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Abstract— This paper presents the preliminary results of a and IR temperature patterns to categorise rainfall into no
rain rate estimation system that utilizes a combination of cloud  rain, light rain, moderate and heavy rain. Using this method,
?E]Ee%rriggze%”?amoggg tgg:irgggogesg‘:[g’rid cfg?]rsr}sge:)efofﬁrtgé they achieve 81% accuracy of rain cloud detection, compared

o i RN '
steps: feature selection, rain estimation and validation. In feature to 66% in [4] when no textural CharaCt?r'St'cs IS eXplo'teC!'
selection, cloud textural information is extracted and cloud —However, the work does not relate available texture to rain
motions are derived by a modified optical flow technique. Next, rate directly. Cloud model-based techniques estimate rain
rain estimation is done using results from a supervised-nearest  rates as a function of cloud’s characteristics, which can
neighbour (k-NN) classifier. Then, the results when applied 0 f5yng empirically using radar calibration or numerical

cold front dominated mid-latitude depressions are validated to th dels. L K d R feld [5 . . ¢
update the classifier. Finally, the system’s performance and its WEANEr MOUeIS. Lensky and rosente [5] assign rain rates

limitation are also discussed. to a mixture of convective clouds and stratiform clouds as a
function of updraft velocity, water vapour mixing ratio, cloud
l. INTRODUCTION droplet’s effective radius and air pressure. The effective radius

Satellite imagery is routinely used to monitor of large-scaleis used as an indicator for large water drops and ice crystals
systems e.g. supercell thunderstorms, depressions, cycloneghich are the initiation of coalescence precipitation. It can
or mesoscale convective complex, particularly those in remotée derived from channel 3(7um) of the Advanced Very
areas where there are sparse numbers of weather statiortdigh Resolution Radiometer (AVHRR) data [5] or from tri-
The movement and patterns of clouds, observed from satellitspectral bands &7, 3.7 and10.8m of the Meteosat Second
images, can be used to indicate the instabilities of the weatheBeneration (MSG) [6].

[1]. Hence, their distinct appearances provide some useful There is also a more direct method to determine precipi-
information to help rainfall estimation. Together with rain tation by using microwave (0.1-10 cm wavelength) radiation
cloud motion, it is also possible to predict the rainfall a shortwhich corresponds to precipitation droplet size. Nevertheless,
period in advance from satellite imagery or to update a rainits disadvantages are poor spatial and temporal resolution,
estimation. together with the difficulties in interpreting the images, es-

Geostationary satellite images, though indirectly related tqoecially over land. There are several on-going researches
rainfall, are the most promising sources for rainfall infor- propose hybrid methods combining geostationary satellite
mation and there is considerable research that demonstratdata and microwave [7] but how to combine such disparate
methods of rainfall estimation [2]. The cloud indexing ap- information at different spatial and temporal scales is still a
proach, e.g. Geostationary Operational Environmental Sateldemanding challenge. At present, active radar observations
lite (GOES) Precipitation Index (GPI), is the oldest methodfrom the Tropical Rainfall Measuring Mission (TRMM) Pre-
and is still useful. It assigns a predetermined rain rate to eachipitation Radar provide the most accurate high resolution
cloud type. The technique is simple, yet more stable tharsatellite-based rainfall estimates [8] but the data are not
other complex methods. However, using only temperature asavailable at the mid-latitudes area.

a basis of rain estimation is valid only for convective rains at This paper focuses on data available from geostationary
coarse spatial and temporal scale. Bi-spectral techniques asatellites which includes VIS, IR and water vapour (WV)
based on a relationship between cold-thick clouds i.e. thosémages and extracts the advantageous data that can relate to
bright in both conventional infrared (IR) and visible (VIS) rainfall rates.
images and a high probability of precipitation. However,

due to considerable overlaps in the temperature-thickness
distribution, O’ Sullivan et al. [3] propose a method using The proposed rain approximation consists of 3 stages:
brightness and textural characteristics of daytime VIS datdeature extraction, rain rate assignment and validation. First,

II. METHODOLOGY



texture information is quantified and cloud motions are de-andy—direction. Its real impulse response is given by

rived. Next, the selected features are fed to supervise a k- , ,

NN classifier. In the last stage, the output i.e. assigned rain o1 Sl oy

rates are validated. The error information can be used to (@) = 2mo,0y exp( 2[03 N oiDCOS(QMOx) @)
guide the classifier for the next approximation. Here, a cold-

front dominated cyclone is chosen to study since the systerwherew, is a modulating frequency. The response of each
combines both convective and stratiform rains, which arerotating angular angle corresponds to image structure in that
primary types of rainfall. direction.

To extract features, it can be seen that the typical chari1 Tobderlve clodudeotlon,éhg r:lodlf:(edl%ptlcal flow tehchr?(quue f
acteristics of a cold-front dominated cyclone observed from"2S Peen used. Horn and Schunck [10] propose the idea o

satellite is a meridionally elongated spiral. Krennert et al. [9] o_pt|cal flow to derive velocity of an ObJ_GCt in three d|me_n-
sional space from a sequence of 2D images by exploiting

observes that the cloud spiral is white in VIS, has various fuid d . traint. This techni tends t
gray shades in IR but has the brightest in the transition ared "uId dynamics constraint. This technique pretends to see a

where the point of occlusion is found. It also appears Whiteconnection of the object in two sequential image and describes

in WV within the frontal cloudiness. At the rear edge (the this invisible connection by (optical) fluid flows. The idea is

inner boundary of the spiral), there is a sharp gradient fromalso analogous to cloud motion, which is a special case of

white to black in WV due to the dry intrusion which causes afIUid motion_ and consists_ofyery complex m°“°f.‘ (_jylja_tmics
preferred area of instability for cumulonimbus development.[ll]' FOIIOng_ [12], velocityj can be found by minimising
Ahead of the surface front, the precipitation is broad (5—50an error function:

km) with its maximum close to the occlusion point. There

may be showers, thunderstorms or even hails at the rear paft(&) = /((VI)'@JFI(V'@)JFIt)QdJ?der/\/ (|IVa|[*)dady,

of the spiral. f (2)

In order that all three types of images should be used fowherel, I, and X refer to image intensity, its first derivative

the analysis, they have been combined to produce a fals\é’ith respect to time and a Lagrange multiplier, respectively.
Considering the image intensity as density, the equation also

image by associating the IR, VIS and WV to the red, green e , ,
and blue colour bands, respectively. In this way, a pixel is amatches the mass continuity of the compressible fluids e.g.

result of three independent vectors. At night when VIS image@S€s and vapours, which are the main components of clouds
are not available, the green color band is substituted by &"d their density depends on the coordinateés space and
mixture of 50% IR and 50% WV images. Both types of false may depend on time as well. The compressible opucal _ﬂow
images and its corresponded rainfall data from ground radar&PProach tends to work well to recover cloud motion, since
are shown in Fig. 1 as an example. The illustration showdt utilizes fluid dynamics constraints which are applicable to

that the substituted image almost resembles Fig. 1 (a) but h440uds [12]. The last set of features are differences between
less texture. the texture features derived from the current image and

the previous image in the sequence. The temporal interval

The first textural features are means and standard deviationsetyween Meteosat? images are 30 minutes. To illustrate how
of magnitudes of pixel vectors and angles between the vectohese parameters can classify rain rates, we map them onto a
and the red-blue planef) Then, we project the vectors self-organising map (SOM) [13] of 100 classes. The number
on to the red-blue plane and use angles between projectest classes is equal to that of the k-NN classifier used for the
vectors and the blue axisp) as another type of feartures rajn approximation. Fig. 4 shows distances between each class
(see Fig. 3). These first order statistics are used as rotatioseen as grid). The brighter areas indicate the more distance,
invariant representatives of the cloud texture. In addition, iy other words, the two classes can be well-classified.
implies a proportion of cloud top temperatures and water || qescribed textural features, their deviation from those of
contents. This is to identify the location of precipitable clouds o previous 30 minutes image and the derived cloud motion
whereas accounts for amounts of the rainfall through the 5.0 sed to train the k-NN classifier. The number of output
cloud thickness properties. Next, the relationship between @|,sters are 100, each of which has a predefined rain rate.
considered pixel and its neighbours are characterised by &fhe NN classifier labels an input with the label of the
autoco-occurrence, which is defined as a joint probability ofyaiqrity of the k nearest neighbours, justified by the smallest
gray levels of any two similar pixels separated by & givengcjigean distance. The classifier should be updated every
displacement i.e. 3 and 5 pixels in this paper. These featuregne that actual rain rates are available for the best accuracy.
are a measure of homogeneity within cloud structures and ar@po yerived rain rate is post-processed by comparing with
calculated separately for each colour band. its neighbours. If the difference exceeds a specific threshold,

To represent structural characteristics, a bank of Gabof median rain rate calculated from its neighbour is assigned
filters is applied to the false images. The Gabor filter isinstead.
a complex sinusoidal function modulated by a rotated 2D- Note that the images are first preprocessed using the filters
Gaussian surface curve with a spreadogf and o, in z— in Fig. 2 to outline details and then normalised.
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Fig. 1. False images of a summer mid-latitude depression over the British Isles on 22 June 2004 at 1600GMT from Meteosat7 during daytime (a) and when
VIS images are not available (b). The corresponding rain rates are in (c). All images are equidistant projection.
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Fig. 2. Filters used to preprocess each type of images. v‘
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Fig. 4. Distances between 100 classes when classified the features using
Green SOM.
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Fig. 3. Colour image axis of a pixel.

I1l. A NALYSIS (a) with VIS image (b) without VIS image

Fig. 5. Derived rainfall derived from the false image in Fig. 1 (a).
The derived rainfall in Fig. 5 indicates a relevance of

the selected features and rain rates. The classifier is also
effective at a short period ahead of the time that it is trained.
Fig. 6 shows a result when applying the same classifier to
approximate rainfalls in the next 2 hours and Fig. 7 illustrates
an increase of approximation errors with respect to time.
This means that, although the proposed features relate to
rainfall, their relationship gradually changes with time. We
are currently studying how the relationship changes to make
the system more generalised. In the case that the VIS image is
not available, Fig. 8 shows that the proposed system can better
approximate rainfalls under 12 mm/h than large amounts of
rainfalls. The possible reason includes insufficient number's_l . Comparison of the actual rainrate and the predicted rain rate at 2
of the training sets at high rain rates, which appear only ahours ahead of time,

the rear edge of the occlusion.

(a) actual rainfall rate (b) derived rainfall rate
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Fig. 8. Histrogram of the derived rain rates, compared to the actual valug¢l3]

IV. CONCLUSION

We propose an algorithm to approximate rain rate by using
cloud texture and motion derived from Meteosat7. Good
agreement, except in cases of very high rainfall, has been
found between the predicted rainfall rate and the actual rate
measured by ground radars. The best agreement is found
when visible, infrared and water vapour imagery are available
and the loss of the visible imagery degrades the prediction
significantly. However, it can be improved by finding more
generalised relation between these features and rain rates. In
addition, more features e.g. environment at the surface and
cloud microphysics can be included for more accurate results.
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