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Abstract— This paper presents the preliminary results of a
rain rate estimation system that utilizes a combination of cloud
appearance and motion that can be derived from Meteosat7.
The proposed rain rate estimation system consists of three
steps: feature selection, rain estimation and validation. In feature
selection, cloud textural information is extracted and cloud
motions are derived by a modified optical flow technique. Next,
rain estimation is done using results from a supervisedk-nearest
neighbour (k-NN) classifier. Then, the results when applied to
cold front dominated mid-latitude depressions are validated to
update the classifier. Finally, the system’s performance and its
limitation are also discussed.

I. I NTRODUCTION

Satellite imagery is routinely used to monitor of large-scale
systems e.g. supercell thunderstorms, depressions, cyclones,
or mesoscale convective complex, particularly those in remote
areas where there are sparse numbers of weather stations.
The movement and patterns of clouds, observed from satellite
images, can be used to indicate the instabilities of the weather
[1]. Hence, their distinct appearances provide some useful
information to help rainfall estimation. Together with rain
cloud motion, it is also possible to predict the rainfall a short
period in advance from satellite imagery or to update a rain
estimation.

Geostationary satellite images, though indirectly related to
rainfall, are the most promising sources for rainfall infor-
mation and there is considerable research that demonstrates
methods of rainfall estimation [2]. The cloud indexing ap-
proach, e.g. Geostationary Operational Environmental Satel-
lite (GOES) Precipitation Index (GPI), is the oldest method
and is still useful. It assigns a predetermined rain rate to each
cloud type. The technique is simple, yet more stable than
other complex methods. However, using only temperature as
a basis of rain estimation is valid only for convective rains at
coarse spatial and temporal scale. Bi-spectral techniques are
based on a relationship between cold-thick clouds i.e. those
bright in both conventional infrared (IR) and visible (VIS)
images and a high probability of precipitation. However,
due to considerable overlaps in the temperature-thickness
distribution, O’ Sullivan et al. [3] propose a method using
brightness and textural characteristics of daytime VIS data

and IR temperature patterns to categorise rainfall into no
rain, light rain, moderate and heavy rain. Using this method,
they achieve 81% accuracy of rain cloud detection, compared
to 66% in [4] when no textural characteristics is exploited.
However, the work does not relate available texture to rain
rate directly. Cloud model-based techniques estimate rain
rates as a function of cloud’s characteristics, which can
be found empirically using radar calibration or numerical
weather models. Lensky and Rosenfeld [5] assign rain rates
to a mixture of convective clouds and stratiform clouds as a
function of updraft velocity, water vapour mixing ratio, cloud
droplet’s effective radius and air pressure. The effective radius
is used as an indicator for large water drops and ice crystals
which are the initiation of coalescence precipitation. It can
be derived from channel 3 (3.7µm) of the Advanced Very
High Resolution Radiometer (AVHRR) data [5] or from tri-
spectral bands at0.7, 3.7 and10.8µm of the Meteosat Second
Generation (MSG) [6].

There is also a more direct method to determine precipi-
tation by using microwave (0.1-10 cm wavelength) radiation
which corresponds to precipitation droplet size. Nevertheless,
its disadvantages are poor spatial and temporal resolution,
together with the difficulties in interpreting the images, es-
pecially over land. There are several on-going researches
propose hybrid methods combining geostationary satellite
data and microwave [7] but how to combine such disparate
information at different spatial and temporal scales is still a
demanding challenge. At present, active radar observations
from the Tropical Rainfall Measuring Mission (TRMM) Pre-
cipitation Radar provide the most accurate high resolution
satellite-based rainfall estimates [8] but the data are not
available at the mid-latitudes area.

This paper focuses on data available from geostationary
satellites which includes VIS, IR and water vapour (WV)
images and extracts the advantageous data that can relate to
rainfall rates.

II. M ETHODOLOGY

The proposed rain approximation consists of 3 stages:
feature extraction, rain rate assignment and validation. First,



texture information is quantified and cloud motions are de-
rived. Next, the selected features are fed to supervise a k-
NN classifier. In the last stage, the output i.e. assigned rain
rates are validated. The error information can be used to
guide the classifier for the next approximation. Here, a cold-
front dominated cyclone is chosen to study since the system
combines both convective and stratiform rains, which are
primary types of rainfall.

To extract features, it can be seen that the typical char-
acteristics of a cold-front dominated cyclone observed from
satellite is a meridionally elongated spiral. Krennert et al. [9]
observes that the cloud spiral is white in VIS, has various
gray shades in IR but has the brightest in the transition area
where the point of occlusion is found. It also appears white
in WV within the frontal cloudiness. At the rear edge (the
inner boundary of the spiral), there is a sharp gradient from
white to black in WV due to the dry intrusion which causes a
preferred area of instability for cumulonimbus development.
Ahead of the surface front, the precipitation is broad (5-50
km) with its maximum close to the occlusion point. There
may be showers, thunderstorms or even hails at the rear part
of the spiral.

In order that all three types of images should be used for
the analysis, they have been combined to produce a false
image by associating the IR, VIS and WV to the red, green
and blue colour bands, respectively. In this way, a pixel is a
result of three independent vectors. At night when VIS images
are not available, the green color band is substituted by a
mixture of 50% IR and 50% WV images. Both types of false
images and its corresponded rainfall data from ground radars
are shown in Fig. 1 as an example. The illustration shows
that the substituted image almost resembles Fig. 1 (a) but has
less texture.

The first textural features are means and standard deviations
of magnitudes of pixel vectors and angles between the vector
and the red-blue plane (θ). Then, we project the vectors
on to the red-blue plane and use angles between projected
vectors and the blue axis (φ) as another type of feartures
(see Fig. 3). These first order statistics are used as rotation-
invariant representatives of the cloud texture. In addition,φ
implies a proportion of cloud top temperatures and water
contents. This is to identify the location of precipitable clouds
whereasθ accounts for amounts of the rainfall through the
cloud thickness properties. Next, the relationship between a
considered pixel and its neighbours are characterised by an
autoco-occurrence, which is defined as a joint probability of
gray levels of any two similar pixels separated by a given
displacement i.e. 3 and 5 pixels in this paper. These features
are a measure of homogeneity within cloud structures and are
calculated separately for each colour band.

To represent structural characteristics, a bank of Gabor
filters is applied to the false images. The Gabor filter is
a complex sinusoidal function modulated by a rotated 2D-
Gaussian surface curve with a spread ofσx and σy in x−

andy−direction. Its real impulse response is given by
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whereu0 is a modulating frequency. The response of each
rotating angular angle corresponds to image structure in that
direction.

To derive cloud motion, the modified optical flow technique
has been used. Horn and Schunck [10] propose the idea of
optical flow to derive velocity of an object in three dimen-
sional space from a sequence of 2D images by exploiting
a fluid dynamics constraint. This technique pretends to see a
connection of the object in two sequential image and describes
this invisible connection by (optical) fluid flows. The idea is
also analogous to cloud motion, which is a special case of
fluid motion and consists of very complex motion dynamics
[11]. Following [12], velocity�ω can be found by minimising
an error function:

E(�ω) =
∫

((∇I)·�ω+I(∇·�ω)+It)2dxdy+λ

∫
R

(||∇�ω||2)dxdy,

(2)
whereI, It andλ refer to image intensity, its first derivative
with respect to time and a Lagrange multiplier, respectively.
Considering the image intensity as density, the equation also
matches the mass continuity of the compressible fluids e.g.
gases and vapours, which are the main components of clouds
and their density depends on the coordinates�x in space and
may depend on time as well. The compressible optical flow
approach tends to work well to recover cloud motion, since
it utilizes fluid dynamics constraints which are applicable to
clouds [12]. The last set of features are differences between
the texture features derived from the current image and
the previous image in the sequence. The temporal interval
between Meteosat7 images are 30 minutes. To illustrate how
these parameters can classify rain rates, we map them onto a
self-organising map (SOM) [13] of 100 classes. The number
of classes is equal to that of the k-NN classifier used for the
rain approximation. Fig. 4 shows distances between each class
(seen as grid). The brighter areas indicate the more distance,
in other words, the two classes can be well-classified.

All described textural features, their deviation from those of
the previous 30 minutes image and the derived cloud motion
are used to train the k-NN classifier. The number of output
clusters are 100, each of which has a predefined rain rate.
The k-NN classifier labels an input with the label of the
majority of the k nearest neighbours, justified by the smallest
Euclidean distance. The classifier should be updated every
time that actual rain rates are available for the best accuracy.
The derived rain rate is post-processed by comparing with
its neighbours. If the difference exceeds a specific threshold,
a median rain rate calculated from its neighbour is assigned
instead.

Note that the images are first preprocessed using the filters
in Fig. 2 to outline details and then normalised.
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Fig. 1. False images of a summer mid-latitude depression over the British Isles on 22 June 2004 at 1600GMT from Meteosat7 during daytime (a) and when
VIS images are not available (b). The corresponding rain rates are in (c). All images are equidistant projection.
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Fig. 2. Filters used to preprocess each type of images.

Fig. 3. Colour image axis of a pixel.

III. A NALYSIS

The derived rainfall in Fig. 5 indicates a relevance of
the selected features and rain rates. The classifier is also
effective at a short period ahead of the time that it is trained.
Fig. 6 shows a result when applying the same classifier to
approximate rainfalls in the next 2 hours and Fig. 7 illustrates
an increase of approximation errors with respect to time.
This means that, although the proposed features relate to
rainfall, their relationship gradually changes with time. We
are currently studying how the relationship changes to make
the system more generalised. In the case that the VIS image is
not available, Fig. 8 shows that the proposed system can better
approximate rainfalls under 12 mm/h than large amounts of
rainfalls. The possible reason includes insufficient numbers
of the training sets at high rain rates, which appear only at
the rear edge of the occlusion.
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Fig. 4. Distances between 100 classes when classified the features using
SOM.

(a) with VIS image (b) without VIS image

Fig. 5. Derived rainfall derived from the false image in Fig. 1 (a).

(a) actual rainfall rate (b) derived rainfall rate

Fig. 6. Comparison of the actual rainrate and the predicted rain rate at 2
hours ahead of time,
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Fig. 7. Errors of the derived rain rates at different time.
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Fig. 8. Histrogram of the derived rain rates, compared to the actual value.

IV. CONCLUSION

We propose an algorithm to approximate rain rate by using
cloud texture and motion derived from Meteosat7. Good
agreement, except in cases of very high rainfall, has been
found between the predicted rainfall rate and the actual rate
measured by ground radars. The best agreement is found
when visible, infrared and water vapour imagery are available
and the loss of the visible imagery degrades the prediction
significantly. However, it can be improved by finding more
generalised relation between these features and rain rates. In
addition, more features e.g. environment at the surface and
cloud microphysics can be included for more accurate results.
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