of

the Mathematical Association of America, Clinton, MS, 2003.

[77] A. Requicha, H. Voelcker, Solid Modeling: A Historical Summary and Contemporary

Assessment, IEEE Computer Graphics and Applications 2 (2) (1982) 9–24.

[78] S. S. Rao, Engineering Optimization Theory and Practice, 3rd Edition, Wiley-

Interscience Publishers, John Wiley & Sons, Inc., and New Age International Publishers,

Ltd., 1996.

[79] A. J. Keane, P. B. Nair, Computational Approaches for Aerospace Design, John Wiley

& Sons Ltd., Chichester, West Sussex, England, 2005.

[80] R. Byrd, J. Gilbert, J. Nocedal, A Trust Region Method Based on Interior Point Tech-

niques for Nonlinear Programming, Mathematical Programming 89 (1) (2000) 149–185.

[81] R. Byrd, M. E. Hribar, J. Nocedal, An Interior Point Algorithm for Large-Scale Nonlinear

Programming, SIAM Journal on Optimization 9 (4) (1999) 877–900.

[82] T. Coleman, Y. Li, An Interior, Trust Region Approach for Nonlinear Minimization

Subject to Bounds, SIAM Journal on Optimization 6 (1996) 418–445.

[83] T. Coleman, Y. Li, On the Convergence of Reflective Newton Methods for Large-Scale

Nonlinear Minimization Subject to Bounds, Mathematical Programming 67 (2) (1994)

189–224.

[84] S. Han, A Globally Convergent Method for Nonlinear Programming, Journal of Opti-

mization Theory and Applications 22 (1977) 297.

[85] R. Waltz, J. Morales, J. Nocedal, D. Orban, An interior algorithm for nonlinear opti-

mization that combines line search and trust region steps, Mathematical Programming

107 (3) (2006) 391–408.

[86] P. Gill, W. Murray, M. Wright, Practical Optimization, Academic Press, London, UK,

1981.



169 BIBLIOGRAPHY

[87] T. Coleman, Y. Li, A Reflective Newton Method for Minimizing a Quadratic Function

Subject to Bounds on Some of the Variables, SIAM Journal on Optimization 6 (4) (1996)

1040–1058.

[88] M. Alexa, Recent Advances in Mesh Morphing, Computer Graphics Forum 21 (2) (2002)

173–196.

[89] K. Stein, T. Tezduyar, R. Benney, Mesh Moving Techniques for Fluid-Structure Interac-

tions With Large Displacements, ASME Journal of Applied Mechanics 70 (2003) 58–63.

[90] S. Jakobsson, O. Amoignon, Mesh deformation using radial basis functions for gradient-

based aerodynamic shape optimization, Computers & Fluids 36 (2007) 1119–1136.

[91] B. T. Helenbrook, Mesh deformation using the biharmonic operator, International Jour-

nal for Numerical Methods in Engineering 56 (2003) 1007–1021.

[92] C. Burg, Analytic study of 2D and 3D grid motion using modified Laplacian, Interna-

tional Journal for Numerical Methods in Fluids 52 (2006) 163–197.

[93] S. M. Shontz, S. A. Vavasis, A mesh warping algorithm based on weighted Laplacian

smoothing, in: Proceedings of the 12th International Meshing Round-table, Santa Fe,

USA, 2003, pp. 147–158.

[94] K. Stein, R. Benney, V. Kalro, T. E. Tezduyar, J. Leonard, M. Accorsi, Parachute fluid-

structure interactions: 3-D computation, Computer Methods in Applied Mechanics and

Engineering 190 (2000) 373–386.

[95] T. E. Tezduyar, S. Sathe, R. Keedy, K. Stein, Space-time finite element techniques for

computation of fluid-structure interactions, Computer Methods in Applied Mechanics

and Engineering 195 (17-18) (2005) 2002–2027.

[96] M. T. Bah, P. B. Nair, M. Browne, Mesh morphing for finite element analysis of im-

plant positioning in cementless total hip replacements, Medical Engineering & Physics

31 (2009) 1235–1243.

[97] W. S. Slaughter, The Linearized Theory of Elasticity, Birkhäuser, Boston, USA, 2002.
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