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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

THE USE OF THE TEXTURE AND MOTION OF CLOUDS FROM
GEOSTATIONARY SATELLITE IMAGES IN RAIN RATE ESTIMATION AND

PREDICTION

by Aimamorn Suvichakorn

This thesis addresses the problem of estimating rainfall rates from satellite imagery.
The potential for using cloud motion and texture to estimate rain rates has been ex-
amined. The main types of textural information, i.e. statistical, structural, frequency
and spatio-temporal, have been used to derive features from the satellite measure-
ments and then used to determine a relationship to the radar-observed rain rates.
These features were ranked by two scoring functions that were devised to assess their
relationship to rain rates. The first scoring function selected a feature set for classi-
fying samples into three rain rate classes. The selected features successfully classify
rain rates of a mid-latitude cyclone seen on Meteosat7 with 84.8-99.3 % accuracy with
a significant Hanssen-Kuipers discriminant score when a probabilistic neural network
was used. A similar accuracy was found when a support vector machine (SVM) was
used. Another scoring function was used for the selection of the features for estimating
rain rates of each class. A Gaussian-kernel SVM that has been trained by these fea-
tures produced visually agreeable rain estimates, which were much better than those
produced by other methods that used only spectral information. Using the same types
features at different time also achieved the similar accuracy.

The method was robust and continuous rain estimates were obtained. Unlike
other techniques in which additional information has always been required, the re-
sults showed that textural information alone can be used for rain estimation. This is
preferable when only satellite measurements are available. Frequent updating of the
observed rain rates can be done to improve the accuracy of the estimation.

The potential for using cloud motion to predict rain rates was also examined. It was
found that a combination of the maximum cross correlation and optical flow techniques
provided the best estimate of the velocity of clouds. A cloud’s displacement derived
by the maximum cross-correlation technique was used for the approximation of the
future location of its corresponding rain and the final velocity derived by the optical
flow technique predicts how the rain rates would change. The rain rates predicted
by this novel method provided good correlation to the observed rain rates at an hour
later.



Dum vita est spes est— while there is life, there is hope.

Anonymous
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STFT Short-time Fourier Transform
SVM Support Vector Machine
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Chapter 1

Introduction

The estimation of precipitation by the use of geostationary satellite images has been

studied in this thesis. Precipitation is a key parameter in the hydrological cycle. It

plays a major role in agriculture and can be the main cause of flooding events. Accord-

ing to the International Strategy for Disaster Reduction (ISDR), during the period of

1991-2005 floods have the greatest damage potential of all natural disasters worldwide

especially in developing countries after the tsunami and affect the greatest number of

people. Rain rates or the volume of rain drops per time also correlate very closely

with rain fade, which is a weakening of the satellite communication signal as it passes

through raindrops. Therefore, information about rain rates is crucial for communi-

cations. However, in remote areas retrieving such information from sparse numbers

of weather stations is impractical. In such cases, satellite imagery becomes a poten-

tial solution to the monitoring of large-scale systems e.g. supercell thunderstorms,

cyclones, or mesoscale convective complexes. The movement and patterns of clouds,

observed from satellite images, can be used to indicate the instability of the weather

(Bader et al., 1995). Moreover, useful information about rain clouds can be derived

or inferred e.g. cloud depth and cloud droplet size from visible (VIS) channels, cloud

top temperature and height from infrared (IR) channels, and cloud phase from water

vapour (WV) channels, for instance (Brown and Wickham, 1995).

Satellite-based rainfall retrieval has become one of the most intense research topics

in the discipline of satellite meteorology. Numerous studies have been dedicated to

understanding rainfall from spaceborne observations. Among them are many attempts

to empirically relate the brightness temperature from satellites, particularly infrared

channels, to rainfall, e.g. cloud-indexing, multi-spectral, life history and cloud model-

based (Barrett and Martin, 1981). These techniques are summarised in Figure 1.1.

The cloud indexing approach has a long history and is still useful. It classifies

1
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Figure 1.1: The four categories of rain estimation techniques using VIS and IR images.

images into regions according to the probabilities of the cloud producing rainfall and

the nature of the rain that is produced. Subsequently, a predetermined rain rate is

assigned to each cloud type. For example, Barrett (1970) derived rainfall coefficients,

which afterwards were related to actual rain volumes by a series of polynomial equa-

tions, based on the monthly mean cloud cover, the probability and the intensities of

rainfall. The contingency table of the rain estimates showed a good correlation with

the actual rainfall, on a monthly basis. Follansbee (1973) estimated the average daily

precipitation from the fraction of areas covered by cumulonimbus, nimbostratus and

cumulus congestus. In the paper, cloud classification was done by expert operators.

There has been extensive research on cloud classification in the past, however until

now there has been no efficient methodology that can be done by computers alone.

This includes the operational Meteosat Second Generation satellite’s Spinning En-

hanced Visible and Infrared Imager (MSG/SEVIRI) cloud mask and type products

distributed by EUMETSAT1. The products of 21 cloud categories are derived by using

brightness temperature differences, visible reflectance and ancillary data sets such as

mean air temperatures and minimum sea surface temperatures by means of threshold

methods (Derrien and Gléau, 2005). Although 8 MSG channels are used, there is still

a misclassification, e.g. fog, stratus and stratocumulus are sometimes misclassified as

1The software to derive these products is developed and maintained by Satellite Application Facil-
ity in support to Nowcasting and Very Short-Range Forecasting (SAFNWC), which is a collaboration
between EUMETSAT and El Instituto Nacional de Meteorologa de España (INM).
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medium clouds (Gléau and Derrien, 2006). Scofield and Spayd Jr. (1984) proposed a

technique for deriving rain rates for extra-tropical cyclones using Geostationary Op-

erational Environmental Satellite (GOES) images, radar and conventional data such

as surface and upper air observation. The speed of rain clouds was also included.

The result, though mostly overestimated, achieved 51% and 45% accuracy for rain

rate estimation and 6-hour prediction when compared with the observation using a

5 × 5 contingency table. Arkin (1979) identified an area colder than a given tem-

perature as a rain-bearing cloud. The technique, known as the GOES Precipitation

Index (GPI), estimated global precipitation for periods of five days (pentads) to one

month. The algorithm worked well for large-scale rainfalls over the tropical oceans,

but diminished over land—it underestimated rainfall over coastal and mountainous

regions but overestimated rainfall over other land surfaces. This reflects the influence

of surface characteristics. The Climate Prediction Centre (CPC) of the U.S. Agency

for International Development (USAID) has improved this technique by integrating

satellite rainfall estimates with Global Telecommunications System (GTS) automated

rain-gauge data to create a bias-reduced daily precipitation estimate. The comparison

of the monthly accumulated rainfall of 0.1◦ × 0.1◦ latitude-longitude grids over Africa

estimated by this method increased the correlation to the station-gauge observations

from 0.34 of the conventional GPI method to 0.47 and decreased the bias from 2.25

to -0.04 mm/day (Love et al., 2004). It should be noted that the large time interval

(30 days) can average the estimation errors to quite low numbers. The cloud-indexing

technique is simple, yet more stable than other complex methods. However, using

only temperature as a basis of rain estimation is valid only for convective rain and

promising only at a coarse spatial and temporal scale. An altostratus cloud, for exam-

ple, produces light to moderate precipitation although it sometimes appears as cold

as a convective cloud in infrared images but with smoother texture.

Instead of using only IR images, multi-spectral techniques are based on a relation-

ship between cold-bright clouds, which is a characteristic of cumulonimbus, and the

high probability of precipitation. The technique works well in convective rain cases,

better than considering visible or infrared images separately. By using a VIS/IR two-

dimensional histogram, rain areas during daylight hours are determined by classifying

only pixels (Lovejoy and Austin, 1979a; Griffith et al., 1978; Bellon et al., 1980) or su-

pervised clusters of pixels (Tsonis and Isaac, 1985). For instance, Bellon et al. (1980)

created a contingency table to obtain the bivariate rain distribution probability of the

rain and no-rain events as a function of VIS and IR intensities. The probability, when

assigned to each pixel according to its IR and VIS intensities, effectively filtered out
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cirrus and stratus clouds. The result was also consistent such that its trajectory was

similar to that of the rain radar image. However, the major difficulty of the multi-

spectral technique arises when raining clouds, e.g. warm-top nimbostratus, are only

slightly different from non-raining areas but they can produce considerable amounts

of rain, and vice versa. There are also considerable overlaps in the distribution; an

appropriate threshold must be selected to produce the least classification error, as

described in Seze and Desbois (1987). O’Sullivan et al. (1990) enhanced the multi-

spectral techniques by adding textural characteristics of daytime VIS data and IR

temperature patterns to label rainfall into no rain, light rain, moderate and heavy

rain. The probability of detection achieved 81%, compared to 66% when using only

spectral features.

Life history techniques take into account a cloud’s life cycle, e.g. the total cloud

area and its rate of change. These methods are based on a finding that the total rain

amount falling from a convective cloud is insensitive to the cloud’s structure; if raining

areas of convective clouds can be defined by the satellite data, the rain amounts should

possibly be estimated by inference from past assessments of similar cloud events and

life cycles. For instance, the area of a growing cloud system has a stronger relation to

rain volumes than that of the decaying system (Lovejoy and Austin, 1979b; Griffith

et al., 1978). In addition, precipitation peaks while the cloud area is rapidly growing

and reduces at the time of maximum cloud area (Stout et al., 1979). The daily total

duration of cold cloud has also been used in the Tropical Applications of Meteorology

using SATellite and other data (TAMSAT) cold cloud statistics method to derive

rainfall intensities by a linear function (Bonifacio et al., 1993). The method has been

employed by the Food and Agriculture Organisation of the United Nations and a

number of African Meteorological Services to provide information to the agricultural

sector. The idea of the life history technique is applicable to convective rain and

storms. The weakest part of the techniques seems to be the process of cloud tracking

— cirrus shields might cover active convective clouds and make them invisible from

the images. This leads to an overestimate in rain-bearing cloud areas, though the

associative rainfall has decreased (Richards and Arkin, 1981). On the other hand,

growing clouds in close proximities could have anvil interactions that can cause the

rain volumes to be underestimated (Negri et al., 1984). In addition, the technique

requires a period of time to observe the life cycle of clouds which sometimes are too

short for processing.

Cloud model-based techniques estimate rain rates as a function of a cloud’s char-

acteristics. The relation can be found empirically using radar calibration or numerical
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weather models. Adler and Negri (1988) developed the convective-stratiform technique

(CST) using a one-dimensional cloud model to predetermine rain rates. An interest-

ing feature of CST is the attempt to eliminate thin, non-raining cirrus by screening

an IR temperature histogram for slight slopes. The remaining minima with higher

temperature gradients are assumed to be convective elements. In addition, to improve

precipitation estimation, the cloud physics could be included. Lensky and Rosenfeld

(1997) proposed a method for categorising rain clouds into convective, intermediate

and stratiform by their areas, texture and vertical velocities. The corresponding rain

rate is then assigned to each cloud type, e.g. for an intermediate cloud, defined by

the mixture of convective clouds and extensive stratiform clouds, the rain rate was a

function of a cloud droplet’s effective radius (re), an updraft velocity, the water vapour

mixing ratio, and the air pressure. In the paper, re was derived from channel 3 (3.7µm)

of the Advanced Very High Resolution Radiometer (AVHRR) data to indicate large

water drops and ice crystals which initiated the coalescence precipitation. For a strati-

form cloud, the paper suggested assigning a uniform rain rate of 3mm/h. On the other

hand, the rain rate of a convective rain was the second order parabolic function of its

area. This might not be applicable to areas larger than 2 000 km2, when cloud clusters

probably protect each other from the detrimental effects of mixing with dry, mid-level

ambient air. Reudenbach and Bendix (2002) derived re from tri-spectral bands at 0.7,

3.7 and 10.8 (µm) received from NOAA-AVHRR channels and estimated rain rates

using 3-dimensional cloud model (MM5). The reliability of the technique was tested

by assimilating the estimates into a hydrological drainage model. The results revealed

a good visual agreement with the measured drainage graph. They proposed using this

method with the Meteosat Second Generation satellite, which was not available at the

time. Recently there has been a number of techniques that can derive re from the

satellite. For example, Lensky and Rosenfeld (2006) generated a cloud mask from 8.7,

10.8, and 12.0 µm channels to ensure that only optically thick clouds were selected.

Then, re of these clouds was derived from the 3.9-µm channel via a look-up table. Al-

ternatively, the Visible Infrared Solar-Infrared Split-Window Technique (VISST) and

Solar-Infrared Infrared Split-Window Technique (SIST), which retrieves cloud opti-

cal properties by matching calculations to observations, can be used for daytime and

night-time, respectively. The two techniques have been used operationally for GOES2

and showed a compatibility when adapted to the MSG (Minnis et al., 2004).

Passive microwave-based rain estimation techniques have the advantage of being

more physically direct than visible and infrared observations as they involve absorption

2http://www-angler.larc.nasa.gov/satimage/products.html
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and scattering interaction between rain droplets and microwave radiation in the atmo-

sphere. The precipitation-sensitive properties can provide information about the total

precipitable water and the cloud liquid water content. However, currently available

information from polar-orbiting satellites is not frequent enough to provide reliable

weather monitoring. Recently, several methods have been proposed to hybridise the

microwave information with the geostationary satellite data, i.e. to calibrate the IR

brightness temperature with derived precipitation rate from microwave (MW) imagers

(Adler et al., 1994; Xu et al., 1999; Turk et al., 2000; Todd et al., 2001). An example of

the hybrid rain estimation is illustrated in Figure 1.2. How to combine such disparate

information at different spatial and temporal scales is still an open issue. Moreover,

the sensitive reaction of MW to the variabilities of surface conditions, e.g. soil mois-

ture and vegetation, can result in seriously erroneous rain rate estimation (Ferraro,

1997). Recent investigation of these hybrid techniques can be found in Kidd (2001)

and New et al. (2001).

Figure 1.2: The hybrid rain estimation combining IR and MW images in Turk et al.
(2000).
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1.1 Motivation for Research

In addition to extensive research that shows a potential for deriving rain amounts

from satellite measurements, a number of observations also reported a good correlation

between rain amounts and cloud appearance. For example, stratiform clouds which

appear as broad flat clouds with a very smooth texture in VIS images produce low

but widespread rain rates ( 100 km in horizontal dimension) whereas convective clouds

which appear bright in VIS images due to the thickness of these clouds, often exhibiting

a lumpy texture caused by the shadows from the irregularly-shaped cloud tops, give

high, localised rain rates (> 5 mm/h) (Houze Jr., 1993).

The relation between cloud appearance and rain rates also depends on particular

types of meteorological events. For example, Krennert et al. (1999) observed that

a cold-front dominated cyclone (aka Norwegian cyclone model, emerging cloud head

cyclogenesis or warm conveyor belt type) which is meridionally elongated as seen

from satellites embeds a combination of precipitation types. For example, the dry

intrusion at the rear edge (the inner boundary of the spiral) makes it a preferred area

of instability for cumulonimbus development. This can be seen as a sharp gradient

from white to black in WV images. There may be showers, thunderstorms or hail at the

rear part of the spiral. On the contrary, ahead of the surface front the precipitation

is broad (5-50 km) with its maximum close to the occlusion point, which appears

brightest in IR images.

Figure 1.3 shows a sample of cloud pattern sequences that are commonly associated

with an occluding depression, from Kurz and Young (1995). The image interval is 3

hours. The comma shape in the first image is caused primarily by an incursion of the

dry air. It suggests that the depression may already be partly occluded. Dry air which

descended from upper atmosphere overruns the surface front at D, resulting in a gap

between the surface front and high clouds. Later on during the occluding process, the

basic pattern of the higher cloud does not change very much. Rather, only changes

in texture and location of the cloud band are the main observation during this time.

These patterns may cause homogeneous rain estimates if only low temperatures are

used as a threshold to estimate rain rates. The IR images and their associated weather

diagrams in Figure 1.4 show that these textures associate with different rain types.

For example, areas of continuous precipitation represented as shaded areas in the

surface pressure diagram3 indicate that most of the precipitation areas collocate with

the thick cloud on and ahead of the frontal cloud band. Showers and thunderstorms

3Symbols used in schematic diagrams and charts can be found in Appendix A.
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are found during a development of thick, bright convective cloud band marked as X-X

in Figure 1.4 (b) and (c) whereas hail, light rain and showers are more concurrent

with smoother, darker clouds.

(a)

(c)

(b)

(d)

Figure 1.3: Meteosat IR image series and frontal analysis over part of western Europe
on 20 October 1986 at (a) 1500, (b) 1800, (c) 2100 and (d) 2400 UTC. The symbol
+ is the surface low centre. The weakening warm front was omitted in the last two
pictures. (Source: Kurz and Young (1995)).
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(a)

(b)

(c)

Figure 1.4: IR images and their associated weather diagram of an occluding depres-
sion over western Europe on 24 March 1986 at (a) 1200, (b) 1500 and (c) 1800 UTC.
Hatched areas are mountainous and shading indicates areas of continuous precipita-
tion. (Original source: Kurz and Young (1995)).
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A better resolution satellite image and the corresponding rainfall information of a

mature mid-latitude cyclone are presented in Figure 1.5. The combination of IR, VIS

and WV images shows several patterns that resemble those of the rain radar image.

(a) (b)

Figure 1.5: (a) RGB false image of a summer mid-latitude depression over the British
Isles and western Europe on 23 June 2004 at 1030 UTC from Meteosat7 (IR ⇒ red,
VIS ⇒ green and WV ⇒ blue). The corresponding rain rates are presented in (b).
The images are polar-stereographic projection and the thick white line indicates the
area where the rain information is available.

These observations show an obvious relation between precipitation and cloud ap-

pearance from geostationary satellite images. Therefore, the cloud appearance is ex-

pected to provide some useful clues to help the rainfall estimation and prediction.

This assumption motivates an idea to study the relationship of cloud texture to rain

rates. A challenge is the diversity of textural appearance which makes it difficult

to provide a precise definition. Cloud textures could either be homogeneous or have

spatial arrangements. They may contain both statistical or structural properties or

even random placement of elements. Fortunately, there are several classes of image

processing algorithms available. These techniques are unique and will be analysed in

this thesis. In addition, the correspondence between cloud and rain movement implies

that the motion of clouds could be used to predict rain movement, which is required

for rainfall prediction. Therefore, an analysis of cloud movement is also included in

the investigation of rain estimation and prediction.
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1.2 Objective

By the observation that there is a strong relation between the pattern of clouds and

their corresponding rainfall, the appearance of the clouds and how they move are

expected to be helpful for rainfall estimation and prediction. This study aims to ex-

tract the appropriate motion and textural information of clouds from a geostationary

satellite that can be related to the corresponding rain rates. Geostationary satellite

images are selected for the study because they are spatially continuous, highly repet-

itive and relatively inexpensive to receive and process. Though indirectly related to

rainfall, they are still the most promising source for rainfall information and are the

richest resource that is available. However, a particular meteorological situation can

affect rainfall rate differently. Therefore, only mid-latitude cyclones are chosen as a

subject of the study in order to confine various meteorological effects. Based on the

geostationary satellite images that are available, the objectives of this work are to

• analyse textural information of clouds seen from the geostationary satellite,

• investigate techniques to derive motions of clouds for mid-latitude cyclones,

• study the texture of clouds from the geostationary satellite and its relationship

to the intensity of rainfall of the mid-latitude cyclones on the surface of the

Earth,

• use the derived cloud motions and textures to predict rain rates.

For clarity, the work does not intend to study all physical processes within clouds

or their effects at the surface, but it tries to exploit the available satellite data and

aims to be a step towards a better estimation and prediction of rainfall rates.
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1.3 Scope of Work

1.3.1 Data

One of the inherent problems in rain rate estimation from satellite measurements is

a scarcity of ground data to verify instantaneous satellite retrievals. Therefore, the

mid-latitude region over the British Isles and western Europe is selected as an area of

study. The main reason is the density of rainfall information that is available from the

Radarnet reception system. The rain rate information is retrieved from the British

Atmospheric Data Centre (BADC). It is derived by the British Meteorological Office

every 15 minutes from a network of radars across the United Kingdom, France, Ger-

many, Belgium and the Netherlands and then combined into a single pan-European

product on an (equal area) polar-stereographic projection4. The data is collected

at a nominal 5 km resolution, which provides a better resolution than using the in-

terpolation of data from weather stations. Using this information for estimation and

verification has a number of advantages, especially the avoidance of errors encountered

when comparing satellite estimates with rain-gauge measurements. However, the lim-

itation of the radar information is that there may be cases where the cloud particles

are too small or the cloud is too thin and too far, e.g. more than 10 km away, to

be detected (Derrien et al., 2005). There can also be spurious echoes resulting from

anomalous propagation of the radar beam, errors resulting from variations in the ver-

tical profile of reflectivity and radar sensitivity errors(Harrison et al., 2000). The rain

information used in this thesis is derived from .GIF images due to the restricted access

to digital data at the time the research was initiated. However, later inspection found

that the two data are highly correlated, i.e. the correlation coefficient between them

is approximately 0.79-0.89. The .GIF images, therefore, should be adequate for use in

rain estimation and prediction.

For geostationary satellite images, infrared, visible and water vapour images of

Meteosat 7 have been used in the study. The images were received from BADC and

converted into radiances by calibration coefficients provided by Eumetsat. The visible

images are also normalised by solar zenith angles to account for different illumina-

tion of the sun at different latitude and longitude coordinates and different times of

day. The resolution of the satellite image in the mid-latitude regions increases from 5

km/pixel at the nadir to 8 km/pixel. Afterwards, all the images are reprojected from

orthographic to polar stereographic projection to align with the rain radar images.

4At present no additional quality control is performed on the data.
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Details of the image pre-processing are in Appendix B. Average resolution of the

reprojected image is 5 km/pixel. The resolution per pixel of a rain radar image and

the coverage of the rainfall information are illustrated in Figure 1.6.

Although the radar and satellite measurements are finely collocated with a displace-

ment error not exceeding 1 pixel when considering coastlines and latitude-longitude

grids, there can be displacement errors owing to viewing angles of the satellite relative

to cloud height5 which should be within 12 km and the error contribution arising from

the non-temporal coincidence of the satellite and radar observations which can differ

by at most 7.5 minutes (Uddstrom and Gray, 1996).
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Figure 1.6: Area of the study on the polar stereographic projection. The dotted line
shows the area where the rain information is available. Resolution (km per pixel) is
represented in colours.

Current microwave instruments such as the Special Sensor Microwave Imager

(SSM/I) over oceans could also be used as a ground truth data. Its precipitation

5details in Chapter 3
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is calculated using the relationship to temperature derived from the measured mi-

crowave radiation and is well-calibrated with actual rain rates. However, the images

have a pixel resolution of 12.5× 12.5 km and are available only 3 times a day. A finer

passive microwave imager at 4×4 km of the Advanced Microwave Scanning Radiome-

ter (AMSR) at 85 GHz is also available but only once a day. On the other hand, a more

recent sensor that can provide better rain information such as the Tropical Rainfall

Measuring Mission (TRMM) Microwave Imager (TMI) has coverage extending only

from 40◦S to 40◦N, which is not practical for the mid-latitudes.

1.3.2 Verification and Comparison

There has always been a problem trying to quantify the accuracy of rain estimates

and compare them with different rainfall estimation methods due to different scoring

schemes, different space-time resolution and different meteorological events (Smith and

Austin, 2000). The methods may also relate differently to variations in topography,

atmospheric instabilities, synoptic conditions or other random variations that may

occur. Moreover, each statistic gives only a piece of information about the error, and

so it is necessary to examine a number of statistics in combination in order to get a

more complete picture. Therefore, the performance of the proposed algorithm should

be carefully quantified. The statistics recommended by the International Precipitation

Working Group (IPWG) validation/intercomparison project are used. These statistics

include root mean square (RMS) error, Hanssen and Kuipers score and Heidke skill

score. Details of these statistics and their definition are in Chapter 4.

1.4 Scheme of Work

The rain estimation procedure used in the study is described as follows. First, the

information that relates to rainfall is extracted from the satellite images. Next, the

most relevant information is selected as an input of an estimator, which is trained to

find the relationship between the information and the rain rates acquired from the

rain radar images. The output from the estimator is an estimate of the rain rate.

Subsequently, the trend of the movement from a previous moment is incorporated to

predict rain rates in a future period. The rain radar data is also used to validate the

performance of the prediction. The flowchart of the work is presented in Figure 1.7.
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Figure 1.7: Schematic diagram of the proposed algorithm to estimate and predict
rainfall. Text linked with dotted lines indicates the algorithms used in each process.
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1.5 Organisation of Thesis

In this chapter the objectives of the thesis to relate texture and motion of mid-latitude

cyclones to rain rates have been outlined. Relevant research has been reviewed to show

the feasibility of these objectives. In Chapter 2, literature surveys of the past research

have been done. The surveys focus on how texture and motion can be extracted from

the satellite images and what methods can be used for the estimation. In Chapter

3, several techniques to extract characteristics of the mid-latitude cyclones from the

satellite images into quantitative parameters have been studied. The implementa-

tion of rain estimation using these parameters together with the verification of the

estimation results are in Chapter 4. The method of combining cloud motions to the

derived rain estimates in order to predict rainfall is described in Chapter 5. Finally,

the conclusion and future research topics of the work are in Chapter 6 to complete

this thesis.
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Literature Survey

In the past, there have been many attempts to derive rain rates directly from radiances

of the satellites. However, the similarities of the spectral response of different types

of clouds such as ice clouds and snow make such methods likely to produce erroneous

results. In this chapter, the extraction of more informative features that have been

used for cloud images is investigated. The information that can be extracted from

satellite images are cloud texture, cloud movement, spatial features such as shape

and size of clouds and contextual features such as sea surface temperatures. Details

of these features are in Section 2.1 Methods that have been used for the rain rate

estimation are also discussed in Section 2.2.

2.1 Information Extraction

2.1.1 Textural features

Instead of only a pixel being considered in isolation, the correlation to its neighbours

can be used to better characterise clouds. The relationship in terms of the repet-

itiveness of spatial arrangements is called a textural feature and is used to signify

the structure of an image. While the spectral characteristics of types of clouds may

change, their textural properties are often characteristic and tend to be less sensitive

to atmospheric attenuation or instrumental noise (Lamei et al., 1994).

The textural information is often computed as statistical measures of the spatial

distribution of image intensities. This is applicable to fine textures which have no

regular spatial arrangement but obey some statistical rules. The most common method

to derive the relation of any two pixels, referred as the second statistics, is to derive

a set of statistical measures from a co-occurrence matrix. The matrix represents a

17
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conditional probability of image intensities between a pixel and its neighbours at a

given displacement (∆i,∆j), namely

C(p, q) = Pr{I(i, j) = p and I(i+ ∆i, j + ∆j) = q}, (2.1)

where I is an intensity at the position (i, j) and p and q are the values of the intensity1.

This technique provides good results in cloud classification of high-resolution, low-

orbiting satellite images (Welch et al., 1988; Gu et al., 1991; Pankiewicz, 1995). By an

observation that the information close to the diagonal of a co-occurrence matrix from

Meteosat VIS images could distinguish cloud types, Lewis (1998) created a histogram

of a combination of diagonal and near-diagonal co-occurrence values in order to define

modes of the histogram that corresponded to different cloud components, e.g. cloud

edges, low clouds, middle clouds, high clouds and cloud tops. The clouds were then

classified into high, middle and low altitude.

Instead of the probabilities of co-occurrences, the difference method describes the

spatial arrangement, e.g. variability/homogeneity, of a scene by using the probability

that the intensities of any two pixels in the scene differ from each other by a specific

value. Using a difference array, defined by

Dd,θ(i, j) = |I(i, j) − I(i+ ∆i, j + ∆j)|, (2.2)

where d is a distance between the pixel (i, j) and (i+∆i, j+∆j) and θ = tan−1(∆i/∆j)

is an angle between a line connecting the two pixels and the x axis, a probability density

function can be estimated, namely,

fd,θ(k) = Pr(Dd,θ(i, j) = k). (2.3)

Statistics of this function are ranked as one of the most useful textural features for

nephanalysis (Wu et al., 1985; Gu et al., 1989; Welch et al., 1990; Khazenie and

Richardson, 1991; Uddstrom and Gray, 1996). The statistics of the difference matrices,

e.g. means and maxima, when added to determine rain rates from GOES infrared and

visible images in Wu et al. (1985), improved the Panofsky-Brier skill score2 by 27%

more than using the radiances alone.

1 There are 2 types of position indexes of an image used throughout the thesis. First, (i, j)
indicates row and column indexes of the image. On the contrary, �x refers to the position in x and y
coordinates.

2Panofsky-Brier skill score is defined by R−E
T−E , where R is the number of correct estimates, T is

the total number of estimates, and E is the expected value of R.
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The co-occurrence and the difference matrices could be calculated at every point

or within non-overlapped windows to reduce the allocated memory and time for the

computation. However, defining neighbours by using a fixed-size window has a dis-

advantage when applied to objects that can vary in size. This is because the extent

to which textural properties may be recognised is related to the resolution at which

the image is observed, therefore the resolution plays an important role in the per-

formance of cloud classification (Welch et al., 1989). The fixed-window method also

suffers from the localising problem if a large window size is applied. Grazzini et al.

(2003) gave a scale-invariant weighting function to pixels in the window so that pairs

of pixels further away from the base pixel contribute less. The method was expected

to enhance localisation and make the results independent of window size. Neverthe-

less, the result of cloud segmentation when this improved method was applied to a

Meteosat IR image was rather poor. The authors gave a reason that both traditional

and improved methods assumed the regularity condition of the image, e.g. each type

of clouds exhibits the same textural characteristics. The assumption is violated due

to thermodynamic properties of a turbulent, chaotic flow of clouds, which can make

the same type of cloud appear differently in satellite images.

Another way to describe texture is via transform techniques such as the Fourier trans-

form. It assumes that a cloud field can be modelled by a wide-sense stationary stochas-

tic process3 — the intensity distribution of a cloud object is assumed to be invariant

with respect to spatial coordinate translations. The transformed data can then be

characterised by a sum of energies, entropy measures which quantify the spread of

spectral-frequency entries, or numbers of dominant frequencies. For example, the tex-

ture pattern of cumulus has a large number of dominant frequencies, which signals

that it is highly textured, and its small value of entropy indicates that the texture is

structured or regularly arranged (Gu et al., 1989). Nevertheless, the global processing

nature of the Fourier transform means that the method fails to identify local structures

in an image.

Many psychophysical studies on human texture perception, performed extensively

from 1960-80, revealed that a human can clearly differentiate two types of texture

if they differ in their second order statistics (Thomson and Foster, 1997). However,

3A stationary stochastic process is a random process whose probability distribution at a fixed time
or position is the same for all times or positions. Here, wide-sense implies that it only requires that
the first and second moments do not vary with respect to time.
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in some cases, we are also able to discriminate two textures even if they have the

same second statistics (Lamei et al., 1994). This observation suggests that there are

not only spatial but also frequency analyses being performed in the visual system.

Thus, a number of techniques involving discrimination of texture by modelling the

human visual system have been proposed. A more recent spatial-frequency analysis

technique is the wavelet transform. The idea behind these time-frequency joint repre-

sentations is to cut the signal of interest into several parts and then analyse the parts

separately in frequency domains. In the wavelet analysis, a fully scalable modulated

window function is shifted along the signal to calculate the corresponding spectrum

for every position. The process is repeated several times with a slightly shorter (or

longer) window as the frequency changes. The output is a collection of time-frequency

joint representations of the signal, all with different window sizes. This can also be

considered as a multi-resolution approach. Amato et al. (2001) found that applying

the orthogonal Daubechies wavelet transformation to Meteosat images as a textural

feature can facilitate the discriminant analysis approach. The discriminant analysis

is one of the powerful classification tools that prefers simple probability densities of

the input variables. The transformed data in high-frequency, high-resolution (H-H)

regions is uni-modal and, therefore, suits the discriminant analysis.

Alternatively, there have been attempts to construct a parametrically generative model

that could have created the observed intensity distribution to describe texture. For

example, a stochastic spatial interaction model treats an image intensity as an output

of a stochastic process, whose input is a sequence of independent random variables,

i.e. the observed intensity. The output intensity is modelled as a linear combination of

neighbouring intensities plus an additive noise. On the contrary, a random field model

utilises spatial variations. It is a probabilistic graphical model that represents the joint

distribution of a set of random variables as a factorisation over a graph. The model

consists of nodes that represent random variables, and arcs that represent conditional

independence assumptions. The widely used random field model is the Markov random

field model which assumes that an image pixel possesses a Markov property, i.e. the

present state only depends on the current state. In other words, the conditional

distribution depends on values of the neighbouring pixels only. However, Kostinski

(2000) found that the statistical characterisation of the spatial distributions of cloud

particles is a doubly stochastic Poisson process, which can result in complications in

estimating parameters of the texture model.
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Another method to describe the texture of an image is the fractal concept (Mandelbrot,

1982, 2001). It arises from an attempt to explain the dimension of a complex object.

To measure a coastline, for an example, a number of measuring tools that are different

in shape, scale and size would give different lengths of the same coastline. Therefore,

the fractal dimension is used as the measurement of an object in order to cope with the

measuring inconsistency. Using the idea that the object contains N distinct copies

of itself, or fractals, each of which has been scaled down by a ratio r, the fractal

dimension is defined as

Df =
logN

log(1/r)
. (2.4)

Theoretically, Df has a certain value according to the roughness of texture, despite

changing scales. This property makes it appealing to be a texture descriptor. As a

consequence, the idea of the fractal is now widely used in image processing and image

compression (Tso and Mather, 2001). Figure 2.1 (d) shows the fractal dimension as

a function of the smoothness of the texture. The smoothness is represented by sizes

of a mean filter applied to a simulated image in Figure 2.1 (a). The size of the filter

is labelled as a smoothing factor, e.g. a smoothing factor of 8 refers to a mean filter

of size 8× 8 pixels. As seen from the figure, the fractal dimension of the whole image

inversely correlates to the smoothness of the image.

However, in nature an image can contain various types of texture. Therefore, it

is impossible to find an exact replica that can precisely reproduce the whole object.

Instead of using a single fractal dimension for the whole image, it can be calculated

for each overlapped sub-image and then assigned to the central pixel of the sub-

image. A composition of many fractals is known as a multi-fractal. Lovejoy and

Schertzer (1986) produced very realistic simulations of many different cloud types

using fractal generation algorithms. Grazzini et al. (2005) applied the multi-fractal

concept to the Meteosat IR images in order to extract their main singularities, which

were referred to as the main current of the turbulent flows. Then, the gradient of

the singularities was used to identify where the vertical movement took place. In

this manner, the convective characteristics of clouds were localised. The result gave

a very good agreement with the TRMM ground truth data. However, selecting an

appropriate size of each sub-image becomes a matter of concern when using the multi-

fractal method as it should be large enough to allow sufficient numbers of window size

to calculate the fractal dimension but not too large that regions with different textures

are combined. The solution can be found by trial and error as different applications

involve different image textures.
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Figure 2.1: (a) A simulated image and its smoothed versions using a smoothing factor
of (b) 5 and (c) 10. Fractal dimension as a function of smoothing factors applied to
the original image is in (d).
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Christodoulou et al. (2003) classified clouds by nine different sets of textural features.

The sets included the first-order statistics, e.g. mean, standard deviation, skewness,

and kurtosis; the second-order statistics, which are co-occurrence matrix, difference

statistics and pair-wise statistical feature matrix, when any two pixels were considered;

neighbourhood (within a specific-size window) difference matrix; Laws’s texture energy

measures; fractal dimensions using the Brownian motion model; and Fourier power

spectrum. Each set had its own classifier. Then, the class that won a dominant voting

among the nine classifiers was selected as a final output. The classes consisted of

altocumulus-altostratus, cumulonimbus, cirrus-cirrostratus, cumulus-stratocumulus,

stratus and clear conditions. Using 366 samples from 98 Meteosat IR images, the

technique achieved 64% accuracy. The class selection was also done by the weighted

averaging approach but yielded a slightly better accuracy. However, the paper did not

clarify how the textural features contribute to the classification—why these features

were chosen, or what was the correlation between each feature. Eliminating depen-

dent features can boost the performance of the classifiers and therefore attain higher

accuracy.

It should be noted that some assumptions are made in cloud texture analysis. Com-

monly, the algorithms assume that clouds exist in a single layer; they are at the same

height and do not overlap with each other. The assumption is severely violated in

the Arctic and near the core of cyclones where cloud layers are well-separated in a

vertical column (Ebert, 1989). The window-based algorithms always regard the con-

sidered window as one object; it can be either one type of clouds, land or sea—but

one only. Therefore, the chosen window size should be small enough to contain appro-

priate homogeneity but large enough to embrace adequate information. In addition,

it implicitly assumes that the atmospheric water vapour absorption is negligible; the

radiance received comes directly from clouds or the earth’s surface when the sky is

clear. However, based on the observation of similar texture between top of the cloud

and rain radar images, these effects should be trivial when texture information, i.e.

the relation between neighbouring pixels rather than the actual value of the pixels, is

used.
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2.1.2 Temporal features

Temporal information4 derived from geostationary satellites has been proved to be

an effective resource for retrieving wind information. Description of current opera-

tional wind retrieval procedures can be found in Schmetz et al. (1993) for Meteosat,

Nieman et al. (1997) for the NOAA/ NESDIS GOES, and more recently Holmlund

(2000) for the Meteosat Second Generation. In summary, the detection of the at-

mospheric motion vector (AMV) is done by a three-step procedure: tracer selection,

height assignment and cloud motion retrieval.

For instance, at the Japan Meteorological Agency (JMA)5, the data is derived four

times a day from three consecutive infrared, visible and/or water vapour images at half-

hourly intervals. First, cirrus (for high-level wind) and cumulus (for low-level wind) are

detected by using histogram analysis of the infrared images within an area of 32× 32

pixels for use as a target/tracer cloud. Next, a displacement between the target cloud

of an image and the following image is calculated by a pattern-matching algorithm.

Two of the most familiar matching techniques are the sum of squared differences and

the cross correlation methods, both of which seek to find the maximum correlation

between an initial target and the subsequent match scene. In the second step, the

heights for high-level wind and water vapour wind are assigned to cloud top heights

calculated from the brightness temperature, whereas 850 hPa is uniformly assigned

to low-level cloud6. Afterwards, the positions of the tracked clouds are transformed

into latitude and longitude coordinates, and the speeds and directions of winds are

calculated by taking into account the displacement and the time difference between

the images. A motion vector derived from the first and second images is compared

with a vector derived from the second and third images to check the validities of

AMV derivation. The variation of cloud-top temperature is also checked in order to

reject vectors derived from growing or decaying cloud. However, most of the high-

level clouds especially semi-transparent clouds cannot be tracked appropriately in the

automatic processing, therefore a subjective quality control is also needed. Finally,

AMV data are disseminated to JMA Headquarters in operational use for numerical

weather prediction.

4For clarification, a temporal feature means a piece of information extracted from a sequence
of images. On the contrary, a textural feature describes the relationship between a pixel and its
neighbours whereas a spectral feature means a particular value of that pixel.

5http://mscweb.kishou.go.jp/general/activities/products/amv.htm
6The average pressure altitude for 850 hPa is about 1500 metres above sea level.
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The AMVs, however, are not a direct measurement of the wind field— clouds are not

always passive tracers, and their occurrence may not always be in areas of the strongest

wind speed. In addition, the cloud motion represents a layer-mean flow rather than

a wind vector at a specific level; it represents cloud-top movements rather than the

bulk movement of the atmosphere (Schmetz et al., 1993).

Endlich et al. (1971) found that the efficiency of the maximum cross-correlation

technique when applied to cloud images depends on the resolution of the data, the

translational speed of the clouds, and the relative importance of random, non- trans-

lational changes in cloud locations and brightness. There are also cases where cloud

motion changes with altitude. Therefore, it seems appropriate to include cloud-height

information in order to improve cloud motion estimation by the cross-correlation

method. In addition, the method suffers from expensive computation and limitation

of searching directions, i.e. horizontal or vertical, such that only uniform translational

displacements can be properly measured. Moreover, the result which is a speed, or a

displacement, may not be the true velocity of the object in the real scene.

To derive velocity of an object in three-dimensional space from a sequence of two-

dimensional images, Horn and Schunck (1981) proposed the idea of optical flow method

exploiting a fluid dynamics constraint. This technique pretends to see a connection of

the object in two sequential images and describes this invisible connection by (optical)

fluid flows. The idea is also applicable to cloud motion, which is a special case of fluid

motion and consists of very complex motion dynamics (Zhou et al., 2000). The main

assumption used in the optical flow method is that the brightness of an object remains

constant with respect to time, i.e.

∇I · �v + It = 0, (2.5)

where I = I(�x, t) denotes the image intensity as a function of space (�x) and time

(t), It the first order derivative of I with respect to time and �v the image velocity

vector. The optical flow method appears to work well with infrared images on several

applications such as the recovery of vertical motions of a hurricane and a temporal

interpolation to generate missing frames in the Meteosat sequences (Zhou et al., 2000;

Larsen et al., 1998).

Due to a limitation that infrared images from geostationary satellites are the only

source to classify low clouds at night, Papin et al. (2002) introduced temporal informa-
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tion to perform contextual labelling to each pixel. A motion-related feature is derived

from the optical flow constraint equation, including its measure of confidence. A clear-

sky pixel was then identified by its non-movement. For large motions, the multi-scale

analysis was performed by minimising an energy function which is a combination of

two potential functions that accounted for low clouds and clear-sky characteristics,

e.g. motion vectors and temperature of pixels. These labelled regions were then used

as initial seeds for the minimisation process of the uncertain areas. The results, com-

pared to the classification of AVHRR based on multi-spectral method, gave a visual

agreement.

2.1.3 Spatial feature

Shape and size of clouds have always been an important source of information to me-

teorologists. The simple shape descriptions such as centroids, elongation ratios, local

polynomial approximation or Fourier shape descriptors can be used. A precise descrip-

tion of shape definitions and changes during a meteorological event could give clues to

its future movement and structure. Despite a rich diversity of spatial features, there is

very little research in this area. Papin et al. (2002) applied distinct shape features of

clouds to enhance the cloud classification, especially in the cases that fog and stratus

would have been mislabelled as low clouds. Seddon and Hunt (1985) proposed shape

and shadow features for the use in Meteosat images. These features were the thinness

ratio and circular deficiency which were derived from cloud area and perimeter length.

The remaining features were size, fullness and complexity of the skeleton. However,

the method is efficient for rigid bodies but is useless to describe complex structures; a

suitable shape description must be able to discard local perturbations to the original

shape of an object and allow the evolution of the same object in different time frames.

There is a positive correlation between sizes and the lifetime of convective systems

(Machado et al., 1998). For example, most of the low temperature (less than 245◦K)

systems with 100 km equivalent radius have lifetimes shorter than 3 hours. As the

systems evolve, splitting of the clouds may occur. This results in changes of the

precipitation pattern and three-dimensional wind structure. The process occurs very

often and can be considered as an important part of the cloud’s life cycle. It also

indicates the intensification of precipitation and the decay of the upward movement

of the storm (Cotton and Anthes, 1989). This information is applicable to convective

systems which have well-defined shapes. For other types of meteorological conditions

such as mid-latitude cyclones, these characteristics are unlikely to happen. A cyclone
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usually consists of several types of clouds. Therefore, although having a distinct spiral

shape, the true shape of individual events occurring within the cyclone is difficult to

derive.

2.1.4 Contextual features

Supplementary environmental parameters can be added to characterise clouds. One

example is sea surface temperature (SST) which can be derived from microwave or

infrared channels. Uddstrom et al. (2001) presented the possibility of using the SST

difference derived from brightness temperatures of AVHRR’s channel 4 images to

recognise four cloud classes, i.e. stratocumulus, cumulus, thick and transmissive cir-

rus. However, sensing SST through the atmosphere by means of the thermal infrared

is subject to several environmental factors that can degrade its accuracy, such as sun

glint, water vapour absorption through the atmosphere, trace gas absorption, and

episodic variation in aerosol absorption (Brown and Minnett, 1999). Therefore, ther-

mal infrared measurements of SST require atmospheric correction and can only be

made for cloud-free pixels. On the contrary, passive microwave measurements are

largely unaffected by clouds and generally easier to correct for atmospheric effects.

However, its SST has less accuracy and poorer resolution due to lower signal strength

of the Earth’s Planck radiation in the microwave region (Castro et al., 2004). In addi-

tion, the satellite observation relates to the temperature of the skin of the ocean, i.e.

at top few microns, for the infrared SST and the sub-skin, i.e. at a depth of approx-

imately 1 mm below the sea surface, for the microwave SST. It can be significantly

different from the bulk temperature of the traditional in situ measurements which is

typically sampled at around 1 m depth.

On the other hand, an atmospheric temperature structure can be exploited in

addition to brightness temperature to acquire cloud-top heights to categorise clouds

into high, medium and low. For example, Garand (1988) derived cloud heights (η)

using the relation between cloud-top temperature (Tc) and sea surface temperature

(Ts), i.e.

η =
Ts − Tc

6.5
, (2.6)

where 6.5◦Ckm−1 is a vertical lapse rate.

More parameters that probably relate to the amount of the rainfall involve geo-

graphical location of the events such as latitudes of the centre and the size of the

cyclones, pressure gradient, surface winds and atmospheric winds at different levels,

heat from the earth surface, seasonal and diurnal changes, cloud base level, humidity,
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height of the tropopause and orographic profiles.

2.2 Rain Estimation

There are two common approaches of pattern recognition algorithms to estimate rain

rates, as shown in Figure 2.2. First, the problem can be seen as function approxima-

tion, i.e. to find a relationship between the features and the rain rates directly. As a

result, the estimated rain rate is continuous. However, the relationship between the

two data is likely to change with time. This requires the function to be adjusted con-

stantly. The overlapping of the feature space and outliers also demand an appropriate

training approach for the approximation. Second is the classification. The feature

space is partitioned according to statistical details of clusters which are then labelled

to appropriate rain classes. The method is superior to the function approximation in

the sense that it can tolerate the overlapping of the features and some irrelevant data

that may be regarded as noise and suffer less from a severe nonlinear mapping between

the features and the rain rate. However, the estimated rain rate is not continuous,

rather it is defined separately by its class membership. For example, a class member-

ship can be defined according to cloud type and then each cloud type is assigned to

a specific rain rate. However, there is no assurance a priori that such cloud classes

will be separable given the satellite measurements and it is possible that some analyst

biases may be introduced into the definition of classes (Uddstrom and Gray, 1996).

In addition, each cloud type may not correspond to the same rain rates. Otherwise,

it can be categorised according to the amount of rain rates. Due to the limitation

of discrete rain estimates, the classes should be well-defined to support all possible

rain rates. This implies that the training data should cover all possibilities of the rain

rates, which may be impossible in practice.

Next, details of function approximation and classification methods that have been

widely used in remote sensing applications are described.
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(a)

(b)

Figure 2.2: Two common ways to estimate rainfall: (a) function approximation and
(b) classification. The symbols {xt}, {yt} and {ŷt} denote features, actual rain rates
and rain estimates, respectively. In addition, ci is a class in the feature space and
K(xt) is a kernel function of xt.

For cloud classification, it is always assumed that the feature space satisfies a Gaussian

class-conditional probability density function7 (Wu et al., 1985; Ebert, 1987; Garand,

1988). Then, the boundary function is defined by a linear combination of features

which best separate classes. The separation is measured by a distance between the

centre of each class with respect to the compactness of the within-class distribution of

the features. This classification method is known as the Fisher’s linear discriminant

(Fisher, 1936).

In many applications, the linear discriminant cannot effectively handle complicated

problems such as nonlinear boundaries between classes. In order to learn and find an

appropriate boundary function from the nature of a feature space, the classifier should

be able to think by itself. An artificial neural network (ANN) is a concept of such a

thinking machine that has been extensively studied. The original inspiration for this

concept stems from bioelectrical networks in the brain formed by neurons and their

synapses. For example, a feed-forward neural network, which is the simplest ANN,

is composed of these neurons arranged in layers. Each of the neurons in a layer is

connected to every neuron in the next layer. The output of the neuron is obtained by

7refers to a normally distributed probability that a feature falls into a given class.
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a weighted linear combination of the input values, i.e.

ŷj = f(
∑

i

wjixi + w0), (2.7)

where xi is the input value, ŷj is the output of the jth unit, f(·) is a nonlinear function

of the weighted summation of the input values to determine how it should activate

other neurons in the next layer, wji and w0 denote a weight coming from the input

i and a bias of the unit, respectively. Typically, there are at least three layers in

the network: input, hidden and output. After an arrangement of perceptrons, i.e. a

set of neurons and their connection, the network is trained until the weights of the

neurons converge to some values that give a solution nearest to the desired output.

The output of the network can be a class label for classification or a real value for

function approximation.

The most common learning technique for MLPs is the feed-forward backpropa-

gation (FFBP) network. First, it determines the weights of the output layer that

minimise the error from the desired output. The error is then propagated back to

the previous layer to find out how much error each neuron has produced. The neuron

then adjusts its weight to achieve the least possible error. Lee et al. (1990) applied

the FFBP neural network to classify Landsat Multispectral Scanner (MSS) visible

data into stratocumulus, cumulus and cirrus. The network achieved an overall accu-

racy of 93%, compared to 85% of the k-nearest neighbour approach and 84% of the

linear discriminant analysis. MLPs have been widely used for rain estimation. For

example, Grimes et al. (2003) applied a feed-forward MLP to estimate rain rates over

Zambia. The features used for training the networks were IR brightness temperature

and its first statistics, cold cloud duration (CCD), which is defined as the number

of hours for which the pixel temperature is colder than some specified temperature

thresholds (213, 223, 233 and 243 K in the paper), principal components of surface

horizontal wind velocities, surface relative humidity, and higher-level vertical wind

velocities and geometric locations. The paper claimed a better result than standard

CCD method which exploits a linear relationship between CCD and rain rates. Alter-

natively, Tapiador et al. (2004) trained the network by IR brightness temperatures,

2-hour-and-a-half historical measurements and the first-order statistics of cloud tex-

ture. An additional feature was the number of pixels with a brightness temperature

less than 225K to provide information on the heaviest rain areas. The estimation over

mid-latitude regions achieved a visual agreement of rain rate histograms when com-

pared to the SSM/I and rain gauge measurements. However, there were no reports of
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the significance of the training features towards the networks’ performance in either

work.

Unlike MLP that tries to find a relation between a desired output and a real value

input, a radial basis function (RBF) network gives the output as an approximation of

the probability density function of the input. It uses the suitable proportion of the

Gaussian mixture of the input vectors, rather than using all feature vectors. That is,

the output at the jth unit is a linear combination of the Gaussian mixture,

ŷj =
∑

i

wi · f(x|θi) + wi0, (2.8)

where f(·) is a basis function, e.g. a Gaussian function with parameter θ, wi and

wi0 are the weight and bias of each Gaussian. Therefore, the input vectors can be

represented by a set of mean (location), variance (width) and weighting parameters

(significance) of the Gaussian functions. Theoretically, the Gaussian response which

decreases monotonically to the centre point is efficient for approximating target func-

tions without being trapped in local minima of the error surface. It has been applied

to rainfall tracking (Dell’Acqua and Gamba, 1998) and rainfall prediction (Dell’Acqua

and Gamba, 2003) from weather radar images. By considering the weights of the net-

work as the parameters describing the structure of the rain field, the results showed

that the network better modelled the nonlinearities of the rain rate series than us-

ing linear functions. The network has an advantage of being much simpler than the

MLP approach while keeping the major property of the input vectors. This attractive

characteristic makes it a widely used method for both function approximation and

classification.

For classification, a basis function can be regarded as the class-conditional distri-

bution Pr(x|ci) that links to the output unit with the value Pr(ci). The output of the

network, as a result, represents an approximation to the posterior probability Pr(ci|x).

That is,

Pr(ci|x) =
∑

i

Pr(ci) · Pr(x|ci). (2.9)

Clearly, a network is required for each class of the data. Moreover, more than one

basis function is always needed to represent Pr(x|ci).
Alternatively, a combination of several radial basis function networks can be used

to approximate the posterior probability of every class. Such a network is known
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as a probabilistic neural network (PrNN)8, first proposed by Specht (1990). While

the RBF network chooses the input pattern that corresponds to a specific class for

training, the PrNN weights all the inputs to find appropriate parameters for the basis

functions, then select only a set of basis functions to represent a specific posterior

probability. The benefit of non-iterative training procedure is that it gives rise to very

fast computation. Welch et al. (1992) used 100 bootstrap sample sets9 to compare an

FFBP network, a PrNN and a traditional stepwise discriminant analysis to classify 5

spectral and 15 textural features derived from AVHRR images (channel 1, 3 and 4) into

10 classes, e.g. land, open water, sea ice, stratus over ice, stratus over water, cumulus,

and multi-layered cloudiness. The experimental results revealed that the FFBP gave

the best overall accuracy of 87.59±1.27%, whereas the PrNN and the discriminant

analysis yielded 87±1.00% and 85.57±1.08%, respectively. However, in the paper,

the FFBP required 13 hours for training, compared to 3 minutes for the PrNN and

90 seconds for the discriminant analysis. Bankert (1994) applied PrNN to classify

AVHRR images (channel 1 and 4) in maritime regions into 5 classes: low clouds,

altostratus, high clouds, precipitation clouds and clear. By using 5 spectral and 11

textural features, together with IR cloud fraction and latitudes, the system achieved

an accuracy of 90.3±1.00% when applied to 100 bootstrap sample sets. However, the

PrNN can possibly become a very large network since every training pattern needs to

be stored. This leads to extensive storage and computation.

Radial basis functions can be modified to approximate a nonlinear function by ap-

plying a kernel function to each radial basis. As a consequence, the modified method

which is known as the generalised regression neural network (GRNN) can complete

the approximation in only one pass (Specht, 1991). While PrNN aims to estimate

the posterior probability using Gaussian functions, GRNN uses the functions to ap-

proximate the response surface as the desired output. The ability to give output

instantly makes it attractive and widely used in many signal-processing applications

and financial prediction (Huang et al., 2004).

The support vector machine (SVM) has been recently proposed as an efficient method

for pattern classification and nonlinear regression. The approach is gaining popularity

due to many attractive features. For example, SVMs are computationally efficient

by using only a few numbers of selected input features, known as support vectors, to

8The probabilistic neural network is commonly abbreviated as PNN. However PrNN has been
used in this thesis to avoid any confusion with a recently-proposed pulse neural network.

9Bootstrapping is a general purpose validation approach to statistical inference, i.e. each sub-
sample set is a random sample set with replacement from the whole sample set. Then, the validation
of the algorithm is done by repeatedly analysing each sub-sample of the data.



2.3. CONCLUSION 33

generate a decision boundary between classes or a surface response for the regression

problem. Therefore, they are able to deal with a large number of sample sizes (Cris-

tianini and Shawe-Taylor, 2000). A kernel function can also be applied to the inner

product between these support vectors and other input features to create a nonlinear

boundary.

A commonly encountered problem in classification is related to the case that some

classes are represented by a large number of samples while others are represented

by only a few. As a consequence, the minority classes might be ignored, resulting

in inaccurate classification especially if the ignored classes are significant. Such an

imbalance class problem noticeably occurs in rain estimation where some events such

as high rain rates of convective clouds rarely happen. If we assume that, among all

types of rain of a mid-latitude cyclone, only 1% of the clouds are convective, the rain

estimation can still yield 99% accuracy if the convective clouds are ignored despite their

high rain rates which can be more destructive than a large area of light rain. Japkowicz

and Stephen (2002) conducted a systematic comparison between three classifiers: a

decision tree learning system (C5.0), an MLP and a support vector machine (SVM). It

is found that the MLP is less prone to the class imbalance problems than the decision

tree system because of their flexibility. However, the SVM appear to be ‘absolutely

not sensitive’ to the class imbalance problem because boundaries between classes are

calculated from the support vectors which are the data points located close to the other

classes. Therefore, based on the requirement of rain estimation that the algorithm

should be able to deal with large amounts of data and tolerate the class imbalance

problem, the SVM is a potential candidate for the task either via approximation or

classification.

Moreover, the nature of its quadratic cost functions results in a globally optimized

solution, in contrast to the neural networks, in which their gradient based training

algorithms only guarantee finding a local minima. When applied an SVM with a

radial basis function kernel to classify GOES’s IR spectral features into 10 cloud

types, Azimi-Sadjadi and Zekavat (2000) achieved overall classification rate of 78.5 %.

2.3 Conclusion

Information from satellite images can be extracted in several ways. For example, cloud

texture can be quantified by co-occurrence and difference matrices to capture the

relation between two intensities in an image. Other texture descriptors of a cloud are

its frequency and spatio-temporal components via the Fourier transform and wavelet
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transform. Image texture can also be modelled by a stochastic spatial interaction

model or a random field model. However, the spatial distributions of cloud particles

as a doubly stochastic Poisson process can result in a complication in estimating

parameters of the models. Alternatively, a fractal dimension can be used to describe

the dimension of a complex object. The fractal concept assumes that the object

contains distinct copies of itself. However, a cloud can contain various types of textures

and therefore it is impossible to find an exact replica for the calculation.

On the other hand, shape and size can also be used to describe a cloud. However,

an ill-defined edge seen in satellite images makes it difficult to derive the true shape

and size of individual processes embedded in mid-latitude cyclones. A method that

can extract obscure edges of clouds is needed to describe the spatial characteristics.

The information extracted from the satellite images can be used in rain estimation.

The estimation can be done in two ways, i.e. function approximation and classification.

A number of methods that have been used for cloud applications are analysed. The

methods that can be used for rain estimation should be fast in computation and

tolerant of uneven distribution of samples.

The review shows that the support vector machine tends to be the most potential

method for rain estimation either via function approximation or classification. Us-

ing a small subset made up of informative points, namely support vectors, makes it

computationally efficient, i.e. capable of dealing with large sample sizes, and tolerant

to the class imbalance problem. Therefore, the support vector machine will be used

for rain estimation in this thesis. Another method that is selected for the task is the

radial basis function neural network, which has notable advantages of computational

speed and class imbalance tolerance. In addition, the network can be used for both

classification (PrNN) and regression (GRNN) tasks.



Chapter 3

Feature Analysis

A key question in the use of cloud texture measures for rain estimation is whether the

textural information provides enough information to estimate rain rate by itself; or

whether it provides any useful information at all. This can be done by analysing the

correlation between the two data. In Section 3.1, a direct relation between the spectral

information of satellite images to rain rates is analysed to find out how the two data

mutually relate in the case of a mid-latitude cyclone. The relation is also used as a

means for ranking the textural features. An analysis has been done in Section 3.2 on

how well the textural features previously reviewed can describe the characteristics of

meteorological processes and how these features relate to rain rates. The feasibility of

deriving cloud structures using cloud shadow, which is another piece of information

from geostationary VIS satellite images, is included in Section 3.3. The techniques of

extracting information from satellite images used in this chapter are summarised in

Figure 3.1.

3.1 Relationship of spectral features to rain rates

Research on rain estimation from geostationary satellite images generally hypothesises

that the images have a correlation to rain rates. It attributes this to the fact that

the spectral features1 are dependent on many factors that have direct effects on rain-

fall. These factors include the spectral distribution of physical properties of clouds,

atmospheric characteristics, and the like (Gu et al., 1989). Therefore, the dependency

between spectral features and rain rates are analysed in this section to examine this

1In this thesis, a spectral feature refers to a particular value received from the satellite at different
frequency bands. No information of neighbouring pixels is included, in contrast to the textural
information.

35
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Figure 3.1: Diagram of information extraction used in this chapter.

hypothesis and to determine the extent that rain rates can be deduced directly from

the image intensities2.

Dependency can be examined via the correlation concept. The correlation can

provide a clue as to how well the value of one variable can be predicted from the

value of the other. A measure of such a tendency is called a correlation coefficient.

It denotes the degree of a straight line or a linear relationship between two sets of

random variables. Its best known form is the Pearson product-moment correlation

coefficient, which is obtained by dividing the covariance of the two variables by the

product of their standard deviations, namely

rX,Y =
E(XY ) − E(X)E(Y )√

E(X2) −E2(X)
√
E(Y 2) −E2(Y )

, (3.1)

where X and Y are any two random variables, E(X) is the expected value of X and

likewise for Y . The correlation coefficient is 1 for a perfect increasing linear relationship

and −1 for a perfect decreasing linear relationship. The values in between indicate

the degree of linear dependence between the two variables. Haldar and Mahadevan

(2000) suggested that the two random variables should be considered to be statistically

independent if the correlation coefficient is less than ±0.3 and perfectly correlated if

the value is greater than ±0.9. However, the interpretation of a correlation coefficient

also depends on the context and purposes and should not be observed too strictly. For

example, there are situations in which a correlation coefficient of two variables is zero

in spite of a strong nonlinear relationship that exists among them. The significance

2The image intensities refer to calibrated radiance values/temperatures of Meteosat’s channels.
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of a correlation coefficient of a particular magnitude also depends on the size of the

sample from which it was computed. For instance, a small correlation can be proven

significant in large samples.

The correlation between an infrared and a radar image of the mid-latitude cyclone

on 23 June 2004 at 0030 UTC is illustrated in Figure 3.2 (a). The correlation coefficient

at each pixel is calculated from a window of 21 × 21 pixels in size and is presented in

colour from blue to red. The corresponding value of each colour is given in Figure 3.2

(d). The white patches in the figure indicate either where no rain radar information

is available or where all pixels in the window have zero rain rates, which result in a

zero denominator in Equation (3.1). From the illustration, a band curling inward the

centre of the cyclone with moderate rain rates appears to have positive correlation

(0.4 to 0.6) with the IR temperature. The band corresponds to the frontal rain which

usually develop during the mature stage of cyclones. On the contrary, at the front

and rear edge of the rain band and in some locations with heavy rain, the correlation

is strongly negative, i.e. −0.8 to −0.6. Figure 3.3 shows the positive and negative

relations between the two information at the position A and B in Figure 3.2 (a)

using scatter plots. The rain rates are linearly related to the IR temperatures at the

position A where the rain rates are likely to be influenced by orographic factors of

the Lake District. In contrast, the relation to rain rates is exponentially decreasing

with the temperatures at the position B. When considering the whole image, these

strong relations are evened out. The correlation coefficient of the whole image drops

to −0.001. The coefficients of the time series of the cyclone between 22-23 June

2004 presenting in Figure 3.4 also demonstrate this effect. That is, the correlation

between the rain rates and the satellite information only varies within ±0.15. With

this small correlation coefficient, the two information may be regarded as independent

variables according to Haldar and Mahadevan (2000). This implies the difficulty to

relate spectral information directly to rain rates.

However, it is noticed in Figure 3.2 (c) that the similar patterns to those of the

rain rates can be observed in the IR image e.g. the shape of the precipitation area

and the cold clouds at the centre of the cyclone and the fibrous texture at the outer

edge of the cyclone in both radar and IR images. This effect is quite clear from visual

inspection even though the overall correlation is low. Therefore, these resembling

texture patterns in the satellite images should be able to help in estimating the rain

rates. The textural information of the satellite images is investigated in the next

section.
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Figure 3.2: (a) Correlation coefficients between a rain radar image (b) and an infrared
image (c) of a mid-latitude cyclone on 23 June 2004 at 0030 UTC, calculated using a
window of 21× 21 pixels. The size of the window is shown as a square at the bottom
left of the image (a). The red, yellow and blue solid lines indicate areas where the
rain radar data is available. The colour bar of the three images are presented in (d).
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Figure 3.3: Scatter plots between IR temperatures and rain rates of area A and B in
Figure 3.2.
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Figure 3.4: Correlation between the three channels and the rain rates for a mid-latitude
cyclone on 22 June 2004 with the time line starting at 0030 UTC.
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3.2 Textural features

Quantifying textural information can be done in several ways. Besides, the technique

that is the best for one application might not necessarily be the best for another

application. Difference in locations and environments of the events can also affect the

performance of each textural feature. For the case of rain estimation, the rotation

or the size of cyclones, including noise that can occur during the operation should

not affect the texture parameters. Moreover, the parameters should be distinct for

the interpretation and classification purpose. The required computational time should

also be taken into consideration as there are many images to be processed. Nearly

real-time processing is also demanded on account of frequent generation of the images

every fifteen minutes by the Meteosat second generation satellite. In this section,

several texture extraction methods are investigated in order to find the appropriate

quantitative forms of the cloud texture that relate to the rain rates. These are generally

categorised into four types: statistical, structural, frequency analysis, and spatio-

temporal analysis.

The images corresponding to common meteorological processes in mid-latitude

cyclones are selected for the study of the texture extraction. Here, the four events

which include convective, stratiform, vortex-central and front will be used to refer

to these images. The test images of the three channels and the corresponding rain

rates are presented in Figure 3.5. The size of these four events are approximately

150 × 150 km2 for the convective, the stratiform and the front, and 500 × 500 km2

for the vortex-central. The different events are selected to study the classification

performance of each textural descriptors at the same scale. However, the size of the

vortex’s central needs to be enlarge to cover the spiral shape at the centre. All images

are resampled to 50× 50 pixels on the polar-stereographic projection. The grey levels

in the IR and WV images correspond to cold clouds for dark shades and warm clouds

for brighter shades. The rain rates are shown in colours, ranging from white for heavy

rain, yellow and red for moderate and light rain, to black for zero rain rates.

From the illustration, it can be seen that the four events possess distinguishing tex-

tures. The convective cloud appears as an individual cloud object. It is usually colder

than its surroundings and brighter when seen in the VIS image. The corresponding

rain rate is heavy and similar in shape to the cloud in the satellite image, though not

as smooth. This is due to the fact that the satellite images have coarser resolution

and need interpolation in order to match that of the rain radar images. Generally,

higher resolution data should be averaged to the resolution of the lower. This would
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be applicable to the case of rain radar images if the rain information at each pixel has

related to its neighbours. However, there always are cases where rain in one area is

not dependent to its neighbours due to surface conditions. Under-sampling the rain

information will certainly introduce errors to the data. On the other hand, clouds are

considered to be more correlated to its neighbours, making interpolation become more

appropriate for this task.

By observing the images, a mesoscale convective storm that is well shaped in an

IR image may become distorted and noisy in the radar image as the large region is

affected by many factors at the ground surface. Size of the events also affects the

pattern of the brightness temperature and the corresponding rain rate. For example,

a convective cell that can be depicted by a rain radar image is usually 5 − 15 km2 in

size and so is too small to be delineated in the IR image. For the stratiform cloud,

its gradient in the IR and WV images is hardly noticeable. However, it is observed

that there is a diagonal line that appears in the VIS image that coincides with the

rain band in the radar images. Contrary to other events, there is only slight rain at

the centre of the cyclone, though the VIS image reveals that the cloud in that area is

thick—enough to provide heavy rain in other circumstances. The rain is well spread

only over the cold area that appears dark grey in the IR and WV images. In contrast,

rain in the frontal cloud band agrees with the thick cloud in the VIS image in general.

The IR and WV images, although possess the same diagonal band, have a shift in

position when compared with that of the rain radar images; half of the rain band lies

on the cold cloud and the other half on the warm cloud.

Figure 3.6 shows the relation between the IR intensities and the corresponding

rain rates for each event via the probability distribution. It can be seen that a wide

range of IR intensities give the same rain rate. On the contrary, the rain rates of the

stratiform cloud varies within a narrow range of IR temperatures. Both vertical and

horizontal stretchings of the distribution are found in the case of the frontal cloud.

This is the effect of the rain band that lies across both cold and warm bands in the

IR image that is previously described.
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IR WV VIS Rain

Figure 3.5: Samples of images for the study on texture. (Top→bottom): convective
(150×150 km), stratiform(150×150 km) , vortex-central (500×500 km) and frontal
clouds (150×150 km). Each row corresponds to the same event. Original source: a
mid-latitude depression on 23 June 2005 at 1030 UTC from Meteosat7.
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Figure 3.6: Distribution of rain rates versus temperatures from IR channels for (a)
convective (b) stratiform (c) centre of the cyclone and (d) front.
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Image registration error?

When comparing the satellite image and the radar image for the convective cloud, it

is possible that there might be errors from registration of the two images. However,

as shown in Appendix B, the two images are finely matched with a displacement error

not exceeding 1 pixel when considering coastlines and latitude-longitude grids. For

clouds, there can be displacement errors owing to viewing angles of the satellite. These

errors increase with the distance between the considered location and the 0◦ latitude

and 0◦ longitude coordinate. Figure 3.7 shows that the errors are approximately 12

km for a 15-km-height cloud at as far as 70◦ latitude and 30◦ longitude. This means

that the displacement errors should be within 12 km or 4 pixels for the test images.
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Figure 3.7: Displacement errors due to viewing angles of the satellite as a function of
cloud heights.

In addition, considering a sequence of the problematic convective cloud with a rain

contour (of rain rates more than 1.5 mm/h) superimposed on it in Figure 3.8, there

seems to be a good correspondence between the rain rates and the clouds—the right

edges of the cloud generally correspond with the rain contours. However, the rain

rates behind these edges disappear. There are three possibilities to explain this.

First, the cloud might pass its mature stage and begins to die down, producing

less or zero rain rates. However, the comparison between the averaged temperature of
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Figure 3.8: A sequence of (a) rain radar images and (b) infrared images of the con-
vective case on 23 June 2004. The green line is a contour of rain rates higher than 1.5
mm/h. The time interval is half an hour between each image.

the cloud and the averaged rain rates within the rain contour in Figure 3.9 does not

support this assumption. Despite the colder temperature which implies that the cloud

is growing, the rain rate decreases. The further observation found that the cloud gets

warmer after 1400 UTC which is three hours and a half later from the first image of

the sequence. This implies that the cloud during 1030-1230 UTC in Figure 3.8 is still

at its early stage and, theoretically, the colder cloud at 1230 UTC should produce

heavier rain than at 1030 UTC.

The second possibility is that heavier rain exist behind the right edge of the contour

but these could not be depicted by the radar. The location of the cloud was at the

coastline of the Netherlands. Therefore, it is presumed that the radar station would be
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Figure 3.9: A comparison of averaged temperatures of the cloud object and averaged
rain rates in Figure 3.8.

on the east or south-east side of the cloud. It is possible that the radar signal from the

station might not be able to penetrate through heavy rain, resulting in underestimated

rain rates behind the right edge of the cloud. Another possibility is that the cold cloud

is being blown off at the cloud top to the north and west, resulting in the mismatch

between the observed rain rates at the surface and the temperature at the top of the

cloud.

Although, rain information from the radar stations is not a perfect ground truth

for rain estimation, it is the best rain information, covering full spatial and temporal

resolutions, that is available. It is good also to use the selected convective cloud image

to study the texture information relative to the deficiency of radar information as this

can commonly happen for the case of heavy, localised rainfalls.

Next, four types of textural features which are statistical, structural, frequency

and spatio-frequency will be studied. These four types are selected to cover all char-

acteristics of image texture.
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3.2.1 Statistical texture

The first type of textural features used in the study is based on the principle of

using statistics to describe the inter-pixel relationship in an image. An example of

this approach is the use of a co-occurrence matrix. It is determined by a matrix of

frequencies Cd(p, q), which indicates how frequently two pixels with grey levels p and

q and separate by a given distance d (in pixels) appear in an image. As shown in

Equation (2.1), the co-occurrence can be defined as

Cd(p, q) = Pr{I(i, j) = p and I(i+ ∆i, j + ∆j) = q},

for a relation between any pixels with a displacement d = ||(∆i,∆j)|| between the

pixel (i, j) and (i + ∆i, j + ∆j). The displacement is defined as
√

(∆i)2 + (∆j)2 for

the Euclidean distance. The argument I(i, j) = p denotes the occurrence that the

intensity at position (i, j) is equal to p in value.

The co-occurrence matrix reveals certain properties about the spatial distribution

of the grey levels in an image. Examples of textural features at each displacement d

that can be computed from the co-occurrence matrices are Angular Second Moment

(ASM), entropy, contrast, homogeneity and correlation. These five statistics are com-

monly used because of their sufficiency to give good results in a classification task

(Conners and Harlow, 1980). The statistics are defined as

ASM =
∑

p

∑
q

C2
d(p, q),

Entropy = −
∑

p

∑
q

Cd(p, q) logCd(p, q),

Contrast =
∑

p

∑
q

Cd(p, q) · (p− q)2,

Homogeneity =
∑

p

∑
q

Cd(p, q)

1 + |p− q| ,

Correlation =
∑

p

∑
q

Cd(p, q)
(p− µCp)(q − µCq)

σCpσCq

,

where µCp and µCq are the row- and column-average of the matrix and σCp and σCq

are the corresponding standard deviations. Whereas ASM describes the regularity of

texture patterns, entropy gives a measure of the degree of disorganisation of the image.

It yields the highest value of 1 when all elements in the matrix are equal, which means

that all the intensities appear evenly within the image. Contrast uses the difference
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of intensities as a weighting parameter for the probabilistic distribution. It increases

when large differences of intensities occur with high probability. On the contrary,

homogeneity uses an inverse of the differences to signify the similarities of intensities.

Finally, correlation measures the uniformity of the distribution of the matrix. All

statistics range from 0 to 1, except correlation which is 1 or -1 for a perfect positive or

negative correlation between two intensities. Next, the robustness of these statistics on

4 aspects: scalability, gradient, direction and noise will be tested on synthetic images.

First, a circular object of different sizes is generated as shown in Figure 3.10 (a)-(e).

The statistics corresponding to each image as a function of a displacement between

two pixels (d) are presented underneath. The size of images (a) to (e) is 50×50 pixels,

equal to that of the test images. It can be observed that all features except entropy

vary noticeably with object sizes. However, contrast, homogeneity and correlation are

less sensitive to the smoothness when the images vary from sharp to soft gradients as

shown in Figure 3.11. Considering the object that changes both in size and intensity

gradient, Figure 3.12 gives a clear evidence that the values of the statistics are more

dominated by the sizes of the object. When the method is applied to an object that is

rotated by 30◦, 60◦, 90◦, 120◦ and 150◦ as shown in Figure 3.13, the statistics of each

rotated angle are almost the same. Therefore, the feature derived by this method is

a very powerful rotation invariant measure of local image texture. It is also noticed

that contrast and homogeneity of asymmetric images in Figure 3.11 are different to

those of other symmetric ones where both statistics have peak values at d equals to

the size of half-length of the image. Accordingly, contrast and homogeneity can also

be used to reflect the symmetry of the texture.



3.2. TEXTURAL FEATURES 49

(a) (b) (c) (d) (e)

0 50

0.4

0.5

0.6

0.7

0.8

0.9

1
ASM

0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Entropy

0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Contrast

0 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Homo

0 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Correlation

a

d (pixels)

a

e

e

e

a

Figure 3.10: Co-occurrence statistics of objects with different sizes.
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Figure 3.11: Co-occurrence statistics of objects with different gradients.
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Figure 3.12: Co-occurrence statistics of objects with different sizes and gradients.
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Figure 3.13: Co-occurrence statistics of objects in different directions.
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Figure 3.14 illustrates the sensitivity of the statistics to additive zero-mean Gaus-

sian noise, when monitoring at a pair of pixels with 25 pixels apart, of 20 iterations3.

The noise ratio (ni) is calculated by σn

σi
, where σn and σi denote the standard deviations

of noise and the image, respectively.
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Figure 3.14: Co-occurrence statistics: (a) ASM, (b) entropy, (c) contrast, (d) homo-
geneity and (e) correlation of the object in Figure 3.13 with respect to noise and signal
ratio.

From the illustration, adding an amount of noise introduces an independence be-

tween each intensity and therefore results in a decrease in ASM, homogeneity and

correlation. On the contrary, entropy increases. Increasing further noise (ni > 0.15)

does not affect the values of ASM, entropy or homogeneity. These statistics stay

almost constant. Contrast and correlation are the most sensitive to noise—contrast

continuously increases whereas the absolute value of correlation decreases when more

noise is introduced. The effect can be described as follows. When introducing noise,

the distribution of intensities becomes more spread. An increase in noise pushes the

distribution away from the diagonal to the edge of the matrix. The intensities become

more independent of each other and therefore their correlation between each others

decreases. This also results in an increase in contrast which intensifies the components

3For each iteration, a new zero-mean Gaussian noise is generated and added to the image then the
statistics are calculated. The result in Figure 3.14 is an expectation of the statistics of all iterations.
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off the diagonal line. On the other hand, a small drop in ASM and homogeneity is a

result of the decreasing near-diagonal values and the increasing of off-diagonal values.

Typically, p and q in Equation (2.1) are defined as ranges of the intensity or bins

that the intensity falls into e.g. p = {0 → 1, 1 → 2, . . .}. However, numbers of the

bins, which determines the size of the co-occurrence matrix, also affects the value of

the statistics. The result when using different numbers of bins, i.e. 10, 20, 30, 40 and

50 is illustrated in Figure 3.15. ASM and homogeneity which so far are the most robust

features to the changes in size, gradient, direction of the objects and least sensitive

to noise change noticeably in values. Both statistics increase when the number of

the bins decreases. Using a smaller number of bins (large bin width) increases the

probability for the intensities of any two pixels falling in the same category, giving a

similar effect as if the texture is smoother and therefore resulting in a larger value of

homogeneity and ASM. Therefore, it is recommended that the number of bins is fixed

when analysing the texture.
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Figure 3.15: Co-occurrence statistics of the object in Figure 3.13 when using different
numbers of bins.
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Next, the real cloud images of the mid-latitude cyclone in Figure 3.5 are used to

study how well the co-occurrence statistics can depict the texture of these meteorolog-

ical events. First, all images are normalised so that the value of each pixel falls within

[0,1]. Then, the co-occurrence matrices of the four events are computed. Figure 3.16

shows the statistics of these matrices when 16 × 16 bins are used. The legends a, b,

c and d refer to convective clouds, stratiform clouds, clouds at the vortex centre and

frontal clouds. These legends will be used throughout this section.

For the satellite images, their entropy reveals that the convective cloud is the most

disorganised—there is no obvious relation between any two pixels in the image as

its entropy is higher than that of other events. However, this is different from the

statistics of the rain radar images which show that stratiform is the most disorganised

than other events. On the contrary, the sharp gradient of the frontal cloud can be well

captured by contrast of the satellite images. Its relationship to the distance between

pixels also resembles that of the rain radar images. Such a similarity can also be found

in the case of the convective cloud. Likewise, homogeneous and organised clouds at

the centre of the cyclone also corresponds to the observed rain rates. This is reflected

by homogeneity and entropy. From the results, ASM shows no differences between

each event in contrast to contrast which is the best feature to distinguish the four

events. More statistics that can well separate the four events are entropy of the IR

images and homogeneity and correlation of the VIS images.

For the rain radar images, all statistics except correlation can well distinguish the

four events. This is noticeable for the entropy which the four events are well-separated,

similar to the entropy of the IR images although their arrangement of the four events

are not the same. In addition, their correlation values resembles those of the VIS

images. That is, there exists the similarity between the texture of cloud images and

rain radar images.
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Figure 3.16: Co-occurrence statistics of IR, WV, VIS and rain radar test images. The
legends a, b, c and d refer to convective clouds, stratiform clouds, clouds at the vortex
centre and frontal clouds.



3.2. TEXTURAL FEATURES 57

VIS

0 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ASM

 

 

0 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Entropy

0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Contrast

0 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Homo

0 50
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Correlation

a
b
c
d

d (pixels)

Rain

0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
ASM

 

 

0 50
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Entropy

0 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Contrast

0 50

0.4

0.5

0.6

0.7

0.8

0.9

1
Homo

0 50
−0.5

0

0.5

1
Correlation

a
b
c
d

d (pixels)

Figure 3.16 continued.
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As discussed earlier, the co-occurrence matrix depends on the number of grey

levels in the entire image. In addition, the matrix frequently results in zero entries of

the whole rows and/or columns in the matrix, wasting memory in the computational

process (Svolos and Todd-Pokropek, 1998). This is the major drawback of the co-

occurrence matrix. However, the number of grey levels can be reduced by grouping

into bins so that there are less zeros in the matrix. However, it should be large enough

to be able to distinguish details of the texture. That is, an appropriate number of

bins is required.

Grouping the grey levels can be done by using the same process as computing

an image histogram. Several methods to define the optimal number of bins for a

histogram have been proposed.

Some methods select the bin number for the calculation of a histogram by consid-

ering only from the number of samples (Cellucci et al., 2005) such as 1 + 3.3 log(n)

(Sturgis’ Rule, 1926), 1.87(n − 1)0.4 (Bendat-Piersol’s Rule, 1966),
√
n (Mosteller-

Turkey’s Rule, 1977), and (2n)
1
3 (Terrell’s Rule, 1983) where n is the number of data

samples.

The distribution of the samples can also be used as a guidance to select the bin

number such as 3.49σn−1/3 (Scott’s Rule, 1979) where σ is the standard deviation. It

is suitable for Gaussian samples but might lead to oversizing bin widths. Another rule

of thumb is to choose 2(IQR)n−1/3 (Freedman-Diaconis’s Rule, 1981), where IQR is

the interquartile range of the data, as a number of bins. It gives a narrower bin widths

but often lead to the same choice of the bin width (Izenman, 1991).

Figure 3.17 compares these criteria in terms of the number of samples from a

Gaussian distribution with a zero mean and a unit standard deviation. These numbers

can be used as a guidance for selecting a bin size so that it is neither too coarse to

capture the details of a texture nor so fine that there are many zero entries in a co-

occurrence matrix. For example, according to Figure 3.17, an image of size 21 × 21

pixels needs 9.59-21.34 bins to represent its histogram.
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is normally distributed with a variance of 1.
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Multi-colour co-occurrence matrix

The co-occurrence matrix can also be applied to multi-spectral images. For example,

the intensities of IR, VIS and WV images can be normalised to 1 and then mapped

onto the RGB colour model. The model defines a colour by an addition of three

primary colours which are red, green and blue. In this way, the colour of a pixel is a

vector resulting from the combination of three independent vectors as in Figure 3.18.

Figure 3.19 shows a colour image pixel as a vector in three dimensional space. The

angle of the vector in the red-blue plane to the blue axis (φ) implies a proportion of

cloud top temperatures and water contents, which can be used as an identification

of possibly-precipitable clouds whereas the angle between the vector and the red-blue

plane (θ) accounts for amounts of the rainfall through the cloud thickness properties

(Suvichakorn and Tatnall, 2005).

The conclusion that the three channels convey different information of mid-latitude

cyclones (Krennert et al., 1999) also supports the idea of using the multi-colour model

for the cloud analysis.

The false colour images of the four sample events are shown in the upper panel of

Figure 3.20. Based on an observation that a convective cloud with the lower IR and

WV temperatures is usually thicker (brighter in VIS), the IR and WV temperatures

are inverted so that the colder temperature is presented by the brighter shade of the

RGB cube. As shown in the middle panel of Figure 3.20, the convective cloud has a

bright white colours, which means that it has low IR and WV temperatures and high

VIS reflectance. It can be noticed that the heavy rain corresponds to bright white

shades. This is also applied to the frontal cloud where the rain areas corresponds to

the white-pink shades. On the other hand, the rain areas at the centre of the storm

and the light-to-moderate stratiform rain correlate to light green shades where the VIS

intensities dominate the other two channels. The false colour images of the inverted

IR and WV values also give more texture than the ones with non-inverted values and

the shadow of the cloud is also preserved.
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Figure 3.18: RGB cube model for IR, WV and VIS images.

Figure 3.19: Colour image axis of a pixel.



3.2. TEXTURAL FEATURES 62

Convective Stratiform At Low Front

Figure 3.20: False colour images of the non-inverted (upper) and inverted (middle) IR
and WV values of the four events in Figure 3.5. The corresponding rain radar images
are in the lower panerl.
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To derive textural features from the false colour image, the methods for mono-

chromic images can still be applied. Given a displacement d = ||(∆i,∆j)|| between

any two pixels, a co-occurrence matrix for an RGB space can be defined by

Cd(�c1,�c2) = Pr{I(i, j) = �c1 and I(i+ ∆i, j + ∆j) = �c2}, (3.2)

where I(i, j) = �c1 refers to a pixel at the position (i, j) that has a colour vector �c1

(Hauta-Kasari et al., 1996). The 3-dimensional co-occurrence matrices of the inverted

and non-inverted false images are exactly the same. Their ASM and entropy are shown

in Figure 3.21. Obviously, the two statistics can better distinguish the four events than

those of the individual channels. This is similar to the two statistics of the rain radar

images, although the arrangement of the statistic values of the two data is not the

same. However, the computation of the 3-dimensional matrix requires a large storage

to process. For example, if each colour channel has L values, the matrix will be L3×L3

in size.
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Figure 3.21: Statistics of co-occurrence matrices using the RGB images in Figure 3.20.
The legends a, b, c and d refer to convective clouds, stratiform clouds, clouds at the
vortex centre and frontal clouds.
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Alternatively, the HSV (Hue, Saturation, Value) model, also called HSB (Hue,

Saturation, Brightness), can be used to define a colour space. Hue represents the

wavelength of a colour, analogous to position around a colour wheel. It ranges from

0-360◦ when colours goes from red to green, blue and back to red again. Saturation

represents an richness of colour. A zero saturation means that the colour is colourless

whereas a unit saturation means the maximum colourfulness. On the other hand,

value or brightness means the intensity of the image and does not depend on colours.

Figure 3.22 shows an illustration of the HSV cone model. Given a colour defined by

(R,G,B) ∈ [0, 1], an equivalent HSV colour can be determined by

V = max(R,G,B),

S = 1 − min(R,G,B)

max(R,G,B)
,

H =




arccos
(

G−B
6S

)
if V = R,

arccos
(

1
3

+ B−R
6S

)
if V = G,

arccos
(

2
3

+ R−G
6S

)
if V = B.

(3.3)

Hue

Value Saturation

1

0

1

0

Figure 3.22: HSV cone model. Source: Matlab user’s guide.

Value should be equal to the size of a colour vector in the RGB space. However,

it is noticed that V in the equation is not the size of a vector in 3D. In fact, the HSV

model treats the three primary colours as dependent variables. This can be beneficial

to our rain estimation problem as each channel is not fully independent from others.
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Arvis et al. (2004) characterised the colour texture by using V to compute the co-

occurrence matrix. The mean and variance of hue and saturation were also included to

specify the position of the vector in the colour space. However, the colour distribution

of each event as presented in Figure 3.20 is characteristic and suggests hue for the

representation of the cloud texture.

Figure 3.23 shows the statistics when using H , S and V to compute the co-occurrence

matrices of the false image. The statistics of the non-inverted images are shown in the

upper half of Figure 3.23 and those of the inverted images are in the lower half. The

ASM and entropy of both inverted and non-inverted images are good at discriminating

each meteorological event, especially when H and V are used. This is similar to those

of the RGB model but much less memory is required. Additionally, the relation of

homogeneity and correlation of (non-inverted) hue co-occurrence matrix as a function

of displacement between two pixels (d) is also similar to those of the rain radar images.

For instance, the correlation coefficients between them are 0.9294 and 0.9995 for the

stratiform and the frontal cloud. The numbers are higher than the statistics of the

individual channels which are presented in Table 3.1. Therefore, it is preferable to use

the statistics especially ASM and entropy of the HSV model of the false images as the

textural features if all the three channels are available.

At night, a combination a IR and WV images can be used instead of the VIS

channel. Details of this method can be found in Suvichakorn and Tatnall (2005) (in

Appendix D). The new false image resembles the false image when VIS image is used

but it has less texture and different hues.

Table 3.1: Correlation coefficients of the co-occurrence statistics of the false image in
comparison to those of the rain radar images.

Case Homogeneity Correlation
IR VIS WV Hue IR VIS WV Hue

Convective 0.7856 0.8980 0.7867 0.8477 0.8794 0.9889 0.9150 0.9549
Stratiform 0.9442 0.9905 0.9483 0.9836 0.8756 0.8928 0.8830 0.9294
At Centre 0.1561 0.1733 0.3888 0.1331 0.9358 0.9010 0.9477 0.9315
Frontal 0.9877 0.9866 0.9770 0.9985 0.9970 0.9992 0.9856 0.9995
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Figure 3.23: Statistics of co-occurrence matrices using of hue, saturation and Value
of the HSV model. The legends a, b, c and d refer to convective clouds, stratiform
clouds, clouds at the vortex centre and frontal clouds.
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Figure 3.23 (continued)
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Grey-level difference

Unlike the co-occurrence matrix that uses co-occurrences of intensities, the grey level

difference method uses differences between intensities to describe texture. It is based

on absolute grey level differences between pairs of pixels. As shown in Equation (2.2),

the difference matrix D is defined as

Dd,θ(i, j) = |I(i, j) − I(i+ ∆i, j + ∆j)|,

where d = ||(∆i,∆j)|| is a distance between any two pixels and θ = tan−1(∆i/∆j), a

probability density function can be defined as

fd,θ(k) = Pr(Dd,θ(i, j) = k).

Similar to the difference matrix, fd,θ(k) is a function of distance (d) and direction

(θ) between any two pixels as shown in Figure 3.24. If the texture is coarse relative

to the distance d, the differences could be expected to be small and the probability

density function large for small k. Accordingly, measures of the texture in an image

may be computed from estimates of the spread in f(k), e.g. by using its mean,

standard deviation (STD) or entropy, at different displacements and angles as in the

co-occurrence matrix.

Figure 3.24: A diagram illustrates the distance (d) and the direction (θ) between any
two pixels.

Figure 3.25 presents the statistics of the four types of images. Each tile of image

represents the statistics as a function of direction from 0−180◦ in x-axis and distance

between a pair of pixels in y-axis. The four rows correspond to the four meteorological

events. The values of mean in the figure is in natural logarithmic scale to emphasise

those with small values. For the images with apparent gradients such as the frontal

cloud, there always exists the optimal value, either minimum or maximum, in a certain
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direction. This is consistent in all types of images and is applicable to all kinds of

statistics. There is also a resemblance between the standard deviation of the VIS and

the rain radar images of the convective clouds. The similarity is illustrated in Table 3.2

by the correlation coefficient between the difference statistics of all the three channels

and the rain radar images. However, if there are M values of d and N directions to

be considered, the statistics at each position would produce a matrix of size M ×N .

In practice, it is necessary to limit the value of M and N to reduce computation.

Table 3.2: Correlation coefficients of the grey-level difference statistics of the satellite
images in comparison to those of the rain radar images. The maximum correlation
coefficient of each statistic for each case is presented in boldface.

Case Mean STD Entropy
IR VIS WV IR VIS WV IR VIS WV

Convective 0.50 0.52 0.44 0.64 0.60 0.72 0.72 0.69 0.76
Stratiform 0.60 0.68 0.46 0.73 0.85 0.73 0.75 0.88 0.74
At Centre 0.17 0.20 0.36 0.28 -0.02 0.52 0.33 0.16 0.56
Frontal 0.56 0.62 0.48 0.84 0.85 0.85 0.87 0.89 0.85

Several authors have used fixed numbers of the displacement and directions e.g. 1

pixel in the directions of 0◦, 45◦, 90◦ (Welch et al., 1988; Gu et al., 1991). However,

during the experiments, it is found that the co-occurrence and difference statistics

give the highest correlation at a particular value of the displacement d. Then, after

this value, the correlation falls or becomes steady as illustrated in Figure 3.26. It

is also noticed that at d = 1, which is commonly used for cloud classification, the

correlation to rain rates is quite low (40-50% lower than the highest correlation coef-

ficients). However, the value of d that gives the best correlation cannot be known a

priori. In practice, the maximum or minimum of the statistics and their corresponding

displacement might be used. On the other hand, fixing the directions can make the

statistics of the difference matrix sensitive to the rotation of an object. For the case of

a mid-latitude cyclone, in order to make the statistics invariant to the rotation of the

cyclone, an angle with respect to the centre of the cyclone has been used. Figure 3.27

illustrates θR and θT which are the angles of the radius and its tangent with respect

to x axis.
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IR Mean STD Entropy

(a)
VIS Mean STD Entropy

(c)

WV Mean STD Entropy

(b)
Rain Mean STD Entropy

(d)

Figure 3.25: Grey-level difference statistics of (a) IR, (b) WV, (c) VIS images and (d)
rain radar images in Figure 3.5.
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Figure 3.26: Correlation coefficients of ASM of a co-occurrence matrix as a function
of displacements between two pixels (d).

Figure 3.27: Definition of θR and θT .



3.2. TEXTURAL FEATURES 73

3.2.2 Structural texture

The structural approach to textural analysis assumes that texture is composed of

textural primitives e.g. lines and edges. Thus, it seeks to describe these dominant

structural features in the image and their spatial organisations (Tuceryan and Jain,

1998), instead of intensity transitions as in the co-occurrence matrix or the grey-level

difference statistics. Generally, edges4 in VIS and IR images correlate to noticeable

changes in cloud depth and height. The changes can be a result of evolution within

the same cloud, which is related to the atmospheric instability. They can also be

a result of a different height of two clouds such as a high cloud and a low cloud,

which normally relate to different rain amounts. Either pieces of information are

helpful to rain estimation. However, analysing edges in all possible directions is very

computationally expensive. The dimensionality of the problem can be reduced by

projecting5 the image intensities onto a principal axis and then extracting edges along

the axis. The technique to project a continuous function f(x, y) onto any directions of

θ ∈ [0, π) is called the Radon transform, which was first introduced in 1971 (Warrick

and Delaney, 2001). The Radon transform is defined as

Rf(ρ, θ) =

∫ ∫
f(x, y)δ(x cos θ + y sin θ − ρ)dxdy, (3.4)

where δ(x) is the Dirac’s delta function—it gives the value of infinity for x = 0 and

zero elsewhere. The Radon transform is a function of the distance from the centre of

the images (ρ) along the x axis (negative values refer to the distance to the left of the

centre) and the angles between the projection line and the x axis (θ).

The Radon transforms of the four events of the rain radar images are presented in

Figure 3.28. The maximum of the transformed values shows the direction of the signif-

icant edges. The characteristics such as gradients of a projection along the significant

direction can be further extracted to use as texture signatures of the clouds.

Unlike the rain radar images, the transformed values of the same events of the

infrared images shown in Figure 3.29 do not show any important differences between

the events. The transformation of the IR and WV images also gives the same results.

The main reason is due to the characteristics of the satellite images which is too

smooth to show any importance along the projection lines, although our eyes can

detect edges of the cloud objects. Therefore, Sobel’s filter (Gonzalez et al., 2003) is

applied to the images prior to the transformation to enhance the edges of the cloud

4Edges are defined as apparent transitions of image intensities
5Projection is done by integrating the image intensity onto a line
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objects. The Radon transforms of the filtered IR images are presented in Figure 3.30.

The transforms correlate to those of the radar images with the correlation coefficients

of 0.71 and 0.66 for the case of the convective cloud and at the centre of the vortex.

Figure 3.28 and 3.30 also reveal that there is a particular direction of the projection

that gives the maximum transformed value, which can be seen as bright yellow to white

colours. Such a direction refers to the most significant orientation of the texture, i.e.

most of the object(s) in the texture lie in the direction of 90o − θRmax . The correlation

coefficients between the Radon transforms of the satellite and the rain radar images

and the differences between their θRmax are presented in Table 3.3. It can be noticed

that the least differences between θRmax of both data lie within ±25◦ for each event.

In addition, these angular errors do not exceed ±60◦ and the correct match (zero

error) can also be found. Therefore, the direction of a highest Radon transform of the

satellite images has been used as another textural feature for the rain estimation due

to its correlation to that of the rain texture.

Figure 3.31 illustrates the correlation of θRmax to the rain rates. The feature shows

more relevance to the rain rates when compared to that of the spectral information—

the number of pixels of the new features that have the correlation coefficients > ±0.4

is 16.81% whereas those of the spectral information is only 14.31 %. This encourages

the use of Sobel’s filter to enhance edges in the satellite images prior to applying the

Radon transform.

Table 3.3: Correlation coefficients and θRmax angular errors of the Radon-transforms
of the satellite images in comparison to those of the rain radar images. The maximum
correlation coefficient of each statistic for each case is presented in boldface.

Case Correlation Coeff Errors (degrees)
IR VIS WV IR VIS WV

Convective 0.71 0.45 0.69 25 45 37
Stratiform 0.47 0.63 0.72 22 58 0
At Centre 0.66 0.43 0.34 8 -10 -10
Frontal -0.25 -0.13 -0.39 -12 -13 -43
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Figure 3.28: The Radon transformed values of rain radar images of (a) convective (b)
stratiform (c) centre of the cyclone and (d) front. The values are shown in colours
ranging from maximum in white, then yellow, red and black for zero values.
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Figure 3.29: The Radon transformed values of infrared images of (a) convective (b)
stratiform (c) centre of the cyclone and (d) front.
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Figure 3.30: The Radon transformed values of gradients of the infrared images of (a)
convective (b) stratiform (c) centre of the cyclone and (d) front.
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Figure 3.31: (a) Correlation coefficient of the Radon transforms of the rain radar
images and the infrared images of the mid-latitude cyclone on 23 June 2004 at 0030
UTC, calculated using a window of 21×21 pixels, and (b) its histogram when compared
with that of Figure 3.2.
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3.2.3 Frequency analysis

Some characteristics of texture in an image are not easily identifiable from the spatial

domain. This includes the major repetitive components within the image. The need

to distinguish these components leads to the mathematical representation of the image

in terms of their orthogonal basis functions. The Fourier transform, for example, uses

an infinite series of trigonometric functions at different frequencies. In the Fourier

space image, each point represents a particular spatial frequency contained in the

real domain image. These spatial frequency contents can reflect the texture of an

image. For example, high spatial frequencies correspond to the presence of the sharp

transitions in the intensity whereas low frequencies correspond to the absence of edges

or regions of approximately uniform grey levels. The orientation of a spatial frequency

corresponds to the orientation of an edge in the image. That is, the frequency contents

of the image can be a measure of the coarseness and the directionality of textures.

The Fourier transform of a signal f(t) is defined as

F (ω) =

∫ ∞

−∞
f(t) exp(−̂ωt)dt, (3.5)

where ̂ =
√−1 and ω is the frequency of the transform.

The Discrete Fourier Transform (DFT) is the sampled Fourier Transform and there-

fore does not contain all frequencies forming an image, but only a set of samples which

is large enough to fully describe the real domain image. The number of frequencies

corresponds to the number of pixels in the real domain image; the image in the real

and Fourier space are of the same size. For a square image of size N × N , the two-

dimensional DFT is given by

F (k, l) =
1

N2

N−1∑
y=0

N−1∑
x=0

I(x, y) exp

[
−̂2π

(
kx

N
+
ly

N

)]
, (3.6)

where I(x, y) is the real domain image and the exponential term is the basis function

to decompose the image into its sine and cosine components. The Fourier transform

of each spatial frequency ω = (k, l) is obtained by a process of multiplying the image

with the corresponding basis function and summing the result. By using the same

basis function, the real domain image can be derived from the Fourier image. The



3.2. TEXTURAL FEATURES 80

inverse Fourier Transform is given by

I(x, y) =
1

N2

N−1∑
k=0

N−1∑
l=0

F (k, l) exp

[
̂2π

(
kx

N
+
ly

N

)]
. (3.7)

The Fourier transform has the advantage of shift invariance. Strictly speaking, the

magnitude of the Fourier transform is the same no matter what portion of the texture

is considered. Changing the position only changes the phase of the transform. Figure

3.32 shows the Fourier image of the rain radar and the satellite images for the four

type events in logarithmic scale. The Fourier images are shifted in such a way that the

F (0, 0) is displayed in the centre of the images. From the figure, it is noticeable that

there are cross-shaped ripples and rectangular grids that overshadow other frequency

responses.

IR WV VIS Rain

(a)

IR WV VIS Rain

(b)

Figure 3.32: (a) Amplitudes and (b) phases of the Fourier transforms of the 4 events.
Each row represents each event: (from top to bottom) convective, stratiform, at vor-
tex’s centre and frontal.

The cross-shaped ringing artifacts, known as the Gibbs phenomenon, are a conse-

quence of treating an image as if it is part of a periodically replicated array of identical

images extending horizontally and vertically to infinity. The discontinuity at edges of

each virtually-tiling image aggregates frequency responses along the x and y axes of

the Fourier image and therefore governs other features (Duhamel and Vetterli, 1990).

These edge effects can be significantly reduced by windowing the image with a func-

tion that slowly tapers off at the edge such as a Gaussian function shown in Figure
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3.33. In Figure 3.34, the Fourier transform of the windowed image can significantly

reduce the white cross in the middle of the images.

On the other hand, the rectangular grids in the transformed images are a conse-

quence of interpolating the satellite images to align with the finer resolution of the

rain radar images. The effect is illustrated in a sequence of the images in Figure 3.34.

From left to right, the images becomes smoother and their Fourier transforms produce

more black rectangular grids. The grids are quite obvious in Figure 3.34 (c) when the

white crosses that dominate the transforms are removed by the Gaussian windows.

A A

0 120
0

0.5

1

Pixels

Figure 3.33: A Gaussian window for masking and image and its cross-section.

(a) Input images

(b) Without windowing

(c) With windowing

Figure 3.34: Fourier transforms of the smoothed images before and after using the
Gaussian window.
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The Fourier transforms when a Gaussian window is applied to the satellite and rain

radar images are shown in Figure 3.35. The value at zero frequency F (0, 0) at the

centre of the images are by far the largest components. Using the Gaussian window

can recover the direction of edges in the rain radar images. However, such a direction

could not be observed from the satellite images. Therefore, Sobel’s filter previously

introduced is applied to the frontal cloud image prior to the Fourier transform to

enhance structural information. The Fourier transforms of the filtered images and

their corresponding principal components are shown in Figure 3.36. The principal

components are defined by 20 pixels with the highest Fourier transforms. These pixels

are represented as white in the lower panel of the figure. The illustration shows that

the IR and VIS images can well extract the principal directions of the cloud.

In addition to the derived directions of the principal components, energy and en-

tropy of the distribution in the Fourier space can be used as a rotation-invariant

signature of texture characteristics.

IR WV VIS Rain

Figure 3.35: Amplitude of the windowed Fourier transform of the 4 events. Each row
represents each event: (from top to bottom) convective, stratiform, at vortex’s centre
and frontal.
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IR WV VIS Rain

Figure 3.36: Amplitude (upper) and principal directions (lower) of the windowed
Fourier transform after applying Sobel’s filter to the frontal cloud.

3.2.4 Spatio-temporal analysis

Instead of fixing the Gaussian window at the centre of an image, the window can be

shifted over the spatial domain to discover how the frequency contents evolve in space

and time. This technique is known as the short-time Fourier transform (STFT). For

a function f(t), the technique can be mathematically represented by

Fw(τ, ω) =

∫ ∞

−∞
f(t) exp(−̂ωt)w(t− τ)dt. (3.8)

The windowing function w(t − τ) allows the Fourier transform to calculate the fre-

quency responses at each particular location τ . Therefore, the transform has become

time-dependent as well as frequency-dependent.

Although achieving both time and frequency localisation, the short time Fourier

transform still has a major disadvantage due to a fixed resolution—the same window

size of the basis function is used for each frequency. In order to analyse the texture

of an image, a short basis function (narrow window, wide band) is preferred to ex-

amine sharp gradients whereas a longer basis function (wide window, narrow band)

is desirable to observe uniform details. The wavelet transform has been developed to

overcome such resolution problems. The transform is done by applying a basis func-

tion that is localised in both time and frequency known as a mother wavelet and its

family to a signal to acquire the pattern the signal is correlated with. The family of

the basis function can be derived by translating and scaling the mother wavelet so that

the wavelet transform becomes a function of these translating and scaling parameters
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(Daubechies, 1990), i.e.

Ψ(τ, s) =

∫ ∞

−∞
f(t)

[
1√|s|ψ

∗
(
t− τ

s

)]
dt, (3.9)

where ψ(t) is the mother wavelet function and ψs,τ (t) denotes variants of the function

with a scale and translation parameter s and τ , and (∗) denote the complex conjugate

of the function. The meaning of the translation is similar to that in the STFT, i.e. it

relates to the location of the window of a function that is shifted through the signal.

However, instead of frequency ω, the scale parameter s is used. The scale parameter

is a multiplicative inverse of the frequency; low scales (high frequencies) correspond

to detailed information that usually lasts a short time such as edges in an image, and

vice versa. In practice, both s and τ are sampled and discretised in order to reduce

redundancy, otherwise the wavelet transform of an image would result in 4 dimensional

space.

The wavelet transform can be applied to two-dimensional applications by using a

simple hierarchical framework (Mallat, 1999). Its principle is to represent the image

by its approximation, i.e. a down-sampled image at a coarser scale, and the difference

between the approximation and its original image. The difference, which contains the

high frequency content of the original image, can be precisely represented by a set of

orthonormal wavelet basis functions that span over the frequency domain. The down-

sampling is then successively applied to the approximated image so that the image

becomes smaller and smaller. For the two dimensional analysis, if the downsampling of

the wavelet transform is performed by a factor of two, the transform may be computed

by filtering in each dimension separately. That is, the approximation of an image

f(x, y) can be characterised by

Af (x, y) = < f(x, y), φ(x, y) >

= < f(x, y), φ(x)φ(y) >, (3.10)

where Af (x, y) is the approximation of f(x, y) and φ(x, y) = φ(x)φ(y) is a scaling

function. The symbol < , > denotes the inner product such that

< f(x), g(x) >=

∫ ∞

x=−∞
f(x)g(x)dx,

Mallat also proved that, given φ(x, y) be a separable scaling function and ψ(x) be

the one dimensional wavelet associated with the scaling function, there exists three
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wavelets

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y) (3.11)

that form orthonormal basis functions of the image f(x, y). Thus, the differences

between Af(x, y) and f(x, y) can now be described in terms of these functions. That is,

the image f(x, y) can be completely represented by 4 images which includes Af (x, y)

and the three images which are the inner products between the orthonormal basis

functions and the original image, i.e.

D1f(x, y) = < f(x, y), φ(x)ψ(y) >

D2f(x, y) = < f(x, y), ψ(x)φ(y) >

D3f(x, y) = < f(x, y), ψ(x)ψ(y) > . (3.12)

If φ(x) and ψ(x) are a perfect low pass filter and a perfect band pass filter, the

image Af will represent the low-frequency content of the original image. The image

D1f and D2f will correspond to vertical high frequencies (horizontal edges) and

horizontal frequencies (vertical edges). The image D3f will indicate high frequencies

in both directions such as corners. Accordingly, the wavelet transform becomes only

an operation of cascaded discrete filters. That is, a decomposition of an image can

be done by first performing a one-dimensional transformation on each row followed

by a one dimensional transformation of each column. The decomposition can then

be applied to Af so that details at coarser resolution (higher level) of the image are

extracted. The image can be reconstructed from the four sub-images by reversing

the decomposition. The decomposition and reconstruction of an image at level j are

shown in Figure 3.37. In the diagrams, h(x) and g(x) referring to the impulse response

of φ(x) and ψ(x) and h̃(x) = h(−x).
Examples of h(k) and g(k) are the Daubechies and Coiflets, shown in Figure 3.38.

The performance of the wavelets can be compared by using the number of their van-

ishing moments, which refer to the wavelets ability to represent polynomial behaviour

or information in a signal. For example, the Daubechies orthogonal wavelets has

a number of vanishing moments equal to half the number of coefficients. That is,

the Daubechies wavelet with 6 coefficients (db6) has 3 vanishing moments, therefore

it has power to represent constant, linear and quadratic signal components. There
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(a)

(b)

Figure 3.37: Block diagram showing the (a) decomposition and (b) reconstruction of
an image using the wavelet transform (Mojsilović et al., 1997).

has been research using the Daubechies wavelet for cloud detection and classifica-

tion (Tian et al., 1999; Amato et al., 2001) that has yielded a satisfactory result.

However, because the scaling and wavelet functions are not symmetric, phases of the

Daubechies are not linear. On the contrary, Coiflets are more symmetric compared

to the Daubechies wavelets. This leads to the near linear phase characteristics in the

Coiflets, though the number of the vanishing moments is equal to one-third of the

number of the coefficients, which is less than that of the Daubechies wavelet. By ex-

perimental research, Calderbank et al. (1997) suggested that the number of vanishing

moments required depends heavily on the nature of the image. In other words, which

mother wavelets should be selected depend on the nature of texture in applications.

For example, wavelets with more vanishing moments generally perform well with nat-

ural and smooth images but not for images with a lot of high frequency components.

Other wavelets with different properties are also available. For example, Symlet

is a modified version of Daubechies wavelets that yields an increase in symmetry,
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while retaining their relative simplicity (Daubechies, 1990). Instead of the same single

wavelet for decomposition and reconstruction, a biorthogonal wavelet designed by

Cohen et al. (1992) uses two different wavelets which results in a linear phase filter,

which is a necessity in image compression. Therefore, it is the most widely used in

the field of wavelet transform coding, and has been chosen as the only candidate in

the FBI’s fingerprint image compression standards.

Textural features that can be extracted from the wavelet decomposition includes

the energy contained in each sub-image. Other statistics are co-occurrence statistics

of the detailed sub-images (de Wouwer et al., 1999) and parameters representing the

histogram of the wavelet coefficients at each level such as moments of the histogram.

For example, The first moment is the mean of the coefficients decomposed by the

wavelet. The second central moment is their variance, which describes how similar the

coefficients are. The third central moment describes how symmetric the distribution

of the coefficients is about the mean. In addition, Mallat (1989) experimentally found

that histograms of the detailed sub-images of natural images can be modelled by

h(u) = K exp

[
−
( |u|
α

)β
]
, (3.13)

where u is the wavelet coefficients. The parameter αmodels the width of the histogram

peak and β modifies the decreasing rate of the peak. The method to derive both

parameters is supplemented in Appendix C.

The results when a db2 wavelet was applied to the IR images of the four events

are presented in Figure 3.39. The probability function of Af coefficients are similar to

the histogram of the original images but are slightly smoother. There is an obvious

difference between the distribution of cloud at the centre of the cyclone in the four

decomposed images and the other types of cloud. It has the most components (wide

width of the distribution) in edges along x and y axes, and corners. This corresponds

to what we can see from the test images that at the centre of the cyclone, clouds are

distributed evenly in both x and y directions. The D1f and D2f distributions also

show that the convective cloud has slightly more edges parallel to the x axis than to

the y axis. On the contrary, the distributions of stratiform and frontal clouds do not

give any preference. This also applies to the wavelet transform of the rain radar images

presented in Figure 3.40, in which most of the components are nearly zero. Figure 3.41

compares an effect of using the Daubechies and Coiflets at the same length of filters.

The non-zero D3f coefficients when using the Daubechies are higher than those of

the Coiflets, which means that the Daubechies wavelet can capture the transitions
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in x and y directions better than the Coiflets. This corresponds to prior knowledge

that the Daubechies wavelet has more vanishing moments and therefore can better

approximate the functions of higher polynomial degrees. That is, the wavelet features

can be used to measure the nonlinearity of the cloud texture in conjunction with other

types of textural features for rain estimation.
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Figure 3.38: Coefficients of filters for (a) Daubechies and (b) Coiflets.
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Figure 3.39: Probability functions of db2 coefficients of the first level decomposition
of IR images for the four events.
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Figure 3.40: Probability functions of db2 coefficients of the first level decomposition
of rain radar images for the four events.
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Figure 3.41: Comparison of probability functions of D3f coefficients when (a) db and
(b) coif of the same length are applied to the convective IR image.
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3.3 The use of shadow

We are able to perceive the three dimensional nature of clouds by observing shadowing

effects. For example, at the same solar zenith angle the longer length of shadows im-

plies the higher, and probably thicker, clouds. Cloud shadows can be a useful indicator

of the thickness of clouds and therefore provide information on rain. Consequently,

cloud shadows may be taken into consideration in rain estimation.

For a flat earth approximation, the cloud base height h can be calculated in terms

of the solar zenith angle Z and the length of the cloud shadow Ls by

h =
Ls

tanZ
. (3.14)

However, substantial errors can occur at a position off the satellite nadir (Berendes

et al., 1998). For example as shown in Figure 3.42, the satellite sees the edge of the

cloud at a distance d = h tan θ, where θ is the satellite zenith angle at the cloud edge.

Therefore, the distance between cloud and shadow is d + Ls. As a result, the cloud

base height that is seen by the satellite actually is

h́ =
d+ Ls

tanZ
,

h + ∆h =
h tan θ + h tanZ

tanZ
,

which is higher than the actual cloud base height. The error ∆h/h is given by tan θ
tan Z

. It

increases with increasing observation angle θ and decreasing solar zenith angle Z. The

relative error of the derived cloud base height along the central meridian (0◦ longitude)

as a function of latitudes for Meteosat7 is presented in Figure 3.43. It can be noticed

that the error becomes worse at the higher latitude and the series of error lines also

demonstrates that the worst error occurs at noon. Thus, using Equation (3.14) to

derive the cloud base height directly can lead to substantial errors.
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Figure 3.42: The geometry of a cloud, a satellite and the sun.
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Figure 3.43: The relative error of cloud base heights derived from Equation 3.14 on
23 June 2004 from 0700 to 1700 UTC. Each line is fifteen minutes apart.
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Alternatively, the shape from shading (SFS) technique can be used to reconstruct

the surface shape from gradual variations of shading in the image (Ikeuchi and Horn,

1981). It attempts to simulate the mechanisms which human’s eyes and brains actually

use. The recovered shape might be expressed either in depth Z(x, y), surface gradient

(p, q) = (∂Z/∂x, ∂Z/∂y) which is the rate of change of depth in the x and y directions,

or surface normal �N = (p, q, 1)T .

To understand the SFS algorithm, the first step is to study the image formation

process. A Lambertian model is the simplest explanation of the process. It assumes

that the grey level at each pixel depends only on the light source direction and surface

normal. Assuming that the surface is illuminated by a distant point source, the

intensity of a pixel in an image is defined by

I(x, y) = � �N · �L = �
pl1 + ql2 + l3√

1 + p2 + q2
(3.15)

where � is the surface albedo which is a fraction of the incident light that is reflected

and �L = (l1, l2, l3) is the light source direction in x, y, z coordinates with z axis normal

to the image plane, illustrated in Figure 3.44.

Z(x,y)

x

y

N L

Figure 3.44: Diagram of an object and a light source of an image plane.

Assuming that � and �L are known, the surface gradient (p, q) are the two unknowns

that the algorithm tries to determine from each pixel intensity I(x, y). Therefore, SFS

is an underdetermined problem in nature. In order to get a unique solution, if there

is any at all, some constraints (Ikeuchi and Horn, 1981) are needed. These include
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• brightness constraint

∫∫
(I − R)2dxdy, (3.16)

• smoothness constraint

∫∫
(p2

x + p2
y + q2

x + q2
y)dxdy, (3.17)

• integrability constraint

∫∫
(Rx − p)2 + (Ry − q)2dxdy, (3.18)

where the subscript x and y denote the partial derivative in x and y directions. The

brightness constraint ensures that the reconstructed surface (R) produces the same

brightness as the input image. The smoothness constraint, in terms of the second

order surface gradients, helps in reconstruction of a smooth surface. The integrability

constraint ensures the recovered surfaces are valid, i.e. Zx,y = Zy,x, and correspond to

the input image. Thus, by minimising

∫∫ {
(I − R)2 + λ1(p

2
x + p2

y + q2
x + q2

y) + λ2

[
(Rx − p)2 + (Ry − q)2

]}
dxdy, (3.19)

where λ1 and λ2 are Lagrange multipliers, the shape R of the object can be recovered.

The assumptions made for the SFS problems are: 1) the surface is Lambertian, i.e.

it reflects light in all directions, 2) the surface is illuminated by a distant point source,

and 3) the position of the light source is known (Rajabi and Blais, 2001). Dealing

with VIS satellite images, the light source is the sun which is not only far away from

the scene, but also has a known direction. Therefore, the first assumption is the only

one which is questionable. To this point, the intensity in the VIS channels is the

reflectance of light from cloud particles, which can be assumed to have a spheroid

shape and therefore reflect the light uniformly in all directions. In this regard, the

Lambertian surface assumption can be acceptable when considering clouds.

Next, the performance of the algorithm is studied by the application to a synthetic

image of an object with known-shape. Its light source direction L = (0, 0.5, 0.5) is

in the north direction of the object. The image and its recovered shape are shown

in Figure 3.45. The object, which is in fact a circular sinusoidal wave, can be well
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recovered by the algorithm with slightly distorted shape on top. The error is an effect

of long shadows that occur at the first ridge. When tested with a VIS image of a

mesoscale convective system in Figure 3.46, the cloud depth can be recovered but is

distorted in shape. Similar to the result of the synthetic image that some shaded

areas cannot be resolved, the recovered cloud height in some places are incorrectly

determined to be lower than land. A reason for this is that a single �L is used, contrary

to the fact that each point receives sun light differently due to the earth’s curvature.

Moreover, the method derives the height relative to the background but clouds do not

usually attach to each other. Special constraints must be included for such cases. In

addition, in order to minimise Equation (3.19), an appropriate initial depth and the

step sizes of the minimisation process are required.
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Figure 3.45: A result after 200 iterations when the shape from shading approach
(Ikeuchi and Horn, 1981) is applied to a synthesis image (a).

3.4 Conclusion

The relationship between the distribution of rain rates and the corresponding satel-

lite images is complex and the use of the pixels alone leads to considerable error in

the estimation of rainfall. Other pieces of information that can be extracted from the

satellite images are textural features. These features are expected to enhance the spec-

tral information for rain estimation. In this chapter, an analysis of textural features

has been done in order to find out the features that uniquely describe cloud textures

and how these features relate either to the texture of the corresponding rain rates or

to the rain rates themselves. Four meteorological events which commonly relate to a
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Figure 3.46: The result after 200 iterations when the shape from shading approach
(Ikeuchi and Horn, 1981) is applied to an image of a thunderstorm in (a).

mid-latitude cyclone are selected for the analysis. These events are a convective cloud,

stratiform cloud, cloud at the centre of the cyclone and a frontal cloud.

The first feature that has been studied is a co-occurrence matrix which indicates

how frequently two pixels with a specific grey level and being separated by a given

distance appear in an image. The statistics of the matrix can refer to an arrangement

of cloud texture. For example, entropy reveals that the convective cloud is the most

disorganised—there is no obvious relation between any two pixels in the image as its

entropy is higher than that of other events. The sharp gradient of the frontal cloud can

also be captured by contrast of the satellite images. It is the best feature to distinguish

the four events and its relationship to the distance between pixels also resembles that

of the rain radar images. These statistics are also invariant to rotation and robust to

noise. However, the major drawback of the co-occurrence matrix is zero entries within

the matrix, wasting memories in the computational process. The problem can be

alleviated by selecting an appropriate number of bins for the intensities to be grouped

in. The number should be neither too coarse to capture the details of a texture nor

so fine that there are many zero entries in the matrix. Several rules of thumb can be

used as a guidance for the selection.

Instead of using individual satellite channels, the co-occurrence matrix can also be

applied to multi-spectral images. The combination of IR, VIS and WV images into the

RGB colour model is based on an observation that all the three channels give different

pieces of information and contribute to the relation to rain rates differently. The

values of ASM and entropy of the RGB co-occurrence matrix can better distinguish
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the four events than those of the individual channels. However, the computation of

the 3-dimensional matrix requires a large storage to process. Alternatively, the HSV

(Hue, Saturation, Value) model can be used. Hue represents the wavelength of a colour

whereas saturation represents an intensity of colour. Value refers to the intensity of

the image and does not depend on colours. The HSV model treats the three primary

colours as dependent variables. This can be beneficial to the rain estimation problem

as each channel is not fully independent from others. The ASM and entropy of the HSV

co-occurrence matrix are good at discriminating each meteorological event, similar to

those of the RGB model, but much less memory is required.

The next texture descriptor is by statistics of a difference matrix, which is based

on absolute grey level differences between pairs of pixels. The statistics are a function

of the displacement between the pair (d) and the direction of a line crossing the pair.

Similarities between the cloud texture and the rain texture of these statistics can be

observed. For example, the frontal cloud which possesses apparent gradients has the

highest/lowest statistics in a certain direction, resembling those of the rain image.

However, the experiments found that the co-occurrence and difference statistics that

give the highest correlation to the rain rates occur at a particular value of d. The

maximum or minimum of the statistics and their corresponding displacement might

be used in practice in order to avoid selecting an appropriate d. In addition, to make

the statistics invariant to the rotation of the cyclones, a direction with respect to the

centre of the cyclone can also be used.

Next, the VIS and IR intensity transitions which may be referred to cloud evolution

or different cloud height of two clouds are extracted by means of the Radon transform.

The Radon transform reduces the dimensionality of analysing the transitions in all

directions by projecting the image intensities onto a principal axis and then extracting

edges along the axis. However, applying the Radon transform directly to satellite

images gives no significant results along the projection lines due to their smoothness.

Therefore, Sobel’s filter (Gonzalez et al., 2003) is applied to the images prior to the

transformation to enhance the edges of the cloud objects. The Radon transform of the

filtered images reveals the similarities of orientation of texture to those in the radar

images with the correlation coefficients of 0.71 and 0.66 for the case of the convective

cloud and at the centre of the vortex. The texture orientation extracted from the

IR images is also more relevant to the rain rates than the spectral information. This

encourages the use of Sobel’s filter and the Radon transform as another textural feature

for rain estimation.
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The next features are energy and entropy of the distribution in the Fourier space

which represents spatial frequencies of an image by a use of an infinite series of trigono-

metric functions. However, windowing and the use of Sobel’s filter are required prior to

the Fourier transform to get rid of discontinuities at edges of the image and smoothing

effects which can result in cross-shaped ripples or rectangular grids.

Alternatively, the texture can be described by how its frequency contents evolve in

time by the use of the wavelet transform. This spatio-temporal analysis decomposes

an image into four sub-images that correspond to the low-frequency content of the

original image, vertical high frequencies (horizontal edges), and horizontal frequencies

(vertical edges) and high frequencies in both directions such as corners. There is a

number of mother wavelets available but which to select depends heavily on the nature

of texture appearing in an image.

Another piece of information is cloud shadows in VIS images which implies the

thickness and height of clouds. Using this information can possibly identify structure

and organisation of the cloud and relate them to rainfall. Two methods of shadow

extraction were analysed in this chapter: (1) by assuming a flat earth surface and (2)

shape from shading. The first technique calculates the cloud base height in terms of

the solar zenith angle and the length of the cloud shadow. However, substantial errors

can occur at a position off the satellite nadir. The second technique assumes that the

reconstructed surface is Lambertian and is illuminated by a known-position distant

point source. All of the assumptions are acceptable when applying to VIS images. The

technique was applied to a VIS image of a mesoscale convective system. The cloud

depth can be recovered but is distorted in shape. A reason for this is that a single

light source is used, contrary to the fact that each point receives sun light differently

due to the earth’s curvature. Special constraints must be included for such cases. In

addition, an appropriate initial depth and the step sizes of the minimisation process

are required.

In summary, the textural features have some similarities to either the texture of

the corresponding rain rates or the rain rates themselves. However, in this chapter

these features were analysed separately. In the next chapter, a systematic analysis will

be done to rank textural features according to their correlation to rain rates. Then,

the best ranked features will be used for rain estimation.



Chapter 4

Rain Estimation

In this chapter, the textural features that have been analysed in Chapter 3 are related

to rain rates. The features used for rain estimation are co-occurrence statistics, dif-

ference statistics, Radon transform, Fourier transform, wavelet transform to include

statistical, structural, frequency and spatio-frequency characteristics of the cloud tex-

ture. In addition, the combinations of the three channels: IR, WV and VIS are also

used. The combination is performed through a false image by associating the IR, VIS

and WV to the red, green and blue colour bands, respectively. The hue, saturation

and value of the false image are then used to derive the statistical features in the

same way as individual channels. In Section 4.1, details of a mid-latitude cyclone that

has been selected for the study are described. Then, the best features are selected

regarding their relation to rain rates of the cyclone. The feature selection is presented

in Section 4.2. The selected features are then used for rain estimation which is a com-

bination of classification and function approximation to gain robust but continuous

rain estimates. Details of the estimation are presented in Section 4.3.

4.1 Data

A set of Meteosat satellite images corresponding to a summer mid-latitude cyclone has

been used for the study of rain estimation using cloud texture. The event occurred in

mid-June 2004, starting on the 22nd and dissipating on the 24th. On the 22nd, the

cloud and rain spread north-easterly during the day and by midnight were affecting

all of England, Wales and Ireland, and parts off southern Scotland. The rain was

associated with an unusually low depression for the summer with the mean sea level

pressure down to 983 mb just of southern Ireland by midnight. The rain was heavy

in places with gusts up to 40 knots in exposed places. The low pressure continued

99
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to dominate the weather of the British Isles on the 23rd — heavy rain spread into

northern Ireland and southern Scotland overnight and widespread falls occurred over

southern parts of England. As the low pressure became slow-moving off the north-

eastern coast of England, showers followed the rain. During this time, there were

reports of landslides in Truro, floods in parts of Plymouth, power break-downs in

Kent and Essex. Around the coasts of England, there were gusts of 60mph recorded,

causing further damage to Brighton’s West Pier, the Severn Crossing closed and ferry

services across the English Channel suspended. On the 24th, the low pressure was

moving over the North Sea. Showers developed in western areas which eventually died

down in the evening.

This summer mid-latitude cyclone has been selected for the study due to the avail-

ability of its rain information. It was captured well by the Radarnet which has a

coverage over the British Isles and western Europe, especially from the midnight of

the 22nd to the late morning of the 23rd when the depression was growing to the ma-

ture stage. In addition, the cyclone also contains all the four meteorological processes

investigated in the previous chapter. During the day of the 23rd, the visible images

were also available for testing the multi-spectral technique which has been developed

in the previous chapter. As shown in the pressure charts presented in Figure 4.1, the

depression was a single cold-front dominated system with no other depressions nearby

at the time. Its life cycle followed the theoretical description of the Norwegian model1

with no disturbance from other systems that may make the analysis too complex. The

weather analysis from SatRep2 on 23 June 2004 at 0000 and 1200 UTC is presented

in Figure 4.2.

1Details in Appendix A.
2a written report containing information of the IR Meteosat image in combination with NWP out-

put and observations in terms of Conceptual Models, contributed by Austrian Meteorological Insti-
tute (ZAMG), Royal Netherlands Meteorological Institute (KNMI), Finnish Meteorological Institute
(FMI) and European Organisation for the Exploitation of Meteorological Satellites (Eumetsat).
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22 June 2004

23 June 2004

24 June 2004

Figure 4.1: Pressure charts of the mid-latitude cyclone on 22-24 June 2004. Source:
British Meteorological Office.
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CAD : Cold air development
CA: Cold advection
CF: Cold front
MCS: Mesoscale convective system
OCCL: Occlusion
RACY: Rapid cyclogenesis
THR: Thickness ridge
WF: Warm front

(a)

Cb: Cumulonimbus
ULL: Upper level low

(b)

Figure 4.2: Weather analysis over Europe on 23 June 2004 at (a) 0000 UTC and (b)
1200 UTC. Source: Satrep http://knmi.nl/satrep.
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The satellite observations were reprojected to polar stereographic projection to

match that of the Radarnet at the resolution of 5× 5 km per pixel. Next, the texture

information of these selected pixels was extracted into features. A standardisation has

been applied to the features to avoid biases between them. Each feature is rescaled

by using the following equation:

z =
x − µx

σx

, (4.1)

where z is the standardised feature, µx and σ2
x are the mean and variance vectors of

a feature vector x. After standardisation, each feature has a mean of 0 and variance

of 1. In order to find the relationship to rain rates, these features can be put into

a classifier directly. However, large dimensionality of the input features and limited

data samples can affect the classifier’s performance and the computational complexity.

A careful feature selection can alleviate the severity of the problem (Liu et al., 2005).

This process is introduced in the next section. The selected features are then used for

the rain estimation. The described process to prepare the data for the rain estimation

is summarised in Figure 4.3.

Figure 4.3: Diagram of a data pre-processing for rain estimation.
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4.2 Feature selection

The computational requirements of classification are generally positively correlated

with the number of input features. Accordingly, the feature selection is used to re-

duce the data and amount of computation by assessing how well the features are

separated into classes or ranking their relevance. The selection can remove irrelevant

and redundant features and reduce the amount of data needed for learning and thus

increase the estimator’s comprehensibility. That is, the feature selection is expected

to reduce computational cost, focus on a relevant subset of feature, hence provide

helpful meteorological knowledge. Two approaches can be used as a feature selection:

dimensionality reduction and subset selection.

Figure 4.4: The two approaches of the feature selection mentioned in this section.

The first approach is to project the original feature vectors onto a space of smaller

dimensionality on account of a covariance of the features or correlation among them.

This approach is sometimes called feature extraction or feature reconstruction; it

creates new features which are a combination of the original features. The most com-

monly used feature extraction among remote sensing and pattern recognition commu-

nities is the Principal Components Analysis (PCA) or the Karhunen-Loéve expansion

(Richards and Jia, 1999). It projects the input features onto the eigenvectors of a

covariance matrix (which is the variances between each feature dimension ). The

new data set spanning these eigenvectors have no dependencies between dimensions.

Then, the least significant dimensions (least eigenvalue/least variances) are discarded.

Therefore, the dimensionality of the input space can be reduced. However, dealing

with a large dimension space especially with excessive samples in each dimension can

be impractical. In addition, a great emphasis is usually placed on those features with

the greatest variability. This is in contrast to the requirement of the classification,

which is more concerned with maximising the separability between classes.
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Another method is to exploit the clustering techniques by using similarity/distance

measures in the input feature space to select a sub-feature dimension that gives max-

imum separability. An example of such method is the k-means algorithm which tries

to cluster features into k separated Gaussian distributions. Alternatively, the par-

titioning can also be performed by maximising/minimising a criterion function that

measures clustering quality of all possible partitions of the feature space. Examples of

the function are the similarity of the features and their distribution within a cluster.

However, its brute-force search to match a cluster of features with one of the classes

may cause errors if the cluster corresponds to more than one class. Such cases, e.g. a

cloud with a particular temperature can give either rain or no rain, have already been

discussed in the previous chapter.

The second approach selects the most significance feature subsets and therefore

retains the original meaning of the input features. This can be done in three ways

(Guyon and Elisseeff, 2003):

• Filter method

• Wrapper method

• Embedded method

The latter two methods aim at selecting the optimal sets of features. The wrapper

method, for example, utilises the learning machine of interest as a black box to score

subsets of features according to their discriminant abilities. On the contrary, the

embedded method performs the selection in the process of training and is usually

specific to a given learning machine. In practice, the features are not ordered and the

best feature set must be found from among all possible feature subsets. On the other

hand, the filter method evaluates a measure of relevance of all the features and ranks

them on the basis of that measure. The selection is not correlated to any specific

classifiers and therefore the selected features have better generalisation. This method

is widely used as a principal selection mechanism because of its simplicity, scalability

and, most importantly, a good empirical success (Guyon and Elisseeff, 2003).

Computationally, the method requires only the computation and the sorting of

scores. Statistically, it produces less variances than other methods and therefore can

be used for any numbers of the sample sets. The simplest scoring function is the

correlation criteria, which has been already introduced in Section 3.1. Referring to

Equation (3.1), the correlation coefficient rx,y describes the linear relation between
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x and y. Therefore, using r2
x,y or |rx,y| as a scoring function can sort the features

according to the goodness of linear fit of the individual features. To lift the linear

relationship restriction, the non-linear preprocessing can be used before calculating

the correlation coefficient.

Next, the absolute value of a correlation coefficient |r| is used as a scoring function

to sort each textural features by its relevant to rain rates. First, all the samples are

classified into three ranges of their corresponding rain rates: (0,2), [2,8), [8,∞) mm/h.

The ranges are defined by following a guideline from NOAA’s National Weather Ser-

vice3. The correlation coefficients are calculated by comparing the features and the

rain rates within a 21 × 21 pixel window. Figure 4.5 shows |r| between homogeneity

of an IR co-occurrence matrix and rain rates of 50 samples as a function of displace-

ments between a pair of pixels. Samples that show no relevance to the rain rates such

as the 5th, 7th, 9th sample are removed before computing the averaged correlation

coefficients. The zero correlation is due to the homogeneity of the feature within the

image window. These samples can be seen as blue strips in Figure 4.5 where |r| of

these samples becomes zero at all displacements.
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Figure 4.5: Absolute values of correlation coefficients between homogeneity of an IR
co-occurrence matrix and moderate rain rates.

There are two ways of considering how the textural features correlate to the rain

rates: (1) by the highest averaged r and (2) the highest percentage of samples that have

3NOAA’s National Weather Service defines a rain rate ≤ 0.1 inches per hour as light rain, 0.11−0.3
inches per hour as moderate rain and > 0.3 inches per hour as heavy rain.
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high correlation to rain rates. These two parameters need to be used in combination to

guarantee that a high rav is not a result of outliers within the feature space. Therefore,

the following scoring function has been used to combine both effects, i.e.

ς =
1

1 + k
(|rav| + kN), (4.2)

where N is a proportion of samples that have |r| > 0.4, which suggests that the

feature and its corresponding rain rate within the window size of 21x21 correlates to

each other according to Haldar and Mahadevan (2000), and k ∈ (0, 1) is a constant to

weigh the significance of N . The function ranges from 0 to 1. Figure 4.6 illustrates

the scoring function when k = 1. The figure shows that the feature with a higher rav

might not be selected if N is too low, which can happen when the samples have a

large deviation in r values.

Next, the scoring function of each textural feature is calculated. In the following

feature selections, the value of k is chosen to be 1 to balance the significance of rav

and the number of high rain-correlated samples. The parameters can be adjusted to

suit conditions in other applications. The scores are then used to rank the features of

four types: statistical, structural, frequency and spatio-temporal.
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Statistical analysis

The statistical features used in this analysis are as follows.

Methods Image Type Statistics Parameter

Co-occurrence (Cd)

ASM
IR, WV, VIS Entropy d=1-16 pixels

H, S, V Contrast dmax, dmin

Homogeneity max Cd, min Cd

Correlation

Grey-level difference (fd,θ)
IR, WV, VIS Mean d=1-16 pixels

H, S, V STD θd=0o, 45o, 90o

Entropy θT , θR

• θR and θT are angles between a line crossing the pixel and the centre of cyclone and x axis
and its tangent line.

• θd is an angle between two pixels in the image window.

The parameters for considering the correlation of the co-occurrence features (Cd)

and the rain rates are the distance between any two pixels in the considered 21 × 21

window (d) from 1-16 pixels, the highest and lowest values of these statistics (maxCd,

minCd) and the distance corresponding to these extreme values (dmax and dmin). Like-

wise, the same distance parameter d = 1-16 pixels are used to consider the correlation

of the difference (fd,θ) statistics. The statistics are derived in five directions i.e. 0,

45,90 degrees from the x axis and in the directions that correspond to the radius from

the pixel to the centre of cyclone and its tangent line (θR and θT ). The scoring func-

tion is calculated using these parameters for IR, VIS and WV images and for the HSV

colour model constructed from these images.

Table 4.1 shows the statistical features that give the highest scoring function when

k = 1 for light, moderate and heavy rain rates together with their rav and N . For

monochrome images, the textural features derived from VIS images are more correlated

to light rain rates than other kinds of images. In addition, it can be observed that

the difference statistics in θR and θT directions (see Figure 3.27) are in the top ranks.

The statistics of these directions are derived in relation to the centre of the cyclone

and therefore are invariant to the rotation of the cyclone and its location. However,

the best scores belong to the statistics of a specific direction and displacement. For

moderate rain rates, the statistics from a co-occurrence matrix dominate the top ranks.

The statistics with the highest scoring function also have the number of pixels that

have |r| > 0.4 as high as 46% of the total samples. That is, the relation between these

features and their corresponding rain rates are likely to be linear.
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On the other hand, the statistics derived from the HSV colour model, especially

hue, generally give higher scores than the statistics of monochromic images.This is

obvious for the case of moderate rain rates. The number of pixels with |r| > 0.4 are

on average 58% of the total samples. The difference statistics also outrank those of

the co-occurrence matrix.

It is also noticed that the maximum/minimum value of the statistics or the dis-

placement that gives these optimal values do not show up in the table. These param-

eters have been introduced in the previous chapter in order to avoid fixing the value

of displacement d. Therefore, an attention should be paid to select an appropriate d

when these statistics are used.

Structural analysis

The structural features used in this analysis are as follows.

Methods Image Type Parameter

Sobel’s filter &
Radon Transform (Rx,θ)

ASM
Ent

IR, WV, VIS Rmax

xRmax

θRmax

• xR is the distance from centre of the image window along the projection line. It is negative
for the pixel on the left side of the window.

• θR is an angle of the projection line with respect to the x axis.

Sobel’s filter and the Radon transform are applied to a 21 × 21 pixel window

surrounding each pixel. The statistics derived from the transformed values chosen for

the consideration are angular second moment (ASM), entropy (Ent), the maximum

of the transformed values (Rmax), and the radius length along the projection line and

the angle between the projection line and the x axis that gives the maximum value

(xRmax and θRmax).
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Table 4.1: Statistical features that are most correlated to rain rates.
Light rain rates

Rank ς Image Method Stat para rav N(%)
1 0.3370 VIS Cd Ent 16px -0.3558 31.8
2 0.3250 VIS fd,θ Mean 90◦, 1px -0.2864 36.4
3 0.3243 VIS Cd ASM min 0.3077 34.1
4 0.3151 VIS fd,θ STD 90◦, 1px -0.2665 36.4
5 0.2913 VIS Cd Con 5px -0.3099 27.3
6 0.2804 VIS fd,θ Ent θR, 5px -0.2199 34.1
7 0.2786 VIS fd,θ Ent 90◦, 1px 0.2617 29.6
8 0.2782 VIS fd,θ Mean θT , 1px -0.1927 36.4
9 0.2717 VIS fd,θ Ent θT , 1px 0.1798 36.4
10 0.2698 VIS Cd Homo 5px 0.2897 25.0

Moderate rain rates
Rank ς Image Method Stat para rav N(%)

1 0.4283 IR Cd ASM 6px -0.4165 44.0
2 0.4002 WV Cd Con 1px -0.4004 40.0
3 0.3910 IR Cd Cor 9px 0.4219 36.0
4 0.3867 IR Cd Homo 8px -0.3334 44.0
5 0.3831 VIS Cd Cor 7px 0.3462 42.0
6 0.3753 WV Cd Homo 1px 0.3526 40.0
7 0.3726 VIS fd,θ STD θT , 10px 0.2853 46.0
8 0.3650 VIS fd,θ STD 90◦, 10px 0.2699 46.0
9 0.3606 IR Cd Ent 5px 0.3012 42.0
10 0.3341 VIS fd,θ Ent θT , 12px -0.2283 44.0

Heavy rain rates
Rank ς Image Method Stat para rav N(%)

1 0.4125 WV Cd Homo 1px 0.5271 29.8
2 0.3739 WV Cd Con 1px -0.4499 29.8
3 0.3355 IR Cd Homo 7px 0.3943 27.7
4 0.3323 IR Cd ASM 4px -0.3881 27.7
5 0.3292 IR Cd Cor 5px -0.3817 27.7
6 0.3229 IR Cd Con 4px 0.4331 21.3
7 0.3166 IR Cd Ent 4px 0.3566 27.7
8 0.2797 IR fd,θ Ent θT , 1px 0.1977 36.2
9 0.2794 IR fd,θ STD 90◦, 1px -0.1972 36.2
10 0.2750 IR Cd Ent 10px 0.1884 36.2
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Table 4.2: HSV statistical features that are most correlated to rain rates.
Light rain rates

Rank ς Image Method Stat para rav N(%)
1 0.3734 S Cd ASM 12px 0.4691 27.8
2 0.3679 S Cd Ent 1px -0.4858 25.0
3 0.3061 H Cd Ent 15px 0.3623 25.0
4 0.3003 S fd,θ Ent 0◦, 8px -0.2143 38.6
5 0.2942 S fd,θ STD 0◦, 8px 0.2020 38.6
6 0.2821 H Cd Con 14px -0.3419 22.2
7 0.2804 S fd,θ Mean 0◦, 4px -0.1972 36.6
8 0.2755 S Cd Homo 16px 0.3010 25.0
9 0.2604 S fd,θ STD θR, 2px 0.2254 29.6
10 0.2561 S fd,θ Ent θT , 3px -0.1485 36.4

Moderate rain rates
Rank ς Image Method Stat para rav N(%)

1 0.4383 H fd,θ Ent 90◦,5px 0.2766 60.0
2 0.4342 H fd,θ STD 90◦,6px -0.2653 60.0
3 0.4262 H Cd Cor 8px 0.2872 56.5
4 0.4200 H fd,θ Ent θT , 3px 0.2599 58.0
5 0.4149 H fd,θ Mean 90◦, 10px 0.2499 58.0
6 0.4147 H fd,θ Mean θR, 16px 0.2494 58.0
7 0.4082 H fd,θ STD θT , 4px -0.2565 56.0
8 0.4065 H fd,θ STD 0◦, 16px -0.2531 56.0
9 0.4034 H fd,θ Mean θT , 11px 0.2469 56.0
10 0.4022 H fd,θ STD θR, 3px -0.2444 56.0

Heavy rain rates
Rank ς Image Method Stat para rav N(%)

1 0.3366 H Cd Homo 1px 0.4857 18.8
2 0.3318 H Cd Ent 16px -0.4762 18.8
3 0.3129 S Cd Con 9px -0.4383 18.8
4 0.3107 S Cd Homo 4px 0.4339 18.8
5 0.3092 S Cd Ent 1px -0.4309 18.8
6 0.3037 H Cd Con 4px -0.4199 18.8
7 0.2795 H fd,θ Ent 0◦, 16px 0.1973 36.2
8 0.2772 H fd,θ STD θR, 16px -0.1926 36.2
9 0.2752 V Cd Homo 1px 0.4253 12.5
10 0.2730 H fd,θ Ent θR, 15px 0.1843 36.2
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Table 4.3 shows the structural features that give the highest scoring function when

k = 1 for each rain class together with their rav and N . Although these statistics

show a high correlation to rain rates when tested with the four meteorological events

in the previous chapter, there is no significant correlation between the features and

the rain rates when tested on the whole image of the cyclone. The highest number

of pixels with |r| > 0.4 can be found in each rain category ranges from 14-20% of

the total samples only, though the number is still higher than the 14.31% when the

spectral information is considered alone. In addition, there are features that have high

rav but low N which occur when there are many feature samples that do not show

any relevance to rain rates (shown as blue strips in Figure 4.5, for example) being

removed prior the calculation of rav. This can be a result of no significant structural

information within the window in which these samples locate.

Table 4.3: Structural features that are most correlated to rain rates.
Rain Category Rank ς Image para rav N(%)

Light
1 0.2331 WV xRmax -0.4235 4.27
2 0.2298 VIS Ent -0.4142 4.55
3 0.1604 IR Rmax -0.1617 15.91

Moderate
1 0.2113 IR Rmax -0.2826 14.00
2 0.1987 VIS Rmax -0.2573 14.00
3 0.1893 IR ASM -0.2786 10.00

Heavy
1 0.3097 IR Rmax 0.4417 17.78
2 0.3193 WV Rmax 0.4385 20.00
3 0.2420 WV θRmax 0.4174 6.67
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Frequency analysis

The frequency features used in this analysis are as follows.

Methods Image Type Parameter

Windowed FFT (F )
Energy

IR, WV, VIS Entropy
Principal direction

The windowed fast Fourier transform is applied to a 21x21 pixel window surround-

ing each rain pixel. The statistics derived from the transform are energy and entropy

of the frequency contents. In addition, the principal direction which derived from the

transformed values that contribute 10% of all frequency contents is also used to find

the scoring function.

Table 4.4 shows the frequency features that give the highest scoring function when

k = 1 for light, moderate and heavy rain rates together with their rav and N . Similar

to the scoring functions of the Radon transform statistics, the Fourier statistics do not

give any significant correlation. For example, although |rav| of the moderate rain class

are as high as 0.44, the number of samples that highly correlate to the rain rates are

quite low. It is probably due to the fact that most of samples have |r| near zero with

some outliers that give extreme values of the correlation coefficients. The correlation

to rain rates of the light rain class is also poorer than the Radon transform.

Table 4.4: Frequency features that are most correlated to rain rates.
Rain Category Rank ς Image para rav N(%)

Light
1 0.1050 IR Ent 0.1401 6.98
2 0.0638 IR Ener -0.0811 4.65
3 0.0523 VIS Ener -0.0581 4.65

Moderate
1 0.2486 VIS Ent -0.4361 6.12
2 0.2437 VIS Ener -0.4059 8.16
3 0.2192 WV direc 0.3365 10.20

Heavy
1 0.2744 WV Ener 0.4513 9.76
2 0.1580 VIS Ener -0.2916 2.44
3 0.1530 VIS direc -0.3060 0.00
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Spatio-temporal analysis

The spatio-temporal features used in this analysis are as follows.

Methods Image Type Statistics Parameter
Daubechies (db2,db6, db10, db14, db18) IR Af1,2

Coiflets (coif6, coif18, coif30) WV D1f1,2 µ1, µ2, µ3

Symlets (sym2, sym6, sym10) VIS D2f1,2 α, β (Mallat, 1989)
Biorthogonal (bior10, bior12, bior18) D3f1,2

• The parameters: µ1, µ2, µ3 (1st, 2nd, 3rd moment), α and β are computed from the histograms
of the decomposed images Af , D1f , D2f and D3f at level 1 and 2.

The wavelet filters that are selected for the spatio-temporal analysis are Daubechies

(db), Coiflets (coif), Symlets (sym) and Biorthogonal (bior) wavelets at various filter

lengths. The Daubechies wavelet is selected because it provided promising results in

cloud classification. Other wavelets are developed to gain a better property than the

conventional Daubechies wavelet. For example, Symlets are modified by Daubechies

to gain more symmetry while retaining the simplicity of the Daubechies wavelet. The

vanishing moment of these two wavelets are equal to half of the filter lengths. There-

fore, the vanishing moments in this analysis are 1, 3,, 9 for the Daubechies wavelet

(db2,db6, , db18) and 1, 3, 5 for the Symlets (sym2, sym6, sym10). Coiflets are much

more symmetrical than the Daubechies wavelet whereas the Biorthogonal wavelet

consists of two wavelets, one for the decomposition and one for the reconstruction

to gain an exact the reconstruction of the input image. These wavelets are selected

as alternatives to the Daubechies wavelet. Although the symmetry of the filters are

more significant in image coding, which wavelet has the best correlation to rain rates

depends on its response to the nature of cloud texture.

Table 4.5 shows the spatio-temporal features that give the highest scoring function

when k = 1 for each rain class. The spatio-temporal features are able to describe the

cloud features better than frequency and structural features. The number of samples

that highly correlate to rain rates is also higher. However, the averaged correlation

coefficient and therefore the scoring functions of these features are quite low. This

might be a consequence of using only a few parameters to represent the four sub-

images—a lot of information is lost during the decoding process. However, it can be

noticed that the wavelet that show the highest correlation is the Coiflets with a filter

length of 30 coefficients. This implies that the rain rates correlate better with higher

degree polynomials embedded in the texture.
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Table 4.5: Spatio-temporal features that are most correlated to rain rates.
Rain Category Rank ς Image wavelet para rav N(%)

Light

1 0.1142 IR coif30 A1
f , µ3 0.1140 11.43

2 0.1057 IR db2 A1
f , µ3 0.0972 11.43

3 0.1057 IR sym2 A1
f , µ3 0.0972 11.43

4 0.1003 IR bior18 A1
f , µ3 0.1149 8.57

5 0.0973 IR coif18 A1
f , µ3 0.1089 8.57

Moderate

1 0.1400 VIS coif30 A1
f , µ3 0.1238 15.63

2 0.1398 VIS db18 A1
f , µ3 0.1234 15.63

3 0.1375 VIS db14 A1
f , µ3 0.1188 15.63

4 0.1370 VIS db14 A2
f , µ3 0.1177 15.63

5 0.1364 VIS bior18 A1
f , µ3 0.1165 15.63

Heavy

1 0.1145 VIS coif30 A2
f , β 0.0910 13.79

2 0.1033 WV db10 A1
f , µ3 0.1032 10.34

3 0.1025 WV db14 A1
f , µ3 0.1016 10.34

4 0.0999 WV db10 A2
f , µ3 0.0964 10.34

5 0.0992 WV db14 A2
f , µ3 0.0950 10.34
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In summary, the features that can be used for rain estimation can be classified

into two sets: (1) the features that have the highest scores of all textural feature types

and (2) the features that gives the highest scores of each textural feature type. These

features are listed in Table 4.6 and 4.7.

Table 4.6: Features that have the highest scores of all textural feature types.
Rain Category Rank ς Image Method para rav N(%)

Light

1 0.3734 S Cd ASM, 12 px 0.4691 27.8
2 0.3679 S Cd Ent, 1 px -0.4858 25.0
3 0.3370 VIS Cd Ent, 16px -0.3558 31.8
4 0.3250 VIS fd,θ Mean, 90◦, 1px -0.2864 36.4
5 0.3243 VIS Cd ASM, min 0.3077 34.1

Moderate

1 0.4383 H fd,θ Ent, 90◦,5px 0.2766 60.0
2 0.4342 H fd,θ STD, 90◦,6px -0.2653 60.0
3 0.4283 IR Cd ASM, 6px -0.4165 44.0
4 0.4262 H Cd Cor, 8px 0.2872 56.5
5 0.4200 H fd,θ Ent, θT , 3px 0.2599 58.0

Heavy

1 0.4125 WV Cd Homo, 1px 0.5271 29.8
2 0.3739 WV Cd Con, 1px -0.4499 29.8
3 0.3366 H Cd Homo, 1px 0.4857 18.8
4 0.3355 IR Cd Homo, 7px 0.3943 27.7
5 0.3323 IR Cd ASM, 4px -0.3881 27.7

Table 4.7: Features that gives the highest scores of each textural feature type.
Rain Category Rank ς Image Method para rav N(%)

Light

1 0.3734 S Cd ASM, 12 px 0.4691 27.8
2 0.2331 WV Rx,θ xRmax -0.4238 4.3
3 0.1142 IR coif30 A1

f , µ3 0.1140 11.4
4 0.1050 IR F Ent 0.1404 7.0

Moderate

1 0.4383 H fd,θ Ent, 90◦,5px 0.2766 60.0
2 0.2486 VIS F Ent -0.4361 6.1
3 0.2113 IR Rx,θ Rmax -0.2826 14.0
4 0.1400 VIS coif30 A1

f , µ3 0.1238 15.6

Heavy

1 0.4125 WV Cd Homo, 1px 0.5271 29.8
2 0.2744 WV F Ener 0.4513 9.8
3 0.3097 IR Rx,θ Rmax -0.4417 17.8
4 0.1145 VIS coif30 A2

f , β 0.0910 13.8
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4.3 Relation to rain rates

Estimating rain rates by means of pattern recognition algorithms can be done by

mainly 2 approaches—either by function approximation or by classification. The first

approach is preferable in rain estimation as it provides an explicit and continuous value

of rain rates, comparing to a class label from a classifier. Figure 4.7 shows a result of

fitting a generalised linear model (GLM)4 to find the best linear relation between IR

temperature (TIR) and rain rates (RR). The following relation gives the lowest sum

of squared error when pixels with zero rain rates are excluded, i.e.

RR = 40.015865 − 16.344961 log(TIR). (4.3)

The distribution of samples in Figure 4.7 reveals that most of the samples have very

light rain rates. Therefore, heavy rain rates are almost negligible when fitting the

linear model to the data. Although the ranges of the estimated rain rates are from 0

to 2 mm/h only, its root mean squared (RMS) error is 0.13 mm/h per sample only.

Alternatively, if both ranges of the rain estimates and the RMS error are required to

be optimised, the (cumulative) histogram matching method can be used. The method

can be implemented by, firstly, creating cumulative histograms of two data that need

to be matched. Then, a look-up table to link the two data, e.g. temperature v.s.

rain rates, that gives the same value of the cumulative histogram is derived. Hence,

in theory, the rain rates derived by the histogram matching method should have the

same histogram as the observed rain rates (that the look-up table is derived from).

However, in practical, the look-up table, which is derived for a specific time and space,

is intended to use with unknown distributions of the observed rain rates. The method

has been commonly used to find a relationship between the observed rain rates and

the radar signals. It has also been used to map IR temperatures to SSM/I passive

microwave data in Eumetsat’s Multi-sensor Precipitation Estimate (Heinemann et al.,

2002).

The histogram matching technique is applied to map IR temperatures of the mid-

latitude cyclone to rain rates by means of the look-up table. The relation is shown as

a line marked with dots in Figure 4.7. It is capable of producing wider range of rain

estimates than the linear model. The rain estimates by this method has an RMS error

of 0.15 mm/h per pixel, which is slightly worse than the GLM method. However,

the visualisation in Figure 4.8 shows that using this method produces more agreeable

4using GLMLab: A Generalized Linear Model Package for MATLAB by Peter Dunn at the De-
partment of Mathematics and Computing, University of Southern Queensland (Australia).
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results, although it fails to capture heavy rain areas near the centre of the cyclone and

overestimates rain rates for the cold cloud bands. The histogram matching method

is suitable to find a relationship between an output and one input. Embedding more

textural features to rain estimation, for example, needs a large size of the look-up

table, which can make the method impossible to be implemented. In addition, an

investigation on sample by sample basis reveals that there is very low correlation

(r=0.03) between the estimates and the actual rain rates when the histogram method

is used. This can also be seen in the distribution of the two data presented in Figure

4.9 which reveals that there is no obvious relation between them. This is because, by

using the histogram matching, the information of each point which should contribute

to the rain rates is neglected. Such an effect is not obvious when the method is applied

to a coarse resolution image (5◦ × 5◦) of convective clouds in Heinemann and Kerényi

(2003) where rain rates (from SSM/I) and measured IR brightness temperatures have

a good negative correlation.
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Figure 4.7: Distribution of rain rates and IR temperature.
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Figure 4.8: Estimation of rain rates when (a) GLM and (b) histogram matching
methods are used. The observed rain rates are in (c).
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Figure 4.9: Rain estimates using the histogram matching method versus the observed
rain rates.
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The results illustrate two problems that occur when estimating rain rates:

• imbalanced distribution of rain rates

• assessment of accuracy.

First, the imbalance distribution of rain rates biases the result to the majority of

samples, which are light rain rates in the case of mid-latitude cyclones. This effect is

obvious when the GLM is used. Even if no heavy rain estimates are made, the GLM

method still produces the RMS error as low as 0.13 mm/h.

Second is the use of the RMS error as an assessment of accuracy. The parameter is

commonly used for the synoptic scale rainfall estimation where the quantity of interest

is an averaged rain amount. It is useful to provide information on average, assuming

that the errors on short time and space scales are not significant or can be cancelled

out over large space and time scales. However, to diagnose the performance of the

nowcasting rain rate estimation, the assessment should give no bias and provide useful

information to understand the accuracy and limitations of the estimation.

For high resolution rain estimation, some standard assessment of accuracy used

for quantitative precipitation forecasting can be applied in combination with the RMS

error (Ebert, 2002). For instance, a two-way table presented in Figure 4.3 known as a

yes/no contingency table is a useful way to see what types of errors are being made.

A perfect estimation would produce only hits and correct negatives, and no misses or

false alarms. The table can be used in the rain detection with a meaning of yes/no as

rain/no-rain.

Figure 4.10: A contingency table for an estimation.

The statistics derived from the table are accuracy, bias, hit rate, false alarm rate,

critical success index (CSI) and odds ratio. These statistics5 are listed in Table 4.8.

Accuracy is a probability of correct classification whereas a hit rate is the number

of hits relative to the total number of events observed. It is always used in combination

5Source: Forecast Verification - Issues, Methods and FAQ. http://www.bom.gov.au/bmrc/
wefor/staff/eee/verif/verif_web_page.html
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Table 4.8: Statistics of a yes/no contingency table.

Statistics Definition Range Perfect score

Accuracy nH+nN

nH+nM+nF +nN
[0, 1] 1

Bias nH+nF

nH+nM
[0,∞) 1

Hit rate nH

nH+nM
[0,1] 1

False alarm rate nF

nN+nF
[0,1] 0

Critical success index nH

nH+nM+nF
[0,1] 1

Odds ratio log nHnN

nF nM
(−∞,∞) >> 0

with the false alarm rate which is defined as the number of false alarms relative to the

non-events. If the ratio of a hit rate to a false alarm rate is unity, the classification

can be regarded as unskilled as it is likely to produce a hit as it is likely to produce a

false alarm. On the contrary, the odds ratio is the ratio of the probability of an event

occurring to the probability of the event not occurring. It is equal to the ratio of the

odds of making a hit to the odds of issuing a false alarm, i.e.

Odds ratio = log

(
H

1 −H

)(
F

1 − F

)−1

, (4.4)

where H and F denote a hit rate and a false alarm rate. The odds ratio is not

dependent on the frequency of the events as other statistics. On the other hand, Bias

is defined as the ratio of events estimated to those observed. It tells whether the

estimates are as many as the events observed e.g. whether the classification tends to

say yes more then no to the events. It is unity for perfectly calibrated classification.

The critical success index (CSI) is the ratio for successful events classified to the total

number of event being classified. It assumes that instances when an event was neither

expected nor observed are of no consequence. CSI is dependent upon the frequency

of the events being classified. Schaefer (1990) proposed a modified CSI for removing

frequency biases. The new statistic, namely the Gilbert skill score (GS), is defined as

GS =
M

(nM + nF )N +M
, (4.5)
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where M = nHnN − nMnF and N is the total number of events, i.e. N = nH + nM +

nF +nN . The more negative scores indicates the worse the classification is. It is always

lower than the CSI and approaches the CSI when the event to forecast becomes rarer.

The score of 0 indicates no skill, which can occurs when nHnN = nMnF , i.e. the hit

rate is equal to the false alarm rate.

Instead of using only yes/no, the contingency table can be extended to K×K cells

for K ranges of rain rates. By this way, the table provides more details about the

estimation errors. A frequently used statistic is the Heidke skill score (HSS) which is

defined as

HSS =

∑K
k=1 Pr(Yk, Ok) −

∑K
k=1 Pr(Yk) Pr(Ok)

1 −∑K
k=1 Pr(Yk) Pr(Ok)

, (4.6)

where Pr(Yk, Ok) is the probability that the estimate and the observation falling in the

kth range and Pr(Yk) and Pr(Ok) are their marginal probabilities. The perfect score is

1 whereas 0 indicates no skill. The Hanssen and Kuipers (HK) discriminant can also

be used for the multi-category table. It is defined as

HK =

∑K
k=1 Pr(Yk, Ok) −

∑K
k=1 Pr(Yk) Pr(Ok)

1 −∑K
k=1 Pr(Yk)2

. (4.7)

The value ranges from -1 to 1 where the perfect score is 1 and 0 is no skill. The

Hanssen-Kuipers discriminant and the Heidke skill score measures the fraction of cor-

rect estimates after eliminating those estimates that would have been correct due

purely to random chance. However, the two statistics can overestimate skill of the

estimators if they are heavily influenced by the most common category (Ebert, 2002).

Therefore, a combination of these statistics, the RMS error and the correlation coef-

ficient between the estimated and the actual rain rates have been used in this thesis

to give the whole picture of the performance of the rain estimation.

To overcome the class imbalance problem, three methods can be applied to the fea-

ture space: over-sampling, under-sampling and cost-modifying. In principle, the first

method randomly oversamples the minority class until it contains as many samples

as others whereas the second method eliminates the over-sized class at random un-

til it matches the size of the other classes. On the other hand, the cost-modifying

method associates different costs with the misclassification errors so that the imbal-

ance between classes is compensated. The under-sampling method is preferable if the

minority class is the class of interest and the majority class includes a lot of irrelevant

data (Domingos, 1999). The over-sampling and the cost-modifying methods are more
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suitable for an application that the roles of both classes are equally important, though

the over-sampling method also increases the size of the training samples (Japkowicz

and Stephen, 2002). For rain estimation, the majority classes are light to moderate

rain rates whereas the heavy rain which should be paid attention to fall in the minor-

ity class. Therefore, the under-sampling method seems to be more appropriate than

the other two. By under-sampling the feature space so that the light, moderate and

heavy rain classes have the same numbers of samples, the relation between the IR

temperatures and rain rates in Equation (4.3) is modified to

RR = 114.030297− 44.631970 log(TIR). (4.8)

However, Equation (4.8) results in a sum of squared error of 914.99, 3 times higher

than the original relation. The histogram of the estimates in Figure 4.11 also shows

that the error of applying the GLM to the under-sampled data is a result of too high

rain rate estimation, comparing to other methods that the estimates concentrate in

low rain rates.
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Figure 4.11: Histogram of rain estimates using GLM, undersampled GLM and His-
togram Matching.

Alternatively, to preserve the numbers of high, moderate and light rain rates such
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that the estimates have the same distribution as the actual rain rates, the cloud

samples may be first classified into these categories. Classifying clouds by using the

rain rate interval as a cloud label has an advantage of no variability in the class

labelling which can happen even it is done by experts. In addition, this approach is also

compatible with the feature selection that has been done previously according to light,

moderate and heavy rain. In Figure 4.12, the distribution of satellite measurements

which are standardised using Equation (4.1) of each rain classes shows that the spectral

information can only separate light rain rates from others. For example, if the samples

with the standardised IR values of more than -2 are regarded as light rain, more than

50 % of the light rain samples are correctly classified. However, such thresholds to

separate moderate from heavy rain events could not be found. Therefore, the feature

selection is revisited in search of features that are suitable for classification.
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Figure 4.12: Distribution of standardised (a) IR, (b) WV and (c) VIS values.
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Figure 4.12 continued.
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Feature selection revisited

The textural features in Section 4.2 are ranked by their linear relation to rain rates in

an expectation that the features would lead to an easier estimation of rain rates. By

the same approach, the correlation coefficients of each rain rate category can also be

used to rank each feature of a classification task. For example, if a feature has a high

correlation score for light rain rates but falls in low ranks in the other two classes, it

can be implied that the feature is highly linear to light rain rates but randomly (or

nonlinearly) to the others. Therefore, the difference between the scoring functions of

each feature within each class can be used as a scoring function for the classification.

If the scoring functions of a feature �x is defined as ςL, ςM and ςH for light, moderate

and high rain classes, the scoring functions of �x for each class can be defined as

ςCL (�x) = (ςL − ςM) + (ςL − ςH),

ςCM (�x) = (ςM − ςL) + (ςM − ςH),

ςCH(�x) = (ςH − ςL) + (ςH − ςM), (4.9)

The feature that gives the highest scores of each class will be selected for the classifi-

cation. In fact, a feature that can give the highest correlation to rain rates for every

class is the best feature for classification, if such a feature could be found.

Five features with the highest scores for each class are listed in Table 4.9. Most of

the listed features are the statistics of a difference matrix of hue at various directions

and displacements. For the light rain, a large difference between ςL and the other two

scores indicates a good sign for using minimum ASM values of a co-occurrence matrix

of VIS images to separate samples of light rain rates from th e other rain categories. In

addition, angles between a line crossing a sample and the centre of cyclone and x axis

(θR) seems to be the best direction to derive the difference statistics of hue images to

distinguish heavy rain samples. However, the features in this class closely correlate to

each other with the eigenvalues of their covariance matrix of [97.61, 1.21, 0.84, 0.18,

0.15]. This may affect the classification result.
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Table 4.9: Textural feature candidates for classification.
Light rain rates

Rank ςC
L Image Method Stat para ςL ςM ςH

1 0.5059 VIS Cd ASM min 0.3243 0.0820 0.0608
2 0.4445 H fd,θ STD 0◦, 16px 0.3734 0.0841 0.2183
3 0.4250 H fd,θ Ent 0◦, 1px 0.3653 0.0829 0.2227
4 0.4239 IR fd,θ Ent 0◦, 4px 0.2687 0.0775 0.0359
5 0.4127 IR fd,θ STD 0◦, 5px 0.2550 0.0619 0.0353

Moderate rain rates
Rank ςC

M Image Method Stat para ςL ςM ςH
1 0.5235 H Cd Cor 8px 0.0738 0.3762 0.1551
2 0.4313 V fd,θ Ent 90◦, 3px 0.0752 0.3448 0.1831
3 0.4112 V fd,θ STD θR, 16px 0.0677 0.3464 0.2139
4 0.3499 H fd,θ STD 45◦, 2px 0.0860 0.3220 0.2081
5 0.3373 H fd,θ Mean 45◦, 15px 0.0912 0.3202 0.2119

Heavy rain rates
Rank ςC

H Image Method Stat para ςL ςM ςH
1 0.3951 H fd,θ STD θR, 9px 0.2004 0.1240 0.3597
2 0.3775 S fd,θ STD 90◦, 5px 0.0471 0.0610 0.2428
3 0.3683 H fd,θ STD θR, 14px 0.2219 0.1146 0.3524
4 0.3613 H fd,θ Ent θR, 1px 0.2463 0.0939 0.3507
5 0.3386 H fd,θ Ent θR, 2px 0.2529 0.0982 0.3449
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4.4 Implementation

Next, the feature sets selected from the previous section will be used to estimate

rain rates. Figure 4.13 summarises the implementation of rain estimation when the

selected features are used. There are two sets of features for the estimation. First

is a set of features for a classification task as listed in Table 4.9, labelled as Feature

set 1 in Figure 4.13. Second is a set of features for rain rate approximation, labelled

as Feature set 2 in Figure 4.13. These features are listed in Table 4.6 and 4.7. The

process of rain estimation can be described as follows. First, the Feature set 1 is used

to train a classifier, which will classify the samples into light, moderate or heavy rain.

Details of the classification is presented in Section 4.4.1. Then, the Feature set 2 is

used to find a regression model that relates these features to appropriate rain rates.

Details of the regression is presented in Section 4.4.2.

Figure 4.13: Implementation of rain estimation using the selected features.

For classification, a probabilistic neural network (PrNN) and a support vector
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machine (SVM) which can perform effectively under the class imbalance environment

(Tian et al., 1999; Japkowicz and Stephen, 2002) have been used.

PrNN is a three-layer feedforward network, consisting of an input layer, a pattern

layer, and a summation layer. The input layer accepts feature vectors and supplies

them to all neurons in the pattern layer. The pattern layer consists of K pools of

pattern neurons where K is the number of classes. The pattern layer approximates

probability density functions (PDFs) of each class for a feature vector by the Parzen

window estimator, which states that a PDF can be defined as a summation of all

kernel functions on each training sample. If a Gaussian kernel is used, the PDF of a

feature vector y for each class ci can then be defined as

Pr(y|ci) =
1

Ni

Ni∑
j=1

1

(
√

2πσ)d
exp

[
−(y − x

(i)
j )T (y − x

(i)
j )

2σ2

]
, (4.10)

where x
(i)
j denotes the jth training sample belonging to class ci and acts as the centre

of the Gaussian kernel, d is the dimension of the input vector, Ni is the number of

samples in the training set and σ is a smoothing factor or the width of the Gaussian

kernel. The output class is assigned to y by the maximum posterior probability, i.e.

C(y) = argmax
ci

Pr(y|ci) Pr(ci), (4.11)

where Pr(ci) is prior class probabilities. The only control factor that needs to be

selected for training a PrNN is the width of the Gaussian function. Too narrow σ

causes a spiky approximation which cannot be generalised. Too wide σ smooths out

detail of the PDF surface. An appropriate width can be chosen by selecting the

width that produces the least errors. A PrNN can become a very large network since

it contains the entire set of training samples. However, the greatest advantage of

a PrNN is the training speed. Training a PNN actually consists mostly of copying

training samples into the network, therefore close to instantaneous results can be

expected.

The principle of the Gaussian basis function is used in a generalised regression

neural network (GRNN) for function approximation. GRNNs have recently been

employed in many signal processing applications, pattern recognition, and financial

prediction (Ganchev et al., 2007). The network works in a similar fashion to PrNNs,

but performs regression rather than classification tasks. The foundation of GRNNs is

essentially based on the theory of nonlinear (kernel) regression, which was previously
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proposed in 1964 by Nadaraya and Watson. As with the PrNN, Gaussian kernel func-

tions are located at each training sample. Each sample can be regarded as evidence

of a response surface with a given height at that sample point in the input space,

which is progressively decaying in the immediate vicinity. A GRNN copies training

samples into the network to be used to estimate the response on new points. The

output is estimated using a weighted average of the outputs of the training samples.

A GRNN train almost instantly though the network tends to be large, retarding the

computation.

A support vector machine on the other hand is a supervised learning method that

can be used for both classification and regression. For classification, SVMs attempt to

find a hypersurface in the feature space from a subset of the training samples, namely

support vectors. The hypersurface is aimed to be capable of separating samples of

different classes from each other. The surface can be modified by applying a kernel

function to the input space so that it forms a nonlinear separation of the feature space.

Unlike PrNNs that give a posterior probability of a class given an input, the output

of an SVM is a real value of its decision function. For a two-class problem, the class

label is assigned to a feature vector according to the negative or positive value of the

decision function. For a multi-class problem, the class that gives the highest value of

the decision function is assigned to the feature vector.

The technique can also be applied to the regression problem by using the support

vectors to model the data. Its kernel function extends the capacity of SVMs beyond a

linear regression model. The details of support vector machines are briefly introduced

in Appendix C.2.

4.4.1 Classification

Next, the two classifiers, i.e. a PrNN and a Gaussian-kernel SVM6, are used to evaluate

the Feature set 1 listed in Table 4.9 on how well they can classify cloud pixels into

their corresponding rain classes. The classification results of the two classifiers when

the whole data are used as both training samples and test samples are presented in

Figure 4.14 and 4.15 using contingency tables. The width of the Gaussian kernel is

0.1 for the PrNN and 0.4 for the SVM. These widths, by experiments, give the best

classification results for each classifier.

Table 4.10 shows the statistics derived from the contingency tables. Using the

6using SVM and Kernel methods Matlab toolbox (Canu et al., 2005)
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(a) (b) (c)

Figure 4.14: Classification results using a probabilistic neural network for (a) light (b)
moderate and (c) heavy rain rates.

(a) (b) (c)

Figure 4.15: Classification results using a support vector machine for (a) light (b)
moderate and (c) heavy rain rates.

selected features, the PrNN can achieve 84.8-99.3 % accuracy whereas the SVM achieve

77.0-99.0 % accuracy. The high accuracy of the classification when using the PrNN

shows that the feature space can be well separated according to rain classes. However,

the low accuracy of the SVM for the moderate rain class indicates that the features of

this class cannot be well separated using a Gaussian kernel. In addition, even though

all samples of heavy rain are misclassified when using the SVM, the classification still

yields a high accuracy due to the non-events. This is another example that underlines

the class imbalance problem and the assessment of accuracy.

The ratio between the hit rate and the false alarm rate of more than one indicates

some skills of the classifiers. By an inspection, the SVM produces less incorrect results

and should be graded as a better classifier for the moderate rain class. The ratio can

depict this circumstance by giving the ratio of 41 to the SVM and 8 to the PrNN.

Similar result is found when using the odds ratio which gives a score of 1.83 to the

SVM and only 1.15 to the PrNN.

However, as the false alarms for the heavy rain are zero, the odds ratio cannot be

retrieved although the PrNN shows more skills of higher hit events.

Similar to accuracy, CSI shows that both classifiers are skilful for the case of light

rain with the score of 0.98 for the PrNN and 0.90 for the SVM. Although it is obvious
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that the PrNN can classify the feature space better than the SVM, i.e. its false alarms

and missed events are lower than those of the SVM, CSI could not tell which classifier

is better for the task as the CSIs of both classifiers are quite similar. The Gilbert skill

score can identify such incorrect classification. It gives the score of 0.86 to the PrNN

and only 0.43 to the SVM. In addition, the score of the heavy rain can still be retrieved.

The Gilbert score of zero when the SVM is used indicates that all samples need to be

support vectors to generate complex hypersurface in order to separate the heavy rain

from other classes. In other words, the SVM could not find an appropriate boundary

between classes. Other non-redundant feature set should be selected. Otherwise, the

PrNN might be more appropriate for the classification task using the given feature

set.

Table 4.10: Classification statistics using a contingency table.

Statistics
Light rain Moderate rain Heavy rain

PrNN SVM PrNN SVM PrNN SVM
Accuracy (%) 97.96 90.93 84.78 88.70 99.30 98.96
Hit rate (H) 0.99 0.98 0.48 0.41 0.32 0

False alarm rate (F) 0.08 0.46 0.06 0.01 0 0
H:F 12.4 7.1 8.0 41.0 N/A N/A

Odds ratio 3.09 1.70 1.15 1.83 N/A N/A
Bias 1.01 1.06 0.73 0.47 0.32 0

Critical success index 0.98 0.90 0.38 0.39 0.32 0
Gilbert skill score 0.86 0.43 0.30 0.34 0.32 0

The classfication results in Table 4.10 are derived from the case when all samples are

used as a training set and a test set. To give an overview on the general performance of

using the selected textural features for the classification, generalised scoring statistics

of the PrNN are computed using the k-fold cross-validation. The k-fold method can be

described as follows. First, the original feature space is partitioned into k sub-samples.

Then, of the k sub-samples, a single sub-sample is retained for testing the classifiers

and the remaining (k−1) sub-samples are used as training data. The cross-validation

process is repeated k times with each of the k sub-samples being used as the validation

data. The k results from all folds is then averaged to produce the generalised statistics

of the classification.

Figure 4.16 shows the generalised accuracy and Gilbert skill scores (k = 10) when

different widths of a Gaussian function (σ) of the PrNN are used. Increasing the

width of the Gaussian function of the PrNN increases the accuracy and the Gilbert

skill score. After some values of σ, both statistics start to decrease. The accuracy
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of the heavy rain class which is not shown in Figure 4.16 (a) becomes a constant of

0.9896 for σ > 0.2 whereas the Gilbert skill score becomes zero. The large σ makes

the PrNN become too generalised for the feature space, leading to misclassification.

It can also be noticed that the generalised statistics are lower than when the whole

samples are used as a training set. For example, at σ = 0.1 the accuracy drops from

97.96 % to 91.28 % and the Gilbert skill score drops from 0.86 to 0.49 when the PrNN

is used.
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Figure 4.16: Generalised statistics: (a) accuracy and (b) Gilbert skill score using a
probabilistic neural network with different σ.
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When the PrNN is used as a classifier for multi-class problems, an appropriate

class can be assigned to a sample by the following procedure. Due to the fact that the

output of PrNNs is the PDF of a feature input vector being in each class, the sample

can be assigned to a class c if its PDF of being in the class c is more than a random

chance of 0.5 and higher than other classes. A sample that cannot be assigned to

any classes using this rule can be re-assigned by majority classes of its neighbours.

The result when three PrNN are used without any class re-assignment is presented

in Figure 4.17. The σ of the three PrNNs used for light, moderate and heavy rain

are 0.1, 0.07 and 0.04. These values give the highest Gilbert scores for each class

when k-fold cross-validation is used. Comparing to the actual classes defined by the

observed rain rates, most of the samples that do not fall into any classes belong to

zero rain rates. Therefore, the class re-assignment may not be necessary, based on this

observation. The Heidke skill score and Hanssen-Kuipers discriminant of the result

when non-assigned samples are regarded as zero rain rates are 0.4784 and 0.5099.

The scores show that the PrNNs can well classify the feature space into zeros, light,

moderate and heavy rain even if the zero rain rates are not included for the training.

The classification result has a number of false alarms of light rain class. The class is

overestimated especially at the centre of the cyclone. In contrast, the moderate rain

is underestimated. However, most of the heavy rain are well captured.

(a) (b)

Light rain Moderate rain Heavy rain

Figure 4.17: (a) Actual rain classes and (b) classification results using three PrNNs.
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4.4.2 Approximation

Next, a generalised regression neural network (GRNN) and an SVM are applied to

the Feature set 2 of each rain class to estimate rain rates. There are two types of

feature sets: (a) features that have the highest scores of all textural feature types and

(b) features that gives the highest scores of each textural feature type. The Feature

set 2 (a) and Feature set 2 (b) are listed in Table 4.6 and 4.7. Table 4.11 shows

the correlation coefficient (r) between the estimated and observed rain rates when

the GRNN (σ = 1) and the SVM (σ = 0.4) are applied to both feature sets of each

class. The rain class used for the regression is the actual rain class derived by the

observed rain rates, assuming that each sample is correctly classified by the classifiers.

This is to verify the approximation results. (The performance when both classifiers

and approximators are used is presented later in this section.) The moderate and

heavy rain estimates achieved a correlation coefficient to rain rates of 0.4-0.6 for both

regression methods. For the case of light rain, r is relatively low.

Figure 4.18 shows a scatter plot between the observed and estimated rain rates

when the SVM is used with the Feature set 2 (b). The scatter plot reveals that there

are cases that a sample of the same observed rain rates is assigned to different rain

estimates. This indicates that there exists different cloud textures that give the same

rain rates. Additional data might be needed to estimate rain rates for such cloud

types. In addition, the SVM tends to underestimate the rain rates > 30 mm/h.

Table 4.11: Correlation coefficients between the observed and the estimated rain rates.

Rain Classes
Feature Set 2 (a) Feature set 2 (b)
GRNN SVM GRNN SVM

Light 0.12 0.17 0.18 0.15
Moderate 0.51 0.66 0.48 0.68

Heavy 0.44 0.60 0.43 0.62
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Figure 4.18: Estimation of rain rates using a support vector machine for (a) light (b)
moderate and (c) heavy rain rates.
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The performance of both estimators is controlled by the width of a Gaussian func-

tion (σ) in a similar way of the PrNN. Figure 4.19 shows the influences of σ when

both estimators are applied to heavy rain. Although the same Gaussian function is

used, σ in both estimators has different impacts on the classification. As shown in

Equation (4.10), a radial basis neural network such as PrNNs attempt to approximate

the probability of the feature space given a class (Pr(x|ci), where x is an input vector)

or the surface response of the feature space given a desired output for the case of

GRNNs. Its σ controls the width of an area in the input space to which each neuron

responds. For example, a larger σ leads to a large area around the input vector where

the radial basis neurons respond with significant outputs. Unlike the radial basis func-

tion network where the whole feature vectors must be used, the SVM uses a Gaussian

function as a kernel between an input vector and the support vectors. Its σ controls

the smoothness of the boundary, i.e. a small σ allows the SVM to fit any forms of the

boundary whereas a large σ tends to smooth it.

For the GRNN, the correlation r between the observed and estimated rain rates

decreases gradually when a larger σ is used. As σ increases, the Feature set 2 (a) tends

to be more resistant to the changes of σ; its correlation becomes higher than that of

the Feature set 2 (b) when σ > 0.9.

Similar to the classification task, the SVM has an optimum width of the Gaussian

function (σ ≈ 0.4) that gives the highest correlation to the estimated rain rates. Not

reaching as high r as the GRNN, the SVM tends to be more robust to σ as its r

changes only within ±0.27 of its optimum value. That is, the SVM can generalise the

regression problem while retaining the similar correlation coefficient. The Feature set

2 (b) is generally suitable for the SVM.



4.4. IMPLEMENTATION 138

0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

σ

r

 

 

feature set 2 (a)
feature set 2 (b)

(a)

0.5 1 1.5 2

0.4

0.5

0.6

σ

r

 

 

feature set 2 (a)
feature set 2 (b)

(b)

Figure 4.19: Correlation coefficients between the observed rain rates and the rain
estimates when (a) GRNN (b) SVM with different σ are used for heavy rain estimation.

Figure 4.20 shows the estimation of the whole system when both classification and

approximation are used. Here, three PrNNs are used for classifying samples into zero,

light, moderate and heavy rain. Then, a GRNN is applied to the Feature set 2 (a) of

each class. The result when the PrNN is used is in Figure 4.20 (b). Meanwhile, an

SVM is applied to the Feature set 2 (b) for another rain estimates. Its estimated rain

rates is presented in Figure 4.20 (c).

By visual inspection, there is a good agreement between the observed and estimated

rain rates. Some overestimated light rain rates occur at the centre of the cyclone as a

consequence of misclassification result by the PrNN. The estimation using the SVM

gives smoother texture for moderate and heavy rain. The RMS errors of the GRNN

and SVM estimates are 0.80 and 0.69 mm/h. Although having higher RMS errors

than the histogram matching methods, the estimates show higher correlation of 0.81

and 0.84.

The rule of thumb that thick, cold clouds should produce heavy rain cannot be

applied to mid-latitude cyclones as it is seen that most of the cloud bands produce

only light rain. However, cloud texture has been shown to have an important role in

the estimation of rain rates.
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Figure 4.20: A comparison between (a) observed rain rates and estimated rain rates
when (b) GRNN and (c) SVM methods are used for approximation and three PrNNs
are used for classification.
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4.5 Conclusion

In this chapter, the textural features derived from a mid-latitude cyclone on 22-24 June

2004 are related to rain rates. First, the features are ranked according to their linear

relationship to the rain rates. Two parameters, i.e. the averaged correlation coefficient

rav and the number of samples that have high correlation, are used in combination as a

scoring function. By means of the scoring functions, the features that best correlate to

the actual rain rates are used for rain estimation. The rain estimation which has been

used here consists of a classification and a function approximation to enable robust

but continuous rain estimates.

For classifying samples into light, moderate and heavy rain, a PrNN and an SVM

have been trained by the selected features. The Gilbert skill score of 0.40-0.49 for the

case of light and moderate rain implied high skilfulness of the classifiers and a good

separation between classes within the feature space. However, the high dependency

feature set that is used for classifying heavy rain leads to a very low skill score. A

class is assigned to each sample by considering the maximum probability function of its

feature being in each class. The Heidke skill score and Hanssen-Kuipers discriminant

of classifying the feature space into zeros, light, moderate and heavy rain are as high

as 0.4784 and 0.5099 even if samples of zero rain rates have not been included in the

training.

The classification result of each class is then used for approximating rain rates. A

GRNN and an SVM are selected for this task. By applying both regression methods

to the selected features, the estimation results visually agree with the observed rain

rates with a correlation coefficient of 0.81 when the GRNN is applied to the feature

set with the highest scores of all feature types and 0.84 when the SVM is applied to

the feature set with the highest scores of each texture type. Four types of the textural

features are statistical, structural, frequency and spatio-frequency. Though having

slightly higher RMS errors, the correlation coefficients of both methods are higher

than when only spectral information or the distribution of rain rates is used. This

leads to the conclusion that textural information can be used for rain estimation when

only geostationary satellite measurements are available. Three channels of the satellite

measurements are used. These are infrared, water vapour and visible channels. Any

other additional channels or information that may be available are merely unnecessary

if higher accuracy cannot be achieved.



Chapter 5

Rain Prediction

The conventional nowcasting methods can be divided into three categories: persistence

method, steady-state method1 and functional method (Dell’Acqua and Gamba, 2003).

The persistence method assumes that each pixel in the forecasted image is associated

with the same value of the previous image. The second technique assumes that the

structures in the original image are transported but unchanged in size and intensity,

i.e. the object in the forecasted image is assumed to be equal to the last available

image, translated by a suitable motion vector. On the contrary, the functional method

uses either a linear function to linearly extrapolate the future value of a pixel or other

nonlinear learning machines such as artificial neural networks to learn and predict

nonlinear temporal relations. The decisive goal of this chapter is to exploit information

derived from geostationary satellite images, temporal features in particular, to predict

rain rates.

Figure 5.1 compares the movement of rain patterns in the radar images and clouds

in the IR images of the four meteorological events in Chapter 3. These movements are

manually tracked by comparing a sequence of images of the events. The lines in the

figure indicate paths of rain and clouds as seen from space, starting from the original

coordinate (0,0). The dimension of each image is in pixels which can be referred to

the actual displacement that the rain and clouds move—a pixel has a resolution of

approximately 5 km. The location of clouds in the sequence is marked by • and the

location of rain is marked by × in each image. Each mark is separated by a period of

half an hour. Therefore, the distance between each mark can be referred to as speed

of the rain and clouds. The number at each mark indicates a correlation coefficient

between the values at the present time and the values at the time the object was at

the initial location. At the initial location, the coefficient correlation is 1 as the object

1also known as Lagrangian persistence or extrapolation method

141
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at the present time is being compared to itself. From the illustration, it can be seen

that clouds move in the same direction as their corresponding rain and at the same

speed. All except frontal clouds have the differences in displacement between the rain

and the cloud lower than 15 pixels, which is approximately 65 km. Therefore, the

movement of cloud can be used to predict the location of rain in the future period,

assuming that the rain information is not available at that time. This can be useful

when the rain information can be acquired less frequently than the IR measurements.

An example of such rain information is the microwave-based rain estimates such as

SSM/I, which are available at least three times a day.

CMORPH (Joyce et al., 2004) produces global precipitation analyses at very high

spatial and temporal resolution. The motion vectors derived, by means of correla-

tion, from infrared images are used to transport the microwave-derived precipitation

features during periods when the microwave data are not available. The method is

flexible, i.e. any precipitation estimates from any microwave satellite source can be

incorporated. However, it governs the movement of the precipitation features only. A

quick drop in correlation coefficients as a function of time in Figure 5.1 indicates a

low predictability of rain rates, i.e. rain evolves with time. It implies that the rela-

tion between clouds and rain rates that is derived at the present time could change

considerably in the future period; even the correlation between the actual rain rates

themselves drops almost 50% at half an hour later. Among the four events, the con-

vective rain is found as the best to retain the correlation.

To predict the rain rates by movement of clouds, automatic derivation of clouds is

needed. In Section 5.1, two motion estimation techniques that are commonly used to

derive motion vectors from images are studied using cloud images. The two techniques

are maximum cross-correlation and optical flow techniques. In Section 5.2, the derived

cloud motions by both techniques will be used for predicting rain rates from the current

estimates derived in the previous chapter.
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Figure 5.1: Predictability of rain and cloud clouds of (a) convective (b) stratiform (c)
central of the vortex and (d) frontal clouds in terms of displacements and correlation
coefficients. The locations of cloud and rain are marked by • and × in each image.
Each mark is separated by a period of half an hour whereas the number indicates the
correlation between the object at the original coordinate (0,0) and itself as time passes
by.
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5.1 The motion of clouds

5.1.1 Maximum cross correlation

First, the performance of the cross-correlation-based method to derive motions of

clouds is studied. The cross-correlation technique is the most common statistical tech-

nique used for target matching because of its robustness (Vega-Riveros and Jabbour,

1989; Nillius and Eklundh, 2002). It searches for the same object in two images by

finding an area with the maximum cross-correlation coefficient. The cross-correlation

can be derived from a similarity measure e.g. the squared Euclidean distance:

d2
f,g(∆�x) =

∑
�x

[f(�x) − g(�x+ ∆�x)]2

=
∑

�x

[f 2(�x) − 2f(�x)g(�x+ ∆�x) + g2(�x+ ∆�x)],

where f(�x) is a target object in the first image and g(�x) is a search area within the

second image, �x denotes a position index of the object, and ∆�x is a displacement

that the object moves during the time interval between the first image and the second

image. The smaller d the more similarity there is between the object and the search

area-of-interest. Assuming that
∑
f 2(�x) and

∑
g2(�x+∆�x) are constant, the similarity

measure can be reduced to the cross-correlation as a function of displacement, namely

r(∆�x) =
∑

�x

f(�x)g(�x+ ∆�x). (5.1)

The maximum score of r(∆�x) represents the highest probability of being the correct

match between the object and the search area. The displacements �x can then be linked

to the speed of the object when the time interval are taken into consideration. How-

ever, Equation (5.1) is sensitive to light conditions and size of the object. Moreover,

if
∑
f 2(�x) varies with position and time, the assumption is violated. Therefore, it is

preferable to use the normalised cross-correlation (Lewis, 1995) which is defined by

cn(∆�x) =

∑
[f(�x) − f̄(�x)][g(�x+ ∆�x) − ḡ(�x+ ∆�x)](∑

[f(�x) − f̄(�x)]2
∑

[g(�x+ ∆�x) − ḡ(�x+ ∆�x)]2
) 1

2

, (5.2)

where f̄(�x) is an averaged intensity of the object f(�x). Next, the convective cloud

image in Chapter 3 is used for motion analysis. Figure 5.2 shows the cloud on 23 June

2004 at 1030 UTC and its location at half an hour later. The box in Figure 5.2 (a)
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indicates an area that is used to find the cross-correlation in the second image. Figure

5.2 (b) shows that the cloud moves to the north-east of the original location at half an

hour later. The cross correlation coefficient between this area and the target image is

0.91, more than the coefficients of other areas. The correlation is presented as contours

in Figure 5.3. The contours also show that the surface of the coefficients lies many

peaks but only the maximum of them indicates the best match of the target image.

The maximum coefficient however does not reach the value of 1 due the fact that the

cloud transforms itself with respect to time i.e. it expands and becomes colder half

an hour later.

The cross-correlation technique is robust. That is, it can find the correct displacement

between a target and a search area no matter how large the displacement is. Nev-

ertheless, it does not support rotation of an object. As illustrated in Figure 5.4, the

cross-correlation between the object in Figure 5.4 (a) and its rotated version decreases

as a function of angles between the two. The decreasing coefficient results in a shal-

lower peak in the correlation coefficient’s surface and might lead the search for the

maximum value into the wrong direction. However, the technique is robust to noise

as the coefficient changes only slightly when a Gaussian noise is added to the image

as shown in Figure 5.5.

Next, to study the performance of the cross-correlation technique on expansion of an

object, a Gaussian surface

G(x, y) =
1

2πσxσy
exp

[
−0.5

(
x2

σ2
x

+
y2

σ2
y

)]
(5.3)

is created. The symbols σx and σy denote standard deviations of the intensity in

x and y direction. The object is expanded by increasing σx and σy by 5%. The

result of motions derived by the cross-correlation technique from an expanding object

is presented in Figure 5.6. The intensity of the expanded object is shown in colour

contours with its peak at the centre of the image in white colour. By increasing σx and

σy, the object is expanding out from the centre. However, the cross-correlation is being

trapped to the pattern that is simiar to the original image and produces the motion

vectors pointing to north-east, where the first peak of the correlation coefficients is

found.
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Figure 5.2: Two consecutive images showing a movement of a convective cloud on 23
June 2004 over the Netherlands at (a) 1030 UTC and (b) 1100 UTC.
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Figure 5.3: Contours of cross-correlation coefficients of the convective cloud in Figure
5.2

To estimate motion on a block-by-block basis by brute force requires expensive

computation e.g. an image of size m × m within a search window (−w,w) needs

m2(2w+1)2 evaluations of the matching criterion. Assuming that the maximum speed

of a mid-latitude cyclone is 150 km/h (approximately 15 pixels per half an hour), the

search window needs to be (−15, 15) pixels. This leads to 6× 108 comparisons for an

image of 800 × 800 pixels over the British Isles and western Europe.
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Figure 5.4: An effect of rotation on the cross-correlation technique. (a) a target object
(b) rotation of the object and (c) correlation coefficients between a target object and
the rotated images.



5.1. THE MOTION OF CLOUDS 149

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Noise to Signal ratio (σ
n
 : σ

I
)

Cross correlation coefficients

Figure 5.5: An effect of additive Gaussian noise to the cross-correlation technique.

Figure 5.6: Derived velocity from expansion of an object by the cross-correlation
technique.
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5.1.2 Optical Flow

Another method that has been used to derive motions of clouds is the optical flow tech-

nique. Deriving motion by the optical flow technique is commonly based on two main

assumptions: constant brightness in Equation (5.4) and smoothness of the velocity in

Equation (5.5):

(∇I) · �v + It = 0, (5.4)

(∇�v)T · (∇�v) = 0, (5.5)

where I = I(�x, t) denotes the image intensity as a function of space (�x) and time (t),

It is the first order derivatives of I with respect to time and �v is the image velocity

vector.

Equation (5.4) assumes that the intensities of local image regions e.g. a cloud

object are approximately constant over time:

I(�x, t) ∼= I(�x+ δ�x, t+ δt) = I(�x, t) + ∇I · δ�x+ Itδt+ ... (5.6)

Assuming that the high order terms in Taylor series expansion are negligible, we get

the brightness constraint, which resembles the law of mass conservation:

∇I · ∂�x
∂t

+ It = 0, or

∇I · �v + It = 0 (5.7)

Alongside, the smoothness constraint is used on a basis that neighbouring velocities

should be practically identical, if corresponding to a solid object. Thus, �v can be

obtained by minimising

E(�v) =

∫
I

(∇I · �v + It)
2dxdy + λ

∫
I

||∇�v||2dxdy, (5.8)

defined over a domain I (Horn and Schunck, 1981). The Lagrange multiplier λ

reflects the relative influence of the smoothness constraint. However, the smoothness

assumption is insufficient when dealing with fluid motions because the neighbouring

elements are usually free to move according to the underlying fluid dynamics (Zhou

et al., 2000).
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The conventional optical flow method can be an exact image motion if a number of

conditions e.g. uniform illumination, Lambertian surface reflectance2 and pure trans-

lation to the image plane are satisfied (Barron et al., 1994). However, the intensity of

infrared images commonly changes from frame to frame due to temperature changes

at tops of the clouds. This violates the first assumption. The brightness variability

appears not only in infrared images of clouds but also in other applications such as

magnetic resonance images (Prince and McVeigh, 1992). Accordingly, Schunck (1985)

added a divergence of image velocity which expresses compressible property of the

flow to Equation (5.4), namely

(∇I) · �v + I(∇ · �v) + It = 0. (5.9)

A number of equations of state suggest that there exists a relation between the

temperature, the density and the pressure. For example, the ideal classical gas law

P = ρRT, (5.10)

where P , ρ and T is the pressure, the density and the temperature of the ideal gas

and R is the ideal gas constant (8.314472 J(mol ·K)−1) is the simplest form of these

equations of state. Referring the image intensity to the density, Equation (5.9) also

matches the mass continuity of the compressible fluids e.g. gases and vapours, which

are the main components of clouds. In addition, their density usually depends on the

coordinates �x in space and may depend on time as well.

For the compressible optical flow method, �v can be found by minimising

E(�v) =

∫
I

(∇I · �v + I(∇ · �v) + It)
2dxdy + λ

∫
I

||∇�v||2dxdy. (5.11)

As E is convex, there is a unique minimal value. Defining U and V are the components

of I�v in x and y directions, the Euler-Lagrange equations associated to E are

− ∂

∂x
(Ux + Vy + It) − λ∆U = 0 and (5.12)

− ∂

∂y
(Ux + Vy + It) − λ∆V = 0, (5.13)

which by using the finite difference method of iteration (Béréziat and Berroir, 2000),

2The brightness of a Lambertian surface is constant regardless of viewing angles.
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yield

Uk+1 = Uk +
∂

∂x
(Uk

x + V k
y + It) + λ∆Uk, (5.14)

V k+1 = V k +
∂

∂y
(Uk

x + V k
y + It) + λ∆V k. (5.15)

Figure 5.7 shows results when the conventional and the compressible optical flow

techniques are applied to the expanded object in Figure 5.6 that the cross-correlation

technique fails to cope with. The optical flow methods can describe the expansion

better than the cross-correlation technique, especially the compressible optical flow

method which can depict the expansion from the centre of the image as shown in

Figure 5.6 (b).

(a) Horn and Schunck (1981) (b) Béréziat and Berroir (2000)

Figure 5.7: Derived velocity from expansion of an object by the optical flow techniques.

The compressible optical flow approach tends to work well to recover cloud motion,

since it utilises fluid dynamics constraints which are applicable to clouds. Béréziat and

Berroir (2000) have adopted this approach to the whole cloud object and, owing to

the relationship between cloud’s temperature and its elevation, inferred that by their

method the cloud volume is conserved. Suvichakorn and Tatnall (2004) (in Appendix

D) assumed that a mid-latitude cyclone moves as an equiangular spiral3 and used

a constant angular velocity as another constraint for the compressible optical flow

method. The method gave a better result than when the conventional method was

3An equiangular spiral is a spiral that forms a constant angle between a line from the origin to
any point on the curve.
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used.

However, owing to the fact that the optical flow technique is based on the ap-

proximation in intensities as in Equation (5.6), the comparison is made between the

intensity of a local image region and itself at the new location. This means that the

new location of itself must have been known approximately. Therefore, if the motion is

significant i.e. ≥ 1 pixel/frame, some initial estimates of the displacement is required

before calculating the optical flow method. This induces a circular problem as the

displacement is also the answer that is desired when we use the optical flow technique.

Bergen et al. (1993) proposed using global and local motion models in a hierarchical

order to improve the conventional optical flow technique. That is, the image was firstly

viewed at a coarse resolution so that the motion can be roughly estimated. Later, the

method was applied to finer and finer resolution to produce final motion vectors.

A large displacement between two consecutive images is a result of too low sam-

pling rate that the continuous movement cannot be traced, leading to an aliasing in

the frequency domain. Therefore, temporal oversampling (Lim et al., 2004) and an

appropriate post-sampling spatial filter (Christmas, 2000) can be used to solve the cir-

cular problem. However, working in the frequency domain requires the whole image

transform and, consequently, fails to give a good result at a local scale.

Alternatively, we may combine the robustness of the maximum cross-correlation

technique in conjunction with the fluid dynamics of the optical flow method as follows.

First, an image is divided into non-overlapping windows. Next, the cross correlation

technique is applied to each window to find the location of the present window in the

consecutive images. Then, the optical flow techniques are applied to the aligned images

to find the velocity of each pixel. By this method, there is no need to compute the cross

correlation for every pixel, leading to a reduction in computational time. Meanwhile,

the optical flow technique becomes more robust by using the initial displacement

derived from the cross correlation. The final velocity can be computed from the

initial displacement calculated by the cross-correlation technique and refined to a

more accurate velocity by the optical flow method by means of vector addition as

shown in Figure 5.8.
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Figure 5.8: Vector addition to derive the velocity from the cross-correlation and the
optical flow techniques.

The combination of both techniques can be illustrated in the following experiment.

First, the two consecutive images of the convective cloud in Figure 5.2 are aligned by

using the maximum cross-correlation. The cloud after alignment presented in Figure

5.9 (b) shows that at half an hour later the large cloud stretched out to the north-

west and the south-east directions whereas the small cloud expands in the south-east

direction. Figure 5.10 shows the results when the optical flow techniques are applied

to the aligned image. From the illustration, both optical flow techniques, i.e. the

conventional (Horn and Schunck, 1981) and the compressible (Béréziat and Berroir,

2000) methods, can well capture the expansion of the convective cloud. That is, they

can capture the expansion of the cloud in the north-west and the south-east directions,

shown as large motion vectors in the figure. However, the conventional technique gives

smoother motion vectors than the compressible optical flow method.
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Figure 5.9: The convective cloud in Figure 5.2 after alignment by the maximum cross-
correlation.
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(b) Béréziat and Berroir (2000)

Figure 5.10: Derived velocity from expansion of a convective cloud in Figure 5.9 by
the optical flow techniques.
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5.2 Implementation

Information from geostationary satellite images can be used for rain prediction in two

ways: (1) by using the rain estimators derived from textural information at present

time and (2) by using cloud motion vectors derived in the previous section. Both

methods are summarised in Figure 5.11.

(a)
(b)

Figure 5.11: Methods that can be used for rain prediction: (a) by using the estimators
of the present time and (b) by using motion vectors.

The first method is based on the assumption that the relation between the cloud’s

textural information and its corresponding rain rates stays consistently for some period

of time before being changed by other atmospheric factors. This can be seen as one of

the persistence now-casting techniques. Figure 5.12 (b) shows the classification result

of using the three PrNNs trained by the Feature set 1 (Table 4.9) derived at 0830 UTC

to predict rain rates at 1330 UTC. The Heidke skill score of the classification result

drops from 0.48 at 0830 UTC to -0.01 at 1330 UTC whereas the Hanssen-Kuipers

discriminant drops from 0.51 to -0.01. At this time, the correlation of the predicted

rain rates to the observed rain rates is 0.003 and the RMS error is 4.63 mm/h per

sample. On the contrary, the classification result of using the new three PrNNs trained

by the same types of feature derived at 1330 UTC can achieve the Heidke skill score
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and the Hanssen-Kuipers discriminant of 0.55 and 0.59. The scores are even higher

than the result at 0830 UTC. Table 5.1 also shows that the PrNNs trained by the

most recent information can achieve as high as 89.0-99.8 % accuracy. The Gilbert

skill score of 0.40 on average for each class also indicates a good skill of the PrNNs for

classification when the recent rain information is used. This implies that the textural

features can perform well for classifying samples into zero, light, moderate and heavy

rain but frequent updating the PrNNs is desirable if rain information is available for

training.

Table 5.1: Performances of the PrNNs for classifying samples into each rain class.

Accuracy (%)

Methods Light rain Moderate rain Heavy rain
I 97.76 84.78 99.30
II 11.61 95.87 99.08
III 89.02 99.46 99.82

Gilbert skill score
Methods Light rain Moderate rain Heavy rain

I 0.86 0.32 0.32
II 0.004 0.005 0.004
III 0.44 0.54 0.23

• Method I: Rain estimation at 0830 UTC. Training features derived at 0830 UTC.

• Method II: Rain prediction at 1330 UTC. Training features derived at 0830 UTC.

• Method III: Rain estimation at 1330 UTC. Training features derived at 1330 UTC.

The second prediction method that has been implemented in the study assumes

that clouds propagate at similar speeds to their corresponding rain. To apply the mo-

tion derived from the previous section for rain prediction, the IR image is divided into

equal non-overlapped grids as shown in Figure 5.13. The maximum cross-correlation

(MCC) technique is then applied to the grids to calculate a rough displacement of the

rain estimates in the next half an hour (the Meteosat7’s time interval). Subsequently,

the optical flow method finds dense velocities between each grid at the present time

and its matching grid in the next period that gives the highest correlation coefficient.

Finally, the motion vectors are then applied to the rain estimates in order to predict

how the rain estimates would be in the next half an hour by the continuity equation.

If R(x, y, t) denotes a rain rate/rain volume within each grid as a function of space
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and time, the continuity equation states that

dR

dt
=
∂R

∂t
+
∂Ru

∂x
+
∂Rv

∂y
= 0, (5.16)

where u and v are velocities in x and y directions (Germann and Zawadzki, 2002).

Using the velocities derived by the optical flow method, the equation gives ∂R
∂t

that can

be used to update the rain rate at present time. If there is no update rain information

available, this process can be continue to the next couple of hours.

Next, the proposed technique is applied to the mid-latitude cyclone as follows.

1. First, the MCC method is applied to the IR image at present time (0830 UTC)

to approximate the location of rain in the next period. The derived displacement

at 0900 UTC over the British Isles in illustrated in Figure 5.14 (c). The original

location of each grid is displayed in grey colour whereas the new location derived

by the MCC method is displayed in black colour. The result follows well with

the cyclonic movement of the cyclone. There are some errors e.g. uncommon

large displacements Northwest of Ireland due to the formation of a cooling cloud.

2. Second, the velocities of clouds derived by Bereziat’s optical flow technique is

applied to the rain rates via the continuity equation in Equation (5.16) to ap-

proximate how the rain rates would change in the next period. The initial input

of the prediction is the known rain rates at present time. For a purpose of com-

parison, the observed rain rates at 0830 UTC and rain estimates at the same

time are used as the initial input of the prediction. The rain estimates are de-

rived by the three PrNNs in conjunction with the support vector machine as

described in the previous chapter.

3. Finally, the approximated rain rates are mapped onto the distorted grids in

Figure 5.14 (c) to give the predicted rain rates as a final result.

Figure 5.15 and 5.16 show the accuracy and correlation coefficients between the

predicted and observed rain rates. Using a combination of both MCC and optical

flow techniques can provide the correlation of 0.3 to the observed rain rates at an hour

later. At the time, the RMS error is 1.3 mm/h. However, the prediction skill gradually

decreases with time. The correlation becomes 0.013 and the RMS error becomes 2.72

mm/h three and a half hours later. The rain estimates derived by the SVM gives a

slightly lower RMS error and a slightly higher correlation than when the observed rain

rates are used. The 5-hour predicted results over the British Isles as shown in Figure
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5.18 reveals a visual agreement with the observed rain rates, especially at the centre of

the cyclone which moved from Wales to Norfolk. The movement of the centre matched

that of the predicted rain rates. The result demonstrates the ability of the proposed

motion estimation to handle with the movement of clouds and confirmed the relation

between the movement of clouds and rain. The rain band in the North Atlantic Ocean

above Ireland of the predicted rain rates when the actual rain rates at 0830 UTC are

used as the initial input of the predictor also have the same vertically-arranged texture

as that of the observed rain rates. However, it can be noticed that the heavy rain rates

at the coastlines of France e.g. in Normandie and Belgium, stay almost the same place

at 5 hours later in contrast to those of the predicted rain rates which move eastwardly.

The rain could possibly be influenced by other factors, probably spurious effects of

the rain radar images, not by the cyclone itself. Such an error can be recognised by

considering the previous sequence of the rain radar images. The same method can be

applied to correct the unrealistic distorted grid in some areas as seen in Figure 5.14

(c). That is, a set of previous sequence of IR images can be used to correct the derived

speed of clouds which may result from generating or decaying clouds.
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(a)

(b) (c)

Light rain Moderate rain Heavy rain

Figure 5.12: A comparison between (a) observed rain rates and predicted rain rates
at 1330 UTC when (b) three PrNNs are trained by the features of 0830 UTC and (c)
three PrNNs are trained by the features of 1330 UTC.
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Figure 5.13: Non-overlapped grid for the maximum cross-correlation technique.
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(a) (b)

(c)

Figure 5.14: The mid-latitude cyclone on 23 June 2004 at (a) 0830 UTC and (b) 0900
UTC over the British Isles and the displacement calculated by the MCC method in
(c).
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Figure 5.15: RMS errors of the predicted rain rates.
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Figure 5.16: Correlation coefficients between observed and predicted rain rates.
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Figure 5.17: Observed rain rates at 1330 UTC.
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(b)

Figure 5.18: Predicted rain rates at 1330 UTC by using velocities from the optical
flow method applied to (a) observed rain rates at 0830 UTC and (b) estimated rain
rates at 0830 UTC.
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5.3 Conclusion

The performance of the cross-correlation-based and optical flow methods to derive

motions of clouds is studied. The cross-correlation technique is robust. However,

using block-by-block basis makes the method require expensive computation. On the

contrary, the optical flow method and its modified version can describe the expansion

better than the cross-correlation technique by means of fluid dynamics constraints.

However, some initial estimates of the displacement are required before calculating the

optical flow method. Alternatively, we may combine the robustness of the maximum

cross-correlation technique in conjunction with the fluid dynamics of the optical flow

method. The final velocity can be computed from the initial displacement calculated

by the cross-correlation technique and refined to a more accurate velocity by the

optical flow method by vector addition. By this method, there is no need to compute

the cross correlation for every pixel, thus reducing computational time.

The velocities derived from cloud images can be used for prediction. By assuming

a steady state of the rain rates, the cloud motion can be used to predict the location of

the rain rates in the next period. The displacement can be found by the MCC method.

In addition, velocities from the optical flow method can be used to derive how the rain

intensities change by using the rule of rain mass continuity. The predicted rain rates

from a combination of the MCC and optical flow techniques show a visual agreement

with the observed rain rates even at 5 hours later than the present time. It can provide

a correlation of 0.3 to the observed rain rates at an hour later. The RMS error is 1.3

mm/h at that time. However, the RMS error increases and the correlation coefficients

between the predicted and observed rain rates decrease as a function of lead time.



Chapter 6

Conclusion

The work described in this thesis addresses the potential for estimating and predicting

rain rates from satellite imagery. Initially the spectral information available at each

pixel from satellite imagery was used to estimate rainfall. The analysis performed

confirmed other research that showed that whilst there is a correlation between this

spectral information and rainfall, it is not satisfactory for quantifying rainfall. Based

on evidence that texture provides a more robust and characteristic property of the

clouds, a comprehensive analysis of cloud texture for use in rain estimation which has

not yet found in other previous research is done. A number of advanced techniques

have been used to identify a relationship between the cloud imagery and the rain

rates. In addition, the use of cloud motions derived from infrared images to predict

rain rates has also been presented. The case study used was a mid-latitude cyclone

over the British Isles and western Europe.

Rain estimation

The appearance and type of cloud are known to be related to rain rate but the mo-

tivation for this work was the potential for accurately quantifying the rain rate from

the satellite images. Cloud texture from these satellite measurements is also less

sensitive to atmospheric attenuation or instrumental noise. The types of textural in-

formation examined can be categorised as statistical, using a co-occurrence matrix

and a difference matrix; structural using Sobel’s filtered Radon transform; frequency

using Sobel’s filtered, windowed Fast Fourier Transform; and spatio-frequency using

Daubechies’wavelet, Coiflet, Symlets and Biorthogonal wavelets. Features derived

from the HSV model of the combination of IR, WV and VIS images were also pro-

posed to represent cloud textures. An analysis of these textural features has been

166
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done to find out how they describe cloud textures and how these features relate to

rain rates.

The relation to rain rates was described via a correlation coefficient. It has been

found that cloud texture features have some similarities to those of rain texture. In

addition, some features such as structural features show a much better correlation

with rain rates, compared with those of the spectral information. The correlation

coefficient was also used to select the feature that best correlated with rain rate prior

to the rain estimation. This was in order to reduce the dimensionality of the problem.

The scoring function used in the study takes into account not only the averaged

correlation coefficient but also the fraction of the samples that have a high correlation.

The texture of hue of the HSV false images was found to correlate better with rain

rates than the texture of monochrome images. The finding supports the use of this

novel feature for rain estimation.

Selected features were then used for classifying clouds into light, moderate and

heavy rain. A classifier that is appropriate for this task is a probabilistic neural

network (PrNN). By using three PrNNs to separate each rain class and assigning a

class label to each sample by its maximum probability density function as proposed

in Chapter 4, the classifiers can achieve a Gilbert skill score as high as 0.86 for the

case of light rain and 0.49 on average. This reveals that the feature space comprised

of textural information can be well separated, compared to overlapped distribution of

spectral information. The PrNN is selected to demonstrate the separable feature space

due to its simplicity, i.e. only the width of a Gaussian function needed to be adjusted,

and its fast computation. Next, another set of features was used for estimating rain

rates within each class. Two approximation methods, i.e. a generalised regression

neural network and a support vector machine, that have been selected for the task give

a result with good visual agreement. Though having higher root-mean-square errors

than a linear discriminant method or the histogram matching applied to IR spectral

information, the rain estimates of both methods have a significant relationship with

the observed rain rates with a correlation coefficient of 0.81 and 0.84.

This method of rain estimation, in which textural features are classified into rain

classes and rain rates estimated by a support vector machine, would seem to resolve

some of the problems associated with rain-rate analysis from mid-latitude satellite

data. The estimation results were robust and continuous rain estimates were achieved.

Unlike other rain estimation techniques in which additional information has always

been added, the results showed that textural information alone can be used to estimate

rain rates. The proposed method is preferable when only satellite measurements are
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available. However, frequent updating of the observed rain rates is desirable to retain

the accuracy of the estimation. In addition, the three channels of Meteosat7 are the

standard channels, i.e. they are common to all geostationary satellites. Therefore,

the the proposed textural features and the rain estimation can be applied to other, or

newer, geostationary satellites.

Rain prediction

Information from geostationary satellite images has been used for rain prediction in

this research in two ways: by using the rain estimators derived from textural infor-

mation for the present time and by using cloud motion vectors. The first approach is

based on the assumption that the present relation between the cloud’s textural infor-

mation and its corresponding rain rates stays the same for some period of time before

being changed whereas the second approach assumes that the present rain rates are

transported but unchanged in size and intensity.

Two motion estimation techniques were applied to derive the motion vectors from

the cloud images for the study of the second prediction approach. First, the cross-

correlation technique which calculates the maximum correlation between the initial

target and subsequent scene was used to estimate the displacement. This technique is

known for its robustness. The second technique exploits a fluid dynamics constraint

in order to derive a real velocity rather than the displacement calculated in the cross-

correlation technique. This technique, known as the optical flow technique, can be

modified to support the compressible property of the image flow, i.e. the intensity of

the same object that may change according to time. This makes the method appropri-

ate for deriving the cloud motions. However, this method makes a comparison between

the intensity of a local image region and itself at the new location and this requires

that the new location of the object must be known approximately. Therefore, in this

thesis, a novel method combining the robustness of the cross-correlation technique

and the flexibility of the optical flow method was used. The combination was im-

plemented by first computing initial displacements by the cross-correlation technique

and then refining them to a more accurate velocity by the optical flow method. The

final motion vector of each image pixel was achieved by means of vector addition. The

result when the proposed combination was applied to a convective cloud showed that

the cross-correlation method could successfully find the future location of the cloud in

consecutive images while the optical flow method could describe the expansion of the

cloud.
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To implement the prediction using the two motion estimation techniques, the dis-

placement of a cloud derived by the maximum cross-correlation technique was used

to approximate the location of rain in the next period. Then, its velocity was derived

by the optical flow technique and used to predict how the rain rates would change.

The rain rates predicted by this novel method provided a correlation of 0.3 to the

observed rain rates an hour later. However, as expected, the prediction skill gradually

decreased with time. Three and a half hours later the correlation had fallen to 0.013

and the RMS error increased to 2.72 mm/h.

Information from top-of-the cloud measurements has a limited indirect relation to

rain rates. The objective of this work was not to remove that limitation but rather

to develop a method that can use as much information as possible to aid rain estima-

tion. Based on the analysis of textural features derived from a mid-latitude cyclone,

the experimental results shown in this thesis reveal that there is good evidence that

using selected textural information can enhance the rain estimation. In addition, the

method does not depend on location or time as long as there is initial rain informa-

tion for selecting appropriate features and training the classifiers. This rainfall rate

information could be provided by microwave-based rain estimates such as SSM/I or

TMI. Using the motion of rain areas, it has been found that it is possible to use the

trained system to estimate rain rates at a later time, and then the trained system

can be updated as new rain information becomes available. In conclusion, it has been

found that the cloud texture seen in geostationary satellite images can provide useful

rain estimation and therefore is a good candidate for the development of operational

rain estimation.

Future improvements

There are many improvements that could be done in the future to improve the esti-

mation and prediction results.

• The basic differences between the estimates and the measurements were largely

due to evolving meteorological conditions. The UK is a particularly complex

region with large differences in rainfall over short distances and highly dynamic

weather patterns. The methods described in this thesis are complementary to

forecasting techniques such as numerical weather prediction and a combined

system could expect to greatly improve results.

• Continuous updating would provide more accurate rain estimation because it

would compensate for the ever-changing relationship in time and space between
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rain measurements.

• Different types of rain move with different velocities. Therefore, the cloud motion

derived by the MCC and optical flow methods could be used as another feature

for rain estimation. The implementation of this idea is presented in Suvichakorn

and Tatnall (2005) (in Appendix D).

• A more complex assessment method than the correlation coefficient could be

used to assess the correlation between textural feature and rain rates. Mutual

information that takes into account the whole dependency structure can be ap-

plied to measure the dependency between them. The mutual information is

based on information entropy first introduced in the communication theory as

a quantity of uncertainty in a communication channel (Shannon, 1948). It is

successfully used in the registration for medical images (Pluim et al., 2003) and

remote sensing images (Chen et al., 2003), outperforming the cross-correlation

technique.

• The source of rain information used in this study is rain estimates derived from

radar signals and has many limitations, some of which are described in Chapter

3. Improvements in the derivation of rain rates could include calibration with

weather station data or the use of other sources of rain information such as

SSM/I where there is a scarcity of radar stations.

It has been shown that the use of textural features can be beneficial to rain rate

estimation. Textural information combined with motion analysis provide the best

potential for predicting the location and rate of rainfall. The simple yet effective

estimation and prediction of rain rate can also be applied to future applications where

more information at the other frequencies of the Meteosat Second Generation are

available.
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Appendix A

Mid-latitude Cyclones

Mid-latitude cyclones1 are described here to give a better understanding of cyclogenesis

or how the cyclones generates, moves and dissipates and how these events can relate

to rainfall.

• All cyclones begin as a small-amplitude disturbance along the stationary polar

front2 where cold air from polar regions meets warm air from the south. The

collision of these two air masses results in the uplift of the warm air into the

upper atmosphere forming an inspiral3 around a low pressure centre. Now, a

storm is born.

• During the middle stages, the storm intensifies and the pressure at the storm’s

centre drops. The warm air south of the low’s centre and between the two

fronts–warm and cold, known as the warm sector, is narrowed since the cold

front is observed to rotate around the system faster than the warm front. This

is sometimes called the mature stage of travelling cyclones.

• As the cold front advances, it will catch up to the warm front causing the air in

the warm sector to be lifted into the upper atmosphere. The resulting boundary

between the cold and cool air masses is called an occluded front.

• Eventually, a day or two after the occlusion, the cyclone dissipates, winds sub-

side, and the stationary front forms on the surface of the Earth again.

1also known as frontal cyclones, travelling cyclones, wave cyclones and extra-tropical cyclones
2Zone of transition between polar and tropical air masses . Its average position during the winter

is at about 30°latitude and during the summer at about 60°latitute.
3An inward-moving spiral pattern. In the Northern Hemisphere, the inspiral will be counter-

clockwise since the Coriolis deflection is to the right. In the Southern Hemisphere the inspiral is
clockwise.
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These cold-front dominated cyclones, known as Norwegian model cyclones, are seen to

be meridionally elongated from satellites4. However, some recent studies (Shapiro and

Gronas, 1999; Young et al., 1995) found that there are also warm-front dominated

cyclones where the weak5 cold front moves nearly perpendicular to the warm front

and then air parcels in the warm frontal zone transport their baroclinicity6 west of the

cyclone centre. Unlike the Norwegian model, the catch-up of the warm front never

occur. This type of cyclones, named Shapiro-Keyser, tends to be zonally elongated7

and can be observed over the North Pacific Ocean. Both types of cyclones are presented

as conceptual models in Figure A.2. The symbols used in the diagram and charts is

in Figure A.9.

The mid-latitude cyclone is rarely motionless and commonly travels about 1200

km in one day. Its direction of movement is generally eastward. Precise movement

of this weather system is controlled by the orientation of the polar jet stream8 in

the upper troposphere. An estimate of future movement of the mid-latitude cyclone

can be determined by the winds directly behind the cold front (Pidwirny, 2004). Mid-

latitude cyclones can produce a wide variety of precipitation types, depending on types

of clouds embedded in the fronts. For example, cumulonimbus clouds along cold fronts

produce heavy precipitation and can develop into severe thunderstorms if conditions

are right, whereas stratiform clouds generate less intense, wide-spread precipitation

ahead of the warm front. On the contrary, the warm sector may produce none to only

a brief, convective shower if it has enough moisture. Next, details about cold fronts,

warm sectors and warm fronts, together with their characteristics on satellite images

are reviewed.

Cold front

Cold fronts vary in associated temperature contrast, wind shift, and precipitation

regimes. Two basic groups of cold fronts have been suggested: Ana and Kata cold

front. The conceptual models of both groups are shown in Figure A.3.

4with much north/south component and migrate slowly from west to east
5This is defined by a weakness in horizontal temperature gradient amplitude along the poleward

portion near the low centre.
6Baroclinicity is a cold air advection/warm air advection couplet that increases atmospheric in-

stability. On analysis and forecast charts it is the isotherms crossing the height contours.
7migrate rapidly from west to east with little north/south component
8Polar jet stream is a relatively fast uniform winds concentrated within the upper atmosphere in

a narrow band. It exists in the mid-latitudes at an altitude of approximately 10 km.
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(a)

(b)

(c)

(d)

Figure A.1: Illustration of a Norwegian cyclone life cycle. Source: Aguado and Burt
(2003).
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(a) Norwegian cyclone model (b) Shapiro and Keyser model

Figure A.2: Conceptual models of cyclone evolution (Schultz et al., 1998) showing
lower-tropospheric (e.g. 850-hPa) geopotential height and fronts (top), and lower-
tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I)
incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b)
ShapiroKeyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture,(III)
frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. The
characteristic scale of the cyclones based on the distance from the geopotential height
minimum, denoted by L, to the outermost geopotential height contour in stage IV is
1000 km.

Ana-cold fronts are associated with relatively deep/sharp troughs aloft, i.e. the

upper flow is roughly parallel to the surface front. In these cases, the surface fronts

often possess sharp temperature changes and wind shifts, and significant vertical mo-

tion, resulting in a line of showers or thunderstorms along the front and extensive

post-frontal precipitation. Most of this classical type of cold frontal bands have cold

tops, representing as bright in IR images. Such bands can sometimes have a distinct

forward edge. When this edge is discernible, the surface front is located close to it.

Sample images of Ana cold front as seen from Meteosat are shown in Figure A.4. In

VIS images, the cloud area is similar to that in the IR images, although the bright-

est (thickest) cloud lies towards the leading edges of the frontal cloud band. In WV

images, there is a broad band of moisture, with a sharp edge on the cold side of the

front.
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Kata-cold fronts are not as well-defined as Ana fronts, and usually possess weak-to-

moderate temperature gradients and scattered showery precipitation along the front.

Kata fronts occur with a less amplified flow pattern (i.e. more westerly momentum)

aloft, which results in a system-relative forward sloping ascent and a band or area

of more significant precipitation ahead of the surface front. Precipitation patterns

associated with Kata fronts have been explained via a split cold front or cold front

aloft (CFA) model. The split cold front is associated with the leading edge of cold

advection aloft, as well as with frontogenesis and convergence between warm, moist air

ahead of the CFA and cooler, drier air behind it. This typically produces significant

lift and a band or area of stratiform and/or convective precipitation along and ahead

of the CFA within the surface warm sector. In IR images, the front appears as two

adjacent bands with distinctly different cloud-top temperature, clearly seen in Figure

A.5 (a) over the Oceania (eastern side of New Caledonia). The leading band has cold

tops and a sharp rear edge in both IR and WV images, marking a discontinuity in

humidity aloft. In VIS images, the edge may often be observed from a shadow cast

onto the trailing band. The rear edge of the warmer cloud band can also be clearly

seen. In contrast, a cloud in IR images is sometimes difficult to distinguish from

the underlying surface. These bands are most common and vigorous near developing

depressions. The TRMM Microwave Imager in Figure A.5 (c) shows that there are

heavy rainfalls along the edge of colder clouds.

Warm front and warm sector

In satellite imagery warm fronts can have two main different shapes: they either

appear as a warm front shield or as a warm front band, distinguished by cloudiness

within the warm sector. For a warm front shield in a well-developed case, the grey

shades in VIS images are generally white within the warm sector and near to the

surface warm front. The grey shades become gradually more and more grey towards

the forward cloud edge. In IR images the grey shades of a cloud shield are usually

white indicating cold cloud tops. Its substructures may differ from case to case. The

pixel values in WV images within the area of the cloud shield are high. At the leading

edge of as cloud shield, there is a sharp gradient from white to black indicating dry air

at the cyclonic jet side. For a warm front band, its ideal main characteristics in a VIS

image of the cloud pattern associated with a warm frontal cloud band are the grey

shades, generally bright at the rear edge and becoming darker towards the forward

edge; whereas in the IR image the grey shades appear brightly towards the forward
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(a) (b)

Figure A.3: Top view (upper) and side view (lower) of (a) Ana cold front and (b)
Kata cold front model.
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(a) (b) (c)

Figure A.4: (a) IR, (b) VIS and (c) WV images of a classical cold front, accompanied
with single cell thunderstorms on the right side and a short band of warm frontal at
the bottom. Source: Meteosat over Germany on 30 July 2003, 1800 UTC.

(a) (b) (c)

Figure A.5: (a) IR and (b) VIS images of a Kata cold front from GMS over Pacific
ocean on 15 July 2003 and its corresponding rainfall rate from TMI.
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(a) (b) (c)

Figure A.6: (a) IR and (b) WV images of a warm front shield from the Atlantic (east
of approximately 20°W) across Ireland to the Bay of Biscay on 27 January 1995 at
0030 UTC and (c) VIS image at 1200 UTC shows an eastward propagation of this
shield as far as the Benelux countries and west Germany. Source: Krennert et al.
(1999).

and downstream cloud edge. In WV images, the band has similar appearance to the

warm front shield—bright within the area and a sharp gradient at the leading edge.

Examples of warm front shield and warm front band are shown in Figure A.6 and A.7.

The areas of precipitation are embedded within the warm conveyor belt and move

therefore faster than the surface front. As the rain bands move further ahead of the

surface front, due to the still ascending warm conveyor belt, the precipitation dies

out since there is less moisture. Directly at and behind the surface front it is often

observed that the precipitation, in the form of rain, is changing into drizzle. For the

warn front shield, the warm sector is overcast and precipitation occurs which might

also be intensive; this is a consequence of the ascending warm conveyor belt within

this region.

Sometimes, warm frontal cloud may appear completely detached from other areas

of cloud and can no longer be explained by the frontal processes. Orography can also

dominate the weather. For example, in Central Europe (the Alps), weather events are

intense, but on the northern side of the Alpine region (the windward side) the cloud

leads to heavy and enhanced precipitation. Cloudiness can lead to light to moderate

rain or drizzle as well. Characteristics of a detached warm frontal cloud on satellite

images are thick in VIS and cold in IR images. It appears as a wide broad anticyclonic

curved area with high pixel values in WV images, indicating high moisture content.

Figure A.8 shows a detached warm front seen in IR and WV images, together with its

isobar and surface front.
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(a) (b)

Figure A.7: (a) IR and (b) WV images of a warm front cloud band observed on the
Atlantic (east of approximately 25°W) is extending to Scotland and Northern Ireland
on 1 March 1995 at 0006 UTC. Source: Krennert et al. (1999).

(a) (b) (c)

Figure A.8: Images on (a) IR and (b) WV channel of detached warm frontal cloud
on 22 March 1995 at 2330 UTC. Source: Krennert et al. (1999). Its relationship with
isobar and surface front is in (c).
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Figure A.9: Symbols used in the schematic diagrams and charts.



Appendix B

Data Preprocessing

B.1 Meteosat7 Radiance Calibration

The calibration is to ensure that any variation in time is due to changes of the signal

coming from the observed target only, and not from variation of the observing instru-

ments. It associates the raw measured units, expressed as digital counts received from

the satellite’s sensors, with an actual geophysical value of the object seen. First, the

radiance is calculated from a digital count using an appropriate calibration coefficient.

• For IR images, sea surface temperatures from the National Centers for Envi-

ronmental Prediction (NCEP) data sets are converted to radiances, taking the

impact of the intervening atmosphere into account. These expected radiances

are then correlated with observed counts of pixels that have been identified as sea

surface scenes. The relation between the expected radiances and the observed

counts are the instantaneous calibration coefficients.

• For WV images, the expected radiance at the top of the atmosphere is deter-

mined using temperature and humidity profiles from radiosonde observations.

These radiances are then related to the mean WV count within a segment, if the

radiosonde station located within the 550 great circle arc around the sub-satellite

point and the segment is free of clouds above 700 hPa.

The calibration relation is given by

R = α(DC − C0), (B.1)

where R is the radiance (Wm−2sr−1), α is the calibration coefficient, DC is an ob-

served digital count and C0 is a space count, which is the radiometric reading when

195
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the satellite is viewing space.

Table B.1: Calibration parameters, applied to IR and WV images on 22-24 June 2004.

Date Julian Day Slot IR WV
αIR C0,IR αWV C0,WV

22.06.04 174
25

0.107578
5

0.010427
623.06.04 175 0.107950 0.010467

24.06.04 176 0.107803 0.010452

Since 29th May 2000, the blackbody calibration is also operated on board. The

black body mechanism consists of two black bodies located on opposite sides of the

main optical path, one kept at ambient temperature of about 290 K as a cold reference

and the other heated to about 50 degrees higher, as a warm reference. The tempera-

tures of the two black bodies are telemetered to the Primary Ground Station (PGS)

together with the corresponding black body imaging values. Thus, the observed counts

can then be related to the known radiance. However, the main radiometer optics are

not in the optical path when viewing the black bodies during calibration. Hence a

correction model is needed to cope with these effects. In this work, the vicarious

calibration is used because at present only their parameters are available from Eumet-

sat. Regardless of the calibration method used, the radiances are then converted into

brightness temperatures using

T =
B

ln(R) − A
, (B.2)

where R is the radiance ( Wm−2sr−1), T is a brightness temperature (K), A and B

are regression coefficients of an exponential fit of the temperature-radiance conversion

table.

Table B.2: Regression coefficients of the temperature-radiance conversion for Meteosat
7.

IR2 WV1
A 6.9618 -1255.5465
B 9.2477 -2233.4882

For VIS channel, Eumetsat uses the Meteosat Visible and Infrared Imager (MVIRI)

calibration algorithm (Govaerts and Clerbaux, 2004), which based upon radiative

transfer simulation over bright desert and sea targets accounting for the spectral re-

sponse of the calibrated channels. The radiation transfer includes total column water
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vapour, total column ozone and aerosol optical thickness. The estimated calibration

coefficient at a given date t is computed with the following formula:

αVIS(t) = αVIS + (DfNt × 10−5), (B.3)

where αVIS is the calibration coefficient at launch date, Df is a daily drift, and Nt is

the number of days since launch date. (αVIS and Df are 0.9147 Wm−2sr−1 per digital

count and 5.7453 Wm−2sr−1per digital count per day×105 for Meteosat 7, which had

been lauched since 2 September 1997.) The effective radiance Reff can be retrieved

with the following formula:

Reff = αVIS(t)(DC −DC0), (B.4)

where DC0 is estimated as the mean offset of the two detectors of the VIS channel.

However, DC0 is available until 6 October 2003 only.
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Figure B.1: The relationship between image intensity and brightness temperature on
22 June 2004.

The scaled radiance values are then normalised by the cosine of the solar zenith

angle Z shown in Figure B.3 to account for different solar radiation effects at different
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Figure B.2: The relationship between offset DC0 and its error for Meteosat 7 VIS
image calibration and date used.

time and different locations:

R̃eff =
Reff

cosZ
. (B.5)

The solar zenith angle is a function of date and time, and location:

cosZ = sin Φ sin δ + cos Φ cos δ cosH, (B.6)

where Φ is the latitude of a pixel. H is the hour angle i.e. the angle that the earth

has rotated since solar noon. At solar noon the hour angle = 0◦, for example. Then,

it measures time from solar noon in terms of fifteen degrees per hour. δ is the solar

declination angle. It is an angle between the plane perpendicular to incoming solar

radiational axis of the earth, which is tilted bewtween 23.5◦ on June 21/22 and -23.5◦
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on December 21/22. Changes in the solar declination angles contribute to seasons.

H =
15

180
(local time − 12 − daylight saving time)

δ = 0.322003 − 22.971 cos(t) − 0.357898 cos(2t)

−0.14398 cos(3t) + 3.94638 sin(t)

+0.019334 sin(2t) + 0.05928 sin(3t),

where t is the day angle and is calculated by 2π(Julian date − 1)/365.

Figure B.3: Solar zenith angle.

B.2 Latitude and longitude of a pixel

The oblate spheroid shape of the Earth can be represented in spherical coordinates as



x

y

z


 =



req cos θ sin φ

req sin θ sinφ

rp cos φ


 , (B.7)

where req is the equatorial radius (6378 km), rp is the polar radius (6356 km). An

image of a geostationary satellite is taken by mapping these coordinates onto a plane

as illustrated in Figure B.4. Therefore, the spherical coordinate of a point Á on the

image can be calculated from the intersection of BE piercing through the ellipsoid.
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Figure B.4: Perspective projection of ellipsoid onto a plane.

That is, 

req cos θ sinφ

req sin θ sinφ

rp cosφ


 =



req + e

0

0


+ m




−(req + e)

g cosα

g sinα


 , (B.8)

where the left side of the equation is the parametric representation of BE in 3D-space,

m is a parameter to control the line equation, α is the angle of the point from the

x-axis of the image, g is a projected radius of the globe onto the y − z plane, which

is parallel to the image and req + e is the geostationary satellite’s altitude from the

origin, which is 42 164 km. The solution of the equation is

m =
−c2 ±

√
c22 − 4c1c3

2c1
, 0 ≤ m ≤ req + e (B.9)

c1 = (req + e)2 + g2

c2 = −2(req + e)

c3 = (req + e)2 − (r2
eq sin2 φ+ r2

p cos2 φ). (B.10)
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Consequently, the spherical coordinates (θ, φ) of the Earth are given by:

φ = cos−1

(
mg sinα

rp

)

θ = sin−1

(
mg cosα

req sinφ

)
, (B.11)

and g can be estimated from
g

req + e
=
s

f
. (B.12)

where s is a distance of the pixel away from the origin of the image and f is the focal

length of the projection and can be found from the known-location, known-projected

point from the given image. However, the spinning Meteosat satellite acquires data on

a line by line basis; each line of data is gathered with a tilt mirror fixed at a constant

angle with respect to the spin axis of the satellite. Therefore, each line of an image

corresponds to a cone swept out in space. This means that the image also has depth

and is not flat as we assume. Thus, f becomes non-linear, as shown in Figure B.5.
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Figure B.5: Calculated f from known location.

However, the Meteosat image represents an 18◦ × 18◦ view of the globe divided on

an equi-angular basis. For example, an IR image of 2500 × 2500 pixels is assumed to

to be 18/2500 degrees per pixel. Therefore, another way to represent BE in Figure
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B.4, as suggested in the Meteosat Archive User Handbook1, is by using an angle of

the image row, αL, and that of the image column, αS. Both angles can be defined as

tanαL =
r√

p2 + q2

tanαS =
q

p
, (B.13)

where [pqr]T is a nonzero vector lies on three points: a location on the earth’s co-

ordinate, the satellite and a point in an image. It is parallel to BE in Figure B.4.

Repeating the previous process to find where the line BE piercing through the globe

yields latitudes and longitudes of pixels of an image without using the non-linear f .

The intersection between the line and the globe gives



x

y

z


 =



Req + e

0

0


+ m



p

q

r


 , (B.14)

where 

p

q

r


 =




1

tan(αS)
tan(αL)
sec(αS )


 . (B.15)

Note that the calculated latitude is the geocentric latitude, which is the angle between

Figure B.6: Angles of pixels in an image.

1EUM TD 06 2.6 (November 2001), available at http://www.eumetsat.de
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the equatorial plane and a line from the centre of the Earth. Then, it is converted

to the geodetic (geographic) latitude, which is the angle at which the normal vector

forms with the plane of the geodetic equator by

φg = arctan
tan(φ)

1 − ε2
, (B.16)

where ε is the eccentricity of the globe defined as
√

1 − (Rp/Req)2 and is 0.08227185.

Figure B.7 illustrates the resolution of pixels along the equatorial line, ranging from

5 km at the nadir to 30 km. The calculation approximates the great circle distance

between any two of these pixels by |r̂| cos−1 δ, where δ is an angle between two vectors

e.g. r̂1 and r̂2, pointing to two geographical points and |r̂| defines the size of the vector.

That is,

cos δ =
r̂1 · r̂2
|r̂1||r̂2| . (B.17)
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Figure B.7: Resolution per pixel (km) at different distance away from the centre of
the image.

B.3 Orthographic to stereographic projection

Next, a Meteosat image is projected onto a plane in contact with the earth at the

north pole, known as the polar stereographic projection, in order to collocate with a
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rain radar image from the British Meteorological Office. Following Snyder (1987), the

easting (E) and northing (N) position in a new image of a spherical coordinate (φ, θ)

are

E = Ef + ρ sin(θ)

N = Nf − ρ cos(θ), (B.18)

where

ρ =
2k0reqt√

(1 + ε)(1+ε) · (1 − ε)(1−ε)
(B.19)

t =
tan(π

4
− φ

2
)

[(1 − ε sinφ)/(1 + ε sinφ)]ε/2
, (B.20)

where k0 is a scale on central meridian which is chosen to be 1 in the work and ε is

the eccentricity of the globe.. The false-easting Ef and false-northing N − f of the

projection are set to zero. Next these coordinates are mapped to (x, y) coordinates of

the rain radar images by

y = −1.8695 × 104N − 428.7301

x = 1.8685 × 104E + 410.2852 (B.21)

The projected satellite images are finely matched with the Nimrod rain radar im-

age with a displacement error not exceeding 1 pixel when considering coastlines and

latitude-longitude grids.

B.4 Nimrod rain radar image to rain rates

The radar images from 15 C-band radars around the British Isles and Europe via the

Radarnet reception system are received and corrected by the British Meteorological

Offices Nimrod system, then distributed to users. The corrections include the identi-

fication and removal of spurious echoes resulting from anomalous propagation of the

radar beam, errors resulting from variations in the vertical profile of reflectivity and

radar sensitivity errors. The images are in Graphic Interchange Format (.gif), with

its intensity corresponds to rain rates. Figure B.8 illustrates a function that is used to

map the image intensities (0-255) to rain rates in the work, together with the colour of
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each intensity that appears in the image. The intensity values of 206 and 207 are bor-

ders of countries and locations outside the radar coverage, respectively. The borders

are replaced by averaged rain rates of their neighbourhoods. Figure B.9 illustrates

rain radar and IR images before and after the pre-processing. The resolution of the

reprojected image is presented in Figure 1.6.
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Figure B.8: Function for mapping radar image intensities to rain rates.
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Rain rate (mm/h)
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Temperature (K)
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Figure B.9: A rain radar image and an infrared image on 23 June 2004 at 0800 UTC
received from BADC are in the upper panel. The lower panel shows the images on
the polar stereographic projection. The dotted line indicates the area that the rain
information is available.



Appendix C

Miscellaneous

C.1 Histogram representation

Mallat (1989) suggested a method to derive the two parameters from the histograms

of a variable u using these following equations:

h(u) = K exp

[
−
( |u|
α

)β
]
,

where

α =
m2Γ

(
1
β

)
NΓ

(
3
β

) ,
β = F−1

(
m2

1

m2N

)
, (C.1)

where

F (x) =
Γ
(

2
x

)2
Γ
(

3
x

)
Γ
(

1
x

)
m1 =

∫ ∞

−∞
|u|h(u)du

m2 =

∫ ∞

−∞
u2h(u)du,

and the constant K is a normalisation parameter to keep

∫ ∞

−∞
h(u)du = N,

207
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where N is the total number of pixels in the given detailed sub-image. The function

Γ(·) is called a Gamma function and is defined by

Γ(x) =

∫ ∞

0

exp(−u)ux−1du. (C.2)

Figure C.1 illustrates the histogram models of various α and β whereas Figure C.2

compares an effect of different values of β to the models . If β = 2, the model becomes

a Gaussian function and as a consequence α is a standard deviation. The parameter

m1 and m2 are the mean deviation and the normalised energy of a sub-image.

−5 0 5
0

0.01

0.02

0.03 α=0.5
α=1
α=1.5

(a) β = 0.5
−5 0 5
0

0.02

0.04

α=0.5
α=1
α=1.5

(b) β = 1
−5 0 5
0

0.02

0.04

α=0.5
α=1
α=1.5

(c) β = 2

Figure C.1: Histogram model using Equation (3.13) with different values of α and β
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Figure C.2: Histogram model using Equation (3.13) with different values of β at α =
3
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C.2 Introduction to support vector machines

The simplest model of Support Vector Machine is the maximal margin classifier. It

works for data which are linearly separable in the feature space. Given a set S =

{(x1, y1), . . . , (xl, yl)} where x = (x1, . . . , xn)T is a sample in the vector space of n

dimensions and y is its label, and a linear function f(x)

f(x) = 〈w · x〉 + b

=

n∑
i=1

wixi + b,

where w and b are a weight vector and bias that control the function, the data are

said to be linearly separable if there exists a hyperplane (w, b) that can correctly

classifies the data, i.e. there is still a (positive) margin between the samples and a

linear decision boundary that separates the samples into classes. The margin is usually

referred to as a geometric margin. The hyperplane that realises the maximum value

of the geometric margin is known as a maximal margin hyperplane. According to

the Vapnik Chervonenkis theory, such a hyperplane also has a minimum probabilistic

classification error bound. The SVM finds this optimal hyperplane by using a convex

optimisation method as follows. First, let a functional margin of a sample with respect

to the hyperplane (w, b) be defined as

γi = yi(〈w · x〉 + b).

The geometric margin is a Euclidean distance of a sample point from a decision bound-

ary and therefore equal to the functional margin of a normalised weight vector. If the

functional margin is fixed to be equal to 1, that is

〈
w · x+

〉
+ b = +1,〈

w · x−〉+ b = −1,

The geometric margin is then equal to

=
1

2

(〈
w

||w|| · x
+

〉
−
〈

w

||w|| · x
−
〉)

=
1

||w||
〈w · x+〉 − 〈w · x−〉

2

=
1

||w|| . (C.3)
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Hence, the hyperplane that solves the optimisation problem

minimise 〈w · w〉 (C.4)

subject to yi(〈w · x〉 + b) ≥ 1, (C.5)

i = 1, . . . , l,

realised the maximal margin hyperplane with a geometric margin = 1/||w||2. The

amount of loss associated with a particular choice of parameters (w, b) can be calcu-

lated using the primal Lagrangian:

L =
1

2
〈w · w〉 −

l∑
i=1

αi[yi(〈w · x〉 + b) − 1], (C.6)

where αi ≥ 0 are the Lagrange multipliers. By differentiating L with respect to w

and b, the following relations on the decision boundary are obtained:

∂L

∂w
= w −

l∑
i=1

yiαixi = 0

w =
l∑

i=1

yiαixi

and
∂L

∂b
=

l∑
i=1

yiαi = 0

Substituting the relations into the primal, thus maximising

L =
l∑

i=1

αi − 1

2

l∑
i,j=1

yiyjαiαj 〈xi · xj〉 . (C.7)

subject to αi ≥ 0 and
∑

i αiyi = 0 will give an optimal solution. The optimisation

problem now becomes a linear combination of the training samples1. According to the

Karush-Kuhn-Tucker (KKT) complementarity condition which states that the optimal

solution w∗, α∗
i and b∗ must satisfy

α∗
i [〈w∗ · xi〉 + b] = 1, i = 1, . . . , l, (C.8)

1This is called the dual representation
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and that all the other αi are zero, only a number of the input xi which the func-

tional margin equal to one and lie closest to the hyperplane involve in the hyperplane

expression:

f(x) = 〈w∗ · x〉 + b∗

=
∑
i∈sv

yiα
∗
i 〈xi · x〉 + b∗

=
∑
i∈sv

yiα
∗
iK(xi,x) + b∗. (C.9)

These input vectors that correspond to the optimal Lagrange multipliers are commonly

called support vectors. Other input vectors that are not support vectors have no

influences and therefore do not affect the solution. The symbol K(x, z) denotes a

kernel function that maps the input x and z to an inner product feature space. In

Equation (C.9), K is a linear function of the inner product which might not be suitable

for the data that are not linearly separable.

To extend the use of the support vector machine to the data that are not linearly

separable, some errors are allowed in the optimisation problem Equation (C.4) to

avoid over-fitting effect (Cristianini and Shawe-Taylor, 2000). This can be done by

introducing slack variables ξi ≥ 0 to the hard-margin constraint in Equation (C.5),

i.e.

yi(〈w · x〉 + b) ≥ 1 − ξi, (C.10)

such that

minimise 〈w · w〉 + C

l∑
i=1

ξi (C.11)

where C > 0 is a regularisation constant yields an optimal solution. Its dual problem

is

max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 yiyjαiαjK(xi,xj),

subject to
∑

i αiyi = 0,

and 0 ≤ αi ≤ C,

and the KKT conditions

αi = 0 ⇒ yif(xi) ≥ 1 and ξi = 0,

0 ≤ αi ≤ C ⇒ yif(xi) = 1 and ξi = 0,

αi = C ⇒ yif(xi) ≤ 1 and ξi ≥ 0,

(C.12)
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reveal that outside the margin are the optimal αi are zero and only αi that corre-

sponds to the edge of or inside the margin area are non-zero. This sparsity property

allows large scale SVM practical. That is, the problem can be decomposed into a

small number of optimisation variables that can be sequentially solved. Details of the

decomposition can be found in Joachims (1999).

The support vector machine can be extended multiclass problems by using

• one against one method

• one against all method

• all at once method.

Given k as a number of classes, the one against one method separately solve the optimal

decision of each class against others. Then, the class that give the maximum decision

function f(x) is assigned to the input vector. This method requires k classifiers to

solve the problem. The second method solves the optimal boundary function between

any two classes, then the class of the largest wins is selected. It requires k(k − 1)/2

classifiers with less numbers of variables for each classifier. On the other hand, the all

at once method solves only one optimisation problem:

minimise
k∑

m=1

〈wm ·wm〉 + C
k∑

m=1

l∑
i=1

ξm
i . (C.13)

Boser et al. (1992) suggested a way to create non-linear classifiers by applying

a kernel to maximum-margin hyperplanes, i.e. every dot product is replaced by a

non-linear kernel function. This allows the algorithm to fit the maximum-margin

hyperplane in the transformed feature space. Thus, the non-linearity is induced in the

kernel-transformed feature space. Maximum margin classifiers are well regularized, so

the infinite dimension does not spoil but improve the results. Some common kernels

include

• Polynomial (homogeneous): K(x, z) = 〈x · z〉d

• Polynomial (inhomogeneous): K(x, z) = (〈x · z〉 + 1)d

• Radial Basis Function (RBF): K(x, z) = exp(−γ||x − z||2), for γ > 0

• Gaussian RBF: K(x, z) = exp
(
− ||x−z||2

2σ2

)
• Sigmoid: K(x, z) = tanh(k 〈x · z〉 + c), ∃k > 0 and c < 0.



C.2. INTRODUCTION TO SUPPORT VECTOR MACHINES 213

The support vector machine can also be used for a regression problem where the

goal is to estimate an unknown continuous-valued function based on a finite number

set of noisy samples. SVM regression performs linear regression in the high-dimension

feature space. Using the previously-defined notation, the linear model is given by

f(x) =

n∑
i=1

wigi(xi) + b, (C.14)

where gi denotes a set of nonlinear transformation. The optimal solution is gained by

minimising ε-insensitive loss and the geometric margin:

minimise 〈w · w〉 + C
∑l

i=1(ξ
+
i + ξ−i ) (C.15)

subject to yi − fi(x) ≤ ε+ ξ+
i , (C.16)

fi(x) − yi ≤ ε+ ξ−i , (C.17)

(C.18)

where ξ+
i and ξ−i are slack variables for the optimisation problem. As in the classifi-

cation, this problem can transformed into the dual problem with its solution is given

by

f(x) =
∑

i∈sv(αi − α∗
i )K(xi,x) + b, (C.19)

(C.20)

where K(xi,x) is the kernel function

K(xi,x) =
l∑

j=1

gj(x)gj(xi). (C.21)

Parameter C > 0 determines the trade off between the model complexity (flatness) and

the degree to which deviations larger than ε are tolerated in optimisation formulation.

For example, if C is too large (infinity), then the objective is to minimize the empirical

risk only, without regard to model complexity part in the optimisation formulation.

Parameter ε controls the width of the ε-insensitive zone, used to fit the training data.

The value of can affect the number of support vectors used to construct the regression

function. The bigger ε , the fewer support vectors are selected. On the other hand,

bigger ε results in more flat estimates. Hence, both C and ε affect model complexity

and the SVM’s generalisation performance. The empirical study in Cherkassky and
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Ma (2004) showed that the following prescription for regularisation parameter:

C = max(|ȳ + 3σy|, |ȳ − 3σy|) (C.22)

ε = 3σ

√
ln l

l
, (C.23)

where ȳ is the mean of the training responses (outputs), σ and σy is the standard

deviation of the input and output, can effectively handle outliers in the training data.
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