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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

Faculty of Physical and Applied Sciences
ELECTRONICS AND COMPUTER, SCIENCE

Doctor of Philosophy

by Francesco M. Delle Fave

A key challenge for modern computer science is the development of technologies that
allow interacting computer systems, typically referred as agents, to coordinate their
decisions whilst operating in an environment with minimal human intervention. By
so doing, the decision making capabilities of each of these agents should be improved
by making decisions that take into account what the remaining agents intend to do.
Against this background, the focus of this thesis is to study and design new coordination

algorithms capable of achieving this improved performance.

In this line of work, there are two key research challenges that need to be addressed.
First, the current state-of-the-art coordination algorithms have only been tested in sim-
ulation. This means that their practical performance still needs to be demonstrated in
the real world. Second, none of the existing algorithms are capable of solving problems
where the agents need to coordinate over complex decisions which typically require to
trade off several parameters such as multiple objectives, the parameters of a sufficient
statistic and the sample value and the bounds of an estimator. However, such parame-
ters typically characterise the agents’ interactions within many real world domains. For
this reason, deriving algorithms capable of addressing such complex interactions is a
key challenge to bring research in coordination algorithms one step closer to successful

deployment.

The aim of this thesis is to address these two challenges. To achieve this, we make
two types of contribution. First, we develop a set practical contributions to address the
challenge of testing the performance of state-of-the-art coordination algorithms in the
real world. More specifically, we perform a case study on the deployment of the max-sum
algorithm, a well known coordination algorithm, on a system that is couched in terms of
allowing the first responders at the scene of a disaster to request imagery collection tasks
of some of the most relevant areas to a team of unmanned aerial vehicles (UAVs). These
agents then coordinate to complete the largest number of tasks. In more detail, max-sum
is based on the generalised distributive law (GDL), a well known algebraic framework
that has been used in disciplines such as artificial intelligence, machine learning and

statistical physics, to derive effective algorithms to solve optimisation problems. Our
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contribution is the deployment of max-sum on real hardware and the evaluation of its
performance in a real world setting. More specifically, we deploy max-sum on two UAVs
(hexacopters) and test it a number of different settings. These tests show that max-sum
does indeed perform well when confronted with the complexity and the unpredictability

of the real world.

The second category of contributions are theoretical in nature. More specifically, we
propose a new framework and a set of solution techniques to address the complex inter-
actions requirement. To achieve this, we move back to theory and tackle a new class of
problem involving agents engaged in complex interactions defined by multiple parame-
ters. We name this class partially ordered distributed constraint optimisation problems
(PO-DCOPs). Essentially, this generalises the well known distributed constraint opti-
misation problem (DCOP) framework to settings in which agents make decisions over
multiple parameters such as multiple objectives, the parameters of a sufficient statis-
tic and the sample value and the bounds of an estimator. To measure the quality of
these decisions, it becomes necessary to strike a balance between these parameters and
to achieve this, the outcome of these decisions is represented using partially ordered

constraint functions.

Given this framework, we present three sub-classes of PO-DCOPs, each focusing on a
different type of complex interaction. More specifically, we study (i) multi-objective
DCOPs (MO-DCOPs) in which the agents’ decisions are defined over multiple objec-
tives, (ii) risk-aware DCOPs (RA-DCOPs) in which the outcome of the agents’ decisions
is not known with certainty and thus, where the agents need to carefully weigh the risk
of making decisions that might lead to poor and unexpected outcomes and, (iii) multi-
arm bandit DCOPs (MAB-DCOPs) where the agents need to learn the outcome of their
decisions online. To solve these problems, we again exploit the GDL framework. In
particular, we employ the flexibility of the GDL to obtain either optimal or bounded
approximate algorithms to solve PO-DCOPs. The key insight is to use the algebraic
properties of the GDL to instantiate well known DCOP algorithms such as DPOP, Ac-
tion GDL or bounded max-sum to solve PO-DCOPs. Given the properties of these
algorithms, we derive a new set of solution techniques. To demonstrate their effec-
tiveness, we study the properties of these algorithms empirically on various instances
of MO-DCOPs, RA-DCOPs and MAB-DCOPs. Our experiments emphasize two key
traits of the algorithms. First, bounded approximate algorithms perform well in terms
of our requirements. Second, optimal algorithms incur an increase in both the compu-
tation and communication load necessary to solve PO-DCOPs because they are trying

to optimally solve a problem which is potentially more complex than canonical DCOPs.
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Chapter 1

Introduction

The development of technologies that allow interacting computer systems to operate col-
lectively, as a team, in an environment with minimal human intervention, has become a
key challenge for current computer science research that sits at the intersection of artifi-
cial intelligence, robotics and machine learning. Each of the individual components that
make up these systems typically has to perceive, reason and act within a dynamic envi-
ronment and, for this reason, they are often referred to as autonomous agents (Jennings,
2001).

Among these technologies, particular attention has been given to coordination techniques
in which the decision making process of each autonomous agent is improved by taking
into account the decisions of those other agents with whom it interacts (i.e. its neigh-
bours). In so doing, the team agrees on a collective decision that represents the joint set
of their individual decisions. For instance, by adopting a coordinated behaviour, each
agent improves its performance since it is aware of what each other member of the team
is going to do. Hence, it can discard redundant or sub-optimal decisions (e.g. another
agent is doing the same or it is doing something irrelevant to the operation) that would
decrease the performance of the team if selected. As a consequence, the performance of

the entire team is greatly increased.

For all the above reasons, coordination techniques have been applied to multiple applica-
tion domains such as wireless sensor networks (Rogers et al., 2009), teams of unmanned
vehicles deployed in disaster response scenarios (Scerri et all,2005) and scheduling multi-
processor jobs in distributed computational environments (Sultanik et al., 12007). Among
these, the domain of robotics for disaster response appears as a very challenging domain
for testing coordination mechanisms, because of its complexity, dynamism and unpre-
dictability (Bethke et al), 2008). Within such settings, teams of autonomous robotic

agents such as unmanned aerial or ground vehicles (UAVs and UGVs respectively, see
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(b) A team of autonomous UGVs (Courtesy of the University of Michigan)

FIGURE 1.1: Two types of unmanned vehicles.

Figure [Tl for examples of such vehicles) are often deployed to achieve accurate situa-
tional awareness—the ability of a robotic agent to make sense of, and predict, what is
happening in an environment—at the scene of a disaster. Examples include measuring
the temperature of a building on fire, searching for a drifting life-raft after the sinking
of a ship, or collecting imagery from the most dangerous areas of the scene of a disaster.
By adopting a coordinated response, the agents are able to maximise the amount of col-
lected information since they will avoid making redundant decisions, and thus, they will
avoid exploring the same area more than once and they will avoid making sub-optimal

decisions, such as exploring areas which have little importance for the operation.

Now, a variety of mechanisms have been developed to address coordination problems
(see Chapter [2] for more details). Typically, decentralised algorithms are advocated for
these settings since they are scalable and robust to the failure of one or more agents
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(Bethke et al., 2008; [How et all, 2009). These approaches have been studied in research
in both robotics and multi-agent systems. To date, research on robotics has principally
focused on developing and evaluating a general unmanned architecture to coordinate the
decisions of the team of agents. Within this architecture, coordination algorithms are
often defined as simple distributed protocols that allow the agents to negotiate over a
collective decision in real time and whilst operating within an environment (Bethke et all,
2008; |Grocholsky, 2002). However, whereas they have been shown to work effectively
when deployed on real UAVs or UGVs, these algorithms still lack a systematic study,
that establishes their qualities and, most importantly, that focuses on improving them.
In contrast, research in artificial intelligence, and, most importantly, research in multi-
agent systems has focused on developing more sophisticated coordination algorithms
allowing the agents to make optimal or bounded approximate decisions despite incurring
a higher cost in terms of computation and communication (Modi et all. [2005; Rogers
et al., 2011). However, to date, these algorithms have only been studied in simulation,

and their effectiveness when deployed in the real world still remains an open issue.

Most importantly, the former algorithms, both the ones studied in robotics and the
ones in multi-agent systems, work by assuming that the quality of the agents decisions
can be measured using real values. In other words, a real valued function is defined
over the agents’ decisions, that assigns higher values to those decisions that improve the
team performance. This is the case in the domain of robotics for disaster response, in
which multiple examples of such functions exist, such as the mutual information gain,
the entropy and the cumulative probability of detection (Grocholskyl, 2002; Cole, 2009).

However, not all decisions can be valued using a real valued function. In fact, there exists
multiple real world settings in which agents make complex decisions whose outcome
cannot be determined by such function. The reason for this is that a real function
outputs values that are totally ordered (i.e. they are fully comparable and a single
optimum exists). Unfortunately, making decisions in the real world is often a complex
process which might require trading off different factors and parameters. This process
cannot simply be encapsulated within a real value function. Hence, new functions need to
be defined, which measure the quality of the agents’ decisions using partially rather than
totally ordered values. In so doing, the agents decisions might not be fully comparable
and actually, multiple equivalent decisions might exist. However, using these functions

will incorporate the complexity of the real world in the agents’ decision making process.

Now, there exists numerous problems involving partially ordered functions to model
complex decisions. However, in most cases, literature does not provide algorithms capa-
ble of addressing such problems. A first example is the use of multi-objective functions
to measure complex agents’ decisions. Focusing on disaster response, consider a setting
in which a number of UAVs are deployed to search for drifting life-rafts after the sink-

ing of a ship. In reality, the aim of their mission is not only to find all the life-rafts
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in the least amount of time, but to report their positions with accurate precision to
the first responders so that they can take the victims to safety. To do so, the UAVs
need to track the life-rafts to localise their position with precision. However, these two
objectives conflict, since the optimisation of one of them is likely to result in the detri-
mental performance of the other (e.g. if a UAV is searching it cannot track a discovered
life-raft). As a consequence, they are partially ordered, since they cannot be optimised

independently.

A second example involves defining partially ordered functions to measure the quality
of the agents’ decisions when their outcome is uncertain. This is what happens in
many real world settings, particularly in disaster response (see Chapter 2] for details) in
which the deployed agents are likely to have noisy sensors and, as a consequence, their
position and observations are uncertain. In these settings, the value of the scalar function
corresponding to each possible outcome of the agents’ decisions is uncertain. Hence, the
agents do not know with precision what the outcome of their decisions is going to be. To
face this uncertainty then, the agents have to decide on a collective attitude to face the
risk associated with making decisions that might result in poor outcomes. In fact, there
exists an extensive literature on decision making under uncertainty that indicates that
preferences over outcomes should be determined by a risk profile encoding the agents’
willingness to expose themselves to uncertain outcomes in prospect of a higher reward
(Levy, 2006). To do so, it becomes necessary to trade off between the uncertainty of
the agents’ decisions and the potential value that these decisions can yield which result
again in a partial order. For instance, consider a team of UAVs deployed to search
for an unknown number of drifting life-rafts. In this setting, the agents’ decisions are
typically defined as the areas to explore and their outcomes depends on the number of
discovered life-rafts. Naturally, this number is unknown, therefore the expected value is
typically used. In light of this, the agents might prefer exploring areas with a certain
rather than uncertain number of casualties, despite possibility that the certain number
may be lower than the uncertain one. This type of attitude is typically defined as a
risk averse behaviour. Conversely, they might prefer exploring areas with an uncertain
number of casualties, hoping to discover a large number of casualties (i.e. a very good
outcome) despite the risk of ending up in an empty area (i.e. a very poor outcome). This
type of attitude is typically defined as a risk seeking behaviour. Finally, they might be
completely neutral to the uncertainty associated with the outcome of their decision and
simply decide which areas to explore next considering the areas’ expected number of

life-rafts.

In addition, within other application domains the agents’ decisions might be even more
complex. Indeed, there are many settings in which no a priori information might be
known about the environment where the agents are deployed. Moreover, the uncertainty

characterising the outcomes of the agents’ decisions might be unknown or impossible to
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define. In such cases, it is then impossible to define a function to determine the quality
of the agents’ decisions. For instance, in the example discussed above, nothing might
be known about the positions of the life-rafts before the UAVs are actually deployed.
Hence no estimated or expected number of casualties can be defined. In this setting,
the UAVs do not know what the actual outcome of their decisions is going to be. For
instance, they might assume that a certain area contains a high number of life-rafts, and
thus, that exploring it might be highly rewarding. However, in reality the area might
contain a limited number of life-rafts and consequently, it is not the best area to explore.
Hence the estimate of these outcomes should be refined, or learnt during the operation.
Such estimates, however, will be defined over multiple inter-dependent parameters for

which a trade off might again be necessary. Hence, they are again partially ordered.

Now, some literature has tried to address the three example of complex decisions pre-
sented above. For instance, various algorithms have been proposed to address multi-
objective problems. However, they are either centralised or unable to run in real time
due to their complexity (see Chapter [2 for more details). In addition, a vast literature
exists in incorporating risk in decision making under uncertainty. However doing so for
coordination problems involving multiple agents remains an open challenge since current
solution techniques can address uncertain outcomes such as those presented above, but
fall short in_taking into account the risk that each of these outcomes might incur (Atlas
and Decker, 2010; [Léauté and Faltings, 2011). Finally, whereas a variety of literature
exists about online learning algorithms, these are either single agent approaches, or ap-
proximate, and thus, likely to result in a poor performance (Lai and Robbins, [1985;
Léauté and Faltingd, 12009).

To address these shortcomings, the theory of coordination algorithms (i.e. the design
of the algorithms and the study of their properties) and their practice (i.e. the analysis
of their performance either in simulated or real world environments) has become a key
research challenge. The aim of practical research is to close the gap between existing co-
ordination algorithms and the real world. Indeed, as discussed above, whereas numerous
algorithms have been defined, their effectiveness to coordinate robotic agents deployed
in the real world still remains an open question. Investigating such effectiveness re-
quires implementing these algorithms within a real coordination system and verifying
their performance on real robotic agents such as UAVs or UGVs, considering all their
requirements (e.g. robustness and scalability) and limitations (e.g. battery capacity and
computational power). In contrast, the aim of theoretical research is to study coordina-
tion problems from an abstract perspective. The key focus is to derive new algorithms
that enrich the decision making capacities of the agents and thus allow them to make
complex decisions involving multiple inter-dependent parameters. Indeed, as discussed
above, current coordination algorithms are not yet capable of handling problems in-

volving multiple objectives, uncertainty or a complete lack of information. Deriving
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these new algorithms, then, requires understanding their features and analysing their

properties in a simulated environment before actually testing them in the real world.

Against this background, the key purpose of this thesis is to address the above mentioned
research challenges. In the remainder of this chapter, we will describe, in more detail,

the aims of this work before detailing our contributions.

1.1 Research Objectives

The objectives of this thesis are twofold. The first is to design new coordination algo-
rithms to enhance the decision making capacities of a multitude of agents cooperating
to solve a problem. In so doing, we aim to start reducing the gap between the decision
making capabilities provided by the current state-of-the-art coordination algorithms and
the capabilities that are actually necessary to solve real world problems. The second
objective is to understand the requirements that are necessary to coordinate robotic
agents in the real world by deploying state-of-the-art coordination algorithms to address

real world coordination problems.

In more detail, coordination algorithms need to satisfy a set of specific requirements to
be successfully deployed to solve real world problems. These requirements arise when a
potentially large number (i.e. tens) of agents are deployed, which will be sensing, acting
and making decisions in a complex and potentially unknown environment. To identify
these requirements, a scenario is proposed, taken, again, from the domain of robotics for
disaster response. In fact, this thesis will focus principally on this domain to illustrate
the most relevant concepts. Whereas it is well acknowledged that there are multiple
domains in which coordination technologies can be applied (see the beginning of this
chapter for some references), robotics stands out as one of the most challenging. This
is due to a number of factors such as the uncertainty which is endemic in most robotic
domains, the complexity of building effective robotic systems and, most importantly, the
impact that any effective robotic system can have in the real world. As a consequence,
robotics for disaster response, and particularly for situational awareness, will constitute
the main application domain of this thesis. The scenario, which is inspired by Haiti’s

2010 earthquake, proceeds as follows:

Scenario. Haiti, 2010. A catastrophic magnitude 7.0 M,, earthquake has struck the
country’s capital Port au Prince. Quver 3 000 000 people living within the area are
affected by the earthquake and numerous buildings have collapsed or have been severely

damaged.

The principal objective of the rescue forces is to save as many casualties as possible.

To achieve this, rescue forces need to accurately assess the situation at the scene of the
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disaster. Naturally, this implies collecting accurate information about the most critical
areas of the capital, such as collapsed or damaged buildings. However, not only is the
number of areas to explore extremely large, but most of these also present hazards to first
responders, who are already fully occupied providing assistance to the casualties who have
already been found. Fortunately, the first responders have been provided with a fleet of
thirty UAVs and UGVs that can be deployed to collect information about these critical

areas.

In more detail, each first responder is provided with a personal digital assistant (PDA)
that he uses to submit imagery collection tasks to the vehicles. UAVs are then deployed
to collect aerial imagery of dangerous areas such as building on fire or of large areas
where buildings have collapsed. Similarly, UGVs are deployed to collect imagery of
indoor environments, such as damaged buildings, so as to understand if casualties are
still in there. Both these vehicle types are then equipped with the latest state-of-the-
art agent-based technology for coordinated decision making, that allows them to operate
autonomously over the area of the disaster and report all the gathered information back

to the first responders.

During the operation, the vehicles face a variety of challenges. Some vehicles fail, while
new ones are deployed since the areas and the number of buildings to explore are too large.
All vehicles have limited battery capacity and limited computation and communication
resources. Their sensors (e.g. their camera and GPS locator) are noisy and imprecise.
Moreover, after the earthquake, most communication went down, and thus the position
of most of the casualties in Port au Prince is unknown prior to the agents deployment.
Nonetheless, due to their robust and flexible decision making capabilities, the vehicles
are capable of reporting enough information to build an accurate picture of the disaster

area, containing the location of most of the casualties.

Now, the scenario allows us to identify a more detailed set of requirements to guide the

design of efficient coordination algorithms. These are defined as follows:

e Generality: This requirement demands coordination algorithms to be applicable
across a wide range of different settings. For instance, as described by the scenario,
the deployed agents face two different challenges: the first consists of providing
aerial imagery and requires that the UAVs can auto-determine which areas need
to be explored and determine how much imagery needs to be collected for each
of them; the second consists of exploring the interior of buildings to build a map
providing first responders with the position of all the discovered casualties. Hence,
this requirement deals with the definition of coordination techniques that are re-
usable and, that, as a consequence, can be applied to other scenarios out of the

scope of this work.



10 Chapter 1 Introduction

e Performance Guarantee: This requirement demands that coordination algo-
rithms provide theoretical guarantees on the performance that they yield. For
instance, the scenario describes a critical setting in which a team of UAVs are
deployed to collect aerial imagery of dangerous areas such as collapsed buildings
or buildings on fire. Within this setting, first responders will be more amenable
to delegating imagery collection tasks to the robotic agents if they know that the
coordination mechanism allows the agents to perform either optimally or with a
guaranteed bound to the optimal behaviour. More generally, this requirement
deals with the definition of theoretical proofs, that provide developers with a cer-
tificate of the algorithm’s quality and thus help them to choose which coordination

technology to deploy.

e Robustness: This requirement demands coordination algorithms to allow the
agents to continue the operation whenever communication is limited or if the fail-
ure of one or more agents occurs. For instance, in the setting described in the sce-
nario, some agents may leave the operation due to component failure. Moreover,
since radio communication is typically severely limited within damaged buildings,
the UGVs will likely have trouble communicating during their operation. In both
cases the other agents should be able to continue the operation without being sig-
nificantly affected. Hence this requirement deals with the definition of coordination
techniques whose performance is not going to be unduly affected by technical con-

straints, such as the failure of one agent or its limited communication capacities.

e Scalability: This requirement demands coordination algorithms to yield efficient
performance in cases where large number of agents need to be deploye. For
instance, in the setting described by the scenario, the number of deployed agents
is increased to complete the operation. Nonetheless, the performance of the entire
team should remain unaffected. Hence, this requirement deals with the definition of
coordination techniques that are capable to handle the interactions with a growing

number of neighbouring agents.

¢ Resource-awareness: This requirement demands coordination algorithms that
allow agents to make high quality decisions given their limited computation and
communication capacities. For instance, the scenario describes a setting in which
the deployed vehicles have limited battery capacity and computational power.
Nonetheless this should not unduly affect their decision making capability. Hence,
this requirement deals with the definition of a coordination technology that allows

robotic agents to operate efficiently in real-time operations.

e Complex Interactions: This requirement demands coordination algorithms to

allow the agents to make complex decisions involving trading off between various

!The algorithms presented in this thesis will be tested over tens of agents. Scaling to a higher number
might be possible as well, but is out of the scope of this work
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parameters of the problem. As we have seen, the agents might be making com-
plex decisions involving multiple and conflicting objectives. Consider the scenario
described above, where UAVs are deployed to complete imagery collection tasks.
Their objective is to maximise the number of completed tasks. However, some
of the areas where imagery needs to be collected might contain hazards for the
agents, such as fire, water or obstacles. Hence, to prevent the loss of the vehicles,
the agents might consider minimising the number of completed dangerous tasks
as a second objective. However, the optimisation of one objective may result in
detrimental performance in terms of the other (i.e. agents will not complete dan-
gerous tasks, and thus the number of completed tasks is likely to decrease). As
a second example, the agents might be making complex decisions whose outcome
is uncertain. In this setting, the agents might risk making decisions which might
yield a poor outcome. For example, in the scenario the agents’ sensors are noisy.
This means that each agent’s measurements and position is uncertain. By adopt-
ing a collective risk profile (neutral, averse or seeking), the agents then become
capable of trading off the reward associated with each uncertain decision (i.e. the
number of casualties they are expected to find). To do so, however, it becomes
necessary to trade off between the expected outcome of each decision and their
uncertainty. As a final example, the agent might be making complex decisions
whose outcome need to be learnt during the operation. Again, the scenario de-
scribes the environment where the agents are deployed as unknown, uncertain and
unpredictable. Moreover, these agents have noisy sensors. Thus, the outcome of
their decisions cannot be defined a priori due to the level of uncertainty and the
lack of knowledge. These outcomes then need to be learnt during the operation,
by considering not only their estimated value, but, most importantly the bound
on the uncertainty defining their estimate. More generally, this requirement deals
with the definition of coordination technologies that can enhance the decision mak-
ing capabilities of a multi-agent system, by making the agents capable of handling

complex interactions.

To address these requirements, decentralised coordination techniques have been advo-
cated, since they yield scalable solutions, exhibit rapid response times by exploiting the
locality of the agents’ interactions and are made robust to failure by avoiding the exis-
tence of a centralised point of control (Jennings, 2001; [How et all, 2009). A variety of
these coordination algorithms have then been proposed within the robotics (Bethke et all,
2008; [How et al., 12009), artificial intelligence (Modi et al., 2005; [Rogers et all, 12011) and
machine learning (Guestrin et al); [2003; |Auer et all, [2002) communities. Among these,
the use of algorithms that solve distributed constraint optimisation problems (DCOPs)
have been advocated, since they position themselves well with respect to the robustness,
scalability and rapidity requirements mentioned above (Modi et al., 2005). In particular,

the DCOP framework is a well known and studied model that represents coordination
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problems as constraint optimisation problems. In a DCOP, variables represent the de-
cisions that the agents can make, while constraint functions represent their interactions
(see Chapter 2] for a more thorough description). In more detail, each agent controls a
variable representing its decisions, and the agent’s objective is then to maximise a global
objective function defined as the sum of all the local constraint functions representing
the interactions between the agents. Due to this generality, DCOPs have been shown
to be a very effective framework to represent coordination problems (Modi et al., 2005).
For this reason, the DCOP framework is the foundation over which we will build the
algorithms described in this thesis (other methods are briefly discussed and analysed in
Chapter [2)).

In addition, one particular DCOP algorithm, max-sum, has been shown to position it-
self particularly well with respect to the requirements defined above (Stranders, 2010).
The principal reason is because it builds upon the Generalised Distributive Law (GDL)
(Aji_and McEliece, 2000), a well known framework that exploits the factorisability of
a number of optimisation problems (including DCOPs) and can thus provide effective
solutions whilst preserving the agents’ limited computational and communication re-
sources. In addition, the GDL framework can be used to transform max-sum into either
optimal (DPOP and Action GDL (Petcu and Faltings, 2005; [Vinyals et all, [2011)) or
bounded approximate (Rogers et all, 2011) algorithms. Naturally, computing bounded
approximate or optimal solutions requires more computation and communication, which
limits, at the moment, the practical applicability of the former algorithms. However,
they still constitute a very good starting point for the theoretical purposes of this work.

For these reasons, max-sum is the key algorithm which we are going to use in this thesis.

However, despite its potential, max-sum has not yet been deployed on a real system.
It has only been tested in simulation, which lacks the dynamism and the heterogeneity
of the real world. Hence, max-sum’s robustness and flexibility for real applications has
not been tested in practice. Moreover, max-sum’s performance depends greatly on the
way it is applied to a problem. In fact, this performance is affected by both the way
in which a generic problem is encoded to form the input of the algorithm, and the way
the algorithm is decentralised between the available sources of computation. However,
whereas a variety of ways to apply the algorithm have been described in the literature, a
general framework that discusses and analyses these issues is absent. Most significantly,
for the work presented here, GDL algorithms (comprising max-sum) are not yet capable
of addressing the requirement of complex interactions. In particular, whereas, various
frameworks and algorithms have been defined to address complex interactions repre-
senting either uncertainty, online learning and multiple objectives (Atlas and Decken,
2010; [Taylor et al., 2010; Fitzpatrick and Meertens, 2003; IMaheswaran et _all, 2005),
thus far, no framework nor solution technique exists that addresses the general problem

of representing decisions over multiple inter-dependent parameters.
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The focus of this thesis is, therefore, to address these shortcomings. In the next section,

we describe our contributions towards this end.

1.2 Research Contributions

The contributions of this thesis can be divided into two main categories: practical and
theoretical. The former focus on evaluating the performance of the max-sum algorithm
when deployed in the real world. In more detail, we present a study of the deployment
of the max-sum algorithm. First, we introduce a methodology that the less-experienced
developer can use to deploy max-sum for problems related to situational awareness.
Second, we present a case study whereby we apply our methodology to deploy max-sum
to coordinate a team of unmanned aerial vehicles to provide live aerial imagery to first

responders operating in the area of a disaster.

The theoretical contributions, which constitute the main thrust of this thesis, then focus
on deriving new GDL algorithms to address the requirement of complex interactions. To
do so, we generalise the canonical DCOP framework and derive a new class of problems,
namely partially ordered constraint optimisation problems (PO-DCOPs) which define
DCOP’s constraint functions as partially ordered functions. In particular, the notion
of partial order is introduced to encompass all the settings in which the agents’ joint
decisions cannot be measured using canonical scalar functions (which are by definition
totally ordered). In addition, partially ordered instances might not be comparable any-
more. This implies that a single maximum might not exist anymore. Rather, a set
of multiple non-dominated alternatives might co-exist, which might not be comparable

between each other and which might all need to be considered as potential solutions.

Given these observations, solving these problems requires deriving new algorithms capa-
ble of handling the above mentioned partial order. To do so, as we show in this thesis,
a very good starting point is to exploit the GDL framework. Indeed, as described in
Section [[I], the GDL exploits some structural property of DCOPs (i.e. the fact that
they are defined over a commutative semi-ring as we will see in Chapter 2)) to solve
them in an efficient manner. This property can be used to define new algorithms that
can solve our PO-DCOPs. Moreover, we can use the same transformations used for
canonical DCOPs to derive optimal and bounded approximate algorithms equivalent to
DPOP, Action GDL and bounded max-sum. Using the PO-DCOP framework, we can
then define three new classes of DCOPs, namely multi-objective DCOPs (MO-DCOPs),
risk aware DCOPs (RA-DCOPs) and multi arm bandit DCOPs (MAB-DCOPs) each
representing one of the complex interactions described in Section [[LI] and derive new

algorithms based on the GDL to solve them. Indeed, we show how each of the former
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Requirement Max-sum | Bounded Max-sum | Action-GDL | DPOP
Generality + + + +
Performance Guarantee - + + +
Robustness + + + +
Scalability + + + +
Resource-awareness + + - -
Complex Interactions - - - _

TABLE 1.1: The list of requirements satisfied by the GDL algorithms. In the table “+4”
stands for satisfied and “-” for not satisfied.

classes cannot be solved by traditional DCOP algorithms, since a partial order exists

between each problem’s solutions.
In more detail, these contributions are described in the following chapters:
Chapter B: Application of Coordination for Disaster Response

This chapter presents a study of the deployment of the max-sum algorithm within a
system to coordinate a team of UAVs deployed over the scene of a disaster, to provide
the first responders at the scene with live aerial imagery of the most critical areas. Each
first responder is provided with a personal digital assistant (PDA) that he can use to
submit imagery collection tasks. The coordination system works by dynamically casting
the corresponding task allocation problem into a DCOP in which the local constraint
functions represent utility functions measuring the allocation of one specific task to one
or more of the UAVs that can attend it. The first contribution of this chapter is then
a novel utility defined to carefully weight the problem’s constraints, such as a task’s
importance and the UAV’s battery capacity, to maximise performance. The UAVs then
coordinate to maximise the number of completed tasks with the highest importance (i.e

to maximise the sum of the tasks’ utilities).

The remaining contributions of this chapter are then twofold. First, a methodology
is proposed that a developer can use to deploy the max-sum algorithm to coordinate
robotic agents to achieve accurate situational awareness in disaster scenarios. In so
doing, a set of general rules is identified, that unifies the different ways in which the
algorithm can be applied to problems related to situational awareness. Second, a case
study is presented whereby the methodology is used to deploy the coordination system

described. This system is evaluated in both simulation and over two real UAVs.

Simulations are used to ascertain the advantage of using the new task’s utility. Indeed,
since it is composed of multiple parameters it could impose some severe constraints on
the coordination algorithm and, as a consequence, yield poor performance in terms of the
quality and the number of completed tasks. To verify this hypothesis, we benchmark the
former utility against more standard less constrained utilities to evaluate its performance.

Our results show that it yields a better trade off between the quantity and quality of
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completed tasks. Second, the system is deployed on two real UAVs and the effectiveness

of max-sum is evaluated in different scenarios, thus showing its practical viability.

To summarise, this chapter makes the following contributions to the state of the art:

e We develop a methodology to apply max-sum to problems related to situational
awareness. We unify the various ways of using max-sum that exist in literature and
organise them into a sequence of steps that can guide a developer to the successful

deployment of the algorithm.

e We present a coordination system for disaster management, which could be po-

tentially deployed for real operations.

e We introduce a novel utility function in which several constraints are carefully
weighted to maximise performance. We then empirically evaluate our utility
against similar ones but which do not take all the constraints into account and
we show that our utility yields a better trade off between the quantity and quality

of completed tasks.

e We evaluate the system by deploying it on two hexacopter UAVs in three different

settings and ascertain its practical viability.

The research presented in this chapter led to the following papers:

e Delle Fave, F. M., Rogers, A., Xu, Z., Sukkarieh, S. and Jennings, N.R. (2012)
Deploying the Max-Sum Algorithm for Coordination and Task Allocation of Un-
manned Aerial Vehicles for Live Aerial Imagery Collection. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). St. Paul,
USA. pp. 469-476

e Delle Fave F. M., Farinelli A., Rogers, A. and Jennings N. R. (2012) A methodology
for deploying the Max-Sum Algorithm and a Case Study on Unmanned Aerial
Vehicles. Proceedings of the Twenty Fourth Conference for Innovative Application
for Artificial Intelligence (IAAI 2012). Toronto, Canada. In press.

e Delle Fave F. M., Rogers, A. and Jennings N. R. (2012) ARGUS: A Coordina-
tion System to Provide First Responders with Live Aerial Imagery of the Scene of
a Disaster (Demonstration). In: Proceedings of the Eleventh Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2012). Valencia, Spain. pp.
345-346.

Chapter 4 A Class of Coordination Algorithms for Partially Ordered Coor-

dination Problems
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Requirement B-MOMS
Generality
Performance Guarantee
Robustness
Scalability
Resource-awareness
Complex Interactions

+++++ +

TABLE 1.2: The list of requirements satisfied by the B-MOMS algorithm. In the table
“+7 stands for satisfied and “-” for not satisfied.

This chapter presents a general framework to represent settings in which agents are
required to make complex joint decisions which cannot be measured using the real-

valued constraint functions used in traditional DCOPs.

In more detail, the contributions of this chapter are twofold. First, we propose a novel
framework, namely partially ordered distributed constraint optimisation problems (PO-
DCOPs) to model coordination problems in which the agents are making complex de-
cisions resulting in a partial order. A PO-DCOP generalises a DCOP by defining the
constraint functions as partially rather than totally ordered functions. Such functions
are typically represented as vector functions containing the different parameters defining
the partial order. Examples include multiple objectives (see Chapter [Bl), mean and vari-
ance (Chapter [f) and mean and upper confidence bound (Chapter [7]). In so doing, we
propose a novel class of optimisation problems that allow us to model complex decisions
and, as a consequence, allows us to encompass more realistic coordination problems such
as those presented at the beginning of this chapter. Second, we propose the partially
ordered generalised distributive law (PO-GDL) a class of algorithms which builds upon
the generalised distributive law (GDL) to solve PO-DCOPs. In more detail, we exploit
the well known flexibility of the GDL to derive efficient optimisation algorithms, such
as the dynamic programming optimisation protocol (DPOP), Action GDL and bounded
max-sum to design algorithms to solve PO-DCOPs. Three instantiations of the PO-
GDL will then be used in the following chapters, to solve DCOP involving complex
interactions including multiple objectives, uncertainty about the outcome of the agents

decisions and online learning.
The research presented in this chapter led to the preparation of the following journal

paper:

e Delle Fave, F. M., Stranders, R., Rogers, A. and Jennings, N. R. Partially Ordered
Distributed Constraint Optimisation Problems and Algorithms. To be submitted.

Chapter Bt A Class of Algorithms for Partially Ordered Coordination Prob-

lems involving Multiple Objectives
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This chapter introduces a class of algorithms able to address coordination problems
where the agents’ decisions are characterised by multiple conflicting objectives. To
achieve this, we first define multi-objective DCOPs (MO-DCOPs) an instantiation of
DCOPs where local constraint functions are defined over multiple objectives and, as
a consequence, where the solutions of the corresponding global function are partially
ordered. To define these solutions, we then exploit the well known concept of Pareto
optimality (Pareto, 1906), that allows us to discriminate between partially ordered al-
ternatives defined over multiple objectives. In more detail, we use Pareto optimality
to derive a class of algorithms to solve MO-DCOPs. In so doing, we propose PDS-
GDL, a new class of algorithms for solving MO-DCOPs that exploits the GDL. This
class is based on an algebraic structure, the Pareto-dominance / sum (PDS) semi-ring,
that can be used to transform any GDL-based algorithm into an algorithm for solving
MO-DCOPs.

To solve MO-DCOPs optimally, these algorithms have to keep track of multiple Pareto
optimal partial solutions. Since the number of solutions can be large, we instanti-
ate NDS-GDL to derive an equivalent of the bounded max-sum algorithm, namely the
bounded multi-objective max-sum algorithm (B-MOMS), to solve MO-DCOPs. We then
evaluate how the increase in the number of Pareto optimal solutions affects the perfor-
mance of the algorithm. In so doing, we present an extensive empirical evaluation of
B-MOMS by benchmarking against a centralised optimal algorithm on a multi-objective
extension of the graph colouring problem, a standard test problem for DCOP algorithms
(Modi et al., [2005). We show that the approximation ratio never exceeds 2 (i.e. the solu-
tion’s quality is never worse than 50% from the optimal), even for extremely constrained
problems (i.e. fully connected graphs), and is less than 1.5 for graphs where constraints
exist between 20% of all pairs of agents for 14 variables. In terms of the requirements
defined in Section [[LT] it should be noted that the complexity of the problem is increased
since the algorithm now has to keep track of multiple Pareto optimal solutions. Thus,
it cannot satisfy the requirements of generality, robustness, scalability and resource-
awareness, to the same extent as it does in the single-objective case. Nonetheless, the
results indicate that the runtime required by B-MOMS never exceeds 30 minutes, even
for maximally constrained graphs with 100 agents, positioning it well within the confines
of many real-life applications. Hence, the empirical evaluation shows that the algorithm
is able to provide performance guarantees whilst being resource aware even in extremely
complex problems (maximally constrained graphs). Table then summarises the way
in which the algorithm positions itself with respect to the requirements defined in Section

Thus, this chapter makes the following contributions to the state of the art:

e We formally describe MO-DCOPs, an instantiation of PO-DCOPs in which the
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Requirement Action NDC-GDL (s) | Action NDC-GDL (n)
+

Generality
Performance Guarantee
Robustness
Scalability
Resource-awareness -
Complex Interactions +

+ 4+

+ 4+

TABLE 1.3: The list of requirements satisfied by the Action NDC-GDL algorithm with
both a sufficient (s) and a necessary condition (n). In the table “+” stands for satisfied
and “-” for not satisfied.

local constraint functions and the global utility function are characterised by mul-

tiple conflicting objectives.

e We define the Pareto-Dominance/Sum (PDS) semi-ring which can be used to trans-
form any GDL-based algorithm into a new algorithm for solving MO-DCOPs. In
so doing, we theoretically demonstrate the existence of a new class of algorithms
(the NDS-GDL) that exploits the GDL for solving MO-DCOPs.

o We instantiate the PDS-GDL to produce the B-MOMS algorithm, a novel gen-
eralisation of bounded max-sum, which we empirically demonstrate to be able to
provide performance guarantees on the solution recovered whilst preserving the

agents’ limited resources, despite the increased complexity of the problem.

The research presented in this chapter led to the publication of the following paper:

e Delle Fave, F. M., Stranders, R., Rogers, A. and Jennings, N. R. (2011) Bounded
Decentralised Coordination over Multiple Objectives. In: Proceedings of the Tenth
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2011). Taipei, Taiwan. pp. 371-378.

Chapter [6t A Class of Algorithms for Partially Ordered Coordination Prob-

lems involving Risk Awareness

This chapter introduces a class of algorithms able to address coordination problems
where the outcome of the agents’ decisions is uncertain and thus, where the agents are
required to make decisions while carefully weighting the risk of exposure to poor out-
comes. To achieve this, we first introduce risk-aware distributed constraint optimisation
problems (RA-DCOPs), a specialisation of PO-DCOPs that represents the outcomes of
the constraint functions as random variables, distributed according to a given probability
density function (pdf), and, most importantly, where the global objective is to maximise
the expectation of a utility function representing the agents’ collective risk-profile. We
then derive NDC-GDL, a new class of algorithms for solving RA-DCOPs that exploits
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the PO-GDL. To do this, we define the Non-Dominance/Convolution (NDC) semi-ring
that can be used to transform any GDL-based algorithm into an algorithm for solving
RA-DCOPs. To solve RA-DCOPs optimally, these algorithms have to keep track of mul-
tiple non-dominated partially ordered solutions. Given this potentially large number,
we then show that different types of domination conditions can be used to select these
solutions. Optimal conditions propagate the smallest number of pdfs without losing the
guarantee of optimality, but do not always have a closed form expression. Alternatively,
sufficient (which achieve optimality at the cost of a higher overhead), and necessary
(which incur lower costs but can sacrifice optimality) conditions can be used. Hence,
choosing one condition instead of another affects the way in which NDC-GDL algorithms
satisfy the requirements defined in Section In particular, sufficient conditions pro-
vide quality guarantees (optimality) whilst utilising more resources, whereas necessary
conditions sacrifice performance guarantees, but incur lower costs. In light of this, we in-
stantiate the NDC-GDL to produce an equivalent of the Action GDL algorithm (namely
Action NDC-GDL) which we instantiate with an optimal, a sufficient and a necessary
condition. In so doing, we empirically demonstrate how the use of a necessary condi-
tion, which is equivalent to the use of the canonical Action GDL algorithm to solve an
RA-DCOP, can lead to significantly suboptimal performance, especially as the level of

risk aversion is increased. This is summarised in Table [I.3]

Thus, this chapter makes the following contributions to the state of the art:

e We formally describe RA-DCOPs, a specialisation of PO-DCOPs in which the

outcome of each constraint function is a random variable.

e We define the Non-Dominance/Convolution (NDC) semi-ring which exploits the
PO-GDL to solve RA-DCOPs. In so doing, we theoretically demonstrate the exis-
tence of a new class of algorithms (the NDC-GDL) that can be used to instantiate
any GDL algorithm to solve RA-DCOPs.

e We theoretically demonstrate the existence of different dominance conditions for
NDC-GDL algorithms, namely optimal, sufficient and necessary conditions. These
can be used when pdfs do not have a closed form expression and to trade off

between the solutions’ quality and the computational cost.

e We empirically demonstrate the need for the NDC-GDL class to solve RA-DCOPs
by showing that transforming them into DCOPs can lead to significantly subopti-

mal performance, especially as the level of risk aversion is increased.

The research presented in this chapter led to the publication of the following paper:

Stranders, R., Delle Fave, F. M., Rogers A., and Jennings, N. R. U-GDL: A decentralised
algorithm for DCOPs with Uncertainty. In: Proceedings of the AAMAS workshop on
Optimisation for Multi-Agent Systems (OptMAS 2011). Taiwan, Taipei.
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Chapter [Tt A Class of Algorithms for Partially Ordered Coordination Prob-

lems involving Online Learning

This chapter introduces a class of algorithms able to address coordination problems
where the outcome of the agents’ decisions is uncertain and impossible to determine
before the agents’ deployment. In fact, within this setting, the agents are no longer
faced with a one shot optimisation problem as encoded in a canonical DCOP. Rather,
we now have a problem in which agents have to coordinate to solve a sequence of “DCOP-
like” problems in order to simultaneously reduce uncertainty about the local constraint
functions (exploration) and maximise the global utility (ezploitation). This implies the
need for striking a balance between exploration and exploitation. Focusing solely on
exploration results in certainty about the agents’ environment, but wastes resources by
taking suboptimal actions. Similarly, consistently taking the joint action that is currently

believed to be the best is also suboptimal because this belief might be incorrect.

The multi arm bandit (MAB) community has addressed the trade off between explo-
ration and exploitation in a principled fashion from a single agent perspective (Lai and
Robbins, 1985; |Auer et all, 2002; [Vermorel and Mohri, 2005). A MAB is a simple an-
alytical tool which models decision making under uncertainty. In more detail, a MAB
models a slot machine with multiple arms, each of which yields a reward, drawn from an
unknown but fixed probability distribution. The aim of the problem is to sequentially

pull the arms so as to maximise the cumulative reward over a finite time horizon.

Thus, to address the challenge of coordinating when the outcome of the agents’ de-
cisions is uncertain and unknown, we propose in this chapter a class of algorithms
that combine the robustness and scalability of GDL algorithms with the optimal ex-
ploration/exploitation trade off that the MAB algorithms provide. In more detail, we
first introduce MAB-DCOPs, a specialisation of PO-DCOPs, in which each local utility
function becomes a MAB. This effectively models both the stochastic nature of realis-
tic decentralised coordination problems, as well as the absence of a priori knowledge.
Unlike a DCOP, a MAB-DCOP is not a single shot optimisation problem, but rather a
sequential problem in which agents need to coordinate their joint actions over multiple
time steps, so as to maximise the cumulative global utility received over a finite time
horizon. We then derive the upper confidence bound GDL (UCB-GDL), a new class
of algorithms for solving MAB-DCOPs that exploits the GDL and generalises the well
known upper confidence bound (UCB) technique for MAB to the multi-agent setting.
As was done in the previous chapters, we define these algorithms by formalising the
UCB-GDL semi-ring that can be used to transform any GDL-based algorithm, such
as DPOP, max-sum, or Action-GDL, into an algorithm for solving MAB-DCOPs. We
then empirically evaluate one of these algorithms, which we refer to as HEIST, in a re-
producible controlled environment, and show that it outperforms other state of the art

techniques from the MAB and DCOP literature (among which max-sum and e-first) by
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Requirement HE1sT
Generality
Performance Guarantee
Robustness
Scalability
Resource-awareness -
Complex Interactions +

++ + +

TABLE 1.4: The list of requirements satisfied by the HEIST algorithm. In the table
“+7 stands for satisfied and “-” for not satisfied.

up to 1.5 orders of magnitude on MAB-DCOPs. In so doing, we show that UCB-GDL
algorithms are resource aware and provide performance guarantees on the regret of the

global cumulative performance as described more precisely by Table [[.4]

Thus, this chapter makes the following contributions to the state of the art:

e We introduce MAB-DCOPs, a specialisation of PO-DCOPs, to represent decen-
tralised coordination problems with uncertainty and the absence of a priori knowl-

edge about local utility functions.

e We define the UCB-GDL semi-ring which can be used to transform any GDL-
based algorithm, such as DPOP, max-sum, or Action-GDL, into an algorithm for
solving MAB-DCOPs. In so doing, we theoretically demonstrate the existence
of a new class of algorithms (the UCB-GDL) that exploits the GDL for solving
MAB-DCOPs.

e We show that any UCB-GDL algorithm can provide optimal asymptotic bounds

on the regret of the global cumulative utility.

e We use the UCB-GDL to derive a version of the Action GDL algorithm to solve
MAB-DCOPs and demonstrate its effectiveness in a reproducible controlled envi-

ronment.

The research presented in this chapter led to the publication of the following paper:

e Stranders, R., Tran-Thanh, L., Delle Fave, F. M., Rogers, A. and Jennings, N. R.
(2012) DCOPs and bandits: Exploration and exploitation in decentralised coordi-
nation. In: Proceedings of the Eleventh International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2012). Valencia, Spain. pp. 289-297.
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1.3 Thesis Structure

This thesis is organised as follows:
Chapter [2] discusses related work.

Chapter Blintroduces our study on the real world deployment of max-sum on the case

study of disaster response.

Chapter [] introduces PO-DCOPs and describes the PO-GDL methodology to derive

algorithms to solve them.

Chapter [l introduces MO-DCOPs and describes the NDS-GDL class of algorithms to

solve them.

Chapter [6] introduces RA-DCOPs and describes the NDC-GDL class of algorithms to

solve them.

Chapter [T introduces MAB-DCOPs and describes the UCB-GDL class of algorithms

to solve them.

Chapter [8 concludes and discusses future work.



Chapter 2

Related Work

As stated in Chapter [Tl the research presented in this thesis is both practical and theo-
retical. The aim of this chapter is then to analyse and discuss practical and theoretical
research related to the work presented here. Thus, we will discuss both the research that
has previously attempted to meet the requirements of our setting, and also the research

that we will use as the foundation over which to build our contributions.

In more detail, Sections 2.1] and 2.2] respectively, discuss unmanned aerial vehicles
(UAVs) and disaster response problems related to situational awareness. As discussed
in the previous chapter, the aim of this thesis is to propose general algorithms that
can be applied to coordination problems pertaining to multiple application domains.
However, to study the performance of the previous algorithms we chose the domain of
situational awareness for disaster response in consideration of its complexity and the
numerous challenges that make it extremely compelling for coordinating autonomous
vehicles. Similarly, we chose to study coordination when applied to UAVs, in recog-
nition of their information gathering capabilities. In light of this, Section 2.1l presents
different categories of UAVs and describes their main design features such as their flight
capacity, the altitude that they can reach and their degree of autonomy. Section
then discusses the type of research problems related to disaster response. In fact, there
exists an extensive literature on coordinating UAVs to achieve situational awareness. We
identify here four different problem categories and describe them in detail. At the end
of both sections, we highlight the way in which we use this background for the purposes

of our work.

The remainder of the chapter then focuses on coordination. In particular, we present
an extensive description of coordination algorithms. We distinguish here between ap-
proaches that have been used in practice and those that are still being studied from a
theoretical perspective. Within both categories, we present the approaches that are most

relevant to our settings. In more detail, Section presents coordination approaches

23
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which have been used in practice. That is to say, they have been used to solve some of
the problems described in Section We describe how these coordination algorithms
are typically embedded within a generic decentralised decision making architecture that
is used to coordinate the actions of the UAVs. This system also comprises a belief for-
mation and a navigation module which are used to define, respectively, the knowledge

over which to make a decision and the actions corresponding to each decision made.

Section 2.4] defines the approaches studied from a theoretical perspective. This means
that these approaches have not yet been deployed, since some of their theoretical proper-
ties, such as quality of the solution recovered, computation and communication required,
are still being investigated. To represent the problems in Section 2.2 we will adopt the
framework of distributed constraint optimisation problems (DCOPs). The reason for
this and the actual framework are detailed in Section 2.4.1l In essence, we selected
DCOPs because they constitute a good compromise between the expressiveness (i.e. the
capability to represent the problems’ constraints) required by the problems we wish to
solve and the computational complexity necessary to solve them. Next, canonical DCOP
algorithms are described. These are the most common type of approaches in the liter-
ature and, in few words, consist in optimising a real valued function in a decentralised
fashion. Among these, we focus specifically on algorithms that exploit the generalised
distributive law (GDL). This framework enables algorithms to exploit the factorisabil-
ity of a broad class of optimisation problems (which includes DCOPs) to solve them in
an effective and efficient manner. This factorisability is typically encoded within the
algebraic structure of the global function to optimise. In particularly, as we will see for
DCOPs (Chapter 2:4T]), it can be defined as a commutative semi-ring. By exploiting this
structure then, GDL algorithms have been successfully applied to a variety of different
domains such as information theory (MacKay, 2003, [1999), artificial intelligence (Frew
et al., 2008; [Frey et all, [1997) and statistical physics (Mezard et all, 2002). We focus
here on describing how the GDL can be used to derive algorithms capable of solving
DCOPs. Next, we move our focus onto literature that addresses problems involving
complex agents interactions, as discussed in Chapter Il In particular Section de-
scribes algorithms to solve optimisation problems involving complex functions involving
multiple objectives, uncertainty and online learning. As will be described in more detail
in the following chapters, these problems present all the same features, that the global
function to optimise is defined over a partial order. In conclusion of the chapter, Section
summarises the chapter and states the background that will be used throughout the

rest of this thesis.
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2.1 Unmanned Aerial Vehicles

Recent years have seen UAVs becoming one of the most studied and deployed type of
robotic agents. Their effectiveness at achieving accurate situational awareness in open
environments makes them very useful for a variety of real world application domains,
both civil and military. Examples of military operations include reconnaissance, surveil-
lance, target acquisition and meteorology missions (Sarris, 2001). Examples of civil
operations include search and rescue, communications relay and disaster and emergency
management (Sarris, 2001; Valavanis and Valavanis, 2007). As a consequence, it has
been estimated that the use of this type of agent will increase in the next years (UAS
Roadmap, 2010).

Due to the variety of operations that UAVs can be used for, various types have been
developed. Generally, UAVs can be either fixed or rotary wing (see Figures and
2.1(a)|showing an example of each). Fixed wings UAVs are typically used for surveillance
and target acquisition missions. However, they are not suitable for collecting live imagery
since they are not capable of hovering— stationing above a specific location. In contrast,
rotary wings UAVs can do so and for this reason they are typically deployed for missions

such as situational awareness or reconnaissance, and will be considered for our setting.

UAVs can be classified based on the altitude that they can reach, their endurance (i.e.
their battery capacity) and their communication range (Sarris, 2001). To provide some
examples, Figure depicts one of the largest UAV developed to date; the RQ4
Global Hawk intended for intelligence collection and surveillance missions, and thus
provided with high quality sensing devices. This platform is considered a high altitude
(over 9000 m), long endurance and indefinite range vehicle, designed to provide wide
area coverage of up to 40,000 m? per day. Global Hawks are currently being used by the
United States Navy for maritime surveillance operations (UAS Roadmap, 2010). Figure
shows a picture of the MQ8 Fire Scout, a medium-altitude (up to 9000 m), long-
endurance (over 200 km) UAV, widely used for reconnaissance and situational awareness

missions in Iraq, Bosnia and Afghanistan by the United States Air Force.

Additionally, UAVs can be classified depending on the way in which they are controlled.
Two possibilities exists, “drones” (Figures 2.2] [2.1(a) and [2.1(b))) are controlled by a hu-

man pilot which operates from the ground. Thus far, these are the most reliable vehicles,

and the ones that are deployed the most in real missions. In contrast, fully autonomous
vehicles are controlled by a decision making system completely independent from any
human operator. Figure 2.3 shows an example of such vehicle. Fully autonomous vehi-
cles are still being tested, and very few have been deployed on real missions. However,
they are advocated as the key vehicle to deploy for situational awareness operations in
the future (Bethke et all, [2008).
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(a) The RQ4-Global Hawk, a remotely controlled, “drone” used by the US-army.

(b) The A160 “Hummingbird” a rotary wing “drone” developed by Boeing.

F1GURE 2.1: Two different types of UAVs.

The above mentioned UAVs are typically deployed for military applications. For this
reason, they are extremely sophisticated and expensive vehicles. In contrast, research
and civil industry do not typically require such a level of complexity and have used
cheaper and more customisable vehicles. A number of these vehicles are depicted in
Figure2:4l These vehicles are known as micro-UAVs, albeit in recent years this definition
has been attributed to even smaller vehicles measuring few centimeters, and are used
for a wide range of applications from surveillance to scientific research. Thus, we will
consider this type of vehicle for our practical contributions. In more detail, we will
consider two commercial off-the-shelf Mikrokopter hexacopter rotary wing UAVs (see

Figure 25]). These are a type of small UAVs, currently used by many law enforcement
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F1GURE 2.2: The MQ-8 Firescout a remotely controlled UAV used by the US-army.

F1cURE 2.3: The BAE-Herti, a fixed wing UAV developed at BAE Systems.

agencies for situational awareness operations (ngmuaJ;_a.lJ, IZDQd; lB_e_‘dlm_LalJ, IZDQé) In

addition, these vehicles are also used for research purposes. Typically, simple vehicles are

used which can reach an altitude up to 40m and whose battery can last up to 15 minutes.
Each vehicle localises its position using a global positioning system (GPS) receiver and
monitors its status through a set of sensors including an inertial measurement unit, a
magnetometer and a barometric altimeter. For security reasons, we implemented each
vehicle so that it could be controlled either by a human operator (for takeoff and landing)

or an autonomous controller.
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FIGURE 2.4: An illustration of different types of micro-UAVs

F1GURE 2.5: The “Hexacopter” UAVs used in the flight tests presented in Chapter

2.2 Coordination Problems for Disaster Response Scenar-

ios

The main application domain of this thesis is that of disaster response. In our case, we
wish to support first responders at the scene of a disaster to provide them with accurate

situational awareness to prioritise intervention.

To achieve this awareness, UAVs are typically deployed to collect and process information
about the area. This information typically defines some features of the environment. In
the context of disaster response these features can be any piece of information relevant
to the first responders at the scene of the disaster. Examples include the position
of casualties, the radiation level emanating from a container or the temperature of
a burning building. Each deployed agent is then provided with a sensor to collect
information about such features. Examples include bearing-range sensors which measure

the distance between the UAV and the feature, cameras used to collect live aerial imagery
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FIGURE 2.6: A snapshot of a PDA’s interface depicting three UAVs collecting infor-
mation

from the environment, and thermal or radiation sensors able to capture the temperature
or the level of radiation emanating from a specific environment MM, |L9_9d)
To visualise this information, first responders could use a personal digital assistant (a
PDA) which would describe the amount of information collected by the UAVs. Figure
shows a possible way to represent such information. In the figure, three UAVs (blue,

green and black) operate within a squared area and make observations to reduce the
uncertainty (i.e. maximising the amount of collected information) about the feature

described previously.

Given the specific type of feature, four different classes of problems can be identified.
Each of these classes constitute one challenging information gathering problem studied
for disaster response. Moreover, each class represents a research problem in which the
deployed agents would greatly benefit from adopting a coordinated behaviour. Hence,
in the remainder of this section, we present each of these classes to give the reader an
idea of the type of settings in which robotic agents are typically deployed and for which

coordination algorithms need to be derived.

However, the focus of this thesis is on studying coordination approaches to the decision
making capabilities of the former agents. Hence, within our practical contributions we
will consider a situational awareness problem, in which the UAVs do not have to process
the information that they have collected but simply report it back to the first responders
(see Chapter [3 for more details). In so doing, we will abstract out the challenges related
to build a consistent estimate of the feature that is being explored and focus only on the
coordination algorithm. Similarly, for our theoretical contributions we will not study
the former problems specifically, but will consider them as the key settings where to
apply our algorithms for future work. In fact, most of the problems that we are going to
present constitute motivating scenarios for our algorithms. Examples will be presented

within each specific section.

2.2.1 Target Search Problems

These problems deal with searching a possibly unknown and hostile environment for

one or more targets whose position is unknown igoni, |2Qld) In the
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context of disaster response, a typical motivating scenario might consist of a team of
UAVs deployed after the sinking of a ship to search for one or more drifting life-rafts
whose position is unknown (Bourgault et al., 2003, [2004). Within this setting, the aim

of the team of UAVs is to detect the target(s) in the smallest amount of time.

Bourgault et al. (2003) represented the problem of searching for a single target as an
information collection and fusion problem. Specifically, a Bayesian estimation approach
was used, in which a probability grid was used to represent the possibility of the target
being located within any discrete area of the search space. Subsequent research has
investigated a range of variants of this problem changing the number of UAVs and
targets, the scenario settings (e.g. an urban or maritime search task), or the way the
probability over the location of the target is represented. For example, (Cold (2009)
addressed the search for groups of targets when their total number is unknown. (Geyer
(2008) considered more complex search areas such as an urban environment, whilst Vidal
et al. (2001), Yang et al. (2005) and [Waharte et al| (2010) addressed search in hostile

environments containing threats and obstacles respectively.

In this work, various degrees of abstraction have been used to formalise these different
settings. Some frameworks abstract the real world setting by representing the searching
area as a graph (Hoffmann et all, [2006) or as a grid (Hespanha et all, [1999; [Vidal et all,
2001; |Antoniades et al., 2003). In the latter setting, the agents, representing the UAVs,
move by simply “jumping” from one node to another. The agent’s perception then
consists of observing the status of some of the nodes in its proximity to see whether they
are occupied by a target or not (Hespanha et all, [1999; [Vidal et al), 2001; Antoniades
et al., 12003). More realistic frameworks have also been adopted, in which the area of
interest is represented as a continuous space where each agent moves using a continuous
motion model based on speed and heading (Bourgault et all, 2003, 2004; [Cole, 2009).

For the sake of our work, we will use target search problems as a motivating domain
for studying coordination under uncertainty. Indeed, in target search uncertainty is
endemic, since sensors are noisy, the environment is unknown and the targets’ position
is most likely unknown with precision. This means that the outcome of the agents
decisions is defined by a pdf which needs to be taken into account in their decision
making process. Moreover, as we discussed in Chapter [l addressing such uncertainty
requires taking into account the risk associated with the agents’ decisions (i.e. their
exposure to an undesirable outcome). In so doing, the agents are now making complex
decisions for which new coordination algorithms need to be derived, as we will discuss
in Chapter [6
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2.2.2 Target Localisation and Tracking Problems

These problems involve tracking a target within an unknown and possibly hostile envi-
ronment in order to get a precise measure of its position. A typical motivating scenario
follows from the one described earlier where, after the sinking of a ship, a team of UAVs
is deployed to continuously track the position of the drifting life-rafts to transmit their
location to the first responders (Furukawa et all, 2006). Within this setting, the aim of
the team of UAVs is to localise the target’s position with the greatest precision in the
smallest amount of time (Symington et all, [2010). Similarly to target-search, the princi-
pal research challenges for target tracking involves varying the number of UAVs (Stolle
and Rysdyk, 2003) and the number of targets (Frew et all, 2008), which can be either
static or moving (Symington et al., |2010; |Cole, 2009). Further issues have also been
considered to make the setting more realistic. Examples include modelling the wind
preventing the vehicles from maintaining the position of the target or considering the
presence of obstacles or threats (Ousingsawat and Campbell, [2004; Zengin and Dogan,
2007).

In addition, current research is exploring settings in which the UAVs are tasked to
track large groups of targets. In disaster scenarios, these groups can typically represent
humans (civilians), animals or vehicles, that are either moving towards a refuge, evacu-
ating or running from a building on fire. Initial work has focused on tracking groups of
ground targets, but without explicitly considering the dynamics of group motions and
behaviour (Sommerlade and Reid, 2008). However, taking into account the motion and
the behaviour of the former groups has been shown to be the key challenge to address
within these settings. Hence, clustering algorithms have been proposed to group targets
with similar motion (Ma and Zhang, 2004).

Similarly to target search problems (Section 2.2.7]), we will use target tracking problems
as a motivating domain for studying coordination under uncertainty. Indeed, in target
tracking uncertainty is endemic, since sensors are noisy, the environment is unknown and
the targets’ position is most likely unknown with precision. Hence, again the uncertainty
and the risk associated with their decisions need to be taken into account, as we will

discuss in Chapter [6l

2.2.3 Search and Tracking Problems

These problems encompass both the problems presented in Sections 2.2.1] and
A motivating scenario is a hybrid between those presented above; a team of UAVs is
deployed after the sinking of a ship to search for the drifting life-rafts, while tracking
the positions of those that have already been found. The problem has been formalised

by [Furukawa et al. (2006) for the single target case. In this case, the problem consists
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of a sequence of search and track phases. The UAVs search for the target, track it, once
it is found, and the whole process is repeated whenever the target is lost, until sufficient
information has been gathered. It was subsequently extended to multiple targets by
Furukawa et all (2007). This scenario can be seen as a target assignment problem where

the team of UAVs cooperate to achieve two different objectives:

Searching: Part of the team searches for new targets, or for those targets that have

been lost.

Tracking: Part of the team tracks those targets that have been found in order to

maintain a precise estimate of their position.

Thus far, approaches for search and tracking problems have been mostly extensions to
the ones used for the standard search problem. In particular, [Furukawa et all (2006)
characterise the problem as one of information gathering and present a unified approach
for solving it. The same representation of the belief over the target position is used for
both searching and tracking. Specifically, a probability grid, similar to the one described
in Section 2Z.2.1] is used and different types of observation updates are defined for the
tracking task (i.e. when the target has been detected) and for the search task (i.e. when
the target has yet to be detected). A similar approach was used by [Tisdale et all (2008)
who further included the probability of false detection (i.e. sensors are not perfect).
In this same work, a comparison is made between the two principal approaches used
to represent the probability density function (pdf) representing the uncertainty about
the target’s location. In more detail, approaches that consist of sampling the pdf (i.e.
particle filters) are compared against probability grids in which the pdf is discretised.
The latter were shown to be as effective as sampling based approaches for the search task.
However, the higher degrees of accuracy required for estimating the target’s positions
require the use of particle filters. A different approach, the element based method, is
proposed by [Furukawa et al. (2007) in which the former pdf is modelled as a graph.
By so doing, [Furukawa et all (2007) shows that his method is more efficient in terms of

computation required to represent the pdf, than grid-based methods.

A task assignment formalisation of the search and track problem was introduced by
Drew and Elston (2008). In their approach, each UAV maintains an area coverage map
representing information about the targets and a central controller determines which
targets need to be re-observed in order to decrease the uncertainty about their position
to some desired bound. Once it has been decided which UAV should be tasked to
track the targets, the remaining agents are devoted to searching. A similar approach is
proposed by lJin et al. (2004), where the search and track problem is translated into a
military domain for searching, confirming and attacking some specific targets within an

area. Here a completely centralised architecture is proposed where a central controller
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acquires all the information gathered by the different UAVs and assigns the different

tasks to each of them.

For the sake of our work, we will use search and track problem as a motivating domain
for studying coordination over multiple objectives. As we have seen, these problems
are defined by two objectives (i.e. search and track), which conflict upon the allocation
of the agents (see Chapter [Il). This means that the agents are now making complex
decisions over the former objective, for which new coordination algorithms need to be

derived, as we will discuss in Chapter Bl

2.2.4 Airborne Simultaneous Localisation and Mapping Problems

Canonical simultaneous localisation and mapping (SLAM) problems refer to the case in
which teams of autonomous vehicles are deployed within an unknown environment to
build a map, whilst simultaneously keeping track of their own position (Thrun et al.,
2005). Omne of the many motivating scenarios for this problem follows from the one
depicted in Chapter [l where unmanned vehicles are deployed to map the interior of
buildings at a disaster scene, in order to provide the first responders with a precise map
of each building, with the position of all the casualties within each appropriately marked.
The SLAM aspect is typically addressed by defining an initial level of uncertainty over
the map to be built, and subsequently attempting to minimise this uncertainty by choos-
ing appropriate new observations until a predefined threshold is reached. In practice,
the problem is often solved using data fusion techniques such as Kalman and particle

filters or Gaussian processes (Thrun et all, 2005).

Sukkarieh and Durrant-Whyte (2001) have brought the SLAM problem, which was pre-
viously studied considering unmanned ground vehicles (UGVs) only, to settings involving
UAVs tasked with surveillance (Kingston et all, 2008) and planetary exploration tasks
(Braun et _al., 2004) in which GPS position is unavailable. The key difference in such
settings, is that UAVs perceive the environment differently than UGVs, since not only do
they have different sensors, but they also take aerial instead of ground observations. This
means that the methods to represent the map of the environment need to be changed.
For this reason, [Sukkarieh and Durrant-Whyte (2001)) focused on developing techniques
to improve the quality of the resulting map by adapting the previously mentioned data
fusion techniques to UAVs with different type of sensors and motion dynamics (Bryson
and Sukkarieh, 2007; |Caballero et _all, [2006). The same problem has been extended
to settings involving multiple UAVs by Kim and Sukkarieh (2003), which also describe
various decentralised data fusion techniques that allow the UAVs to map the environ-
ment in a consistent fashion. The benefit of adopting a cooperative approach have been
studied by Bryson and Sukkarieh (2007) and it was shown how the UAVs could improve

the accuracy of their maps by adopting coordinated behaviour. However, to date the
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problem of studying SLAM for UAVs is still relatively new. Consequently it constitutes

an open problem requiring further studying.

For the sake of our work, we will use the SLAM problem as a motivating domain for
studying coordination and online learning. Indeed, in these problems, agents not only
have imprecise sensing capabilities, but are also deployed without any prior information
about the environment where they are located. In this setting, learning the outcome of
the agents’ decisions is a key requirement for improving their decision making process.
Indeed, the agents are now making complex decisions trading off their estimate and the
uncertainty associated with it. Hence, new coordination algorithms need to be derived,

as we will discuss in Chapter [1

In addition, to deploy these algorithms they need to be properly embedded within the
control system of each UAV. This system is typically composed not only by a decision
module, where the coordination algorithms is implemented, but also by a sensing, a com-
munication and a belief formation module. Hence, to deploy such algorithms, research
in applied robotics has initially studied the way in which they can be deployed within
such systems. In fact, a generic coordination architecture has been derived, which we

discuss next, along with the different approaches that have been deployed.

2.3 The Practice of Coordination Algorithms

Coordination approaches applied in practice have been studied mainly within the robotics
community. Hence, a vast literature exists on these algorithms (Dias et al., 2006; Bethke
et al., 12008). This thesis focuses on decentralised approaches, since they do not rely on
a central point failure and are, as a consequence, robust against the failure of one or

more agents (Chapter [I]).

Now, current research typically considers these algorithms to be part of a generic de-
centralised architecture that is used to coordinate the decision making process of the
UAVs whilst deployed to solve the problems presented in Section Figures 2.7 2.8
and illustrate this architecture. In more detail, the figures show how the architecture

is modeled as a protocol defined by the following modules:

Sensing : This module is responsible for elaborating the measurements of the environ-
ment made by each UAV’s sensors and transmitting them to the belief formation

module in the form of an observation that can be processed (Xu and Zhang, [1996).

Belief Formation : This module is responsible for processing an agent’s observations
and fusing them together into consistent beliefs about the features of the environ-
ment that are being observed (Grocholsky, 2002).
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FIGURE 2.7: The architecture of a non-coordinated approach (Cole, 2009)

Decision : This module is responsible for making a decision given the belief information
that the agent was able to build (Cole, 2009).

Navigation : This module takes as inputs the outputs of the decision module. In

essence, it transforms the decisions made by the UAVs into actual manoeuvres.

Now, this architecture is implemented within each UAV and determines its behaviour
throughout an operation. In our work, we will use this architecture for deploying our
coordination approach on real UAVs, as we will see in Chapter [Bl Indeed, this architec-
ture constitutes a fundamental framework over which to design, implement and deploy
coordination algorithms for UAVs. In addition, literature has shown that a coordinated
behaviour can be imposed by having the specific modules of each UAV communicate
between each other (Cole, 2009; IGrocholsky, 2002). By using this fact, it is possible
to classify decentralised coordination approaches for UAVs into three broad categories,
based on the type of information shared by the different agents. In our work then, we
will use one category to build the control module of our UAVs, use another one as a
benchmark, and will consider one for future work. In the remainder of this section, we

describe each of these categories and the way we are going to use them.

2.3.1 Non-Coordinated Approaches

This category encompasses all approaches in which the agents behave independently, and
do not interact in any way with the other members of the team. Figure 2.7 illustrates
the canonical architecture for a non-coordinated approach, where each agent makes its
own decisions independently, without sharing any information with the other members

of the team.
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Due to the computational requirements of each of the different modules, greedy tech-
niques are commonly considered the best method to use to define non-coordinated ap-
proaches. By using such approach, each agent makes a decision given only the local in-
formation that it has collected thus far (Vidal et al), 2001; |Antoniades et al., [2003). The
key challenge of this approach is to define techniques that allow the agents to maintain
and refine a highly accurate estimate of the features that are being measured (Section
2.2)). Research in both robotics and artificial intelligence has typically used probabilis-
tic reasoning techniques to represent the information about such feature. For example,
in the context of UAV operations, Bayesian filters have been advocated (Thrun et all,
2005). These filters define a pdf over the state of the features and then progressively
update them as new observations are made by the UAV. Bayesian filters are compu-
tationally efficient due to their iterative nature and yield accurate measures for all the
problems described in Section A wide variety of such filters exist. Examples include
the Kalman, the particle and the information filter, which can be used depending on the

specific type of pdf that is being considered (Thrun et al., 2005).

Bayesian filters can also easily provide estimates of the future state of any feature. To do
S0, a prediction step is added to the algorithm in which the learned model of any feature
is run forward in time. For instance, in the context of target tracking or searching,
the prediction step can be used to estimate the next area or location where the target
is going to be. This prediction step is extremely useful for decision making since it
allows the effects or the impact of an agent’s decisions to be estimated. For this reason
different time horizons have been considered in the literature, depending on how much
computation would be required by longer time intervals@. Typically, myopic or fixed

time horizon predictions are considered in real applications (Hoffmann et al., [2006).

The belief built through these filters is then used to make a decision by defining a utility
function, based on the predicted pdf, and defined over all the possible decisions that the
agent can make. In the context of UAVs, decisions can be areas to explore, trajectories
to take or tasks to complete. The utility functions are typically problem-specific and
depend on the features that are being measured. For instance, in target search the
utility function may be defined as the probability of detecting the target in a specific
sub-region of the search space (Bourgault et al., 2003, 12004). Conversely, problems such
as target tracking use canonical information metrics, such as the Shannon entropy or
the mutual information gain, to measure the reduction in uncertainty that results from

the observation of a specific target’s position (Cole, 2009).

Now, the previous discussion describes independent behaviours for each agent. For the
sake of our work, we will use a non coordinated approach as a benchmark for our co-

ordination mechanism in Chapter Bl Indeed, non coordinated approaches constitute a

'This type of method is also referred as Model Predictive Control in related literature (Camacho and
Bordons, [2003; IGarcia et all, [1989)
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very good lower bound on the performance of coordination algorithms. However, when
a team of agents is deployed, each agent should consider the behaviour of the other
members of the team to increase the overall performance. In fact, non-coordinated ap-
proaches are likely to result in very poor performance when multiple agents are deployed

and more sophisticated approaches are necessary.

2.3.2 Implicitly Coordinated Approaches

This category encompasses all approaches in which the agents share their observations,
but make decisions independently. By sharing observations, each agent is able to build
the same common model about the state of the features that are being measured, thus
ensuring more accurate information over which it will take its decision (Grocholsky,
2002). Hence, the agents are able to make decisions based on information that they have
not themselves collected from the environment. This is typically done using decentralised
data fusion techniques; a well known and well studied set of techniques to efficiently
estimate the state of a feature of interest by using Bayesian estimation (Bourgault et all,
2003, 12004; Hoffmann et all, 2006; |Cole, 2009). In more detail, each UAV collects
information locally and fuses it together with the information acquired by the other

agents. The aim is to build a consistent global view of the feature of interest.

In essence, each UAV builds a local estimate of the features that are being measured,
using Bayesian estimation techniques as described in Section .31l However, in this
case, each UAV also incorporates the observations of the other agents while updating
the pdf of the features of interest. Decentralised data fusion techniques then work by
continuously refining this estimate by incorporating all the UAVs’ new updates (Thrun
et al.,12005). Hence, as shown in Figure[2.8] the agents share their observations, adding a

message passing phase in the belief formation module of their coordination architecture
(Grocholsky, 2002).

The decision module of an implicit coordination approach typically uses the same de-
cision making techniques as the non-coordinated approaches, since the main difference
between the two levels lies essentially in the belief formation module, where the agents

share their observations.

However, by having global information about the feature that is being measured, the
agents are able to determine the decisions that will allow them to minimise the un-
certainty about the feature that they need to measure the most. As an example, in
the target-search problem, the agents will aim for the unexplored sub-regions of the
searching space (Bourgault et all, 2003). In our work, we will not consider an implicit
coordination mechanism to benchmark our approach. The reason is that in our work,

as we discussed in Section 2.2] the first responders will be responsible for processing the



38 Chapter 2 Related Work

] —

‘ Navigation ‘ ‘ Navigation ‘
Decision Decision

1 1

Data Fusion

Belief - ~ Belief
Formation Formation
Observation
‘ Sensing ‘ ‘ Sensing ‘
Environment

FIGURE 2.8: The architecture of an implicit coordinated approach (Cole, [2009)

information captured by the UAVs. However, in so doing, as we will discuss in more
detail in Chapter Bl each first responder obtains only the information that he requested.
Consequently, each first responder only collects a portion of the information of a disaster
scene. As we have explained in this section, this limits the decision making capacities
of the UAVs. Hence, we envisage in our future work (see Chapter [§]) to extend our

approach to provide each first responder with a global information of the scene.

The main disadvantage of implicit coordination is that by deciding over the same knowl-
edge, the agents are likely to make the same, redundant, decisions (e.g. explore the same
area). This redundant behaviour is clearly not advisable in problems where timeliness is
essential, such as target search or target tracking (Hoffmann et all, 2006). Hence, to per-
form effectively, the agents need to take into account the decisions of the other members
of the team explicitly. To this end, we discuss explicit coordination techniques next. As
we will see, the use of explicit coordination greatly improves the quality of the agents’
decision making. However, this often comes with a large computational overhead, thus
implicit coordination has been shown to be useful in many robotics applications such as

target search and target tracking (Hollinger et all, [2009).

2.3.3 Explicitly Coordinated Approaches

As discussed above, this category encompasses approaches where the agents share both
their decisions and their observations. Figure shows an example of such an approach,
where both levels of information sharing are illustrated. The process of sharing observa-
tions is carried out in the same fashion as for the implicit coordination case. However,
in the explicit coordination case, the agents make their decisions by taking into account
the actions of the other members of the team (Bethke et al.), 2008). The main drawback
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FIGURE 2.9: The architecture of an explicit coordinated approach (Cole, 12009)

of explicit coordination techniques is that finding a joint optimal decision for a team of
agents is computationally expensive (exponential in the number of agents) (Hoffmann
et al.,2006), and thus the problem rapidly becomes infeasible as the number of members

of the team grows larger.

To address this shortcoming, the robotics community has proposed a variety of decen-
tralised approximate algorithms which compute approximate solutions by exploiting the
locality of the agents interactions (Bethke et all, 2008). The key idea is for an agent
to share its decisions with those other agents whose behaviour is more likely to affect
the former decisions. The latter agents are typically in the former’s immediate prox-
imity (i.e. in its neighborhood). These algorithms are the most suitable for real world
domains since they have been shown to be computationally efficient given the agents
limited computational and communication resources. Typically, they work as a nego-
tiation protocol in which the agents share their decisions for a pre-specified amount of
time, and then each agent selects its decision as the best response to all the possible
decisions of its neighbourhood (Alighanbari and Howl, 2005, 12006). The main drawback
of these approaches, however, is the quality of the solutions they find, which can be very

poor and can often require multiple messages to be shared (Grocholsky, 2002).

Another category of negotiation approaches is the one of market based allocation algo-
rithms (Dias et al., [2006; [Ham and Agha, [2008). In essence, by using these techniques,
each agent participates in a sequence of auctions, in which it bids for the specific deci-
sion that it wants to make considering its own various constraints, such as its remaining
battery capacity and the benefits that it would get from making such decision. These
techniques meet many of the requirements defined in Chapter [, since they are very
efficient in terms of both computation and communication. However, most of these al-

gorithms are either centralised or partially centralised, since one of the agents always



40 Chapter 2 Related Work

needs to act as the auctioneer (i.e. the agent retrieving the bids and determining the
winner who is assigned the task). Hence, there is often a possible central point of failure
which makes these algorithms not suitable for our settings. Furthermore, fully decen-
tralised auction mechanisms, in which each agent acts as a bidder and as an auctioneer
at the same time, suffer from the same drawback of the negotiation algorithms described
earlier (How et all, 2009).

In our work, we will use an explicit coordination mechanism to deploy the max-sum
algorithm, which we are going to present in Section 2.4.4l The reason comes from
the advantages for this type of architecture to deploy decentralised decision making
mechanisms, which we just discuss. However, as we will see in Chapter Bl depending
on the specific problem, there exists multiple ways of deploying max-sum. For this
reason we will also present a methodology guiding a user to the successful deployment
of the algorithm for coordinating unmanned vehicles. The reason why we chose to use
the max-sum algorithm then will be presented in the next section. In essence, research
in robotics has focused more on implementing new techniques for fusing information
in a consistent fashion. For this reason, research on coordination algorithms has been
limited to deploy well known negotiation protocols such as those discussed in this section.
In contrast, the artificial intelligence and the multi-agent systems communities, have
studied coordination algorithms to address more complex interaction scenarios, despite

doing it only in simulation. These approaches are the focus of the next section.

2.4 The Theory of Coordination Algorithms

The theoretical study of coordination approaches has principally been undertaken by
the artificial intelligence and the multi-agent systems communities. Again, we focus our
attention on decentralised approaches, since they do not rely on a central point failure

and are, as a consequence, robust against the failure of one or more agents (Chapter [II).

However, before describing these algorithms, we need to select a framework to repre-
sent the problems that we wish to solve. A number of such frameworks exist, which
have been applied to domains such as disaster response (Dias et all, [2006) or energy
(Vytelingum et all, 12010). However, as we discussed in the previous section, the al-
gorithms used to solve these problems typically yield a poor performance in terms of
improving the agents’ decision making capabilities. Hence, we focus here on more the-
oretical frameworks. Sequential decision making frameworks such as Markov decision
processes (MDPs) or partially observable Markov decision processes (PO-MDPs) are
often advocated (Guestrin et all, 2003; Littman, 2009). These frameworks represent
coordination problems as a sequential Markov decision process in which the agents have

to make a new decision at each time step. In essence, the agents coordinate to determine
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a sequence of decisions (i.e. a plan) that each agent has to make, considering its present
and future states. However, these frameworks have also been shown to be extremely
expensive in terms of computation (Bernstein et all, 2000). For this reason they do not
allow solution techniques to scale to a reasonable number of agents. Scalable techniques,
based on very strong approximation techniques such as monte Carlo sampling, have been
proposed to address this issue (see for instance (Doshi and Gmytrasiewicz, 2009), (Roy,
2003) and (Amato, 2010)). However, to achieve feasibility, these techniques sacrifice the
quality of the solutions recovered. Thus, they violate the requirement of performance

guarantees (see Chapter [I]) and thus, they are not suitable for our setting.

In contrast, distributed constraint optimisation problems (DCOPs) represent coordina-
tion problems as “one shot” optimisations, and for this reason they constitute a good
compromise between quality and feasibility (Modi et all, 2005; Rogers et _al), 2011).
Specifically, the DCOP framework has been shown to be very promising for representing
many coordination problems related to the real world, such as disaster management,
meeting scheduling and sensor networks (Chapman et al., 2011; [Sultanik et al., 2007;
Rogers et all, 2011)). For this reason, in recent years both the robotics and the artificial
intelligence communities have increased their interest in this framework. To this end,
we describe the DCOP framework in Section 2.4.1] In Section 2.4.2] we then describe
canonical DCOP algorithms. More precisely, we will discuss optimal, approximate and
bounded approximate algorithms. These algorithms solve problems in which the value
of the global constraint function is real valued. Consequently, the solutions of a DCOP
can be totally ordered (i.e. there exists a binary dominance relation <, which can be
used to order all the different values of the global function) and a single global optimum
(maximum and minimum) exists. However, as we explained in Chapter [I] a single real
valued function is not sufficient to represent complex agents’ interactions which is one
of the key aims of our work. For this reason, in Section Z.4.3] we discuss algorithms ca-
pable of addressing complex optimisation problems involving multiple objectives, online
learning and uncertainty. A common feature of these algorithms is that they all solve
optimisation problems defined by partially ordered solutions. The partial order comes
from the fact that to rank these solutions it becomes necessary to trade off between
different, possibly conflicting, parameters such as the various objectives or the mean
and the variance defining the uncertainty. As a consequence, a single optimum might
not exist anymore, rather we might have a set of equivalent non dominated solutions.
We are interested in these algorithms since they represent possible solutions to the type
of complex coordination problems that we wish to model in this work (Chapter [II). In
some cases, they also constitute the foundation over which we will build our algorithms
in the following chapters. In Section 2.4.4] we then describe the GDL framework and
the way it can be used to derive new algorithms. The key advantage of GDL algorithms
is that they exploit the algebraic structure of the global function of an optimisation

problem (i.e. it is characterised by a commutative semi-ring) to solve the problem in an
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efficient manner (see Section 2.4.7]). Existing algorithms then exploit this property to
solve optimisation problems (including DCOPs) efficiently. In light of this, we are going
to use it to build our new algorithms in Chapters @, [ @ and [7l

2.4.1 Distributed Constraint Optimisation Problems

A DCOP is a generic framework to represent a multi agent coordination problem. For-
mally, a DCOP is defined as follows:

Definition 2.1. A DCOP is a tuple (A, X, D, F, C) where:

o A={1,...,|A]} is a set of agents.and the algorithms that are based on it

o X ={x1,x9,...,2,} is a set of variables.

e D={Dy,...,D,} is a set of discrete domains, where D; is the domain of variable
Zy.

e [': X — Ais a function that assigns variables to agents. Each agent controls (the

value of) the variables that are assigned to it.

C ={Cq,...,Cp} is a set of local constraint functions. Each C; (1 < j < m) is
defined over local scope X; C X, and assigns a real value to each assignment of
Xj. The domain of set X; is Dx,, which is the Cartesian product of the domains

of variables in Xj.

The solution of a DCOP is an assignment X* to variables X that maximises the global

constraint function:

X* = arg max > Ci(X;) (2.1)

j=1

A DCOP is often represented as a constraint graph between the agents. In such graph,
the nodes represent the variables in X and the edges represent the constraints C; € C
between such variables. Typically, to represent n—ary constraints the use of factor
graphs has been advocated (Kschischang et all, [2001). A factor graph is an undirected
bipartite graph in which vertices represent variables z; € X and constraints C; € C,
and edges encode the relation “is a parameter of” between a variable and a constraint
(Kschischang et al), 2001). An example of a factor graph is shown in Figure 210l
The factor graph in the figure describes a DCOP containing two agents A; and As.
Fach agent is assigned one variable and one constraint. A; is assigned variable x; and

constraint C(x1,z2) and Aj is assigned variable 9 and constraint Cy(x1, x2).
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By using such graphical representation DCOPs can encode coordination problems such
as those defined in Section An intuition to understand this is that a factor graph
is, essentially, a graphical interpretation of the global constraint function defined by
Equation 211 Thus, since in a coordination problem the agents contributions and the
problem’s constraints are typically encoded within such function, the use of a factor
graph allows to decentralise all such contributions and constraints between the different
nodes of the graph. In so doing, it becomes possible to precisely define the contribution

of each agent to the solution of the problem.

As discussed in Section 22 this might be quite useful to deploy agents to achieve
situational awareness. For instance, consider a multi target tracking problem (Section
2.2.2)) consisting of two UAVs and two targets. This problem can be easily encoded in
the factor graph presented in Figure 210 the UAVs are encoded in the variables 21 and
9, whereas the utilities for tracking the two targets, namely 77 and 75, are encoded in
the constraints C7 and Cy. Each variable represents the decisions of one agent and is
defined over the different targets that the agent can track (i.e. 77 or T3). The objective
of the agents is to jointly decide which target each of them should track and is encoded
in Equation 211

As a second example, consider a target search problem (see Section 2.2.1]) involving two
UAVs searching for a lost target. This problem can also be encoded in the factor graph
of Figure More specifically, the two constraint functions C7 and Cy represent the
agents utilities (i.e. their contribution to the search objective) and the variables x; and
x9 represent the agents manoeuvres (e.g. the bank angles of the UAVs). The agents’
objective is then to move into the search area and make observations to reduce the

probability of detecting the target represented by Equation 211

Unfortunately, not all aspects of a coordination problem can be mapped within a DCOP
or into a factor graph. In general, all aspects that cannot be encoded within the con-
straint functions cannot be encoded in a DCOP. Examples include time deadlines or
budget constraints, which are present in numerous real world problems. Most likely
these constraints are present in problems related to situational awareness. For example,
consider a team of UAVs tasked to search a certain area until a limited time (i.e. the
end of the day). Similarly, consider a set of UGVs that need to map a building while

taking into account their finite battery life.

In addition, DCOPs are single shot optimisation problems. For this reason, dynamism,
which is a typical feature of most real world problems is not taken into account. Such
dynamism is typically due to the agents moving and making decisions in the environment.
Within a DCOP, this dynamism typically means that variables and constraint functions
can appear or disappear at anytime. It also means that the constraint functions can

change both in their outcomes and in the variables to which they are connected to
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FI1GURE 2.10: An example of a factor graph

reflect the variations in the different agents’ interactions. For instance, consider again
the target tracking problem, new targets will continuously appear and disappear while
the UAVs are exploring the area. Similarly, in the target-search problem, the UAVs
will continuously explore new places and their observations might overlap at different

occasions.

However, despite dynamism cannot be encoded in a DCOP, it can be easily incorporated
within a factor graph. In fact, the dynamism of most coordination problems is reflected
in variations in the graph’s topology. More specifically, it corresponds to the appearance
or disappearance of new nodes, edges and connections. In other words, the topology of
the factor graph will continuously change as new constraint functions and variables will
be added and deleted. For instance, in target tracking, new functions will correpond
to new targets to track, while new variables will corresponde to new UAVs. In target
search, new variables will correspond again to new UAVs while new function nodes will
correspond to new overlapping observations. To understand then how the new factor
graph is computed and how it is decentralised between the agents, we will present in
Chapter Bl a methodology to use the DCOP framework to address problems related to

situational awareness.

In general, addressing dynamism is one of the key research challenges to address by
research in coordination and in DCOPs. Indeed, despite it can be incorporated within a
factor graph, a principled study of the ways in which dynamism can affect the solutions
of a DCOP is still missing by literature. For this reason, dynamism is one of the key

challenges to address in the prosecution of our work (see Chapter [§]).

Nonetheless, DCOPs still remain a very promising framework for tackling coordination
problems. One of the key reasons for this is one key property of DCOPs which we are
going to exploit throughout this thesis to design new algorithms. More specifically, the
algebraic structure of the global constraint function defined in Equation 21l is that of a

commutative semi-ring, which is defined as follows:
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Definition 2.2. A commutative semi-ring is a triple (R, ®, ®), where R is a non-empty
set and @ and ® are two (abstract) binary associative and commutative operators over
R, such that ® distributes over @. Furthermore, 0 € R is an identity element such that
Vee R:x® 0=z, and 1 € R is an identity element such that Vx e R: 2 ® 1 = x.

This property allows the objective function of a DCOP (Equation 21]) to be disaggre-
gated into the set of functions C' (thanks to the operators @ and ®). By exploiting
it, as we will shortly see, GDL algorithms can optimally solve DCOPs by using very
little computation (SeelAji and McEliece (2000) for a more thorough description of the
advantages of using the GDL), and as a consequence it satisfies the requirement of re-
source awareness which is crucial for defining coordination algorithm in our work (see
Chapter [I]). Additionally, GDL algorithms can be used to instantiate either optimal or
bounded approximate algorithms and, as a consequence, they also satisfy the require-
ment of performance guarantees which is again crucial for our setting. The use of the

GDL framework appears then as a natural choice for building our algorithms.

Having discussed the framework that we are going to use, we can now discuss DCOPs
algorithms. In particular, we focus our attention on approximate, bounded approximate

and optimal algorithms.

2.4.2 Coordination Algorithms for Totally Ordered Problems

This section discusses algorithms to solve canonical DCOPs. In essence, solving a DCOP
consists in finding the optimum of its global constraint function in a decentralised fash-
ion. We have already argued in the previous section how DCOPs are a good framework
to represent coordination problems related to disaster response. For instance, they could
be used to represent target search problems in which the agents coordinate to optimise
a global constraint function representing the cumulative probability of the detecting the
target(s). When this optimum cannot be obtained due to the agents’ limited computa-
tional capabilities an approximate solution can be calculated instead, so as bounds on
its quality. We discuss in this section these different categories of algorithms namely

optimal, approximate and bounded approximated.

2.4.2.1 Optimal Algorithms

Four key algorithms have been proposed to solve DCOPs optimally, namely, OptAPO
(Lesser et all, 2003), ADOPT (Modi et al), 2005), DPOP (Petcu and Faltings, 2005)
and Action GDL (Vinyals et al), [2011). OptAPO uses a partially centralised approach
in which mediator agents compute solutions for portions of the problem. ADOPT is

based on a decentralised version of the branch and bound algorithm and works by
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formulating the constraints of the problem as a graph, and then exchanging messages
between the nodes of this graph (Modi et al., 2005). DPOP and Action GDL are again
fully decentralised, and consist of a message passing procedure which, as we will shortly
see, exploits the GDL framework to solve DCOPs.

The key disadvantage of these algorithms is that they all incur an exponential cost, either
in the computation or in the communication required to provide optimal solutions. For
instance, with OptApo, the agents might be required to perform calculations that grow
exponentially with the size of the portion of the overall problem that they are responsible
for. Hence requiring excessive computational resources to reach a timely solution. In
ADOPT, the number of messages that agents exchange is exponential in the width of
the tree, thus, exceeding by far the limited communication capacities of robotic agents
such as UAVs. Similarly, as we will shortly see, both DPOP and Action GDL use a pre-
processing step over the constraint graph representing a DCOP, which exponentially
increases the size of the messages exchanged by the different agents (Petcu and Faltings,
2005; Vinyals et all, 2011).

Within our setting, we are interested in optimal algorithms since they meet the perfor-
mance guarantees requirement discussed in the introduction. In more detail, we will use
the Action GDL as one of the algorithms that we are going to extend to address multi
objective, risk awareness and online learning in the following chapters. The reasons for

this choice will be more clear in Section [2.4.4] when we will discuss the GDL framework.

2.4.2.2 Approximate Algorithms

Approximate approaches to solve DCOPs are typically decentralised sub-optimal algo-
rithms which require limited communication and computation to produce a solution
(Fitzpatrick and Meertens, 2003; Maheswaran et all, [2005). These approaches, despite
being studied within the multi-agent system community, share many similarities with
the explicit coordination approaches studied by the robotics community (as discussed in
Section 2.3.3)). Essentially they are both decentralised negotiation algorithms in which
the agents share their utilities. However, research in multi-agent systems has focused on
studying ways to improve the quality of the solution recovered by these algorithms, and
consequently to improve the quality of the decision making of the agents that use them.
Two key examples to illustrate this are the distributed stochastic algorithm (DSA) (Ma-
heswaran et al., 2005) and the maximum gain messaging algorithm (MGM) (Fitzpatrick
and Meertens, 2003). These algorithms work by having each agent make a decision
based only on the communicated (or observed) decisions of those local neighbours that
influence its utility. DSA is then a best response algorithm where, after the negotiation
phase, an agent makes a decision depending on a pre-defined pdf. Similarly, MGM allows

one agent to make a decision only after the utilities of all the neighbouring agents have
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being collected. In addition, DSA has been shown to perform well in a very sophisticated
disaster response simulated environment such as the Robocup Rescue (Chapman et al.,
2009).

The main drawback of these algorithms is that they often converge to poor quality
solutions. The reason for this is that agents do not explicitly communicate their utility
for making a specific decision, but only communicate their preferred one (i.e. the decision
that will maximise their own utility) based on the current preferred decision of their
neighbours. In contrast, the max-sum algorithm which we are going to discuss in Section
244, allows the agents to communicate their utility and for this reason it has been
shown to outperform algorithms such as MGM and DSA in a variety of settings, such as
coordinating mobile sensors for monitoring spatial phenomena, patrolling and pursuit
evasion (Stranders et al., 2009, 2010). For this reason, we will use max-sum as the
algorithm to deploy on the coordination system for disaster response which we are going

to present in Chapter Bl

2.4.2.3 Bounded Approximate Algorithms

Various frameworks have been proposed for calculating offline bounds on the perfor-
mance of local approximate DCOP algorithms. The most common are the k-optimality
and the t-distance frameworks (Pearce et al!, [2005; Kiekintveld et al., 2010). In more de-
tail, k-optimal and t-distance algorithms are based on coordinating the decisions of local
groups (neighborhoods) of agents. Thus, given a DCOP, agents inside a neighbourhood
coordinate to locally optimise their joint decision by considering any joint assignment
that can improve their joint reward. The difference between k-optimal and t-distance
algorithms is the criterion employed to generate neighbourhoods: k-optimal algorithms
create neighbourhoods of a fixed size k, where k is the number of agents. In contrast,
t-distance approaches create, for each agent, a neighbourhood that includes all other

agents within a certain distance ¢ in the constraint graph.

However, both of these frameworks assume that the topology of the constraint network
is known beforehand and that it does not vary. This is highly unlikely in real world
settings. For example, in the disaster response scenario presented in Chapter [Il and in
any of the problems presented in Section 2.2] since the vehicles are moving the topology
of the constraint network encoding their interactions are going to vary continuously. A
similar framework was proposed by [Vinyals et al. (2010), where a DCOP is solved by
alternating divide and coordinate phases in which the problem is decomposed into sub-
problems that are then solved by the agent. The way the problem is decomposed can
then be used to calculate bounds on the quality of the recovered solutions. Unfortunately,
this approach suffers from the same drawbacks as k-optimality and t-distance since it

assumes that the topology of the constraint network is static and known before-hand.
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Conversely, online bounds have been computed for the max-sum algorithm by adding a
pre-processing phase to the algorithm (Rogers et all, 2011). As we will see in more detail
in the next section, this new phase is used to approximate a DCOP by deriving a new
constraint graph which can be solved by max-sum whilst keeping track of the difference
between the solution of the approximated and the original graph. In our work we will
generalise the bounded max-sum algorithm to solve distributed constraint optimisation
problems defined over multiple objectives. Indeed, as we will see in the Chapters Bl and
solving the former problems is extremely costly in terms of computation. Using a
bounded approximate solution technique is then a reasonable compromise between the

former complexity and the quality of the solutions recovered.

2.4.3 Coordination Algorithms for Partially Ordered Problems

This section discusses algorithms to solve coordination problems involving complex con-
straints functions. By complex, we mean functions defined over multiple parameters,
such as multiple objectives or mean and variance characterising a pdf. In so doing,
we present a set of algorithms related to the complex interaction requirement defined
in Chapter I We focus here on the three types of interactions described in Chapter
I multiple objective, various degrees of risk awareness and covering online learning. In
contrast with the previous sections, however, we will not focus only on DCOP algorithms
but also present algorithms pertaining to other fields such as constraint optimisation and
machine learning. In so doing, we aim to present not only algorithms which are going
to be used as benchmarks for our approaches, but also techniques which will constitute

the foundation over which we will build such techniques.

2.4.3.1 Problems involving Multiple Objectives

Research in multi-objective optimisation studies problems where the agents (either hu-
man of software) have to discriminate between different incommensurable objectives.
Here, the notion of incommensurability is used to emphasize the fact that the objectives
are typically defined over different and independent criteria (see (Marler and Aroral,
2004) for more details). For instance, consider the case of a UAV searching an area
for a lost target, two incommensurable objectives could be minimising its battery con-

sumption (i.e. measured in Joules) while maximising the area coverage (i.e. measured in

m?).

Unfortunately, multi-objective problems have been addressed by DCOP research to a
very limited degree. Algorithms have been developed to solve DCOPs in which the

agents’ resources were modelled as new objectives of the problem (Bowring et all, 2006;
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Kumar et all, 2009). Despite being the first work in this line of research, it just con-
siders a specific case in which a new objective is defined over the agents’ resources, and
does not address general multi-objective problems. However, a vast literature exists on
multi-objective optimisation. In general, due to the complexity of solving these prob-
lems, meta-heuristics such as genetic or evolutionary algorithms are typically considered
(Veldhuizen and Lamont, 1998). Unfortunately, these algorithms do not fit our setting,
since they are centralised and haven’t been designed to coordinate agents deployed in

real world application domains.

In contrast, recent research in constraint processing and optimisation has generalised
constraint optimisation problems (COP) to the multi-objective setting (Roll6n, 2008;
Marinescu, 2009). Hence, considering that the COP and the DCOP frameworks share
many similarities (i.e. a DCOP is simply a COP which has been extended to decentralised
decision making problems by assigning variables to different agents), we shall use, for
the sake of our exposition, the multi-objective COP (MO-COP) framework to describe
multi-objective problems and their solutions. Formally, a MO-COP is defined as the
problem of simultaneously maximising k£ incommensurable objective functions, defined
over a set X = {z1,...,2,} of N discrete variables, where each x; takes values in a
discrete domain D; (the Cartesian product of all these domains D = X jef1,..nyDj 18
then the domain of the set X). Thus, a solution to a MO-COP is an assignment X* of

values to variables, such that:

X* = arg;naxU(X) = [UY(X),...,UX)T (2.2)

Here, each objective function U’ can be defined over a subset X; C X of the variables of
the problem. However, for ease of exposition, we assume each function is defined over

the same set of variables.

Now, since these objectives are often scalar values, many solution techniques work by
reducing a multi-objective problem to a single objective problem that can then be solved
using canonical optimisation techniques. The achieve this, a new objective function is
defined as a weighted sum of each objective. The key challenge is then to define such
weights in a way that can yield effective solutions. However, achieving this typically
requires an exhaustive search of the space of all possible weights. Hence, these techniques
are unlikely to lead to optimal or good quality solutions in a reasonable time, unless the
solution space has some specific structure (e.g. it is convex) (Veldhuizen and Lamont,
1998).

Another possibility, is for the weights to encode the agents’ preferences about the ob-

jectives (Talbi et al), 2008; Veldhuizen and Lamont, [1998). However, in such cases, as

2We use the same notation as for DCOPs due to the similarities between the two frameworks.
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argued by literature, the motivation for using multi-objective optimisation falls short.
Indeed, a multi-objective optimisation problem assumes that the objectives are either
equally important or that such importance is unknown before solving the problem. If
this importance was known, it would be possible to define a single objective function
that weights each objective based on the agents’ preferences and canonical solution tech-
ninques could then be used. More generally, if the agents have preferences towards the

objectives, discriminating between each of them is not necessary anymore.

Hence, a key property of multi-objective optimisation is trading off between the different
objectives. Hence, since the functions are incommensurable, multiple assignments might
satisfy Equation For example, consider three assignments X;, Xs and X3, such
that U(X;) = [4,5], U(X2) = [4,3], and U(X3) = [6,3]. Clearly, [4,5] and [6, 3] are
larger than [4,3]. However, [4,5] and [6,3] are not comparable. Thus, X2 does not
satisfy Equation Indeed, Equation involves the optimisation of sets of partially-
ordered assignments. Thus, to characterise the optimal solutions of a multi-objective

optimisation problem, we use the well known concept of Pareto optimality:

Definition 2.3 (Pareto Optimality (Pareto, [1906)). An assignment X* € D is Pareto
optimal iff there does not exist another assignment X’ € D, such that U(X’) > U(X*),
and UY(X') = U(X*) for at least one objective function.

The utility vector U(X™) corresponding to a Pareto optimal assignment X* is referred

to as a non-dominated vector. We define the notion of non-dominance as follows:

Definition 2.4 (Non-dominance). A vector U(X*) € D is non-dominated iff there
does not exist an assignment X’ € D, such that U(X’) > U(X*), with at least one
UYX') > UY(X*). Otherwise, U(X*) is said to be dominated.

Thus, since a multi-objective problem involves the optimisation over partially ordered

assignments, its solution is a set of Pareto optimal assignments.

To solve MO-COPs using Pareto dominance, two extensions of well known single-
objective algorithms have been proposed, namely the bucket elimination (Rollén and
Larrosa, 2006) and the branch and bound algorithm (Rollén, 2008). The former is an
optimal algorithm which can be considered as a centralised version of the DPOP algo-
rithm discussed in Section .44l The latter is a bounded approximate algorithm which
uses the well known concept of utopia point to compute the bounds on the quality of

the solutions:

Definition 2.5. Utopia Point (Marler and Arora, 2004): The utopia point V* of a

multi-objective optimisation problem is given by:

V* = |maxUY(X),..., max U*(X)
X X
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Put differently, the utopia point is the vector of values resulting from optimising each
k optimisation problems independently. Clearly, given any Pareto optimal assignment
X*, the inequality U(X*) < V* holds. Unfortunately, the above mentioned algorithms
are both centralised and, as a consequence, they do not meet the robustness requirement
which is crucial for the type of problems that we wish to solve (Il). However, given their
multiple similarities with DCOP algorithms such as DPOP and ADOPT, they constitute
a solid base over which to build the algorithms that we will present in Chapter [l

2.4.3.2 Problems involving varying Risk Awareness

Researchers have recently started studying problems in which the outcome of the con-
straint functions of the DCOP is uncertain (Taylor et al..|[2010; .Jain et all. [2009; Léauté
and Faltings, 2009, 2011). In a decision making context, this means that the outcome of
the decisions of one or more agents is unknown. For instance, consider a setting in which
UAVs are deployed to provide live aerial imagery of some of the most important areas of
the scene of a disaster (see the scenario depicted in Chapter [l for more details). Numer-
ous factors make the outcome of the UAVs decisions uncertain. Some of the factors are
related to the vehicles, such as the UAVs Global Positioning System (GPS) preventing
them from knowing their position with precision or their battery capacity preventing
them from knowing their remaining operation time with precision. Some of the factors
are related to the environment, such as the wind, limiting the UAVs ability to fly and the
visibility preventing the UAVs from collecting useful imagery. In such settings, Léauté
and Faltings (2009, 2011) focused their attention on studying the sources of uncertainty
and proposed an incomplete extention of DPOP to solve problems in which exogenous

sources of uncertainty were modeled as uncontrollable random variables.

Now, the most natural way to solve coordination problems in which uncertainty is en-
demic is to have the agents coordinating their decision making considering the expected
or mean value of the outcome of their decisions. However, in so doing, we would implic-
itly assume that the decision process is risk neutral. That is to say, that the agents do
not take uncertainty into account and do not weight the risk associated with choosing to
make an uncertain decision instead of a certain one. In fact, there exists, an extensive
literature on decision making under uncertainty (see (Levy, 2006)) that indicates that
preferences over outcomes should be determined by a utility function which encodes an

agent’s risk profile, defined as follows:

Definition 2.6 (Risk profile (Levy, 2006)). A risk profile indicates the willingness of

an agent to expose itself to uncertain outcomes in the prospect of a higher utility.

To understand this consider again the scenario described in Chapter [Il In this setting,

the risk profile modelling the attitude of the agents towards uncertain (and potentially
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undesirable) outcomes can be of three different types. A risk averse profile defines agents
more inclined to make certain but less rewarding decisions rather than highly rewarding
(in expectation) but uncertain ones. For instance, the unmanned aerial vehicles (UAVs)
will prefer exploring well known areas containing a lower but certain number of casualties
instead of unknown locations, in which this number might be higher but unknown. A
risk seeking profile then defines agents which prefer uncertain but more rewarding (in
expectation) decisions over certain ones. For instance, by adopting this type of profile,
the UAVs will choose to explore places expected to contain a higher number of casualties
instead of places in which the number is known with precision but lower. Finally, a risk
neutral profile defines agents indifferent between certain or uncertain decisions. Thus, by
adopting this type of profile, the agents, will be indifferent to the uncertainty related to
the locations that they are exploring. DCOPs extensions that model uncertain constraint

functions have been proposed by literature.

Within a coordination problem, such as a DCOP, this utility function should then
encode the risk profile of the whole collective of agents, that is to say, the collective’s
joint preference over a global outcome. In this vein, |Atlas and Decker (2010) extended
DCOPs to the setting in which constraint functions are stochastic. Although, they only
considered discrete probabilities, they stated that the extention to continuous pdfs was
straightforward. In addition, they proposed a new local approximate algorithm, the
distributed neighbour exchange algorithm (DNE), which could be used to solve DCOPs
involving risk neutral agent profiles, where the agents have no preference between a risk
seeking or averse behaviour, and thus, simply maximise the expected outcome of the
global function. However, DNE does not fit our settings, because it fails to provide
any quality guarantees, nor does it handle risk seeking or averse behaviours which are
strictly necessary in environments where uncertainty is endemic. In fact, most current
DCOPs algorithms are only capable of maximising expected outcome and do not take
into account the agents’ joint preferences towards risk (Taylor et all, 2010; lJain et all,
2009; Léauté and Faltings, 2009, 2011). Hence, applying these algorithms to disaster
response settings such as those discussed above, is likely to yield a poor performance in

terms of the agents’ decision making.

2.4.3.3 Problems involving Online Learning

There exists a vast amount of literature on online learning algorithms (Sutton and Bartd,
1998). These algorithms are useful in stochastic and a priori unknown environments,
in which agents are no longer faced with a one shot optimisation problem as encoded
in a canonical DCOP. Rather, agents now have to coordinate to solve a sequence of
“DCOP-like” problems in order to simultaneously reduce uncertainty about the local
utility functions (exploration) and maximise the global utility (ezploitation). In the

context of disaster response a good setting in which online learning can be used is the
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SLAM problem defined in Section In this problem, robotics agents such as UAVs
or UGVs are deployed to map an environment without any prior information about it.
Moreover, their sensors may be noisy and imprecise. Given these constraints, the agents
are forced to learn the outcome of each of their decisions during the actual operation.
This means that they have to explore the outcome of their decisions, i.e. map the areas
less likely to contain casualties and they have to exploit the best outcomes, i.e. map the

areas which have been estimated to contain the highest number of casualties.

Now, focusing solely on exploration results in certainty about the agents’ environment,
but wastes resources by taking suboptimal actions. Similarly, consistently taking the
joint action that is currently believed to be the best is also suboptimal because this
belief might be incorrect. Hence, it is necessary to strike a balance between exploration
and exploitation. This challenge is not satisfied yet by any existing DCOP algorithm.
Indeed, either they make some assumption on the problem that simplifies the challenge
of trading off between exploration and exploitation, or they address the challenge but in
an inefficient fashion. For instance [Taylor et al. (2010) and Jain et all (2009) proposed
a set of extensions to well known DCOP algorithms such as MGM and DSA to ad-
dress DCOPs whose constraint functions are unknown. However, despite being a priori
unknown, these functions are assumed to be non-stochastic. Hence, these algorithms
address much simpler problems than the ones we want to address here. Furthermore,
Léauté and Faltings (2009) proposed an extension of DPOP (referred as E-DPOP) in
which the values of the constraint functions are influenced by exogenous sources of
stochasticity, whose underlying probability distributions are unknown. Whilst a signifi-
cant contribution to the field, all of this work divides exploration and exploitation into
two distinct phases, a process that is known to make its performance dependent on the
specific problem instance (Sutton and Barto, [1998). Moreover, as acknowledged by the
authors, the E-DPOP algorithm is incomplete and as a result can perform arbitrarily

poorly on general problem instances (Léauté and Faltings, [2011).

In contrast, the multi-armed bandit (MAB) community has addressed the trade off
between exploration and exploitation in a principled fashion, but from a single agent
perspective (Lai and Robbins, 11985;|Auer et al., [2002; Vermorel and Mohri, [2005). In this
context, MAB is a simple analytical tool for modeling decision making under uncertainty.
More formally, a MAB is a slot machine with K arms, each of which delivers rewards
drawn from an unknown distribution. The aim of the problem is to sequentially pull the
arms so as to maximise the cumulative reward over a finite time horizon. In other words,
the agent’s goal is to choose which arms to pull so as to maximise expected cumulative
reward over a finite time horizon 7T". In more detail, let P be a pulling policy (a sequence
of pulls), and i(t) denote arm chosen at time ¢ by P, and r;((t) the reward received by

pulling that arm at time ¢. Then, we can formalise the agent’s goal as follows:
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T
P* = arg maxz 7it)(t) (2.3)
L

where P is the set of all possible policies. Clearly, if the reward distributions of each
arm were known, the optimal policy would be to always pull the arm with the highest
expected reward. This hypothetical scenario sets a performance benchmark known as
regret against which to compare any policy. In particular, the regret Rp(T) of a policy
P after T time steps is the difference between the expected reward of the theoretical

optimal policy and that obtained by P:

T
Rp(T) =) [u* = p(i(1))] (2.4)

t=1

where (i) is the expected reward of arm i and p* = max; pu(i). Now, there exists a
number of pulling policies for minimising regret, such as e-first (Even-Dar et al., 2002),
e-greedy (Sutton and Barto, [1998) and upper confidence bound (UCB) (Auer et al.,
2002). Whereas the former two are sensitive to the choice of the ¢ parameter, the
latter provides optimal theoretical guarantees on the regret (the difference between its
performance and that of the theoretical optimal solution) without any need for parameter
tuning. Hence, UCB is one of the most widely used, since it is non-parametric and
achieves asymptotically optimal regret. In more detail, UCB pulls each arm once at
the beginning, then at each subsequent time step ¢, UCB selects arm ¢*(¢) with the

maximum upper confidence bound on the expected reward:

i*(t) = arg max [ﬂ(i,t) + \/2 In t(“ma"_”mm)z] (2.5)

i€[1,K] n(i,t)

where fi(i,t) is the sample mean of the rewards that arm ¢ received until ¢, and n(i,t) is
the number of times UCB pulled arm 7 before time step t. UCB assumes the support of
the reward function is bounded, i.e. 7;(t) € [Umin, Umax]. The two terms in Equation
determine the trade off between exploration and exploitation. The larger the first, the
more ezxploitation is favoured, since it is an estimate of the expected reward of arm ¢. The
larger the second, the more exploration is favoured, since it represents the uncertainty

in this estimate.

Now, MABs constitute a very interesting framework to represent online learning prob-
lems due to their simplicity and due to the fact that MAB algorithms present a set
of theoretical properties that can be used to compute performance guarantees over the
recovered solutions. The aim of this work, as we will present in Chapter [7, is then to

merge this theory with the GDL framework in order to derive new algorithms to solve
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DCOPs in which the agents need to learn from their environment. For this reason, in

what follows we describe the GDL framework in detail.

2.4.4 The Generalised Distributive Law Framework

Thus far, four algorithms exist that exploit the GDL framework to solve DCOPs: DPOP,
Action GDL, bounded max-sum and the max-sum algorithm. The aim of this section
is to describe these algorithms, their similarities and differences. In so doing, we aim
to describe the way in which the GDL framework can be used to derive optimisation
algorithms, so that we can use it in the following chapters to derive new algorithms to

solve complex coordination problems (as described in Chapter [I).

Now, depending on the complexity of the problem and on the quality of the solutions
required, the GDL framework can be used in two different ways. First, it can be used to
instantiate algorithms capable of providing optimal or bounded approximate solutions
at the cost of a greater complexity, as discussed in the previous sections. Second, it can
be used to instantiate incomplete or loopy approximate algorithms, capable of solving
complex real world problems. In fact, extensive empirical evidence has shown that the
use of such algorithms often yield high quality solutions even when applied to extremely
complex problems (Aji and McEliece, 2000; Kschischang et al., 2001). In both cases, the
optimisation problem is first encoded into a factor graph as discussed in Section 2.4.1]
for the DCOP case (Kschischang et all, 2001).

Within our setting, we will be using the GDL framework in both ways. We will use
the generic framework to derive algorithms capable of dealing with multiple objectives,
uncertain and unknown outcomes. To do so, we will exploit a fundamental property of
GDL algorithms (see Theorem [2.7)), which is that they are optimal over acyclic factor
graphs. Next, since, as described in Section 2.2l we will be dealing with a dynamic
task assignment problem, we will then use a loopy approximate algorithm, namely max-
sum, to coordinate UAVs in a disaster response scenario. The algorithm is essentially a
GDL algorithm running over cyclic factor graphs. Specifically, we will use an extension
of max-sum aimed at solving task assignment problems (Macarthur et al), 2011). In
what follows, we first describe the way to instantiate the GDL to derive optimal or
bounded approximate algorithms, specifically focusing on DCOP algorithms, and then

we describe the specific max-sum algorithm for task assignment.

2.4.4.1 Message Passing Algorithms over Acyclic Graphs

Complete DCOP algorithms based on the GDL are DPOP, Action GDL and bounded
max-sum. These algorithms proceed over three phases. The first is used to allow the

algorithm to provide quality guarantees. The second constitutes the core of the GDL
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FIGURE 2.11: The spanning tree resulting from the factor graph in Figure 2.10]

framework and consists of a message passing procedure to solve optimisation problems.
The third is specifically related to DCOPs and is necessary to solve them in a consistent

fashion. Each phase proceeds as follows:
Phase 1: Encoding the Objective Function as a Graph

This phase is independent from the type of optimisation problem that is being solved
and is necessary to provide quality guarantees. To understand this, recall, from Section
241 that the global constraint function in Equation Bl is first encoded as a factor
graph. If this graph is acyclic, then any GDL based algorithm is guaranteed to converge
to an optimal solution (see Theorem 7). Thus, by using this property, it is possible
to provide quality guarantees on the solutions recovered. The key idea is manipulating
factor graphs until they become acyclic. Two different graphical approaches have been
used in the DCOP literature.

The first approach is the one used for the bounded max-sum algorithm and is used to
provide online bounded approximate solutions to the quality of the solutions recovered
by the algorithm (Rogers et all, 2011). This approach consists of pruning the edges
that have the least impact on the quality of the solutions. In so doing a bounded
approximation can be derived. In more detail, it consists of computing a spanning tree
of the original factor graph. To compute such a tree, edges are removed from the factor
graph in a principled way. More specifically, here, the goal is to compute a variable

assignment X in the acyclic factor graph, such that:

m m

C* =Y Ci(X)) <pY_ Ci(X)) (2.6)

j=1 j=1

where X* is the optimal solution of the cyclic factor graph (i.e. the “entire” problem),
C* the corresponding optimal value and p is the approximation ratio. To ensure this

approximation ratio is as small as possible, the algorithm prunes those edges that have
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the least impact on solution quality. The impact of an edge between variable z; and

constraint Cj is defined as its weight w;;, defined as follows:

w;; = max |maxC;(X,;) — minC;(X; 2.7
J = e max (X)) = min C,(X) 1)

Once all the weights are computed, the GHS algorithm (Gallager et all, [1983) a decen-
tralised message passing algorithm is used to compute a maximum spanning tree of the
factor graph. The newly obtained acyclic factor graph is then used in the second phase,
in which the max-sum algorithm is used to compute X, which is the optimal variable

assignment to the “pruned” problem:

X = arg;naszgn)l(ljcp C;(X;) (2.8)

where X7 is the set of variables that were eliminated from the scope of function Cj,
corresponding to the edges that were pruned from the factor graph. The approximation

ratio p is then given by:

P = 1 + (Cpruned + W - CN’approx)/CN’approx (29)

where W is the sum of the weights of the pruned edges, C’pruned => 4 min Xe Cj(X ;) is
the value of the solution of the pruned problem and C’approx => j C’j(f( ;) is the value of
the solution of the overall approximated problem. Thus, an upper bound on the optimal

solution can be computed as follows:

C'approx +W > c* (210)

Figure2.I1lshows an example of a spanning tree resulting from pruning the edge (C1, x2)

from the factor graph depicted in Figure 210l

The second approach is used for DPOP and Action GDL to provide optimal solutions.
Each algorithm uses a different graphical approach (Vinvals et all, 2011: Petcu and
Faltings, 12005). However, the key idea in both cases is to transform the original factor
graph into an acyclic one by clustering variables. This new factor graph is then solved
optimally by running max-sum. In essence, the nodes of the original factor graph that
represent variables are clustered together until the graph becomes acyclic. Each cluster
of nodes is then replaced by a new node representing a meta-variable defined over the
Cartesian product of the domains of the variables (Aji and McEliece, 2000; Kschischang

et al., 2001)). Formally, this approach is said to compute a junction tree out of the
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Z1T2

FIGURE 2.12: The junction tree resulting from the factor graph in Figure 210

Algorithm 1 The GDL algorithm for variable x;. M(i) is the set of indices of neigh-
bouring functions. R;_;(x;) is a message from function C; computed in Algorithm

1: procedure GDL_VARIABLE(])

2: while stopping condition has not been met do

3: for all j € M(3) do > For all adjacent functions
4: if |M| =1 or no messages received yet then

5: Send Qi%j (l’l) =1to 07‘

6: else

7 Send Qi_m‘ (IZ) = ® Rk_”(l’l) to Cj

keM(i)\j

8: end if

9: end for
10: Wait for new messages from all C; : j € M(i)

11: end while

12: return Z;(z;) = ® Rj_yi(z;)
JeEM(9)

13: Assign x} := arg max Z;(z;)

14: end procedure

original factor graph. The Action GDL algorithm uses such junction tree computation
to solve DCOPs optimally. To this end, Figure 2.12 shows an example of a junction tree
resulting from merging the two variables 1 and xo of the factor graph in Figure 210
It should be noted, that by merging the two variables, agent Ay loses control of variable
x9. The DPOP algorithm is then a specialisation of Action GDL, in which the junction
tree computation is done by merging variables following a depth first procedure (Petcu
and Faltings, 2005). However, by computing such junction trees, the optimal solution
of the original problem is preserved, but the communication and computation overhead

of the second phase are increased (Aji and McEliece, 2000).
Phase 2: Message-Passing

This phase constitutes the core of any algorithm based on the GDL frameworkH. In the
context of DCOPs, the second phase computes the marginal global constraint function

Zi(z;) for each assignment to variable x;:

31t corresponds to the UTIL-propagation phase in DPOP and Action-GDL.
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Z,(a:z) = max Cj(Xj) (2.11)

To understand the way in which this happens, we first discuss the generic framework and
then we detail how it is instantiated for solving DCOPs. In more detail, Equation 21T
is computed through message passing between the vertices of the graph constructed
in phase 1. To perform this computation efficiently, GDL exploits the fact that the
objective function is expressible using a commutative semi-ring, as discussed in Section
247 The message passing phase is completely decentralised and is implemented by
Algorithms[land 2], which perform the computation associated with the variables and the
functions respectively. Specifically, Algorithm [[lis executed by agent F'(z;) that controls
variable ;. The algorithm computes the messages Q;—;(z;) that x; sends to each of its
neighbours C; with j € M(i) (line 3 of the algorithm). Similarly, Algorithm 2l can be
executed by any of the agents whose variables are a parameter of C;. The algorithm
computes the messages R;j_;(z;) that constraint Cj sends to each of its neighbours ;
with ¢ € N(j) (line 18 of the algorithm).

It should be noted that each type of message is defined in terms of the other one (lines 7
of Algorithm[dland 19 of Algorithm[2)). Indeed R;_,;(z;) messages are defined considering
the Qi ;(x;) messages that have been received (lines 18 - 20 of algorithm [2)). Similarly,
Qi—j(x;) messages are defined by aggregating all the R;_,;(z;) messages that have been
received. At the beginning of the computation, or when communication is limited, no
messages are received. In this case, the algorithms send constant values (lines 5 and
19 of algorithms [I] and ] respectively). Hence, GDL algorithms work as distributed
protocols. More specifically, the computation starts by having the agent send constant
values, then the agents iteratively share messages until a termination condition is met
(lines 2 and 16 of Algorithms [Il and 2] respectively). This condition depends on the
topology of the factor graph and will be discussed shortly. Finally, it should be noted
that, for ease of exposition, the formulation of these algorithms is only given for acyclic
factor graphs and assuming perfect communication between the agents. We will modify

this formulation when describing max-sum for task assignment.

Now, the following theorem is a fundamental property of the GDL message passing

algorithm:

Theorem 2.7. If the factor graph is acyclic and the stopping criterion is chosen such
that the algorithm is run for a number of iterations equal to the diameter of the factor

graph, the following equation holds for each variable x; € X:

Zil) = & QX)) (2.12)
i
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Algorithm 2 The GDL algorithm for function Cj. N(j) is the set of indices of neigh-
bouring variables. Q;—;(z;) is a message from variable z; computed in Algorithm [Il

15: procedure GDL_FUNCTION(j)

16: while stopping condition has not been met do
17: Wait for new messages from all x; : i € N(4)
18: for all i € N(j) do > For all adjacent variables
19: Send to z; message Rj_;(x;) =
o [Ci(x)e @ Qrjilar)
X \{w:} KEN)\i
20: end for

21: end while
22: end procedure

For proof of this theorem, see (MacKay, 2003) (Chapter 26) and (Aji and McEliece,
2000) (Theorem 3.1).

For the sake of solving DCOPs, the GDL message passing phase is instantiated with
the max-sum commutative semi-ring (R, max, +) and the resulting algorithm is often
referred as the max-sum algorithm (Rogers et all, 2011; Frey and Dueck, [2007). By
so doing, it is possible to obtain the marginal global constraint equivalent to Equation

211l The following example illustrates the behaviour of the algorithm:

Example 2.1. This example illustrates the behaviour of the message passing phase, by
running it over the acyclic factor graph depicted in Figure [211. We assume that the
variables are defined over a binary domain, x1, o € {0,1}. The constraint functions

C1 and Cs are defined as follows:

x1 | w2 || Ci(x1) | Co(z1,22) || C(x1,22)
01 0 5 y 9
0| 1 ) 10 15
1 0 8 7 15
1] 1 8 2 10

The stopping condition for the algorithm (lines 2 and 12 of Algorithms 1 and [2) is a
constant representing the number of iterations necessary for the values of the constraints
to propagate throughout the graph. For acyclic graphs this number is typically equal to
twice the diameter of the factor graph (MacKay, 2003). The computation starts from
the variables (lines 4 and 6 of Algorithm [1]):

Iteration 1: Variables x1 and xo compute the following messages:

I C I C T2
Qisi(z1)= 0 | 0| Qis2(zi)= 0 | 0| Qas2(z2)= 0
0 1 0 1

o ol Q
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Iteration 2: Constraints C1 and Cs receive the messages from iteration 1 and compute

the new messages:

1 | C 1 | C T2
Rii(z)= 0 | 5| Rysi(w)= 0 | 10| Rosa(ze)= 0 | 7
138 1|7 1|10

Iteration 3: Variables x1 and xo receive the new messages and send them to the cor-

responding constraints:

x| C x| C zo | C
Qisi(z)= 0 [10| Qise(z)= 0 |5 Q22(x2)= 0 | 0
7 1 8 0

Iteration 4: Function C1 and Cs receive the new messages and send them to the cor-

responding constraints:

x| C v | C zo | C
Rii(z)= 0 | 5| Rosi(z1))= 0 |10 | Roso(ze)= 0 |15
1|8 1|7 1|15

At the end of iteration 4, each variable has received the number of messages necessary

to compute the maximum marginal function (Equation[2.11). This happens as follows:

T C
x] = max{ 0|15 }
1115

={0,1}

T2 C
Ty = max{ 0|15 }
1|15

= {07 1}

Thus the second phase is capable of recovering the two optimal solutions of the problem.
However, it might happen that the variables end up picking a sub-optimal assignment
if they do not consistently decide which solution to select. To achieve this, a value
propagation phase is used, which constitutes the third phase of these algorithms and

which is going to be detailed next.
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Qi—>_7‘(d =
max(z; = d)

FIGURE 2.13: A graphical explanation of the GDL message passing procedure.

In essence, this second phase provides an efficient local message-passing procedure to
compute the dependency of the global constraint function defined by Equation 2.1] on
each of the variables in X simultaneously. This efficiency is due to the fact that each
max-sum message propagates more information if compared with other message passing
algorithms, such as those described in Section 23] which just share the agents’ utilities
for making a specific collective decision. Here, as illustrated by Figure 2.13] each message
conveys the maximum aggregate of the global constraint function possible over the two
components of the factor graph formed by removing the edge between C; and x;, for
each value d of the domain D; of ;. In other words, the size of each message is linear

in the domain of variable z;.
Phase 3: Obtaining the Solution:

After the message passing phase is complete, Equation 2] is used to find the optimal
variable assignment zj for each variable z; € X by setting z] = arg max,, Z;(x;).
Note that this is only guaranteed to yield a consistent solution if the optimal solution is
unique. Otherwise, variables can select assignments that correspond to different optimal
solutions, resulting in suboptimality. To prevent this, a value propagation phase can be
used to select an optimal solution using additional message passing (Petcu and Faltings,
2005).

In more detail, this value-propagation phase is again fully decentralised, and proceeds
by passing messages between the variables and the functions in the acyclic factor graph.
First, the variable x; with the lowest index is chosen as the root of the tree, and is
responsible for initiating the value propagation phase by selecting an optimal assignment
x; = d;. The variable then sends value-propagation messages (x; = d) to all the function
nodes to which the variable is connected. The behaviour of all the other nodes in the

graph will then depend on their type. More specifically:

Function nodes: Upon receiving a message (z; = d}) from variable z;, the constraint

function C; computes the set Dj(j of local optimal assignments for variables X \
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{z;}, conditioned on z; = d;:

DY = d% |d%. = arg max Cj(dx;) + Z Qr—;(dy)
dx;€(Da;\Di)U{wi=d;} keM(i)\j

After computing set D}j, value propagation selects one assignment d}y_ € Dﬁ(j
and sends the message (z, = dj) to every variable z;, (k # j), where dj is the

element of d}j corresponding to xy.

Variable nodes: For each non-root variable z;, once it receives a message (z; = d;)
from a function Cj, it sets its value to d} and propagates the message (z; = d) to
all the function nodes Cy, k # j.

Note that, during value propagation, a single message is sent across each link in the
factor graph. Thus, the algorithm terminates once each non-root variable has received

a value-propagation message.

The following example follows from Example 2] and illustrates the behaviour of value-

propagation:

Example 2.2. Iteration 1: Variable x1 has the smallest index, and consequently it is
elected as the root of the tree. It selects one best assignment (x1 = 0) and sends it to its

neighbouring constraints C1 and Cs.

Iteration 2: C7 and Cy receive the message from x1. C1 is only connected to x1 and
as a consequence does not compute anything. In contrast, Cy calculates Dx, = {z1 =

0,29 = 1} and sends (zo = 1) to 2.

Iteration 3: o receives the message from Cy and selects its value. Not having any

other neighbours different than Co the computation ends.

Thus, the use of the value propagation phase allows complete algorithms that exploit
the GDL to break the ties of the values of the solutions recovered during the message

passing phase. This also holds when solving DCOPs.

Unfortunately, complete algorithms are still not suitable to address realistic coordination
problems (Section 2.2) and to be deployed within a real architecture (Section [2.3.3)
since they require exponential computation and communication. From a theoretical
perspective, this is to be expected, since we are now trying to optimally solve problems
which have been demonstrated to be NP-hard (Modi et all, 2005). Nonetheless, these

algorithms have been shown to be reasonably efficient and to scale more than other
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optimal DCOP algorithms such as ADOPT and OptAPO (Petcu and Faltings, 2005;
Vinyals et all, 2011). In addition, reducing the complexity of the algorithms, is one of

our ongoing challenges and will be discussed in our concluding chapter (Chapter [).

Fortunately, the GDL framework can be used to instantiate incomplete algorithms
which fits better the limited computation and communication resources that charac-
terise robotic agents. In what follows, having discussed the generic framework, we focus
specifically on the incomplete max-sum algorithm which we are going to deploy in this
thesis. More specifically, we discuss a specialisation of the max-sum algorithm that has
been shown to greatly reduce the algorithm’s computation and communication require-

ments in generic task assignment domains, such as the one we consider in this work.

2.4.4.2 A Message Passing Algorithm over Cyclic Graphs: Loopy Max-Sum

The max sum algorithm is a GDL algorithm instantiated with the max-sum commu-
tative semi-ring (R, max,+). As with any GDL algorithm, it runs over a factor graph
and consists of two message passing procedures based on Algorithms [l and 2] which are
used to compute Equation 2.I1] that is to say, the maximum marginal of Equation 2.1l
Now, considering the limited amount of communication and computation available to
real robotic agents, quality guarantees cannot be provided anymore. For this reason,
phase 1 is removed, and in so doing the algorithm becomes approximate, as discussed
in Section This means that the algorithm is now used over cyclic factor graphs.
Nonetheless, extensive empirical evidence has shown that the former algorithms can gen-
erate good approximate solutions when applied to such cyclic constraint graphs. In fact,
the incomplete version of max-sum has been shown to perform efficiently in a number
of coordination problems, such as coordinating mobile sensors for patrolling and pursuit
evasion scenarios and to monitor spatial phenomena, such as temperature or radiation
(Stranders et al., 2009, 2010). In addition, this effectiveness, was also demonstrated in
optimisation problems other than DCOPs, such as approximate inference on Bayesian
networks (Murphy et all, [1999), iterative decoding of practical error correcting codes
(MacKay, [1999), clustering of large datasets (Frey and Dueck, 2007), and solving large
scale K-SAT problems involving thousands of variables (Mezard et al., 2002).

To achieve such performance, Algorithms [I] and 2l need to be slightly modified. Specifi-
cally, the stopping condition (lines 2 and 16 ) is eliminated so that messages are computed
given a pre-defined schedule (e.g. periodically or in response of the receipt of a message)
independent from the algorithm. Moreover, messages may be delayed or lost. Hence,
new messages are computed given the last messages received by each node. This means
that lines 10 and 17 are no longer necessary. In addition, only the received messages
are used to calculate the new messages (lines 5, 6 and 19 in Algorithms [I] and 2]). The

same applies for computing Equation 21Tl Hence, lines 12 and 13 of Algorithm [ are
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Algorithm 3 The incomplete max-sum algorithm for variable x;. M(i) is the set of
indices of neighbouring functions. R;_,;(x;) is a message from function C; computed in
Algorithm [

1: procedure MS_VARIABLE(i)

2: for all j € M(i) do > For all adjacent functions

3 if | M| =1 or no messages received yet then
4: Send Qiﬁj (:1?@) =0 to Cj
5
6

else
Send Qiyj(wi) =iy + > Riosiwi) to Cj > For all k such that
ke M(i)\j
Ri—i(w;) # 0
7 end if
8: end for
9: end procedure

no longer necessary, since this operation is now separated from the computation of the
new messages. These changes lead to Algorithms [B] and [, which illustrate the new

procedures.

As shown in line 6 of Algorithm[3] a constant «;; is added to each new message such that
Zmi Qi—j(z;) = 0. This normalisation is used to prevent new messages from growing
arbitrarily large when the factor graph contains cycles (see (Rogers et all, 2011) for
more details). Phase 3 is removed to prevent further communication. To allow the
agents to select a unique solution consistently, very small random values are added
to the local constraint functions in C' (Rogers et all, 12011) before commencing phase
2. Most importantly, the aggregation of the messages flowing into each variable now
represents an approximate solution to the maximisation problem defined by Equation

2.1] with respect to x; (i.e. it represents an approximation of the marginal function

defined in Equation [Z.1T]).

Now, within a task assignment setting such as the one we will address in this work,
the UAVS’ decisions consist of tasks to complete. Thus, each domain D; is redefined
as D; = T; where T; € T is the set of tasks that agent i is aware of, out of all the
tasks T; € 7. The constraints then represent the utilities of each possible assignment
of one or more UAV to a task Tj. Within this setting, considering that messages are
linear in the domains of the variables, when the number of tasks is very large the
use of the canonical max-sum algorithm is likely to incur a significant increase in the
amount of communication required. Moreover, considering that computing messages
from functions to variables is exponential in the number of variables. Hence, when the
number of tasks is very large, computing max-sum messages can become prohibitively
expensive (O(|TV) in the worst case for function to variable messages) and their size

also becomes too large.

To address this shortcoming, max-sum has been modified to reduce the size and the

complexity of computing the messages within each node (Macarthur et all, 2011). In
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Algorithm 4 The max-sum algorithm for function C;. N(j) is the set of indices of
neighbouring variables. Q;—;(z;) is a message from variable z; computed in Algorithm
B

10: procedure MS_FUNCTION(j)
11: for all i € N(j) do > For all adjacent variables

12: Send to xz; message Rj_;(x;) =

Xn{;{iﬂ)ﬂ;} Ci(X;) + Z Qk_m-(zk)) > For all k such that Qx_;(zx) # 0
s kEEN (5)\i

13: end for

14: end procedure

particular, the key idea is for each message passed between C; and z; to convey the
maximum aggregate utility only for ; being assigned to T} and for z; being assigned to
some other task (i.e. max-sum messages become bi-valued vectors and the computation
of function to variable messages is reduced to O(2V1))). Therefore, whereas in standard
max-sum the messages are defined as functions of the variables, in the modified version,
each message is defined over an indicator function Ig (x;) such that Iij (i) = 1 when
x; = T; and Ig (z;) = 0 when z; # Tj. The way in which the messages are computed

then changes as follows:

Messages from variable z; to function C; (lines 3 - 6 of Algorithm [3)):

MaXke M(i)\ {5} (Rk—w(l) +ZweM(i)\{k,j}Rw—>i(0)> (z: # Tj)

Qi—)j Iz-j zi)) =
) { ke Be—i(0) (z; = Tj)

Messages from function C; to variable z; lines 12, 13 of Algorithm [4:

Riog(@ @) = max (G5(5)+ > Quos(@an)
e KEN (H)\{i}

At any time, each agent ¢ can then compute its best assignment x} as the sum of the
messages flowing into x;:
x] = arg max Z Rii(T] (2;)) (2.13)
JEM(H)

Here, Equation 2.13] specialises Equation 2.11] to the task assignment setting.
Example illustrates the approximate behaviour of the algorithm:

Example 2.3. This example illustrates the behaviour of the loopy maz-sum algorithm,
by running it over the factor graph depicted in Figure [2.10. As indicated in the figure,
two agents are defined which can attend both the tasks (x1,x2 € {T1,T2}). The two tasks
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T1 and T are valued using two utility functions C1 and Cy. The utilities are defined as

follows:
2 [ 2 | CL(@ (1), B (22)) | Col@i(a1), B(w2) || OZ(w1), L(x2)
0| 0 5 4 9
0| 1 3 5 8
110 6 5 11
1] 1 4 9 13

In this setting, in contrast to the one presented in Example[2.3, the algorithm is stopped
after a certain number of seconds have passed. This stopping condition, as we will see
in Chapter[3, is the one that is typically used to solve real world problems. In addition,
it should be noted that for the sakes of a clearer exposition, we do not consider the
normalisation constant a; in the computation of the messages. The computation starts
from the variables (lines 4 and 6 of Algorithm[3):

Iteration 1: Variables x1 and xo compute the following messages:

I(acl) C I(l’l) C

Q1-1(z1) = 0 0 Q1-2(x1) = 0 0
1 0 1 0

I(xQ) C I(ZL’Q) C

Q21(w2) = 0 0 Q2-2(x2) = 0 0
1 0 1 0

Iteration 2: Constraints C and Ca receive the messages from iteration 1 and compute

the new messages:

Z(x1) | C Z(x2)
R1_>1($1) = 0 6 R1—>2($2) = 0 4
1 5 1 6
I(ry) | C I(zq) | C
Ry i(x)= 0 5| Rasa(wa)= 0 5
1 9 1 9

Iteration 3: Variables x1 and xo receive the new messages and send them to the cor-

responding constraints:

Qr1(x1) = 0 5 Q1-2(11) = 0 6
1 9 1 )
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I(l‘Q) C I(l’z) C
Qa1(x2) = 0 5 Qa—2(w2) = 0 4
1 9 1 6

Iteration 4: Function C1 and Cs receive the new messages and send them to the cor-

responding constraints:

IZ(z1) | C Z(z2) | C

Rlﬁl (:L‘l) = 0 15 Rli)Q(x2) = 0 14
1 14 1 12

Z(z1) | C Z(z2) | C

R24)1 (1'1) = T1 19 RQHQ(IEQ) == T1 15
b 14 Ty 18

At the end of iteration 4, each variable has received the number of messages necessary

to compute the maximum marginal function (Equation[213). This happens as follows:

T C
m’{:max{ T) | 34 }

Ty | 28

= {0}

i) C
m§—max{ Ty | 29 }

T» | 30

= {1}

Thus the second phase recovers an approzimate solution {x; = Th,xe = Ta} which is

different than the optimal one {x1 = Ty, xo = To}.

This version of max-sum is the one we are going to use in our practical contributions.
However, to deploy it effectively a number of other issues need to be considered, such as
the way to address the dynamism (new tasks or agents appearing / disappearing) and
the way to effectively assign the nodes to the available agents. We will discuss these

issues in detail in Chapter Bl
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2.5 Summary

This chapter reviewed the literature related to our work. Specifically, we presented
both similar research and research which will constitute the foundation over which we
will build our algorithms. In more detail, Section 1] introduced UAVs, the specific
type of robotic agent over which we are going to deploy our coordination system (see
Chapter Bl), and justified our choice to use custom made off-the-shelf hexacopters for
our tests since they are less expensive and more practical for doing research. Section
then introduced the key research problems related to achieve situational awareness
in disaster response scenarios. In our work, we will use these problems as an inspiration
for designing our coordination algorithms (Chapters [, B [6] and [7). In Section 23] we
then presented practical decentralised coordination algorithms. More specifically, we
presented various mechanisms that have been deployed in real vehicles for situational
awareness missions and discussed the way we are going to use them in Chapter Bl for

deploying the max-sum algorithm in our work.

Unfortunately, the former practical approaches, despite being applied to real world prob-
lems, are essentially distributed negotiation protocols, in which the agents share their
decisions for a pre-defined amount of time until making a decision. For this reason, the
level of performance that they achieve is typically very low. Moreover, they are not ca-
pable of addressing complex agent interactions as required in our work (as described in
Chapter[I]). In contrast, there exists a large body of literature on theoretical coordination
approaches which has focused on more sophisticated interactions. These approaches are
presented in Section 2.4l More specifically, we presented the DCOP framework, which
we will use to define coordination problems involving complex interactions (see Chapter
[)). In Section [2.4.2] we then presented optimal and bounded approximate algorithms for
solving DCOPs. Next, we presented algorithms for solving problems involving complex
interactions such as multiple objectives, uncertainty over the agents decisions and on-
line learning (Section 2.4.3). In section 2.4.4] finally, we described the GDL framework
and showed how it can be used to derive effective optimal, bounded approximate and
simply approximate algorithms such as DPOP, Action GDL and max-sum. These rea-
sons motivated our choice to use this framework to derive algorithms capable of solving

coordination problems involving complex interactions (see Chapter []).

Now, all the algorithms described above suffer from two main drawbacks which, as
discussed in Chapter [T, motivate the research that we are going to present in the following
chapters. The first reason is a practical one. We discussed in Section 2.4.4] how max-
sum is a very good candidate to be deployed to coordinate real robotic agents. However,
thus far the effectiveness of the algorithm has been demonstrated only in simulation.
Thus, the efficiency of algorithms exploiting the GDL for coordinating the behaviour of
multiple agents such as UAVs or UGVs still needs to be demonstrated in practice. This
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is the focus of the next chapter, in which we present a case study on the deployment of
max-sum for disaster response and discuss the various ways in which the algorithm can

be efficiently deployed for this type of problems.

The second reason is a theoretical one. In Section 2.4.3] we presented three key examples
of algorithms for solving problems involving complex agents’ interactions. However,
these approaches are still not usable within our setting. Indeed, either they address
these problems from a single agent perspective, either they are centralised or they are
not capable of providing any quality guarantees. For this reason, in Chapters @4l [l
and [f] we go back to theory and derive new problems and algorithms to represent and

solve coordination problems involving complex agent interactions.



Chapter 3

Application of the Max-Sum
Algorithm for Disaster Response

Scenarios

This chapter describes the main practical contributions of this thesis. The focus is
to present a study of the deployment of the max-sum algorithm to achieve situational
awareness in disaster response scenarios. We chose to use max-sum since, as discussed
in Chapters[I and 2], it is a good candidate to coordinate robotic agents such as UAVs or
UGVs since it provides effective solutions whilst preserving the agents’ limited computa-
tional and communication resources. However, despite this potential, thus far, max-sum
has only been tested in simulation. As a consequence, max-sum’s robustness and flexi-

bility for real applications have not been tested in practice.

To address this shortcoming, this chapter provides two key contributions. The first is
to describe a potential system whereby we deploy max-sum to coordinate a team of
unmanned aerial vehicles to provide live aerial imagery to the first responders operating
in the area of a disaster. However, as discussed in Chapter [, max-sum’s performance
greatly depends on the way it is applied to a problem. For this reason, users less
familiar with max-sum, might have trouble deploying the algorithm efficiently. This
performance is affected by both the way in which a generic problem is encoded to form
the input of the algorithm, and the way the algorithm is decentralised between the
available sources of computation. In addition, whereas there exists a variety of ways to
apply the algorithm in the literature, a general framework that discusses and analyses
these issues is absent. Hence, the second contribution of this chapter (Section B.I))
introduces a methodology that a developer can use to deploy max-sum for problems

related to situational awareness. This methodology is a set of general rules that unify

71
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the different ways in which the algorithm can be applied to these problems and analyses

their advantages and disadvantages.

Section then presents a case study on disaster response. Specifically, we consider a
scenario similar to the one presented in Chapter [Il in which a team of UAVs interacts
with first responders to provide real-time live aerial imagery of specific sites of the area of
a disaster, such as damaged buildings or flooded streets. Each first responder is provided
with a personal digital assistant (PDA) that he uses to submit imagery requests in the
form of tasks and to collect such imagery as soon as it becomes available. Each PDA
uses a touch screen interface which allows the first responder to request imagery tasks
about any area in his proximity and to specify the task’s importance. The aim of the
UAV team is then to complete these tasks in an effective fashion. This means that the
team should be able to coordinate whilst interacting with such PDAs to jointly decide
over an assignment of the tasks that can maximise the number of completed tasks whilst
preserving the limited battery capacity of the vehicles. When all the tasks cannot be
completed, it should also enable the UAVs to discriminate between the tasks so that the

most important ones are preferred.

Now, coordinating UAVs whilst interacting with first-responders presents various chal-
lenges (see Section B.2.] for a more thorough description of the problem). Tasks can
have various degree of importance. For instance, collecting imagery of a building on
fire is typically more important than collecting imagery of a building that has just been
evacuated. The termination of a task is uncertain. For instance, some tasks might re-
quire imagery to be collected for a long interval of time (e.g. a building on fire), whereas
others might require it to be collected for a short interval (e.g. a burnt out building),
but the exact time cannot be known with precision before-hand. UAVs have a limited
battery and some of them can fail, but the remaining team should continue the operation

nonetheless. Consequently, coordination should be performed in a decentralised fashion.

Against this background, Section proposes a novel solution to the problem of coordi-
nating teams of UAVs for dynamic real-time task assignment. We show how this problem
can be cast into a decentralised optimisation problem and introduce a novel utility func-
tion in which several constraints, such as the task’s importance and the UAVs’ battery
capacity, are carefully weighted to maximise performance (Sections B.2Z2.1] and B.2.2.7)).
In so doing, we improve over canonical metrics such as entropy or mutual information
gain which focus only on maximising the information collected since we incorporate all
the above mentioned constraints into one single function. Next, we solve the coordina-
tion problem by using the max-sum algorithm and distribute the computation between
both the UAVs and the PDAs so that the computation of the solution of the problem
is not delegated only to the UAVs which are potentially the most unreliable part of
the system (Sections B.2.2.3] B:2.2.4] and B.2Z.2.7]). Next, in Section B:2:3] we empirically

evaluate our utility against similar ones but which do not take all the constraints into



Chapter 3 Application of the Max-Sum Algorithm for Disaster Response Scenarios 73

account. By so doing, we show that our function yields a better trade off between the
quantity and quality of completed tasks. We then describe our experience of deploying
our techniques on two real UAVs and show the effectiveness of max-sum in different
scenarios, thus demonstrating its practical viability. Finally, Section B.3] summarises the

chapter.

3.1 The Max-Sum Methodology

Our methodology focuses on the incomplete version of the max-sum algorithm. Indeed,
as discussed in Chapter 2] the incomplete max-sum algorithm requires less computation
and communication than the complete versions of the algorithm. Thus it is more suitable
to be deployed on low powered robotic agents such as unmanned aerial or ground vehicles
(UAVs and UGVs respectively) which constitute the type of agents that we will deploy
in this chapter. More specifically, as mentioned in Chapter [I, our methodology tackles
problems related to the deployment of robotic agents in the domain of disaster response

to acvhieve situational awareness.

Within this setting, we adopt the explicit coordination architecture discussed in Chap-
ter 2l In more detail, the algorithm is not used as a single shot optimisation technique.
Rather, it becomes a distributed message passing protocol embedded within the coor-
dination architecture. This message passing protocol allows the agents to continuously
make decisions as the mission proceeds, by calculating the utility that each of their pos-
sible joint decisions can yield. These utilities, as we will shortly see, are encoded within
the function nodes of the factor graph. This means that the latter function nodes now
represent the utilities of collective decisions, instead of constraints between variables as
was discussed in Section 2.4.7]

In more detail, our methodology is composed of five steps. Each describes one aspect to

take into account when deploying max-sum.

Step 1 — Defining Variables: Each variable of the factor graph represents a vehicle’s

decisions. These decisions take one of two forms in situational awareness domains:

e Decisions as actions: Each action is specific to the type of vehicle that is de-
ployed. Each action is related to the manoeuvres that the vehicle can make and is
defined by discretising its motion space. For instance, the actions of a fixed wing
UAV are defined as the set of bank angles that it can follow, whereas the actions

of a UGV are defined as its steering inputs.

e Decisions as tasks: Each task is a unit of work to be attended. Examples
related to disaster management include imagery requests or tracking targets such

as drifting life-rafts and ground vehicles.
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The developer needs to be extremely careful when defining variables, since their number
and the size of their domain influence the performance of max-sum in two ways. First,
in terms of communication overhead, the length of a max-sum message to or from a
variable z; is linear in the size of its domain D; (O(|D;|)). Second, the complexity of
computing a message from a function to a variable message is O([[,, ¢ [Dk[). Thus, it
is polynomial in the size of the individual domains, and exponential in the number of
connected variables. The latter can be problematic when decisions represent tasks since
their number is likely to be large. To address this shortcoming, a variant of max-sum

exists, tailored for task assignment problems which was presented in Chapter [2]).

In this work, the algorithm is used on a task assignment problem. Hence, this version

is the one adopted here.

Step 2 — Defining Functions: Each function of the factor graph quantifies the impact
of a joint set of decisions on the value of the global constraint function (Equation 21).

These functions take one of two forms for situational awareness domains:

e Utility of a vehicle: This utility identifies the contribution of each vehicle to the
set, of measurements that the team is making. This representation is used in infor-
mation gathering problems such as those described in Section In particular,
it is used when vehicles are coordinating to make collective measurements of some
specific feature such as the temperature of a building or the position of a drifting
life-raft (Bourgault et all, 2004). In these settings, actions represent a vehicle’s
decisions and are used to identify the local measurement corresponding to each of
its possible manoeuvres. A collective measurement is then defined as the union of

all the vehicles’ local measurements.

e Utility of a task: This utility quantifies the assignment of one or more vehicles
to a task (e.g. providing imagery of an area or tracking a drifting life-raft). A
decision then represents the assignment of a task to a UAV. Thus, a utility assigns
a value to determine which vehicle is more capable to attend a specific task, given
the vehicle’s properties such as its battery life or current position, and the task’s

properties such as its duration and importance.

Step 3 — Allocating Nodes: The computation related to the functions and the vari-
ables of the factor graph (algorithms 28] and 2[]) needs to be allocated to one of the
available sources of computation. These include vehicles, laptops, desktops and PDAs.
This is extremely useful since UAVs and UGVs have heterogeneous and limited compu-
tational resources and, most importantly, they can fail. Each node is then assigned as

follows:
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e Variable Allocation: Each variable is allocated to the vehicle whose decisions it
represents. Another option is to allocate the variable to an independent platform
such as a laptop or a PDA, considering that a very reliable communication channel
needs to be built between the variable and the actual vehicle in order to send each

decision.

e Function Allocation: Each function is allocated depending on which of the two

approaches defined in step 2 is used:

— Utility of a vehicle: Each function is allocated to the vehicle whose utility

it represents.

— Utility of a task: Each function can be allocated to any vehicle that can
attend the task. Any allocation mechanism can be used to select one of these
vehicles. For instance, a random allocation mechanism can be used or the

one with the lowest id can be chosen.

Note that, similarly to variables, each function can be allocated to an independent

platform provided that a reliable communication channel is built.

Step 4 — Selecting a Message-Passing Schedule: A schedule for computing algo-
rithms 2B 2[] and to make a decision (Equation 2.IT]) is necessary for three reasons.
First, max-sum requires the nodes to share a specific number of messages before Equa-
tion [Z17] can be calculated for each variable (i.e. before the vehicles can compute a
decision). Second, in most real world settings, the structure of the problem changes
continuously, therefore messages need to be shared to incorporate and propagate the
changes in the environment. Third, communication is lossy in many real world settings,
therefore sending redundant messages (i.e. computing algorithms 2[3 and 24 more fre-

quently) can result in more messages being received. Three schedules can be used:

e Synchronised schedule: A node waits to receive all the messages from its neigh-
bours before computing new ones or making a decision. This schedule can only
be used in settings where communication is perfect (i.e. in simulation). When this
is not the case, as in most real world settings, a node can wait for a message to
arrive for an undefined amount of time. Thus it would generate a deadlock which

would prevent all the other nodes from functioning.

e Periodic schedule: A node computes its messages (and makes a decision) peri-
odically given the most recent messages. This schedule is highly recommended in

scenarios where communication is lossy.

e Response schedule: A node sends a new message (and makes a decision) in
response to the arrival of a single message from another node. This drastically

reduces the computation of redundant messages compared to a periodic schedule.
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Indeed, new messages are computed only in the presence of new information.
However, since this redundancy is now lost, this schedule is suitable in domains

where communication is not lossy.

Step 5 — Updating the Neighbourhood: The vehicles used in disaster management
typically use broadcasting to communicate with each other, since it is cheaper and
easier to implement than point to point or multicast communication (Grocholskyl, 2002).
However, recall from Section 2.4.4] that each node of the factor graph sends and receives
messages from a specific set of neighbours. Due to the dynamism, these neighbours
can change since the structure of the factor graph can vary continuously. Hence, each
node needs to keep track of, and constantly update, its neighbours to identify its own
messages among those that it receives. Depending then on the type of node, this update

happens as follows:

e Variable nodes:

— Decision as actions: For each vehicle, the neighbouring function nodes
of its decision variable are the utilities of all the other vehicles that can
make measurements that overlap with its own. In order to calculate these
neighbours, all the measurements collected thus far are, initially, fused into a
global estimate of a feature of interest, such as the temperature of a building
or the radiations emanating from a power plant (Bourgault et all, 2004).
Then, this estimate is used to calculate each vehicle’s contribution to the

next collective measurement (Stranders et al), 2010).

— Decisions as tasks: For each vehicle, the neighbouring function nodes of
its decision variable are the utilities of all the tasks that it can attend to.
These are continuously updated by the communication between the different

platforms, so that completed tasks are deleted while new ones are added.
e Function nodes:

— Utility of a vehicle: For each vehicle, the neighbouring variable nodes of
its utility are the decision variables of all the other vehicles that can make
measurements that overlap with its own. These are calculated when updating

the utility with new overlapping measurements.

— Utility of a task: For each task, the neighbouring variable nodes of its utility
are the decision variables of all the vehicles that can attend to it. These are
continuously updated by the communication between the different platforms
so that new vehicles that can attend the task are added, while those that can

no longer attend are removed.
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F1GURE 3.1: An example of a PDA used by the first responders within our setting.

In order to understand the way in which this methodology can be used to deploy max-
sum in real world settings, we will now outline a case study in which the algorithm is

used to coordinate teams of UAVs for disaster management.

3.2 Case Study on Disaster Response

In this section, we describe our disaster response system that allows first responders to

request imagery collection tasks to a team of UAVs flying above the area of a disaster.

3.2.1 Problem Description

The first responders request imagery collection tasks from the UAVs using a touch screen
PDA (see Figure B.J)). This PDA runs a touch screen interface which allows a first
responder to submit imagery tasks of any area within his proximity (see Figures
and [3.2()). Each task T} represents a location (in geographic coordinates) for which
imagery is required. To submit a task, each first responder sets three properties (Figure
3.2(a)): (i) priority p; = {normal, high, very high}, representing the importance of
the task (i.e. collecting imagery of an occupied building is more important than doing so
for an empty one); (ii) urgency u; = {normal, high, very high} used to prevent tasks’
starvation, as will be discussed shortly and (iii) duration d;, which defines the interval of
time for which imagery needs to be collected. Note that a first responder does not know
this duration with precision since it depends on the specific reason for which imagery
is required (e.g. to search for a casualty or to check access to an area). Thus, three
estimates are considered (d; = {5 min, 10 min, 20 min}). To complete a task, a UAV
needs to fly to the specified location, station itself above it and stream live video to the
PDA until the first responder indicates that the task is completed (Figure . The
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ADD A TASK

Priority

NORMAL HIGH VERY HIGH

Urgency

NORMAL HIGH VERY HIGH

Duration

§ MINS 10 MINS 20 MINS

START OVER MARK TASK AS COMPLETED

®@
@ @
MAP TASKS RADAR
(b)

Task Monitor

(a) Task Input

FIGURE 3.2: The PDA’s interface.

information about each submitted task is then broadcast by the corresponding PDA, so
that the UAVs in the surrounding area that receive it add the task to the set of tasks
that they can potentially attend. The UAVs then jointly decide which task each vehicle
should complete and, in so doing, they maximise the number of completed high priority

tasks. We achieve this coordination by applying max-sum as discussed next.

3.2.2 Application of the Methodology

The max-sum algorithm is used here to allow the UAVs to jointly decide which task
each of them should attend. The algorithm is deployed as follows:

3.2.2.1 Step 1 — Defining Variables:

Each variable x; takes values in the set of tasks that UAV ¢ can attend. This choice fol-
lows from step 1 of the methodology, when decisions represent tasks. As a consequence,
the domain of x; is defined as the set of tasks 7; that UAV i can attend, where 7; C T
and T = {11, Ts,...,Tn} is the set of all the submitted tasks. Since UAVs have limited
communication capacities, they will only be able to attend a subset 7; of the tasks in
T. Again this follows from step 1 of Section 3.1l
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3.2.2.2 Step 2 — Defining Functions:

A utility function U; measures the utility of one or more UAVs attempting to complete
task T;. This choice follows from step 2 of the methodology applied to the case where

utilities quantify the assignment of a task.

To achieve this, the key factor to model, in addition to the priority p; and the urgency
uj, is a task’s termination. As stated in Section B2} the termination depends on
whether a first responder is satisfied with the amount of imagery collected. Hence, we
can represent it as an uncertain factor of the utility function U;. In particular, we model
task completion as a Poisson procesj Chitale, 2008) measured over the time interval
in which one or more UAVs can station itself above task 7. To define this interval,
consider all the UAVs that can attend 7. Live imagery can then be collected from
t1 = min; t} to to = max;t , where tl %ﬂ is the timeq required by a UAV i to reach
task T and where t? =t + b; is the remaining time that UAV i can remain on station
(b; is the UAV battery capacity, in terms of remaining flight time) above Tj. The utility

Uj is then defined as follows:

—10
U(X;) = pj -y 7 - [1 — et (3.1)

where t is the current time, and p;, u; and t? are, respectively, T}’s priority, urgency

and activation time.

Intuitively, the utility defined by Equation B.I] measures the impact of each possible
assignment X]’- € X; of the UAVs aware of Tj on its completion (i.e. t; and ty are
calculated over those UAVs where z; = T}). Each possible assignment then represents a
different subset of the UAVs that can attend T} and for which U; needs to be calculated.
In so doing, this utility allows the UAVs to make a variety of sophisticated decisions
based on all the possible constraints of the problem. For instance, the platforms will
always choose tasks with higher priority (due to the factor p; in Equation BI). If
these have the same priorities, the UAVs will always choose the one that has remained

)
unattended for a longer interval of time (due to the factor ul; " in Equation B10).

In addition, multiple UAVs may attend a task if this extends the time span for which
at least one UAV is on station above the task. To understand this, consider the factor
1 —exp " (t2=11) of Equation Il This factor represents the probability P(t; < t; < t3)

that the time at which 7} is going to terminate lies within the interval [ti,%2]. More

I\ = % is the rate parameter of the Poisson process.

J
2d;; is the Euclidean distance between a UAV 4 and task T; and V; is UAV i’s average speed
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formally, it is derived as follows:

t2

Pt <t <ta) = [ exp(-2; - o)z (3.2

t

1752—t1
= /0 Aj-exp(=A; - x)dx (3.3)
e N ta—t1
Y [] (3.0
Aj
0

=1 —exp M(27t) (3.5)

Hence, multiple UAVs will attend a task, when the time span (t2 — ¢; in Equation
[B1) depends on more than one UAV. For instance, whenever, one UAV has a higher
remaining battery life (i.e. to is higher) but another one is closer to the task (i.e. 1 is

smaller)

In general, the key advantage of this utility is that it allows the UAVs to coordinate
over a variety of sophisticated decisions which take into account the multiple parameters
of the problem, such as the UAVs battery capacity, their distance to the tasks and the

task’s actual importance. The following example illustrates one such behaviour:

Example 3.1. Task Handover: Consider a scenario with two wvehicles UAVT and
UAV,. UAV) has a long remaining battery capacity (by = 1000s), while UAV, has less
(ba = 800s). Two tasks Ty and Ty are submitted to the system: T3 has a high priority
(p3s = high) and Ty has a low one (py = low). Both the tasks have low urgency and
duration. The time required by the UAVs to reach each of the tasks is shown in the
following table:

UAV, | UAV,
T3 80s 70s
Ty 60s 50s

Figure[3]] illustrates the scenario. Given this setting, the utility (Equation[31)) for both
T5 and Ty will be higher when both the UAVs attend each task (t1 = 70s for Ts and
t1 = 50s for Ty whereas ty = 100s for both T3 and Ty). To understand this, consider the
time interval shown in Figure for task T3 (the same interval applies to Ty): the
interval of time [t1,t2] on which the probability of the tasks depends (see Equation [3])
s higher when t1 belongs to UAV, and to belongs to UAVy. This means that Equation
[Z1 is mazximised when both the UAVs attend the task. Task T3 will then be selected first
since it has a higher priority. Next, as shown in Figure UAVy will reach T3 first
since it is closer, but the allocation of UAVs to tasks will remain the same. However,
this changes as soon as U AV reaches Ty (Figure . Indeed, as shown in the figure,
the interval [t1,ts] is now larger when both t; and to belong to UAVy. This means that



Chapter 3 Application of the Max-Sum Algorithm for Disaster Response Scenarios 81

0 t

T T 2 5
ty = tUAV2 tUAvl tUAV; ta = tUAvl

(a) UAV; is closer to T5 (t1 = t%JAVQ in Equation [3T])
but UAV] has a higher battery life (t2 = t%JAvl in Equa-
tion [31))

A

t

t =Mty av, trav, tFray, t2= thav,
(b) UAV, reaches T3 before UAV;, the allocation re-
mains the same, due to Equation B}

A

41 — 41 2 42 t
t =ltyav, = tyav, toav, t2 =ty

(¢) UAV; also reaches T3: the allocation changes and
the task is handed over to UAV; since t1 = t%JAVI and

to = t%JAvl in Equation [31]

FIGURE 3.3: Three sequential configurations of the remaining battery capacity (t2) and
the time to reach the task (¢1) (see Equation B]) of the UAVs for task T3 in Example
B.1

the utility of Ty is now mazimised only when UAV] attend the task. Hence UAVy will
hand over the task to UAV, and will head over to task Ty.

3.2.2.3 Step 3 — Allocating Nodes:

Each UAV is allocated the variable representing its decisions. Similarly, each PDA is
allocated the utility functions of the tasks submitted by the first responder.

The reasons for doing this were discussed in step 3 of Section Bl In essence, by choosing
such approach, we use all the available computational power (of both UAVs and PDAs)
and, additionally, we reduce the UAVs responsibilities in controlling the team’s decision

making process which guarantees more robustness. Indeed, as discussed in Chapter 2]
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T3}

505", 60

FIGURE 3.4: The scenario of two UAVs and two tasks illustrated in Figure 311

UAV, UAV,

FicUure 3.5: A factor graph showing 2 variables nodes, 3 function nodes and the
platforms controlling them.

the UAVs are, potentially, the most unreliable part of our system. Thus delegating all
the computation to them might not be the safest choice. Figure shows an example
of a factor graph resulting from this allocation. The figure shows two UAVs (UAV; and
UAV3,) controlling two variables x1 and x9 and two PDAs: PDA; controls two tasks T}
and Ty (and the corresponding utilities U; and Usz) while PDAg controls one task T3
(and its utility Us).

3.2.2.4 Step 4 — Selecting a Message-Passing Schedule:

We use a periodic schedule to compute the max-sum messages. This choice follows from
step 4 of Section B.Jl Each device (UAV or PDA) then periodically runs algorithms 23]
and 2[] to compute the new messages and decisions (Equation 2.11]), given the messages

that it received.

3.2.2.5 Step 5 — Updating the Neighbourhood:

Within our setting, variables can appear and disappear at anytime since UAVs can run

out of battery and new tasks are constantly submitted or completed. Thus, as suggested
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by step 5 in Section Bl UAVs and PDAs continuously share information about their
status (e.g. their positions, the UAVS’ remaining battery and the tasks’ properties).
Then, the information about each variable’s neighbours is stored and updated as new
tasks are submitted or completed. Similarly, the information about each function’s
neighbours is updated each time a new UAV becomes able to complete the function’s

task or runs out of battery life.

The use of our methodology allows max-sum to handle both the coordination between
the different UAVs and their interactions with the PDAs at the same time. In so doing,
we avoid the use of distributed protocols, which would handle the coordination and the
interaction separately. In terms of decision making, this means that UAVs continuously
produce new collective decisions by calculating the joint variable assignment X* that

maximises the sum of all the tasks’ utilities:

N
X* = arg maxz U;(X;) (3.6)

X =1

The previous equation is a specialisation of Equation 2.1l to the task assignment setting.

After completing step 5, the system is now ready to be deployed. In the next section we

present our empirical evaluation.

3.2.3 Empirical Evaluation

The aims of our experiments are twofold. First, we wish to study the properties of
the task utility and verify whether it is actually effective for solving the task allocation
problem. In more detail, we wish to verify whether the utility allows the UAVs to
carefully trade-off between the different tasks and always try to complete the tasks with
the highest priority. To achieve this, we benchmark our utility against similar ones in a
controlled repeatable setting (Section B.2.3.1)). The latter utilities behave greedily and
abstract out some of the constraints of the problem to favour a quicker allocation of the
tasks.

Second, we deploy our system on two “hexacopters” (see Chapter 2] for more details)
and evaluate its performance in the real world (Section 3.2.3.2)). In so doing, not only
are we able to ascertain how our coordination system responds to the complexity and
the unpredictability of the real world, but also, we can verify the actual performance of

max-sum as a coordination algorithm for robotic agents.

Within our experiments, we make two asssumptions. First, we assume that neither the
UAVs nor the PDAs can fail. The reason for this is that we reproduce this assumption

within our tests because variables and functions continuously appear and disappear due
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to either the completion of a task or one UAV running out of battery life. Second,
we assume that communication between the UAVs and the PDAs is perfect (i.e. no
messages are lost and the delay between sending and receiving a message is limited to a
few milliseconds). In fact, we decided to focus on testing the system assuming perfect
communication for two key reasons. The first comes from a feature of max-sum discussed
in Chapter 2l Intuitively, each max-sum message carries more information than other
coordination algorithms. Hence, it is sufficient for very few messages to be received to
yield good solutions. In addition, as discussed in Section Bl when communication is
limited, a response schedule can be used to send a larger number of redundant messages
to increase the probability of the agents receiving them. The second reason comes from
literature which has shown that max-sum is robust to communication failure in simulated
environments (Farinelli et all, 2008). Naturally, this still remains to be demonstrated
in the real world and will be one of the challenges to address in our future work (see
Chapter ).

3.2.3.1 Simulation Tests

We benchmark our utility (the Complete utility C') against four other utilities, each
t—t}
i

duration IB&D) that removes the constraint related to the duration (\;) and to the
UAVs properties (i.e. remaining battery capacity t2 and distance t;); (i) U? = 1 —ef27%

considering an increasing number of constraints: (i) U} = p; - u (ignores battery and

(ignore priority and urgency I P&U) that removes the priority p;, the urgency and the
activation time constraint uZit%’; (iv) UP = 1 — efmax—t1 (ignore battery IB) that again
removes priority and duration, but also the battery capacity (tmax is equal to the initial
amount of each UAV’s battery capacity); finally, as a lower bound we benchmark all the
former approaches against a local greedy algorithm (LG) where each UAV selects which

tmax 7tij

task to attend depending on the utility and (v) UP = p; - u; - that gives a higher

max

value to the closest high priority tasks.

We run 200 simulations, considering a set of fixed independent variables whose values
are chosen so as to generate settings likely to happen in the real world (Cole, 2009;
Grocholsky, 2002). In more detail, we consider teams of 10 UAVs and 30 tasks, their
initial position was randomly chosen within an area of 1500 x 1000m. For each UAV j:
b; € [500s,1000s]), V; = 5 m/s and j’s communication range is set to 400m. For each
task T;: t? € [0,1000]); p; = 1 or p; = 1000; d; ~ 5min or d; ~ 20min (note that we
only consider two values to emphasize the impact of the priority and the duration on
each task’s utility); finally, since both priority and urgency linearly influence the utility,
we set the urgency (u; = 1.001). The completion of a task is uncertain and drawn from
a Poisson distribution. In each experiment we measure the number of completed tasks
over the total number of tasks and the number of completed high priority tasks over

the number of completed tasks. Finally, we measure the influence of each utility on the
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battery capacity of each UAV by recording the average number of time that each UAV

runs out of battery capacity while hovering above a task.

Results are shown in Figures [3.6(a), [3.6(b)| and [3.6(c)l The error bars in the figures
represent the standard error of the mean. In more detail, Figures [3.6(a)| and
confirm that our utility does yield indeed a better trade off between the quality of tasks
completed and their quantity. To understand this note that Figure shows that the
utility that yields the highest average number of completed tasks ratio is ITP&U (55%

of the tasks are completed). This is expected since it represents the less constrained

utility, that does not discriminate between tasks and thus allow a higher number of
them to be completed. Our utility and I B are more constrained, therefore they complete
respectively 50% and 45% of the available tasks. The two remaining utilities (I B&D
and LG) behave greedily and therefore by using the UAVs end up attending always the

same tasks. Hence, they perform much worse than the other ones.

Now, Figure shows that our utility is the one completing on average the highest
number of high priority tasks (75% of the completed tasks have a high priority). Indeed,
by using IP&U only 55% of the completed tasks have a high priority. Thus, through
the use of our utility, the UAVs yield 5% less completed tasks than through the use
of ITP&U. Thus these results show that our utility yields a better trade off between
the quality and the quantity of the tasks completed. The other benchmarks perform as
expected, by using I B, the second most constrained, 65% of the completed tasks have
a high priority, whereas the remaining two (I B&D and LG) utilities yield roughly 50%
of high priority completed tasks. This surprisingly high rate is explained by considering
that the assignment of the priorities is based on a uniform probability (i.e. 50% of the

tasks have a high priority and 50% have a low one).

Figure |3.6(c)|[ shows that by using our utility, only 4 out of 10 UAVs run out of battery
while hovering above a task, whereas by using the other utilities the number varies from
5 to 7. Running out of battery while hovering is a clear symptom of the fact that the
assignment has been done in a non-effective fashion since the battery life of the UAV
has not been taken into account. In this sense, the poor performance of the utilities not
considering the battery life, such as LG, IB&D and IB is to be expected, whereas the
performance of the two remaining utilities is roughly the same since they both take the

UAVs battery into account.

3.2.3.2 Real-World Flight Tests

We demonstrate our system using two commercial off-the-shelf Mikrokopter hexacopter
multi-rotor rotary wing UAVs (see Chapter [2) and two ground-based PDAs. These
were deployed on two desktop PCs (Intel Core 2 Duo 3.0GHz, 3.2Gb RAM) connected



Chapter 3 Application of the Max-Sum Algorithm for Disaster Response Scenarios 87

via ethernet. Figure B.7 illustrates the way we built our system. As shown in the
figure, a software module containing the max-sum algorithm described in Chapter 2l is
implemented for both UAVs and PDAs. Each decision made by a UAV is transmitted
to the corresponding hexacopter wirelessly. Each UAV is provided with a flight control
system that provides both attitude stabilisation, as well as GPS waypoint-based guidance
system to control its motion—it follows a sequence of waypoints representing locations
to reach—while holding a pre-determined altitude. A pair of 900M H z radio modems are
used to establish a wireless command and control datalink between the ground control
software and the UAVs. Each UAV is finally equipped with a downward pointing video

camera to capture imagery of the targets (white squares laid on the ground).

Hexacopter 1 Hexacopter 2
UAV Control UAV Control
Software Software
PDA Control PDA Control
Software Software

Ground Control Software

FI1GURE 3.7: The architecture of our System

Our tests were run at a test facility outside of Sydney, Australia. A video summarising
the tests can be found at http://vimeo.com/34800379. In the video (see Figure B.§ for
a snapshot), windows A and B show the hexacopters, window C' shows the computation
over the factor graph over which max-sum is running and window D shows the path of
the UAVs. We conducted three tests:

Flight 1 — Homogeneous Tasks: Two identical tasks (77 and T3 in Figure
both have normal priority and urgency, 5 min duration) are simultaneously submitted to
the UAVs (UAV; and UAVy in the figure). The aim of this test is to assess the behaviour
of the coordination mechanism in response to a canonical coordination scenario. In this
setting, the maximum of each task’s utility is obtained when the task is assigned to
the closest UAV (this is due to the exponential factor in Equation B.]). Initially, the
two UAVs coordinate by sharing max-sum messages with the PDAs. The coordinated
decision that maximises the sum of the tasks’ utilities U(x) is then the one in which

each UAV is assigned a single task. Indeed, this is what we observed during our test
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C

F1cUrE 3.8: A snapshot of the video summarising the three flight tests.

3.9(b)| confirming the correctness of our system. Figure finally shows the UAVs

hovering above their corresponding tasks.

Flight 2 — Sequential arrival of Tasks: Two different tasks (77 and 75 in the figures,
T1 has a normal priority, while 75 has a high priority, both have normal urgency and
5 min duration) are submitted to the UAVs (UAV; and UAVjy in the figures). T is
submitted 40s after T;. The aim of this test is to assess the behaviour of the mechanism
in the presence of heterogeneous properties and dynamism. Initially, only 7} is present
and the maximum of its utility is obtained when it is assigned to both the UAVs (due
to the exponential factor in Equation B.1). Note that the utility of assigning the task
to both the UAVs cannot be lower than the utility of assigning it to only one of them
(i.e. as shown by Equation B.]). For this reason, in this case, the UAVs both go to
the same task (Figure . As soon as Ty appears, the setting becomes the same
as per flight 1. Thus, the maximum of each task’s utility is obtained when the task is
assigned to the closest UAV. Thus, the UAVs revise their decisions and UAVy goes to
complete it (Figure . In so doing, this setting also demonstrates the advantage
of a coordination approach such as max-sum which allows the UAVs to complete both
the tasks, instead of a greedy algorithm which would not allow the agents to revise their
decisions and would keep sending them to the same task, resulting in a sub-optimal
allocation. Next, once 717 is completed, the setting becomes the same as the beginning
of Flight 2. Thus, again the UAVs revise their decisions and are both assigned to the
remaining task (Figure . Three coordinated decisions then maximise the sum of
the tasks utilities U(x). Initially, the best decision is the one in which both the UAVs
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(a) Flight 1: The UAVs make a decision

(b) Flight 1: The UAVs move to their tasks

(c) Flight 1: The UAVs complete their tasks

FI1GURE 3.9: A sequence of snapshots depicting the behaviour of the two UAVs in flight
1.
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(a) Flight 2: The UAVs go to the first task

(b) Flight 2: The second task appear, the UAVs change their deci-
sions

(c¢) Flight 2: First task is completed, the UAV goes to the second
task

FicUure 3.10: A sequence of snapshots depicting the behaviour of the two UAVs in
flight 2.
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are assigned to the only available task. Then, the best decision becomes the one in which
each UAV is assigned a single task. Again, this is what we observed during our test.
Finally, the best decision is the one in which they are again assigned to the remaining
task.

Flight 3— Heterogeneous Capabilities of the UAVs: Two identical tasks (77 and
T5, both with normal priority and urgency, 5 min duration) are submitted to the UAVs.
However, here, UAV5 receives the information only about 75, while UAV'{ receives the
information about both. After 60s a new task (73 with the same properties as the
previous ones) is submitted to both the UAVs. The aim of this is to test the behaviour
of the system when the capabilities of the UAVs are heterogeneous. Initially, only one
assignment is possible since UAVs can only attend 75. Thus, the maximum of this
task’s utility is obtained when the former UAV is assigned to it (Equation B1)). The
same applies for UAV; and T;. Figure shows such a situation in which the
UAVs coordinate and go to one task each. As soon as T5 appears, as per flight 1, the
maximum of its utility is obtained when it is assigned to the closest UAV (UAV3), which
is, however, already completing another task (Figure . Thus, two coordinated
decisions maximise the sum of the tasks utilities U(x). Initially, the best decision is the
one that assigns each UAV to a single task. However, as soon as one UAV completes its

task, the best decision becomes the one in which this UAV is assigned to the new task

(Figure B11(c)).

3.3 Summary

This chapter presented a study of the deployment of the max-sum algorithm to achieve
situational awareness in disaster response scenarios. In more detail, we described a po-
tential system for disaster response. The system uses the max-sum algorithm to allow a
team of UAVs to interact with the first responders at the scene of a disaster in real time,
and coordinate to complete imagery collection tasks. A novel task utility is defined so
that the various constraints characterising the problem, such as the task’s importance
and the UAVs’ battery capacity, are carefully weighted to optimise performance. By
running max-sum, the system is decentralised and meets most of the requirements pre-
sented in Chapter [l In particular, the system can scale because the computation is
distributed between UAVs and PDAs, it is robust to component failure because there
exists no central point of control and it is resource aware since the max-sum algorithm
exploits the locality and the sparseness of the agents interactions to reduce the compu-

tation required to compute and send messages.

At the beginning of this chapter, we also argued that a user who is not familiar with max-

sum and the generalised distributive law framework, might have trouble deploying the
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(a) Flight 3: Two tasks only, the UAVs make a decision

(b) Flight 3: The third task appears

(c¢) Flight 3: Two tasks are completed, the UAV heads to task re-
maining

F1GURE 3.11: A sequence of snapshots depicting the behaviour of the two UAVs in
flight 3.
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algorithm on real robotic agents such as UAVs and UGVs. To address this shortcoming,
this chapter proposed a methodology that carefully guides the less-experienced developer
to a successful deployment of the max-sum algorithm for problems related to situational
awareness. This methodology is a set of general rules that unifies the different ways in
which the algorithm can be applied to these problems. In so doing, the algorithm can
meet the generality requirement described in Chapter [I, because we define a set of rules

to deploy it successfully for any problem related to situational awareness (see Chapter

2).

The system is evaluated both in simulation and in the real world. The former demon-
strates that the use of our utility allows the UAVs to carefully trade-off between the
different tasks and always favour the high priority ones given the remaining constraints
of the problem. In so doing, it allows us to confirm empirically the accuracy of our
system. As a consequence, it allows us to demonstrate the system’s full effectiveness,
despite the fact that it does not meet the performance guarantee requirement (Chapter
). Real world tests are then used to ascertain the performance of the system in the real
world. In more detail, the system is deployed on two hexacopters UAVs and is tested
on three different settings. Our tests indicate that our system responds well to the com-
plexity and the unpredictability of the real world. In addition, they show max-sum’s
power as an algorithm to coordinate real UAVs. Hence, since we argued in Chapter
[ that max-sum’s potential for coordinating teams of real robotic agents still remains
to be verified, by running these tests we can finally demonstrate max-sum’s practical

viability.

Despite this potential, however, max-sum still does not fully address the requirement of
the complex interactions presented in Chapter [[l The focus of the next chapters is then
on extending the algorithm to meet this requirement and on presenting three specific
examples of complex interactions, namely multiple objectives (Chapter [Bl), uncertainty
(Chapter [@) and online learning (Chapter [7). To do so, the first step, is to go back to
pure theory and derive new formalisms and algorithms to model and solve coordination

problems involving complex agents’ interactions. This is the focus of the next chapter.






Chapter 4

A Class of Algorithms for
Partially Ordered Coordination

Problems

This chapter presents a general framework to represent settings in which agents are re-
quired to make complex joint decisions which cannot be measured using the real-valued
constraint functions used in traditional distributed constraint optimisation problems
(DCOPs). In so doing, this chapter provides the first fundamental step towards ad-

dressing the requirement of complex interactions described in Chapter [l

In general, DCOPs constraint functions are typically used to measure the agents’ joint
decisions. Examples include the utility of a task assignment or the impact of a set of
agents’ actions on a collective measurement (see Chapter [3] for more details). However,
in many application domains, the agents are typically interacting over complex decisions
defined over multiple, different, dimensions. To measure the quality of these complex
interactions, it becomes then necessary to trade off between such dimensions. As an
example, consider the domain of disaster response discussed in Chapter 2l When a
team of unmanned aerial vehicles (UAVs) is deployed to search and track lost life-rafts
drifting at sea, they are making decisions over two parameters representing the former
two objectives. Hence, they should carefully weight each of those objectives to make
an effective decision (see Chapter [Bl). Similarly, uncertainty characterises most of the
UAVSs’ parameters. For instance, the agents’ location is not known with precision and
their sensors are noisy. When this uncertainty is known, the UAVs can make decisions by
trading off a set of parameters such as the mean, the variance and the risk characterising
the former uncertainty (see Chapter [6]). In contrast, when this uncertainty is unknown

and the agents have to learn online the outcome of their decisions, considering parameters
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such as the average sample value of the former decisions’ outcome and their bounds (see
Chapter [7).

Unfortunately, however, real-valued functions cannot encompass the complexity of the
above mentioned parameters. For instance, a real valued function cannot model the
trade off between searching and tracking targets for different UAVs because these two
objectives are in fact conflicting. This means that maximising one objective might result
in detrimental performance in terms of the other and this cannot be measured by a real
valued function. In addition, it cannot represent the trade off between the uncertainty
characterising the decisions of a team of agents, because it depends on the probability
density function characterising such decisions and their risk. However, to define the
risk it is necessary to carefully weight the uncertainty over the agents decisions, by
considering all the possible parameters that define the specific pdf of the agents’ decisions
(i.e. it is necessary to consider a sufficient statistic). This, again, cannot be represented
using a real valued function. Finally, a real valued function cannot model the trade
off between the average sample value and the bounds on the uncertainty of the agents’
decisions when they are learning online. The reason is that to define these bounds it
is necessary to define the uncertainty related to the sampled value by using a set of

parameters which are not measurable by simply using a real number.

Given these shortcomings, it becomes necessary to define a new framework capable
of encapsulating of the different features defining coordination problems in which the
agents are making complex interactions involving trading off multiple parameters. In
addition, it becomes necessary to define new solution techniques capable of solving these
problems, whilst trying to meet as many of the requirements defined in Chapter [ as

possible.

Now, trading off the parameters of the agents’ interactions consists essentially in defining
a way to compare several problem solutions and understanding which ones are better.
In the case of real values, as for constraint functions in traditional DCOPs, this is fairly
simple since these values are totally ordered and, for this reason, there always exists an
optimum (a maximum or a minimum). However, when considering complex interactions
this total order might not exist anymore. To understand this, consider the set of bi-
objective couples (2, 1), (1,2) and (1,1). Referring back to the search and track example
defined above, these numbers could represent the values for a UAV for searching and for
tracking different targets. Intuitively, we can say that both (2,1) and (1,2) are “better”
than (1,1) (we will use the term “dominate” to represent the concept of “better than”,
as we will discuss in more detail in the following sections), since in both cases at least one
value is better than the other. However, nothing can be said about (1,2) and (2,1). In
essence, the former vectors are non-comparable and need to be considered as equivalent.
In general, such vector functions are said to be partially ordered (Rollén, 2008). Thus,

given a set of vectors, a partial order means that a single maximum does not necessarily
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exist anymore. Rather, there is a set of multiple non-dominated alternatives which
cannot be compared one with the other and which all need to be considered as potential

solutions.

Against this background, the contributions of this chapter are twofold. First, we propose
a novel framework to model coordination problems in which the agents are making
complex decisions whose outcomes are measured using partially ordered functions. In
more detail, in Section [£1] we describe the framework of partially ordered distributed
constraint optimisation problems (PO-DCOPs). A PO-DCOP generalises a DCOP by
defining the constraint functions as partially, rather than totally ordered. In so doing,
complex interactions involving trading off between heterogeneous parameters can be
represented. As a consequence, our framework allows us to represent the coordination
problems presented in Chapter 2, in a much more realistic way than canonical DCOP.
Second, we propose the partially ordered generalised distributive law (PO-GDL) a semi-
ring which can be used to instantiate coordination algorithms to solve PO-DCOPs based
on the GDL, by using a procedure similar to the one described in Chapter 2l More
specifically, the GDL exploits the algebraic structure of the global constraint function of
an optimisation problem (i.e. a commutative semi-ring) to instantiate a message passing
procedure, composed of two algorithms (Algorithms 221 and 2[I]), which can be used
to solve DCOPs. In so doing, we exploit the well known flexibility of the GDL to
derive efficient optimisation algorithms, such as DPOP, Action GDL and bounded max-
sum to design algorithms to solve PO-DCOPs. Hence, we propose a novel class of
decentralised algorithms which can be used to solve coordination problems involving
complex interactions and decisions. Three instantiations of the PO-GDL will then be
used in the following chapters, to solve DCOPs involving complex interactions such as

multiple objectives, uncertainty and online learning.

The remainder of this chapter proceeds as follows. Section [4.1] describes the general PO-
DCOP framework. Section then illustrates the methodology we defined to derive
algorithms that solve PO-DCOPs by building upon the GDL. Section 3] illustrates
some key properties of these algorithms including their optimality and their complexity.

Finally, Section [4.4] summarises the chapter.

4.1 Partially Ordered Constraint Optimisation Problems

A PO-DCOP is a framework that generalises canonical DCOPs to settings in which
the agents’ joint decisions are measured by vector functions. More specifically, the

constraints C; in Definition 2] are generalised to vector functions. Formally, a PO-
DCOP is defined as follows:

Definition 4.1. A PO-DCOP is a tuple (A, X, D, F,C) such that:
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A={1,...,]A|} is a set of agents.

o X ={z1,x9,...,2,} is a set of variables.
e D={D,...,D,} is a set of discrete domains, where D; is the domain of variable
Zy.

e F': X — Aisa function that assigns variables to agents. Each agent controls (the

value of) the variables that are assigned to it.

C = {C,...,Cp} is a set of partially ordered constraint functions. Each con-
straint C} is a vector function mapping assignments of X to R* (k is the arity of

the functions in C).

Thus, in a PO-DCOP the sets A, X, D, and F maintain the same meaning as in
traditional DCOPs. In contrast, the constraint functions in C are generalised into
partially ordered constraint functions. In practice, they are defined as vector functions,
where each vector contains the different parameters that are necessary to formalise
an interaction between different agents. For instance, we will see in Chapter Bl how
these vectors are defined over multiple objectives. In Chapter [6] then, we will see how
the vectors are defined over sufficient statistics that represent the probability density
function characterising the uncertainty over the agents’ decisions (e.g. mean and variance
for Gaussian distributions). Similarly, in Chapter [[] we will see how the vectors will be
defined over the sample value and the bound defining again the stochasticity over the

agents’ decisions. In light of this, we can state the following property:

Property. A DCOP is a PO-DCOP where each constraint function is totally ordered

and where each vector function C; € C is defined over one single parameter.

To understand this property, note that a total order defined over a set of generic instances
S is a specific type of partial order such that each element in S can actually be compared
(i.e. ordered). In addition, considering that a PO-DCOP is still an optimisation problem,
its solutions are the ones that optimise (maximise or minimise) the problem. In light
of this and of the previous property, the solutions of a PO-DCOP are the ones that

optimise the aggregation of the constraint functions, given an optimisation criterion:

X* =arg m&x@Cj(Xj) (4.1)
X —

In Equation 1] the ® operator is used to aggregate the different vector functions. It
is a generalisation of the + operator in traditional DCOPs to the setting in which the
constraint functions are partially ordered. In the general case, the semantics of the

operator depends on that of the vector functions. To understand this, we consider again
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the different examples of complex interactions which we are going to present in the
next chapters of this thesis. When the different parameters defining such interactions
represent multiple objectives (Chapter[), then ® is the element-wise sum of the different
parameters. When the outcome of the constraint functions is uncertain and the vectors
represent the mean and the variance associated with their pdfs (Chapter [B]), then ® is
the convolution of these pdfs. Finally, when the outcome of the constraint functions is
unknown (Chapter [7), then ® is again the element-wise sum. However in this case it
sums, respectively, the sample means and the bounds that are used to estimate such

outcomes.

The operator max. describes the optimisation criteria. In more detail, it takes as
input sets of partially ordered instances S = {51, 52, ...,S,} and outputs the best ones
according to the order imposed by the binary relation . Similarly to the ® operator
it is a generalisation of the max operator used for canonical DCOPs to the setting
where the constraint functions in C' are partially ordered. As discussed at the beginning
of this chapter, this relation represents the key difference between canonical DCOPs
and PO-DCOPs since it induces a partial order over the different vectors. According
to this relation then, a single best value (i.e. a maximum or a minimum) might not
exist anymore. Rather, multiple non-dominated values might exist which all need to
be considered equally optimal. In general, vectors are not totally ordered. They are
partially ordered according to a binary relation > which is able to determine whether
between two instances A and B, A = B (A dominates B) holds, B > A holds or A and

B are not comparable.

This relation is then used by max, to calculate the set of non-dominated alternatives—
the instances that are not comparable with each other, but that dominate all the other
instances— given the binary operator >. Similarly to the ® operator, the semantics
of max, depends on the semantics of the constraint functions in the corresponding
PO-DCOP. To understand this, consider a generic set of S = {A, B,C}. A relation >
exists between the different elements of this set such that the following ordering relations
hold: A > B and B > C. According to this, we can then define the best values of S as
max, (S) = {A, B}, because we know that both A and B are better than C, but nothing

can be said about which is better between them.

Having defined the operators, we can now define the set of non-dominated values corre-
sponding to the solutions of a PO-DCOP as follows:

Similarly, the optimal solutions of a PO-DCOP are then defined as follows:
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Ox =< X" | X :argmex@cj()(j) (4.3)
x J=

To calculate these solutions, we adopt the approach presented in Chapter 2 to define
GDL-based algorithms for traditional DCOPs. In essence, we need to define the opera-
tors ® and max. for each PO-DCOP to instantiate the message passing algorithms 221
and 2[1l In more detail, in the next section we show how we generalise the GDL for

deriving new algorithms for solving PO-DCOPs.

4.2 A Class of Algorithms for solving PO-DCOPs based
on the GDL

We presented in Chapter 2] various complete DCOP algorithms building upon the GDL,
such as DPOP, bounded max-sum and Action GDL. We discussed how these algorithms

essentially proceed in three phases:

Phase 1 : This phase consists of encoding the DCOP into an acyclic factor graph.
This can be done in two different ways, either by computing a spanning tree or by
computing a junction tree. The former approach yields an approximate algorithm,

whereas the second one yields an optimal one.

Phase 2 : This phase is the core of the algorithm, and uses the GDL message passing
procedure (Algorithms 2[Il and 2[2) to solve the DCOP encoded in the previously
defined factor graph.

Phase 3 : This phase is used to allow the agents to select a consistent variable assign-

ment by using the value propagation algorithm.

The aim of this Section then is to use these three phases to derive algorithms to solve PO-
DCOPs. In essence, as we have already discussed in Chapter 2], this consists, essentially,
of re-defining phase 2 because the two other phases can use the same approaches used for
canonical DCOPs (when using a spanning tree, we will need to re-define the weighting
approach, as will be discussed in Chapter [Bl). In what follows we then re-define each of
these phases to derive algorithms to solve PO-DCOPs.

4.2.1 The Factor Graph Computation Phase

This phase is the same as for canonical DCOP algorithms discussed in Chapter 2l In
essence, it builds upon a key property of the GDL that whenever a factor graph encoding
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a DCOP is acyclic then any GDL based algorithm is guaranteed to converge to an optimal
solution (see Theorem 2.7)). Thus, by manipulating factor graphs until they become
acyclic, it is possible to provide quality guarantees on the solutions recovered. This
manipulation happens in two different ways, the details of which are discussed in Chapter
Bl Either a spanning tree algorithm is used to prune edges of the factor graph until it
becomes acyclic or a junction tree algorithm is used to merge functions or variables
until, again, the factor graph becomes acyclic. In so doing, the first approach yields a
bounded approximate algorithm, whereas the second yields an optimal algorithm. In
light of this, depending on the type of algorithm that needs to be instantiated, either
optimal or approximate algorithms can be obtained. For the sake of our work we will

use both these approaches, as will be explained with more precision in the next chapters.

4.2.2 The Message Passing Phase

In Chapter[2, we discussed how GDL algorithms exploit the fact that a DCOP’s objective
function is expressible using a commutative semi-ring, an algebraic structure (R, ®, ®),
presenting a set of properties, among which the distributivity of the ® operator over the
@ operator, which can be used to instantiate efficient algorithms. In essence, the former
operators @ and ® are used to instantiate Algorithms [I] and 2l which solve Equation 211

by message passing between the vertices of the graph constructed in phase 1.

Hence, the key idea to solve a PO-DCOP is to define a commutative semi-ring character-
ising the objective function of the problem (Equation [43]). We discussed in the previous
section, how a PO-DCOP is defined in terms of two operators ® and max, . The first
aggregates vector functions, while the second is used to determine the non-dominated
vectors. In particular, the max, operator ranks partially ordered vector functions. In
light of this we can define the semi-ring of a PO-DCOP, namely the partially ordered
GDL semi-ring (PO-GDL) as follows:

Definition 4.2. The PO-GDL is a commutative semi-ring (R, max, ,®), such that:
e R =P(S) is the powerset (i.e. the set of all subsets) of S. Set S contains vectors
whose elements take value in R .
e max, takes sets of vectors S1,S5s,...,5,, C R and outputs a set S’ such that:
§' = max{S1,9,...,5m} = {V € U1S | AV’ € Uls V- v} (4.4)

where the binary operator > is a partial order relation.

!The identity elements 0 and 1 are defined depending on the specific instantiation of the PO-DCOP.
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e ® is a binary operator which aggregates sets of elements. More specifically, for
any Sl, Sy € R:
S1® 59 = {51 ®s2| Vs € 51,Vsa € Sy} (4.5)

The key idea of the PO-GDL semi-ring is that it is defined over sets of partially or-
dered instances rather than scalar values as for the canonical max-sum semi-ring used
in DCOPs. Indeed, the max, operator is used to rank sets of vectors of parameters
representing partially ordered values of potential PO-DCOP’s solutions. In more detail,
the max. operator is based on the > operator, a partial order binary relation which we

use to rank vector functions (see Section A.T]).

Now, as we will see with more detail in the following chapters, there exist problems for
which the operator already exists in the literature. For example, in the next chapter,
we will study multi-objective DCOPs, an instantiation of DCOPs involving maximising
multiple conflicting objectives. In this case, the > operator is the Pareto dominance
defined in Chapter 2l However, there are also PO-DCOPs in which the > operator needs
to be derived accordingly. As we will see, this is the case when addressing DCOPs with
uncertainty over the outcome of the agents’ decisions. Within these settings, it becomes
necessary to use a further function, whose aim is to correctly represent the partial order
between the different DCOPs. Two examples, which we will consider in the remainder of
this thesis, are the agents’ risk profile and the collective upper confidence bound (UCB)
which we will use to solve DCOPs involving uncertainty and in which the outcome of

the agents’ decisions is unknown (see Chapters [0l and [7).

The ® operator is similar to the max, operator. The key idea in this case is to aggregate
sets of partially ordered vectors representing potential values of the solutions of a PO-
DCOP. This is done in an element-wise fashion: all the vectors within each set are
aggregated together. Note that, as we will see in Section [£.3] by doing so, the number
of potential solutions of a PO-DCOP is greatly increased. As a consequence, the size of

the messages used by the GDL message passing phase is increased as well.

4.2.3 The Value Propagation Phase

At the end of the second phase, each variable computes the set O, of marginal non-
dominated variable assignments for x;, which is obtained by maximising over the marginal
function Z; (see Chapter 2l and Theorem [£.3)):

Oy, = x|z = arg mngi(a:i)

K3

Ty
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If, for any variable z;, |Og,| > 1, then there exists multiple solutions to the PO-DCOP,
and a value propagation phase is needed to allow the agents to collectively select a con-
sistent solution. However, in PO-DCOPs, each solution in O,, might result in multiple
non-dominated values in ND,,, each corresponding to a different global assignment in
X. For this reason, the canonical value propagation phase used for DCOPs does not
work anymore, because now there are multiple optima and not a single one. Hence, we
extend the canonical value propagation phase presented in Chapter [2, by having agents
select an assignment z} € Oy,. To select such a solution, value propagation proceeds by
passing messages between the variables and functions of the acyclic factor graph. First,
the variable x, with the lowest index is chosen as the root of the tree, and is responsible
for initiating the value propagation phase by selecting a non-dominated assignment ;.
Second, the variable sends value-propagation messages (z, = ) to all the function

nodes to which the variable is connected.

The behaviour of all the other nodes in the graph then depends on their type. More
specifically:

Function nodes (C; € C') : Upon receiving a message (z; = x;) from variable x;, the
constraint function Cj computes the set O(X; \ {z;}) of marginal local optimal
solutions for variables X; \ {«;}, conditioned on x; = z}. Next, value propagation
selects one optimal assignment x} € O(X; \ {x;}) for each variable z}, € X; \ {z;}
(k # j) and sends the message (x = x}) to xj.

Variable nodes (z; € X) : For each non-root variable z;, once it receives a message
(z; = xf) from a function Cj, it sets its value to =} and propagates the message
(i = =) to all the function nodes Cy, k € M(37).

Note that, during value propagation, a single message is sent across each edge of the
factor graph. Thus, the algorithm terminates once each non-root variable has received

a value-propagation message.

4.3 Theoretical Analysis

We analyse in this section two key theoretical properties of PO-GDL algorithms. First,
we demonstrate the optimality of the PO-GDL message passing phase over acyclic factor
graphs. This property, as mentioned at the beginning of this chapter, is fundamental to
define algorithms capable of providing quality guarantees, one of the key requirements of
our work (Chapter[I]). The reason is that this property guarantees that the second phase
of our algorithm will always retrieve the optimal solutions of the graph produced at the

end of phase one. Second, we study the complexity of PO-GDL algorithms and show how
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solving PO-DCOPs is, in general, more complex than solving traditional DCOPs since

now multiple parameters and multiple non-dominated solutions need to be considered.

4.3.1 Optimality of the PO-GDL Phase

Canonical DCOPs can be represented using factor graphs, a special type of bipartite
graph in which vertices can represent either variables in X or constraint functions in C.
In light of this, factor graphs can also be used to represent PO-DCOPs. Knowing this,
we need to demonstrate that the PO-GDL possesses the same fundamental property
as the canonical GDL message passing phase, to use it to derive algorithms for solving
PO-DCOPs. This means that we need to show that it computes all the non-dominated
solutions of a PO-DCOP whose corresponding factor graph is acyclic. In more detail,

we show that the following theorem holds:

Theorem 4.3. Given a PO-DCOP (A, X, D, F,C), if the problem’s corresponding factor
graph is acyclic and the stopping criterion is chosen such that the algorithm is run for
a number of iterations equal to the diameter of the factor graph, the following equation

holds for each variable z; € X :

Zi(x;) = max (X) Cj(X;) (4.6)

Proof. The proof follows directly from Theorem [Z7] and from the fact that the objective
function of PO-DCOPs can be characterised as a commutative semi-ring as shown in
Section @2l More formally, (R, max, ,®) is a commutative semi-ring (Section [£.2)). This
means that max. distributes over ®. Hence, by replacing, the operator & in Algorithms
2[1 and 2[2 with operator max, it follows that Equation generalises Equation
to PO-DCOPs and thus, that the theorem holds. O

Note that, due to theorem [£3] function Z;(x;) is now a function in which each as-
signment x; can yield multiple non-dominated values, Z;(z}) = {v* | Vv st. v* =
max, x\,, @}, Cj(X;)}. Each of these values corresponds to a solution of a PO-DCOP
for which variable x; is assigned to value x;. This means that at the end of the message
passing phase each agent retrieves its multiple optimal values, for which value propaga-

tion is necessary to obtain a consistent assignment.

Now, to properly understand PO-DCOPs and the solution techniques that we have
derived, it is important to understand what achieving optimality involves in terms of

computation and communication complexity. This is done in the next section.
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4.3.2 Complexity

We can derive the computation and communication complexity of PO-GDL algorithms
by using properties inherited from canonical GDL algorithms. In particular, any PO-
GDL algorithm exploits the factorisability of the problems it is solving. Therefore the
scope of each constraint function Cj(X;) contains only the variables associated with the

constraint.

In light of this, computing messages R;_,;(x;) from function C; to variable z; (Algorithm
) for any PO-GDL algorithms requires O(| Dyaz|/%i!) evaluations of function C;, where
D4z is the largest domain among variables X;. This means that the computation is
exponential only in the number of variables in the scope of C;, not the total number of
variables. This drastically reduces the computation required by each agent if compared

with a centralised technique where each of them need to consider all the variables in X.

Now, in the worst case scenario, each possible variable assignment of a PO-DCOP is an
optimal solution. Formally, this means that any variable assignment X’ of the variables
in X is an optimal assignment (i.e. a solution of the PO-DCOP) in Ox. In terms of
computation, this means that all the non-dominated values in N Dy, corresponding to

each optimal solution in Ox, are going to be propagated by the message passing phase.

Hence, assuming that each constraint function is composed of k£ parameters and that a
sufficient (but finite) number of messages have been exchanged (as discussed in Chapter
2)), this implies that these messages may contain up to O(k X | Dpaz|" ') non-dominated
values. To understand the way this size is calculated, consider that in the worst case
scenario each possible variable assignment is a solution of the problem and corresponds
to a set of non-dominated solutions. Hence, in the worst case, there exists |D,,az]|
sets of non-dominated vectors corresponding to a PO-DCOP solution. Each variable’s

assignment then corresponds to a non-dominated solution. Since there are n variables,

n

each of these sets may contain at most D}, .

non-dominated vectors of size k, which

means that the size of the messages is at most k x |Dyaz| X |Dmaz|™ = k X | Dz "

Thus, this means that the size of the messages is linear in the number of parameters k
and exponential in the number of variables n. This is a linear increase (of a factor k)
with respect to a traditional DCOP. Hence, the factor k£ does not influence much the size
of the messages compared to the factor n, which is very likely to be quite large in a PO-
DCOP and which is the real constraint for using our algorithms in a real world domain.
Nonetheless, this is to be expected, since we are now trying to solve a problem more
complex that a canonical DCOP. Moreover, as stated in Chapter [Il in this thesis we
are focusing principally on the theory behind PO-DCOPs and their solution techniques.
In our future work, as we will discuss in Chapter B we plan to investigate the way to

adapt these problems to real world settings. Finally, it should be noted that [[;", |D;]
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is an upper bound of the number of possible solutions, which is equal to the size of the

Cartesian product of the domains of all variables.

4.4 Summary

This chapter presented a novel problem framework and a class of solution techniques
to solve coordination problems involving complex agent interactions. In so doing, we
proposed a novel class of problems and solutions capable of addressing the requirements
of generality and complex interactions presented in Chapter I More specifically, we
presented in Section 1] the class of PO-DCOPs which generalises the canonical DCOP
framework by re-defining the constraint functions as partially ordered constraint func-
tions represented as vector functions. The key idea is that the vectors represent the set

of parameters necessary to define the complex interactions of the different agents.

In Section 2] we then presented the PO-GDL, a class of algorithms that exploits the
properties of the GDL framework described in Chapter 2 to solve PO-DCOPs. The key
idea is to define the commutative semi-ring characterising the objective function of a
PO-DCOP and then use it to instantiate the message passing algorithms specific to the
GDL (Algorithms 2[Tland 22)). In so doing, we can derive algorithms capable of meeting

the performance guarantee requirement discussed in Chapter [I1

However, as we discussed in Section 43l the complexity of the problems may be pro-
hibitive for problems where the number of agents and the number of parameters charac-
terising their interactions are large. Thus, the requirements of scalability and robustness
may only be partially met depending on the specific problem instance. To confirm this
hypothesis, in the remaining chapters of this thesis, we focus on studying three differ-
ent types of PO-DCOPs in which the complex interactions involve multiple objectives
(Chapter [B]), risk and uncertainty (Chapter [6]) and online learning (Chapter [7).



Chapter 5

A Class Of Algorithms for
Partially Ordered Coordination
Problems involving Multiple

Objectives

This chapter presents a formal framework to solve partially ordered distributed con-
straint optimisation problems (PO-DCOPs) involving multiple objectives and proposes
a class of algorithms to solve these problems. In more detail, we specialise the par-
tially ordered DCOP framework (PO-DCOP) and the corresponding class of algorithms
based on the generalised distributive law (GDL), the partially ordered GDL (PO-GDL),
to solve DCOPs involving multiple objectives (MO-DCOPs). In so doing, the aim of
this chapter is to address the requirements of complex interactions involving multiple

objectives discussed in Chapter [l

In more detail, we discussed in Chapter [I] that many real world coordination problems
involve the simultaneous optimisation of multiple and possibly conflicting objectives.
For instance, referring back to the scenario described in Chapter [Il in disaster response,
unmanned aerial vehicles (UAVs) are deployed to complete imagery collection tasks.
One of their objectives is to maximise the number of completed tasks. However, some of
the areas where imagery needs to be collected might contain hazards for the agents, such
as fire, water or obstacles. Hence, to prevent the loss of the vehicles, the agents might
consider minimising a second objective, the number of completed dangerous tasks. How-
ever, the optimisation of one objective may result in detrimental performance in terms
of the other because the agents may not complete dangerous tasks, and thus the number

of completed tasks will most likely decrease. Now, trading off between such conflicting
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objectives induces a partial order over the solutions of the coordination problems. Un-
fortunately, as discussed in the previous chapter, measuring the quality of these partially
ordered solutions cannot be done using canonical real valued functions. For this reason,
traditional DCOPs and GDL algorithms cannot be used and new problems and solutions

techniques need to be derived.

Against this background, this chapter produces two contributions. We first propose
the MO-DCOP framework which specialises PO-DCOPs to address multiple objectives
(Section B.I). To achieve this, we re-define the constraint functions of a PO-DCOP
(see Chapter M) as multiple objective functions. As a consequence, the solutions of the
corresponding global function are partially ordered according to the Pareto dominance
relation (Chapter 2). In so doing, we provide a novel generalisation of the canonical
DCOP framework which allows us to encompass a broader set of optimisation problems.
Then, in Section (2] we propose a new class of algorithms for solving MO-DCOPs.
More specifically, we exploit the PO-GDL method described in Chapter [ to instantiate
a novel message passing procedure based on a novel semi-ring, namely the Pareto dom-
inated / sum (PDS) semi-ring, which we derive to transform any GDL-based algorithm
into an algorithm for solving MO-DCOPs. In so doing, we bring multiple canonical
DCOP algorithms such as Action GDL, bounded max-sum and DPOP, whose level of

performance has been well studied in literature, to the multi-objective domain.

Next, since the number of Pareto optimal solutions can be large, we instantiate an
equivalent of the bounded max-sum algorithm to solve MO-DCOPs and evaluate how
the increase in the number of Pareto optimal solutions affects the performance of the
algorithm. In so doing, we can study how partially ordered solutions will affect the
performance of PO-GDL algorithms. Thus, we empirically evaluate our algorithm, which
we name bounded multi-objective max-sum (B-MOMS), by benchmarking it against
a centralised optimal algorithm on a multi-objective extension of the graph colouring
problem, a standard test problem for DCOP algorithms (Modi et al), 2005). Our results
show that the approximation ratio never exceeds 2 (i.e. the solution’s quality is never
more than 50% away from the optimal), even for extremely constrained problems (i.e.
fully connected graphs), and is less than 1.5 for graphs where constraints exist between
20% of all pairs of agents for 14 variables. In terms of the requirements defined in
Section [I it should be noted that the complexity of the problem is increased since the
algorithm now has to keep track of multiple Pareto optimal solutions. As a consequence,
the requirements of generality, robustness, scalability and resource-awareness are not
satisfied to the same extent as they would be in the single-objective case. Nonetheless,
the results indicate that the runtime required by B-MOMS never exceeds 30 minutes,
even for maximally constrained graphs with 100 agents, positioning it well within the

confines of many real-life applications. In addition, the empirical evaluation shows that
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the algorithm is able to provide performance guarantees even in extremely complex

problems (maximally constrained graphs).

The remainder of this chapter proceeds as follows: Section [5.1]describes the general MO-
DCOP framework, Section illustrates B-MOMS a bounded approximate algorithm
that builds upon the PO-GDL to solve MO-DCOPs, Section [5.3] presents some empirical

evaluation of the algorithm and finally, Section [£.4] summarises the chapter.

5.1 Problem Definition

This section describes the framework of multi-objective DCOPs (MO-DCOPs), a gener-
alisation of canonical DCOPs to incorporate multiple and possibly conflicting objectives.
In essence, a MO-DCOP can be seen as the problem of maximising simultaneously k
different DCOPs defined over the same variables, and whose constraint functions might
conflict with one another. More formally, a MO-DCOP is defined as follows:

Definition 5.1. A MO-DCOP is a tuple (A, X, D, F, C) such that:

o A={1,...,|A|} is a set of agents.

o X ={z1,x9,...,2,} is a set of variables.
e D={Dy,...,D,} is a set of discrete domains, where D; is the domain of variable
ZTi.

e F: X — Ais a function that assigns variables to agents. Each agent controls (the

value of ) the variables that are assigned to it.

C={C1,...,Cn} is a now set of multi-objective (instead of deterministic scalar)
constraint functions. Hence, each C; € C is now a vector of objective functions,

defined over the set of variables X:
Ci(X;) = C}(Xj), .. .,C]?(Xj) (5.1)

where k is the number of objectives of the problem.

Thus, in a MO-DCOP, as is the case for a general PO-DCOP, the sets A, X, D and
F maintain the same semantics as for traditional DCOPs. The constraint functions C;
are then generalised into multi-objective functions. This means that their assignments
Cj(X;) are partially ordered. Thus, there is no longer necessarily a single optimal

solution X* as for canonical DCOPs. Rather, as discussed in Chapter 2, we now have a
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set of Pareto optimal solutions, corresponding to a set of non-dominated values. More

formally, we define the set of non-dominated values of a MO-DCOP as:

NDx = (v v:mgleCj(Xj) (5.2)
x J=

Equation is a specialisation of Equation (see Chapter M) to the multi-objective
domain. Similarly, we can specialise Equation [4.3] (Chapter ) to define the set of Pareto
optimal (PO) solutions of a MO-DCOP as:

m
POx =< X" | X :argmBXZCj(Xj)

x J=1
" T
= X X = arg max > [CH(X;), CH(X;), .., C (X)) (5.3)
x J=1

The solutions X* € PO can be characterised as the set of Pareto optimal assignments
that optimise the sum of the partially ordered constraint functions. These correspond
to the set of non-dominated values ND that “maximise” Equation 5.3l following the
dominance operator > defined in Chapter @l In light of this, MO-DCOPs are PO-
DCOPs (see Chapter [)) in which the arity of the vector functions is reduced to 1.
Hence, the following property holds:

Property. A MO-DCOP is a PO-DCOP in which each partially ordered constraint

function C; € C represents a multi-objective function defined over k objectives.

In light of this, we can define the constraint function of a MO-DCOP as a commutative
semi-ring (see Chapters 2l and M) and use it for deriving new algorithms. In more detail,
Equation[(.2is essentially a sum of constraint functions encoding multi-objective vectors.
These vectors are aggregated using the element-wise addition, while the notion of Pareto
dominance is used to discriminate between the different solutions. We can then use these

properties to define the Pareto-dominated / sum semi-ring (PDS), as follows:

Definition 5.2. PDS is a commutative semi-ring (R, max, ,+), such that:

e R = P(S) is the powerset (i.e. the set of all subsets) of S. Set S contains all

multi-objective vectors where each element takes value in I'\%

!The identity elements 0 and 1 are singleton sets with a vector in which each element is a 0 and a
vector in which each element is a 1.
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e max. takes sets of multi-objective vectors S, 59,...,5, € R and outputs a set
S’ such that:

Sl = mf_mx{Sl, SQ, e ,Sm}

:{VGOSi]/HV’EOSi:V'>-V} (5.4)

=1 =1

where the binary operator > is a partial order relation (see Chapter M) based on

the Pareto dominance.

e + is a binary operator such that if 51,59 € R:

S14+ Sy = {V’L € (0, .. .,k‘) Vi(l) + Vg(l) | YV, € 51,VV, € 52} (5.5)

Given this semi-ring, one can easily verify that the distributive law applies and thus
that max, distributes over ®. Hence, the complexity of optimising the global constraint

function (Equation [5.2) can be factorised into simpler components.

In general, a MO-DCOP allows us to represent a coordination problem in which the
agents make decisions over multiple, conflicting objectives. We consider here the case
where the agents (either human or software) have no preferences between the objectives.
Contrarily, as discussed in Chapter Bl it would be possible to cast the problem as a
standard optimisation problem where the objective function is a weighted sum of the

different objectives and where each weight encodes the agents preferences.

In addition, we consider here the setting where the objectives are conflicting. Indeed,
such objectives are a feature of many real world problems (see Chapter 2] for some
examples). In fact, if they were independent, they could be solved using traditional
DCOPs techniques. To understand the notion of conflicting objective, consider again
the domain of disaster response. One of the key scenarios discussed in Chapter 2linvolves
unmanned aerial vehicles (UAVs) deployed to search lost life-rafts while tracking down
the discovered ones. The two objectives could be modelled as two global constraint
functions C! and C}, one for searching and one for tracking, which are then decomposed
into a sum of agents interactions as described in ChapterBl These functions are then two
distinct objectives of the problem. In addition, they conflict since assigning more UAVs
to track life-rafts (i.e. focusing on the “tracking” objective) implies that less UAVs will
be used for searching (i.e. the “search” objective is neglected). Hence, in this setting, the
optimisation of one objective will result in detrimental performance in terms of the other.

The following example illustrates a possible MO-DCOP related to disaster response:

Example 5.1. Consider a MO-DCOP with A = {A1, Ao}, X = {x1, 22}, D = {{0,1},{0,1}},
and C = {C1(x1,x2),Co(x1,22)} (Figure [51 illustrates the factor graph encoding this
DCOP). Constraint functions C' are shown in the following table:
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<]

FIGURE 5.1: A factor graph encoding the DCOP presented in Example [5.11

I i) Cl(:cl,arg) CQ(ZCl,l‘Q) C(.Z‘l,.l‘g)
0 0 3,1] 3,2] [6,3]
0 1] [L2 1,1] 2,3]
1 0| [20 2, 4] 14, 4]
1 1| 2.1 [0, 1] 2,2]

In this case the set of non-dominated values is defined as:
NDx = {[6,3], [4,4]}

These values correspond to the following set of Pareto optimal solutions:
POx = {{0,0},{1,0}}

Moreover, the utopia point (Definition[2.4.3.1]) is defined as follows:

V* =16,4]

As shown in the example, solving a MO-DCOP requires trading off between different
objectives and as a consequence it is non-trivial. The use of standard DCOP algo-
rithms is not advocated in this case, since it is likely to result in very poor performance
(Marler and Arora, 2004). Indeed, employing such approaches would require the use of
scalarisation techniques which consist of weighting the various objective functions and
incorporate them into a single global real valued function which could then be solved
using canonical techniques (Chapter [2). However, it is well known that using this type
of approach is likely to yield poor solutions far from the optimal (Marler and Aroral,
2004). For this reason, in the next section we present a class of algorithms that were

specifically derived to solve these problems.
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5.2 An Algorithm for solving MO-DCOPs based on the
PO-GDL

We discussed in Chapter [, how the objective function of a PO-DCOP possesses a specific
algebraic structure (i.e. a commutative semi ring) which can be used to derive various
decentralised algorithms to solve it, all based on the GDL framework. In the same
chapter, we also discussed the way these algorithms can be instantiated by following the
methodology used to derive canonical DCOP algorithms, such as DPOP, Action GDL

and bounded max-sum (see Chapter [2).

In this chapter, we are interested in solving MO-DCOPs an instantiation of PO-DCOPs
in which the agents interact over multiple objectives. To solve these problems, this
section then proposes a generalisation of the bounded max-sum algorithm, a well known
bounded approximate algorithm to solve canonical DCOP discussed in Chapter 2l Given
the inherent complexity of MO-DCOPs, the choice of an approximate algorithm seems
the better option. In addition, this choice allows to compute effective bounds on the
quality of the recovered solutions even in the case of very complex problems. In more

detail, we propose an algorithm proceeding over three phases, as follows:

Phase 1 - Bounding : The bounding (B) phase extends the approach used for the
bounded max-sum algorithms to the multi-objective domain. In so doing, this

phase produces an acyclic factor graph encoding a bounded approximation of the
original MO-DCOP.

Phase 2 - Message Passing : The message passing (M P) phase is a re-definition
of the PO-GDL message passing phase allowing the agents to coordinate to find
the Pareto optimal set of solutions to the cycle-free factor graph computed in the

bounding phase.

Phase 3 - Value Propagation : The value-propagation (V P) phase allows the agents
to select a consistent variable assignment, considering that now multiple non-

commensurable alternatives exist.

In what follows, we describe each of these phases in detail, and then we analyse some of

the algorithm’s key properties.

5.2.1 Algorithm Description

Our algorithm proceeds in three phases. In what follows, we discuss each of these phases

in turn.
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5.2.1.1 The Bounding Phase

This phase calculates the bounds on the solutions of our algorithm. In more detail, we
propose a novel weighting approach that generalises the one described in Chapter 2l The
key idea is to generalise the edge weights wj;, used to bound the max-sum algorithm,
from scalar to vector values. The key issue is then how to use the weighting approach
used for max-sum on each of the different objectives of the MO-DCOP. To achieve this,
we first compute the impact of each variable x; in the scope of each local multi-objective
constraint function C; over all the objectives of the problems (we assume there are k
objectives):

1 k]T

ji,...7w“

Wi = [w ji

Each scalar weight wg; (1 < o < k) is defined as follows:

w}; = X?{?:ﬁ} [n}gx C7(X;) — Hglﬁlln C’;(Xj)]

Since the problem of finding a maximum spanning tree is defined on instances with
scalar edge weights (Rogers et al), 2011)), it is necessary to rank the vector weights. This
procedure must ensure that the resulting ordering favours deletion of dominated vectors
over non-dominated ones. One way of doing this is to assign a scalar weight wj; to each
vector wj;, which is proportional to the number of edge weights it dominates. More
formally:

Wi = (W | Wji = W, (5,1) # (n,m)}]| (5.6)

Thus, using this scalarisation, non-dominated weight vectors are assigned a value of 0,
vectors dominated by a single element are assigned a value of —1, and so on. With these
scalar edge weights, the same spanning tree algorithm used for the canonical bounded
max-sum can be used. The following example discusses how the bounding phase is

applied to Example B.1k

Example 5.2. The bounding phase starts with the two functions C1 and Co computing
their vector weights as detailed above. Specifically, C1 computes:
wi; = max[max C} (21, z2) — min C{ (z1, z2)] = 1
o 1 1

w3, = max[max C?(z1, z2) — min CF (1, 2)] = 1
o 1 1
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where wi, and w?, are the two weights related to the edge between Cy and x1. Moreover,
the factor computes:
wiy = max[max C7 (1, z9) — min C} (x1, z2)] = 2
xr1 T2 2
w?y = max[max C% (1, x9) — min C% (1, z9)] = 1
xr1 T2 2
where wiy and w?, are the two weights related to the edge between Cy and z2. In a
similar fashion Co computes:
wy, = max[max C (1, z9) — min Cs (1, 29)] = 1
o 1 1

w3, = max[max C3(x1, x2) — min C3(z1, 22)] = 2
o 1 1

where wi, and w3, are the two weights related to the edge between Cy and 1. Finally,
the factor computes:
way = max[max Cg (21, z2) — min Cj (1, z2)] = 2
1 x2 2
w3, = max[max C3(x1, x2) — min C5(z1, 22)] = 3
1 x2 xr2
where wl, and w3, are the two weights related to the edge between Co and xo. The
resulting weighted factor graph is shown in Figure[5.2. After the weights are computed,
the agents share these weights in order to compute the different scalar vectors. More

specifically, the following weights are computed, using Equation [5.0:

w11 = -3
w12 = —1
w1 = —1
w9 =0

(5.7)

Thus, since w11 is the smallest weight on the novel weighted factor graph, it is pruned
from the graph by the spanning tree algorithm. The set of values, corresponding to the
cycle free factor graph is shown in Table [51l. Moreover, in this specific example, the
bound to the utopia point can be easily calculated as W = wqy = [1,1]. The resulting
acyclic factor graph, shown in Figure[5.2 constitutes the input of the second phase of the

algorithm, which follows.

At the end of the bounding phase, an acyclic factor graph representing a maximum
spanning tree is produced. This factor graph encodes a bounded approximation of the
original MO-DCOP to be solved. Since it is acyclic, it can be optimally solved by using

a GDL message passing phase, which we discuss next.
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r1 w3 | mingg C1(z1,25) | Co(x1,22) | C(1,72)
0 0 [2,0],[0,1] 3, 2] [5,2], 3, 3]
0 1 [2,0],[0,1] [1,1] [2,1],[1,2]
1 0 [1,0] 2, 4] (3, 3]
11 [1,0] [0, 1] [1,1]

TABLE 5.1: The resulting bi-objective function after pruning the factor graph in Figure
Here 5 is the variable whose corresponding edge has been pruned from the factor
graph.

Asg
Co

FIGURE 5.2: The pruned factor graph produced by the bounding phase of the B-MOMS
algorithm described in Example

5.2.1.2 The Message Passing Phase

The message passing phase presented here works in the same way as those discussed
in Chapters 2 and [l The key idea is to specialise the PO-GDL by using the semi-ring
(R, maxy ,+) defined in Section [B.Jl By so doing, we can then use the operators + and
max, to instantiate the message passing algorithms of the GDL framework (Algorithms
2[Mland 22)) for solving MO-DCOPs. Moreover, the resulting message passing phase can
be used to optimally solve any MO-DCOP whose resulting factor graph is acyclic (see
Chapter @l and Section (.2.2]) and, as a consequence, the one produced in the bounding
phase. The following example illustrates the message passing phase related to Examples

b1 and B.2F

Example 5.3. In order to keep the exposition as clear as possible, we consider a simple
message passing schedule, where the computation starts at the leaf nodes and goes up
through the different nodes of the graph. The computation begins at time step t = 0,
nodes Cy and xo both have a single edge (i.e. they are leaves of the cycle free factor

graph) and therefore send a message first:

€T C Tl C
Q2_>2(.I2) = 0 [0, O] R1—>1(l’1) = 0 [2, 0], [0, 1]
[0, 0] 1 [1,0]




Chapter 5 A Class Of Algorithms for Partially Ordered Coordination Problems
involving Multiple Objectives 117

Here x9 sends a “zero” message because it has not received any information, while Cy
computes the multi-objective marginal function of variable x1, as detailed above and in
Chapter[§) At time step t = 1, x1 and Ca receive the messages and compute the next

two messages:

1 C T C
Ry 1(x1) = 0 | [3,2] | Qise(z1)= 0 |[2,0],[0,1]
1| [2,4 1| [0

At time step t = 2, the final two messages are computed. Note that, while x1 has
recetved messages from all the previous variables and can therefore calculate its own
optimal solutions, xa still requires information about Cy (i.e. since the original edge has

been pruned from the graph). Thus, x1 and function Co compute the following messages:

I C i) C
Qis1(r1) = 0 | [3,2] | Rose(xe)= 0 | [5,2],[3,3
(2, 4] 1 3, 3]

After these messages have been sent, the MS phase terminates. Finally, both the vari-

ables compute their marginal Pareto optimal solutions:

T C
i =POS 0 |[5,2],[3,3]
3,3]
= {07 1}
T2 C
zs=PO{ 0 | [5,2],[3,3]
2,1],[1,2

= {0}

Such solutions correspond to the two Pareto optimal assignments of the problem PO(X) =

{(0,0),(1,0)}. The value propagation phase proceeds next.

Similar to canonical DCOP algorithms, it can happen that different solutions yield the

same value of the global constraint function. This is even more likely for MO-DCOP
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where there might exist numerous non comparable solutions which are all Pareto optimal.

For this reason, a value propagation phase is required, which we discuss next.

5.2.1.3 The Value-Propagation Phase

The value-propagation phase operates on the cycle-free factor graph computed by the
bounding approach. In this phase, variables and function nodes in the factor graph
coordinate to select a consistent variable assignment. Since MO-DCOPs are PO-DCOPs,
we can use the value propagation described in Chapter M, by instantiating the > relation

as the Pareto Dominance as described in the previous section.

During value propagation, a single message is sent across each link in the factor graph.
The algorithm terminates once each non-root variable has received a value-propagation
message. The following example illustrates the value propagation phase related to the
MO-DCOP described in Example B.], and after the bounding (Example B.2]) and the

message passing (Example [5.3]) phases have terminated:

Example 5.4. The value-propagation phase starts right after the message passing phase
(Example [3.3). At time step 3, variable x2, as the pre-determined root of the graph,
selects a specific assignmen@ and sends a VP message containing the selected value
x9 = 0 to Cy. At time step 4, Cy receives the message, calculates the set of Pareto optimal
solutions for which xo = 0, that is PO(X3) = {[x1 = 0,22 = 0], [z1 = 1,22 = 0]}, selects
one of the different altematz’ves@ and sends a new V P message to x1 containing r1 = 1.
Finally, at the time steps 5 and 6, x1 receives the message, forwards it to Cy, and the

computation terminates.

Thus, the algorithm recovers the solution X* = {x1 = 1,29 = 0}, which is, as can be
seen in the table of Example[5 ], one of the Pareto optimal solutions of the problem, in

this specific case.

5.2.2 Theoretical Analysis

We now discuss some of the fundamental properties of our GDL algorithms based on
the PDS semi-ring (see Definition [5.2]).

2To keep the exposition as clear as possible, we assume that the selection criterion is to pick a random
value. Other possibilities include selecting the variable with the lowest index or the agent with the lowest
ID

3 Again, we assume a random selection.
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5.2.2.1 Optimality of the Message Passing Phase

In order to use the PDS to derive new algorithms, as described in Chapter[d], the following

theorem must hold:

Theorem 5.3. Given a MO-DCOP (A, X, D, F,C), if the problem’s corresponding fac-
tor graph is acyclic and the stopping criterion is chosen such that the algorithm is run for
a number of iterations equal to the diameter of the factor graph, the following equation

holds for each variable ; € X :

Zi(x;) =max Y C;(X; 5.8

i(wi) XQ; 3 (X;5) (5.8)

Proof. The proof follows from Theorem (4.3l and from the fact that the objective function
of a MO-DCOP is defined over the PDS semi-ring, which is a commutative semi-ring.
Thus, by instantiating the operator ® of Algorithms [l and 2 with the operator +
and by defining the dominance relation > as the Pareto dominance relation, it follows
that Equation [B.§ specialises Equation to MO-DCOPs and thus, that the theorem
holds. O

5.2.2.2 Bound on the Solutions Recovered

Having demonstrated the optimality of the message passing phase, we can now derive
the bounds computed by the algorithm. In essence, we generalise the bounds computed
by the bounded max-sum algorithm (Rogers et all, 2011) to the multi-objective case. To
do so, first, we define vector W = [W!, .. ., Wk] as the sum of vector weights w;; of the
edges between C; and z; that were pruned in the bounding phase to obtain an acyclic
graph (Section (.2.1.0]). To characterise the upper bound computed by the algorithm,
we use the concept of utopia point (see Chapter 2]), which in the multi-objective domain
becomes an upper bound on the value of a Pareto optimal solution of a MO-DCOP.

Hence, we can state the following theorem:

Theorem 5.4. Given an arbitrary MO-DCOP, for any assignment X' € PO(X) com-
puted by B-MOMS, the following bound holds:

Y CGXN+W=V* (5.9)

Proof. The theorem follows directly from the fact that we extend the bounded max-sum
algorithm for single objective DCOPs to MO-DCOPs. In more detail, for each objective
o (1 <o <k)of an MO-DCOP, by using the approach defined in (Rogers et all, 2011)),
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it is easy to see that the following bound holds:
OO(X/) + WO 2 IT;?;XCO(X/)
thus concluding the proof. d

Similarly, we define the problem dependent approximation ratio p = [p1, ..., px] of the
solutions computed by B-MOMS, where each p; is given by Equation

5.3 Empirical Evaluation

We present in this section some empirical evaluation in order to ascertain the perfor-
mance of the B-MOMS algorithm that we have derived. To this end, we benchmark its
performance against an optimal algorithm which consists of enumerating all the possible
solutions of a MO-DCOP to find the Pareto optimal ones. In the remainder of this sec-
tion, we present a multi-objective extension to the canonical graph colouring problem

used in our experiments, detail the experimental setup, and discuss the results.

5.3.1 Multi-Objective Graph Colouring

In order to evaluate the performance of our algorithm, we consider a multi-objective
extension of the graph-colouring problem, which is a well known benchmark problem in
DCOP literature (Farinelli et al), 2008). In this type of problem, each agent controls
one variable defined over a set of colours. The variables are connected within a graph
and the aim of the problem is to minimise the number of connected variables assigned
to the same colours (i.e. the number of conflicts). The key idea of this benchmark is
that the agents need to coordinate and change the assignment of their variables (i.e.
their decision) to minimise the number of conflicts. Thus, given the number of agents
and topologies, a variety of configurations exists. For this reason, the graph colouring
problem reproduces many of the different conditions that define a coordination problem
in the real world and thus, it constitutes a well acknowledged benchmark for DCOP

algorithms.

Hence, we present here an extention of this benchmark to use it to represent multi-
objective coordination problems. More formally, each agent A; owns a single variable
xj, taking values in the domain D; = {Red, Green, Blue}. Within this setting, the

agents’ goal is to maximise the following multi-objective function:

T

C(X) = [CH(X),C*(X),C*(X)] (5.10)
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where C1, C?, C3 are the sum of bi-variate constraint functions C} (x4, k), Cf(:c,-, x),
C;’(xi, xr) that exist among the variables X. These three types of constraint functions
are defined as follows:

Chromatic Difference: This objective function represents the common graph colour-
ing conflict function:

C(ws, 1) = { 0z (5.11)

J -1 x; = x4

Chromatic Ordering: This objective function imposes an ordering among the colours:
Red = 1, Green = 2, and Blue = 3. Specifically, given two variables x; and xy

where ¢ < k, the variable with the higher index should have a higher ranked colour:

0 ifi< k: and z; < g (5.12)
—1 otherwise

Chromatic Distance: This objective is similar to the chromatic ordering. However,
it considers the distance between the colours of different variables. In more detail,
given two variables x; and xy, the distance of the colours between the two variables

should equal one:

0 if |l‘1 - .Z'k| =1 (5 13)
—1 otherwise '

C} (g, ap) = {
This three objectives present different conflicts. The chromatic difference and the chro-
matic ordering conflict because even if two variables are assigned different colours (i.e.
the chromatic difference objective is satisfied) that does not necessarily mean that these
colours are ordered correctly (i.e. that the chromatic ordering objective is satisfied). The
same applies for the chromatic difference and the chromatic distance objectives: if the
former is satisfied, that does not necessarily mean that the two variables are assigned to
colours satisfying the latter objective (i.e. that they are assigned colours with a distance
equal to 1). The chromatic ordering and distance objectives then conflict because if
two variables are assigned to ordered colours, this does not necessarily mean that these
colours share a distance equal to 1 (i.e. that the chromatic distance objective is satisfied).
Hence solving a multi-objective graph colouring problem requires to trade-off between
these different objectives to find those variable assignments that minimise the number

of conflict between the different colours.

Thus, given an arbitrary graph G = (V, F), we construct a factor graph as follows. Each
vertex is represented as a variable z. Furthermore, for each edge (v, v’) the factor graph
contains a three-objective constraint function Cj(z;, z3) = [le (i, xg), Cjz(xi, k), C’f (w5, 1))

where z; and ) are the variables corresponding to vertices v and v'.
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5.3.2 Experimental Setup

We analyse the performance of our algorithm by executing it on several instances of the
multi-objective graph colouring problem defined previously. Specifically, we randomly
generate connected graphs G = (V, E) with a varying number M = |V| of vertices,
and varying graph density § € [0,1]. This latter parameter defines the constrainedness
of the problem by controlling the number of edges; when § = 0 the number of edges
|E| = M — 1, and the resulting graph G is a tree. Conversely, when 6 = 1, G is a
complete graph, and |E| = 1M (M — 1).

We generated problem instances with M = {8,10,12, 14, 20, 40, 60, 80,100} and ¢§ =
{0.0,0.1,...,1.0}. By varying the density and the number of nodes of the graph, we
are able to control the interactivity of the agents. In so doing, we are able to reproduce
the different levels of connectivity that might characterise the agents when deployed in
the real world. For instance, while tracking one or more targets, it might happen that
one or more UAVs are tracking the same target. The number of these interactions will
vary depending on the number of targets and UAVs. Hence, by controlling the density
of the graph, we are able to reproduce all the different type of interactions that can
arise in such problems. Moreover, for each combination of values for M and & we ran
our algorithm 120 times to achieve statistical significance. We measure its performance

using the following four metrics:

1. The runtime (in milliseconds) required by the algorithm to compute the set of
solutions. This metric allows us to measure the amount of computation required
by the agents to solve a MO-DCOP.

2. The average approximation ratio of the solutions POx computed by the algorithm.
More specifically, we defined this as the norm of the approximation ratio vector
||p|| defined in Section This metric allows us to measure quality of the
solutions found by the algorithm.

3. The minimum Euclidean distance between solutions X’ € POx computed by the
algorithm and an optimal solution X* € POx. More formally, we calculate this
distance as follows:

a(x") = || min [C(x)-cx)] |
(X) = || (min [CX)-CX")]

This metric allows us to quantify how far the solutions recovered by B-MOMS are

from the Pareto optimal ones.

4. Finally, we measure the fraction of Pareto optimal solutions found by the algo-

rithm: .
. [POx N POx|
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This metric tests how many of the recovered solutions are actually optimal. In so

doing, it verifies the capability of B-MOMS to retrieve optimal solutions.

Note that metrics 2 and 3 aggregate the objectives by using the notions of norm and
Euclidean distance, which implies commensurability of the objectives. However, these
metrics have been widely used in multi-objective literature (Veldhuizen and Lamont,
1998). Moreover, metrics 3 and 4 require the availability of the set of Pareto optimal
solutions POx. To compute these, we used a centralised canonical brute-force optimal
algorithm. This optimal algorithm exhaustively enumerates the Cartesian product of
the domains of x, and thus, has a computational complexity that is exponential in the
number of variables. As a result, we do not report metrics 3 and 4 for M > 14, since the
algorithm was not capable to scale to more than 14 variables. However, we do report
metrics 1 and 2 for M up to 100.

5.3.3 Results

For M < 14, the results are shown in Figure 5.3l First of all, all three plots confirm
that the algorithm is optimal for acyclic graphs (§ = 0), as proven by Theorem [5.3
Considering then that Theorem is a specialisation of Theorem 3] these results also
confirm that algorithms exploiting the PO-GDL are optimal over acyclic factor graphs.

In addition, by increasing the number of constraints of the problem (i.e. by increasing
J), we can observe that the performance of B-MOMS degrades gracefully in terms of the
approximation ratio, distance, as well as the fraction of optimal solutions found. More-
over, the approximation ratio never exceeds 2 (i.e. the value of the computed solution is
greater than half of that of the optimal solution) even for extremely constrained prob-
lems, and is close to the value of 1.27 reported for the single-objective graph colouring
problem by the single-objective bounded max-sum algorithm (Rogers et all, [2011) when
each variable is involved in three constraints (corresponding to 6 = 0.3 for M = 14).
Most importantly, for relatively sparse graphs (§ ~ 0.2), which are often found in real-
life multi-agent applications (Modi et al., 12005; Rogers et al., 2011), B-MOMS recovers
roughly 50% of the optimal solutions for M = 14. This is remarkable, given the fact that
the algorithm is approximate, and was not specifically designed to recover these. Intu-
itively, this happens because the spanning tree computation for sparse graphs is capable
of maintaining some of the solutions of the original problem. Hence, the former three
results give us an idea of the level of performance to expect when using the PO-GDL to

instantiate a bounded approximate algorithm.

Such level of performance is further demonstrated in Figures [5.4(a)| and [5.4(b)| which

report the approximation ratio and the runtime for larger problem instances. Specifically,

Figure |5.4(a)| clearly shows that, even for large instances, the approximation ratio again
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never exceeds 2, demonstrating the effectiveness of the bounding approach. Indeed, this
value of the approximation ratio indicates that the values of the bounds, computed over
each objective, never exceed half of the value of the corresponding optimal solution in
the utopia point. Furthermore, Figure gives strong empirical evidence of the
practical applicability of the algorithm. Despite the exponential relation between the
number of variables and the time required by B—MOMSH, for M = 100 and a maximally
constrained problem, this time does not exceed 30 minutes. Moreover, it is important
to note that these experiments were run on a single processor, while the computational
load in a multi-agent system is typically shared among multiple computational entities.
This brings PO-GDL algorithms such as B-MOMS well within the realm of the limited

computational capacities of embedded agents found in many real-life applications.

5.4 Summary

This chapter presented a new class of problems and solution techniques to address co-
ordination problems that involve multiple objectives. More specifically, in Section B.1],
we proposed the MO-DCOP framework, a specialisation of the PO-DCOP framework
defined in Chapter @l The key idea of a MO-DCOP is to re-define the partially ordered
constraint functions of a PO-DCOP into multi-objective functions. In so doing, we
propose a class of problems that meet the complex interaction requirement defined in
Chapter [l In addition, the MO-DCOP framework also satisfies the generality require-
ment, since it can represent any type of problem where the agents need to coordinate

over multiple objectives.

We then presented, in Section [5.2] a new set of solution techniques for solving MO-
DCOPs. To derive these techniques, we specialised the PO-GDL and derived a new
commutative semi-ring based on the notion of Pareto dominance (Chapter ) which
allowed us to instantiate the message passing algorithms presented in Chapter 2 (Al-
gorithms 2[I] and 2] to address problems involving multiple objectives. The key idea
of these new algorithms is that by using the concept of Pareto dominance they become
capable of trading off between the different objectives of a MO-DCOP. In addition,
the PO-GDL framework allows us to instantiate optimal or bounded approximate algo-
rithms. In so doing, our techniques inherit the qualities of GDL algorithms discussed in
Chapter Bl which are very useful in our work. In particular they meet the requirements
of quality guarantees and of robustness since they are fully decentralised as discussed in
Chapter [

4This is partially due to our implementation of the value-propagation phase, which for the purpose of
these experiments, recovers an exponential number of (approximately) Pareto optimal solutions, instead
of just a single one.
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Next, to verify the way in which our algorithms satisfy the requirements of scalability and
resource awareness, we presented in Section [5.3] an empirical evaluation of the B-MOMS
algorithm which uses the previously defined semi-ring to generalise the bounded max-
sum algorithm (see Chapter [2)) for solving MO-DCOPs. The focus of our experiments
was on verifying some of the fundamental properties of B-MOMS (and of our techniques
in general) such as the optimality over acyclic factor graphs, the approximation ratio and
the cpu time necessary to compute a set of solutions. To achieve this, we evaluated our
B-MOMS over different problem instances of a multi-objective extension of the graph
colouring problem, a well known benchmark for DCOP algorithms. Our results showed
that our algorithm is capable of providing good approximate solutions in a reasonable
runtime, even for extremely large and complex problems. This, in turn, indicates that

the algorithm satisfies the requirements of scalability and resource awareness.
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In the next chapter, we pursue our study of algorithms for solving coordination prob-
lems involving complex interactions and focus on optimally solving problems involving

uncertainty and risk awareness.






Chapter 6

A Class of Algorithms for
Partially Ordered Coordination

Problems involving Risk

Awareness

This chapter presents a formal framework to solve distributed constraint optimisation
problems (DCOPs) in which the outcome of the constraint functions is uncertain. Con-
sidering then, that these functions are typically used to measure the quality of the
collective decisions of a set of agents, the key aim of this chapter is to study problems in
which the outcome of the agents’ decisions is uncertain. In more detail, in this setting,
the agents do not know with precision what the outcome of their decision is going to be.
Hence, if they do not carefully weight each of their decisions, they are likely to make
decisions which might result in a very poor outcome. Consequently, the agents need
to take into account the collective risk (i.e. the potential that one possible collective
decision can lead to an undesirable outcome) associated with the uncertainty of each

possible decision.

In fact, uncertainty is endemic within many real world coordination problems. To un-
derstand this, we consider again the domain of disaster response, in which robotic agents
are deployed to achieve situational awareness at the scene of a disaster (see Chapter [2)).
For instance they could be deployed to explore the scene of the disaster in search for
casualties, a setting similar to the target search problem described in Chapter Pl In
this setting, agents make decisions about which areas to explore and the key objective
is to select the areas most likely to contain undiscovered casualties. However, many as-
pects of the agents and of the environment where they are deployed are uncertain. For

instance, the agents’ sensors may be noisy and their global positioning system (GPS)
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may be imprecise. Thus, the agents cannot be certain about the number of casualties
reported by their sensors. Moreover, the casualties’ position is uncertain and for this
reason this number can only be estimated using its expected value. In light of this, the
outcome of the agents’ decisions is uncertain since they do not know with precision the
number of casualties contained within each area. Hence, it is advisable that these agents
incorporate this uncertainty in their decision making and become capable of weighting
their joint decisions to avoid poor outcomes (i.e. explore areas with a low number of

casualties).

To improve the agents’ capabilities and make them capable of effectively facing uncertain
decisions a risk profile is typically used. Such a profile is defined as a utility function
which typically encodes three types of attitude towards the risk of making decisions
resulting in poor outcomes (see Chapter [I)). A risk averse profile defines agents more
inclined to make certain but less rewarding decisions, rather than highly rewarding (in
expectation) but uncertain ones. Hence, by using this risk profile, the agents would
prefer to explore an area containing a certain but lower number of casualties than an
area containing an uncertain but higher number. In contrast, a risk seeking profile defines
agents which prefer uncertain but more rewarding (in expectation) decisions over certain
ones. In this case, the agents would prefer to explore areas with a large, but uncertain,
number of casualties instead of areas with a certain but lower number. Finally, a risk
neutral profile defines agents as being indifferent between certain or uncertain decisions.
Thus, by adopting this type of profile, the agents will be indifferent to the uncertainty

related in the number of casualties related to the areas that they are exploring.

Now, DCOPs extensions that model uncertain constraint functions have been proposed
by literature (see Section[2.4.1]). However, these frameworks still do not allow the agents’
collective attitude towards risk to be modelled. Moreover, existing algorithms are usually
approximate and do not provide any guarantee on the quality of the solutions recovered,

all of which are key requirements for our work (Chapter [I).

To address these shortcomings, this chapter develops two main contributions. First,
we instantiate PO-DCOPs to incorporate uncertainty and the agents’ collective atti-
tude towards risk. In so doing, we propose a novel general framework to allow agents
to coordinate under uncertainty. We call this framework risk aware distributed con-
straint optimisation problems (RA-DCOPs). RA-DCOPs specialise partially ordered
distributed constraint optimisation problems (PO-DCOPs) to the setting in which the
agents’ decisions are uncertain, and thus where the concept of risk need to be incor-
porated in the problem. Second, to solve RA-DCOPs, this chapter follows the same
methodology used in Chapter Bl and described in Chapter @l In essence it builds upon
the partially ordered generalised distributive law (PO-GDL) framework to derive a class
of algorithms that can solve RA-DCOPs. More specifically, we define the commutative

semi-ring characterising the objective function of an RA-DCOP, the non-dominated /
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convolution (NDC) semi-ring, by using the agents’ risk profile to factorise the global
constraint function and use it to instantiate a GDL algorithm (Action GDL) to solve
RA-DCOPs. However, to solve these problems optimally, these algorithms have to keep
track of multiple non-dominated partial solutions. Hence, we show that different types
of domination conditions exist. Optimal conditions propagate the smallest number of
probability density functions (pdfs) without losing the guarantee of optimality, but do
not always have a closed form expression. Alternatively, sufficient (which achieve opti-
mality at the cost of a higher overhead), and necessary (which incur lower costs but can
sacrifice optimality) conditions can be used. Next, we empirically demonstrate the need
for this new class of algorithms to solve RA-DCOPs by showing that transforming them
into DCOPs can lead to significantly suboptimal performance, especially as the level of

risk aversion is increased.

The remainder of this chapter proceeds as follows. Section describes the general
framework that we defined. Section then presents the GDL-based algorithm which
we derived to solve RA-DCOPs. Next, Section presents some empirical evaluation

and Section summarises the chapter.

6.1 Problem Definition

This section describes the framework of RA-DCOPs, an instantiation of PO-DCOPs that
incorporate the notion of collective risk awareness to the canonical DCOP framework.
Formally, an RA-DCOP is defined as follows:

Definition 6.1. A RA-DCOP is a tuple (A, X, D, F,C,U) such that:

A={1,...,]A|} is a set of agents.

o X ={z1,x9,...,2,} is a set of variables.
e D={Dy,...,D,} is a set of discrete domains, where D; is the domain of variable
Zj.

e F': X — Ais a function that assigns variables to agents. Each agent controls (the

value of) the variables that are assigned to it.

o C = {C4,...,Cy} is a now set of non-deterministic (instead of deterministic
scalar) constraint functions. Hence, the value of an assignment of X returned
by constraint function C is a random variable V; whose pdf is known, ie. V; ~
Cj(X5)-

e U : R — R is the utility function of the entire collective of agents A encoding their

collective attitude towards risk.



Chapter 6 A Class of Algorithms for Partially Ordered Coordination Problems
132 involving Risk Awareness

Thus, in a RA-DCOP, as is the case for a general PO-DCOP, the sets A, X, D and
F maintain the same semantics as for traditional DCOPs. The constraint functions C;
are then generalised into non-deterministic functions. Hence, each assignment C;(Xj) is
now a random variable V; with a known pdf. This means that the different assignments
C;(X;) are partially ordered. As a consequence, there is no more a single optimal
solution X* as for canonical DCOPs. Rather, as discussed in Chapter @ we have a PO-
DCOP in which multiple non comparable or non-dominated solutions exist. In addition,
the sum of the local constraint functions associated with an assignment to variables X is
also a random variable V = z;n:l V;, whose probability distribution is the convolution
of the distributions of the outcomes V; of the local constraint functions. Consequently,
each global assignment to X results in a (possibly) different distribution of V. The
solution to a RA-DCOP is an assignment X* to variables X that maximises expected

global utility of the sum of the local constraints:

m
X* =arg maxE |U V; 6.1
I g ) (6.1)

To understand the intuition behind a RA-DCOP, note that function U models the atti-
tude of the entire multi-agent system (not individual agents) towards the risk associated
with each possible variable assignment to X. To understand this, consider again the
domain of disaster response discussed in Chapter 2l Within this setting, the agents’
risk profile is encoded within a utility which clearly increases with the number of civil-
ians saved, but first responders might prefer a smaller (in expectation) but highly certain
number of saved civilians over a better (in expectation) but highly uncertain (thus risky)
outcome. In general, it can be assumed that this U is non-decreasing, i.e. more utility

is always preferred over less (Levy, 2006).

In more detail, when the system is risk neutral, U is linear, and the system maximises
the sum of expected utilities of the local constraints. However, when this is not the
case, for instance when the collective agents is either risk seeking or averse, Equation

cannot be expressed as a sum of factors and thus, in general:

E(U(D Vi||#D EUW)) (6.2)
j=1 i=j

Hence, a RA-DCOP cannot be transformed into a DCOP by simply defining C;(X;) =
E[U(V;)] (as is done by |Atlas and Deckex (2010)). Example [6.1] illustrates this:

Example 6.1. Consider a RA-DCOP with A = {A1, A2}, X = ({z1,22}, D = {{0,1},{0,1}},
and C = {Ci(x1,x2),Co(x1,22)}. Furthermore, let U(V) be a function such that
E[U(V)] = pv — ov, where py and o are the mean and standard deviation of V.
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6.1

In the remainder of this work, we will use the utility function U(V') to illustrate and
empirically evaluate our algorithms. U(V) is a well known type of risk averse utility
function (see (Leuvy, |2006)) because it favours certain but less rewarding outcomes over
more rewarding but highly uncertain ones. To understand this, consider two random
variables A ~ N'(22.5,7.5%) and B ~ N(17.5,1.5%). Their pdfs are shown in Figure 6.1l
In this setting, if an agent selected a variable considering only its expectation, than A
would be the better option since pua > up. However, A has a larger deviation, therefore
the outcome of the variable is more uncertain than B. In light of this, variable B is the
best option since despite its lower expectation, it has a smaller deviation than A. Hence,
the outcome of the variable B is more certain than that of variable A. This is reflected
in the utility function since E[U(B)] =16 > E[U(A)] = 15.

Constraint functions C are shown in Table[6.1 The last two columns represent the left-
hand and right-hand side of Equation[6.3, i.e. the expectation of the utility of the sum
of local constraints (EUS) and the sum of the expected utilities of the local constraints
(SEU).

As indicated in the table, the solution to this RA-DCOP is x1 = xo = 0 (see next to last
column). Note that mazimising SEU, rather than EUS, results in a suboptimal expected
utility (—3 instead of 2). Thus, transforming a RA-DCOP into a DCOP using Equation
[63 results in sub-optimality.

As suggested by Example [6.T, RA-DCOPs and DCOPs are two different classes of prob-
lems. In fact RA-DCOPs subsumes DCOPs and the following property holds:

Property. A DCOP is a RA-DCOP in which the outcome of each constraint function

C; € C is known with precision and where the risk function U is the identity function.
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m | |G @2 G | pys | sky
w | o w | o w | o
0] 0| 9|8 10152 19| 172 2 —4
0 1 || 3 |52]10[122]13|132| 0 —4
1|0 ||15] 72| 5 | 242 20 |25%2| -5 | —11
1|1 242 2|32 | 4|5 | -1] -3

TABLE 6.1: The function payoffs of Example

In light of this, we can define the commutative semi-ring (R, max, ,+), that characterise
the objective function of an RA-DCOP (Equation [61]) as was done in Chapter [l for the
case of multi-objective DCOPs. In so doing, we are essentially instantiating the operators
max, and 4+ which we are going to use in Section to define an algorithm for solving
RA-DCOPs based on the PO-GDL.

Now, as discussed in Chapter[2] for any GDL-based algorithm to work the max, operator
needs to distribute over the + operator (Definition 2.2). However, in contrast with
Chapter Bl where the notion of Pareto dominance was used, here we need to explicitly
define max.. Hence, we impose a partial order over the set of random variables as

follows:
Definition 6.2. NDC is a commutative semi-ring (R, max,,+), such that:
e R =P(S) is the powerset (i.e. the set of all subsets) of S. Each set S; € S contains
all random variables, distributed according to a valid pdf

e max, takes sets of random variables S, S, ..., S, C R and outputs a set S’ such
that:

S/ = mex{Sl, 52, Ce ,Sm}

:{VGUSi]/HV’eUSZ-:V'>-V} (6.3)

i=1 i=1

where to ensure max,. distributes over 4, binary operator > compares the expected

utility of random variables X and Y under convolution with an unknown Z:

VX,Y €S: X =Y iff
VZ €S, ElUX + 2)] > E[U(Y + Z)] (6.4)

with strict inequality for at least one Z.

!The identity elements 0 and 1 are singleton sets with a random variable with an expected value of
—oo and a random variable with a Dirac delta pdf, respectively. In a practical implementation, however,
these elements can be replaced by special constants.
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e + is a binary operator that, given two sets of random variables S, S € R, sums

all pairs of random variables V; € S and V, € Ss:

S1+ 8y = {Vi + Vo | VV] € S1,VV; € So} (6.5)

The sum of two random variables V; + V5 is calculated using the convolution of
the variables’ corresponding pdfs. Hence, if V; and V5 are distributed according
to pdfs f and g, then the pdf of Vi + V5 is the convolution of f and g:

(Fr)) = [ " f(z - a)i(a)da (6.6)

To understand the intuition behind the max, operator, we stated that it needs to
distribute over the 4+ operator, as per the definition of a commutative semi-ring (see
Chapter 2)). This implies that the ordering operator > should also distribute over the
convolution of random variables. However, achieve this is not trivial. For instance, if
we simply define X > Y = true iff E[U(X)] > E[U(Y)], then max,. does not distribute
over + anymore. To understand this, consider three variables X,Y and Z, we have that
X+Z=Y+Ziff ElUX+ Z)] > E[UY + Z)]. However, E[U(X)| + E[U(Z)] >
ElUY)|+E[U(Z)] + EUX + Z)] > E[U(Y 4+ Z)], unless U is linear. Thus > does
not distribute over the convolution and so does max. over +. This means that Equation
needs to be defined consistently with the specification of a semi-ring. Moreover, the

> operator imposes a partial order as described by the following example:

Example 6.2. Let U(x) be the utility function from Example [61], and let the set S
be restricted to normally distributed variables. The use of this assumption allows us to
exploit the fact that the normal distribution is closed to convolution. More formally, for
any two random variables X ~ N(ux,0%) and Y ~ N(py,0%), their convolution is
defined as X +Y ~ N (ux + py, 0% + o).

In light of this, X =Y iff px + pz — \/o% +0% < py + pz — /o2 + 0% for any
wz,0z € R. Algebraic manipulation shows that this inequality holds iff:

ux — py <max(0,0x — oy) (6.7)

To see why = is a partial order, consider X ~ N(0,5%) and Y ~ N(27,35%). Clearly,
the inequality in Equation[6.7 does not hold, so X 'Y (or vice versa). To see why this
is true, consider Z1 ~ N(0,0) and Zo ~ N(0,12%). Now note that E[U(X + Z;)] = —5
which is greater than E[U(Y + Z1)] = —8. However, E[U(X + Z2)] = —13 is less than
E[U(Y + Z3)] = —10. Thus, discarding Y in favour of X (or vice versa) can result in

sub-optimality.

To solve RA-DCOPs then, we adopt the same methodology described in Chapter [d. We

define a commutative semi-ring so that we can factorise the objective function of an
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RA-DCOP and we instantiated algorithms based on the PO-GDL. In what follows, we

describe these algorithms.

6.2 An Algorithm for solving RA-DCOPs based on the
PO-GDL

We discussed in Chapter [, how the objective function of a PO-DCOP possesses a
specific algebraic structure (i.e. a commutative semi ring) which can be used to derive
various decentralised algorithms to solve it, all based on the GDL framework. In the
same chapter, we also discussed the way the former algorithms can be instantiated by
following the methodology used to derive canonical DCOP algorithms, such as DPOP,
Action GDL and bounded max-sum (see Chapter [2)).

In this chapter, we are interested in solving RA-DCOPs in which uncertainty and risk
awareness need to be taken into account. To solve these problems, this section proposes a
generalisation of Action GDL, a well known optimal algorithm to solve canonical DCOPs
which has been shown to be more general than DPOP, the most well-known optimal
GDL-based DCOP algorithm (Vinyals et all, [2011) (see Chapter ). In so doing, we
derive an optimal algorithm, which clearly incurs larger communication and computation
costs. Nonetheless, as we will see in the remainder of this section, this complexity is
required to study the properties of this new class of problems and approximate solutions
will be considered for future work. In more detail, we propose an algorithm proceeding

over three phases, as follows:

Phase 1 - Junction Tree Computation : The junction tree (JT') phase produces a
junction tree of the factor graph encoding an RA-DCOP, using the same procedure

of the canonical Action GDL algorithm.

Phase 2 - Message Passing : The message passing (M P) phase is a re-definition
of the canonical GDL message passing phase to the setting in which the agents
coordinate to find the non-dominated set of solutions to the cycle-free factor graph

computed in the JT' phase.

Phase 3 - Value Propagation : The value-propagation (V P) phase allows the agents
to select a consistent variable assignment, considering that now multiple non-

commensurable alternatives exist.

In what follows, we describe each of these phases in detail, and then we analyse some of

the algorithm’s key properties.
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6.2.1 Algorithm Description

Our algorithm proceeds in three phases. In what follows, we discuss each of the phases

in detail.

6.2.1.1 The Junction Tree Phase

In contrast, to the algorithm proposed in Chapter Bl no extensions to the first phase
are required. Thus, we run the same junction tree algorithm as for the canonical Action
GDL algorithm (Vinyals et al), 2011). In essence, the nodes of the original factor graph
that represent variables are clustered together until the graph becomes acyclic. Each
cluster of nodes is then replaced by a new node representing a meta-variable defined over

the Cartesian product of the domains of the variables (see Chapter 2 for more details).

In what follows, we present an example that shows how the RA-DCOP described in

Example can be cast into a factor graph and transformed into a junction tree.

Example 6.3. The RA-DCOP in Examplel6.1l describes a setting with two variables xq

and x2, and two constraints C1 and Co. This can be encoded in the factor graph depicted

. Figure .

Now, to compute a junction tree, variables x1 and x2 are merged into a new variable xp,
the new RA-DCOP is defined as follows:

z Sl LT Bus| sy
n | o nw | o n | o
a=(0,0)] 9 |8 | 10|15%| 19| 172 | 2 —4
b=(0,1) 52110 [ 122 |13 [ 132 | 0O —4
c=(1,0) || 15| 72 || 5 | 242 | 20 | 252 || —5 | —11
d=(1,1)| 2 |4*] 2 |3 | 4| 5| -1 | -3

The resulting acyclic factor graph is shown in Figure and constitutes the input of

the second phase of the algorithm, which we discuss next.

6.2.1.2 The Message Passing Phase

The specification of the message passing phase proceeds as defined in Chapter [ and
as used in Chapter [l for the case of multi-objective distributed constraint optimisation
problems (MO-DCOP).
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<]

(a) The factor graph from Example (b) The junction tree from the fac-

(631 tor graph in Figure [6.2(a)|

In terms of implementation, Definition raises a number of practical issues. First,
there exists no closed form expression for the convolution of arbitrary pdfs (Equation
[6.5). To solve this, an approximate technique such as sampling or curve fitting may be
used, or set S can be restricted to certain classes of distributions that are closed under
convolution, such as Gaussian (as in Example [6.2)), Gamma or Poisson distributions.
In disaster response, Gaussian are typically used to represent the multiple sources of
uncertainty, since typically, only the means and the variances of the pdfs of these sources
are known (Thrun et all, 2006), and as a consequences the former Gaussians have the
largest entropy and thus, are the best pdf to use following the axiom of maximum entropy
(Thrun et all, [2006).

Example 6.4. In order to keep the exposition as clear as possible, we consider a simple
message passing schedule, where the computation starts at the leaf nodes and goes up
through the different nodes of the graph. The computation begins at time step t = 0,
nodes Cy and Co both have a single edge (i.e. they are leaves of the cycle free factor

graph) and therefore send a message first:

Tp C Zp C
a=(0,0)| [9,8] a = (0,0) | [10,15]
Rip(zp) = b=1(0,1) | [3,5] Ry p(zp) = b=1(0,1) | [10,12]
c=(1,0) | [15,7] c=(1,0) | [5,24]
d=(1,1) | [2,4] d=(1,1) | [2,3]

Both C1 and Cy compute the multi-objective marginal function of variable x,, as detailed

above. At time stept = 1, x;, receives the messages and computes the next two messages:
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Zp C Tp C
a=(0,0) | [10,15] a=(0,0) | [9,8]
Qps1(zp) = b=(0,1) | [10,12] | Qp2(wp) = b=(0,1) | [3,5]
c=(1,0) | [5,24] c=(1,0) | [15,7]
d=(1,1) | [2,3] d=(1,1) | [2,4]

After these messages have been sent, the M .S phase terminates. Finally, variable x, can

compute its non-dominated values:

Tp C )
a=(0,0) | [19,17]
NDx =max{ b=(0,1) | [15,13]
c=(1,0) | [20,25]
d=(1,1) | [4,5]

Such values correspond to the non dominated solutions of the problem Ox = {z, =
(0,0) = a}.

Similar to canonical DCOP algorithms, it can happen that different solutions yield the
same value of the global constraint function. This is even more true for MO-DCOP where
there might exist numerous non-comparable solutions which are all Pareto optimal. For

this reason, a value propagation phase is required, which we discuss next.

6.2.1.3 The Value-Propagation Phase

The value-propagation phase operates on the cycle-free factor graph computed in the
first phase. Variables and function nodes in the factor graph coordinate to select a
consistent variable assignment. Since, RA-DCOPs are PO-DCOPs then, we can use
the value propagation described in Chapter @l by instantiating the > relation using the
dominance condition defined in the previous section (or the approximation which we
will discuss in Section [6.2.2)).

However, in contrast to the example presented in Chapter [, it should be noted that
since the solution of Example is unique, the value propagation phase is not necessary

in this case.
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6.2.2 Theoretical Analysis

We now discuss some of the fundamental properties of GDL-based algorithms that we

can instantiate using the NDC semi-ring (Definition [6.2)).

6.2.2.1 Optimality of the Message Passing Phase

In order to use the NDC-GDL to derive new algorithms, as described in Chapter 2 the

following theorem must hold:

Theorem 6.3. Given a RA-DCOP (A, X,D,F,C,U), if the problem’s corresponding
factor graph is acyclic and the stopping criterion is chosen such that Algorithms 2[3 and
2[9) are run for a number of iterations equal to the diameter of the factor graph, the

following equation holds for each variable x; € X :
Zj(w;) = max Zl V; (6.8)
]:

Proof. The proof follows from Theorem [£.3]and from the fact that the objective function
of a MO-DCOP is defined over the NDC-GDL semi-ring, which is a commutative semi-
ring. Thus, by instantiating the operator ® of Algorithms [Iland 2] with the operator +
and by defining the dominance relation < depending on the type of risk profile considered
(see Chapter [2), it follows that Equation [6.8 specialises Equation [£.6 to RA-DCOPs and
thus, that the theorem holds. ]

Here, operator max. discards dominated partial solutions, i.e. those that are guaran-
teed to be suboptimal in terms of Equation Operator + (> for more than 2
elements) sums random variables by computing the convolution of their pdfs. As a re-
sult, Z;(x;) can contain multiple pdfs, each corresponding to a non-dominated %obal

outcome V' » ", Vj. The optimal assignment z} of z; can be recovered as follows

* = EU(V 6.9
s = ang [Vglz‘?gjm U ﬂ (6.9)

Now, as stated in the theorem computing the operator > depends on the type of risk
profile used, and, consequently it might become difficult to derive a closed form solution.

The next section discusses ways to address this shortcoming.

2Similar to standard DCOPs, this is only the case if the optimal solution is unique. Otherwise, value
propagation should be used.
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6.2.2.2 Sufficient and Necessary Conditions for Dominance

There exists no closed form conditions for the >~ operator (Equation [6.4]) for arbitrary
combinations of utility functions U and random variables S. However, it is possible to
derive alternative conditions. Indeed, the dominance condition in Equation can be
made weaker or stronger (i.e. discarding more or less pdfs), resulting in a sufficient and

a necessary condition respectively.

Definition 6.4 (Sufficient Condition for Dominance). A condition C' that imposes re-
lation ¢ is called sufficient if X =c Y = X =Y.

A sufficient condition keeps all non-dominated random variables, but might not filter
out all dominated random variables. Therefore, using a sufficient condition guarantees
that the optimal (i.e. non-dominated) random variable is preserved, and consequently,
that optimality is guaranteed. However, many dominated pdfs might be propagated
in the messages exchanged between functions and variables, wasting computation and
communication. To understand this with an example, consider the condition presented
in Example (Equation [6.7). An example of a sufficient condition is C"

px > py Aox < oy (with strict inequality in at least one clause) (6.10)

To understand why this condition is weaker than Equation [6.7, consider two random
variables X ~ N(0,52) and Y ~ N(2,4?). By calculating Equation[6.7], we can see which
variable (X or Y) is the best considering the risk utility function defined in Example
6.1 By doing so, we have that X > Y. However, by calculating Equation for X
and Y, we have that X ¢ Y. Hence, using condition C'; X and Y are equivalent and
are both propagated despite X > Y.

Definition 6.5 (Necessary Condition for Dominance). A condition C' that imposes

relation ¢ is called necessary if X =Y = X »¢ Y.

A necessary condition discards all dominated random variables, but might discard non-
dominated ones as well. Thus, a necessary condition can result in loss of optimality.
Hence, using this condition, instead of a sufficient condition, implies that less pdfs
(all non-dominated) are propagated in the messages exchanged between variables and
functions. Thus, computation and communication are reduced. However, this also
means that not all the non-dominated pdfs are propagated. To understand this with
an example, consider again the condition presented in Example (Equation [6.7). An

example of a sufficient condition is D:

wx —ox > Uy — oy (6.11)
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To understand why this condition is stronger than Equation B.7, consider again two
random variables X ~ N(0,5%) and Y ~ N(—2,4%). Following the same procedure as
for the sufficient condition C', we have that X >=p Y, but not X > Y. In addition, it
should be noted that condition D imposes a total order over the set of random variables.
Hence, using this condition is equivalent to applying a DCOP algorithm to maximise
the right-hand side of Equation [6.2] which was shown to be suboptimal (Example 2.2)).

Definition 6.6 (Optimal Condition for Dominance). A condition O that imposes rela-

tion ¢ is called optimal if it is both necessary and sufficient.

Equation [6.7] is an example of an optimal condition. To summarise, the key difference
between a sufficient and a necessary condition is that the former is guaranteed to lead to
optimal solutions, but also requires larger messages and more computation. Conversely,
the latter does not guarantee optimality, but is computationally less expensive. When an
optimal condition can be used, however, the smallest set of pdfs is propagated, without

discarding any non-dominated random variables, as we show in the next section.

6.3 Empirical Evaluation

We study the properties of RA-DCOPs by using an instance of the NDC-GDL, as
described in Section The focus of these experiments is to study the properties
of RA-DCOPs and the NDC-GDL class of algorithms across all possible probability
distributions, and instantiations of the utility function U and NDC-GDL.

As discussed in the previous section, the behaviour of any NDC-based algorithm varies
depending on whether the main, a sufficient or a necessary condition is used. Moreover,
whereas any of these algorithms is optimal when instantiated with an optimal or sufficient
condition, it is not possible to theoretically determine the impact on the execution time of
the algorithm, or the communication requirements. Thus, we need to resort to empirical
evaluation. Hence, the objective of this section is to empirically justify the need for
NDC-GDL for solving RA-DCOPs (as suggested in Example 2.2]), by quantifying the
loss of solution quality that results from using standard DCOP algorithms. To do this,
we compare our algorithm with the canonical Action-GDL algorithm, which maximises
the right-hand side of Equation Additionally, we compare the optimal solution of
an RA-DCOP with the solution obtained by ignoring risk by setting U(v) = v (which
maximises E[V] instead of E[U(V)]). By doing so, we can simultaneously ascertain the
performance of an instance of the NDC-GDL class of algorithms, which explicitly takes
the agents’ risk profiles into account, against a standard GDL algorithm (Action-GDL),

which does not.
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In what follows, we discuss the empirical setup, the benchmarks and the empirical

results.

6.3.1 Experimental Setup

We randomly generate RA-DCOPs with a varying number of three-valued variables.
The reason for this is that the impact of the domain of the variables on the algorithm’s
performance is the same as all GDL-based algorithms. Thus it is irrelevant for the aims
of this work. The number of functions m is controlled by density parameter ¢ € [0, 1].
For § = 1 there is a pairwise constraint function between all pairs of variables (m = (3})),

while for § = 0, the factor graph is a tree.

By controlling the density parameter and the number of nodes of the graph, we follow
the same procedure as in Chapter Bl The idea is to control the interactivity of the
agents. In so doing, we are able to reproduce the different levels of connectivity that
characterise the agents when deployed in the real world. For instance, while searching
for one or more lost targets, it might happen that one or more UAVs are searching
the same area. This means that their observations might overlap (i.e. they are making
redundant decisions) as discussed in Chapter 2l Thus, the number of these interactions
will vary depending on the number of overlapping observations and UAVs. Hence, by
controlling the density of the graph, we are able to reproduce all the different type of

interactions that can arise in such problems.

For each pair of variable assignments, the value assigned by a function is a normally

distributed random variable with p and ¢ drawn from the intervals [~1,1] and [0, 02, ]
with uniform probability. We varied o2,,, between 1 and 10 to determine the effect of

increasing levels of uncertainty (and risk) on the difference between the optimal solution
of a RA-DCOP and its corresponding DCOP. The idea here is to create a controllable
setting that can cover a range of different possible uncertain outcomes. In the context
of robotics for disaster response, such outcomes could represent the uncertainty over the
position of a target, over the number of casualties within an area or over temperature

of a building (see Chapter [2l for more details).

We run two experiments. First, we use the utility function defined in Example with
the three dominance conditions defined by Equation 6.7 [6.10] and [6.11]

Optimal: X >~ Y < puxy — puy > max(0,0x — oy ).

Sufficient: ux > puy Aox <oy = X > Y.

Necessary: X = Y = ux —ox > uy — oy. This is equivalent to using Action-
GDL for maximising the right-hand side of Equation [6.2] which is a DCOP with
Cj(x;) = E[U(Vj)]. (Note that it is not the same as risk neutrality.)
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The key idea here is to ascertain the communication and computational load used by
our GDL-based algorithm when using a sufficient condition. Indeed, as we stated in
the previous section, a sufficient condition is more likely to be used for solving RA-
DCOPs since optimal conditions might not always be derived. However, the use of
such a condition might come with an increment in terms of the computation and the
communication required by the algorithm. Hence, we compare here a sufficient and
an optimal condition to understand their differences. We also consider a necessary
condition, which is the equivalent of instantiating an optimal DCOP algorithm, but

which most likely will result in suboptimal solution quality as explained in Section [6.2.2]

Second, we use the utility function 4 — ¢ and compare the optimal solution of an RA-
DCOP against the solution obtained when ignoring risk by assuming risk neutrality (i.e.
U(v) = v). In these experiments, we vary o in the interval [1,2], and v between 0 (risk
neutral) and 2 (risk averse). In so doing, the key idea is to study the impact of increasing

risk averseness on the solution quality and required overhead of NDC-Action-GDL.

We randomly generate 200 problem instances to achieve statistical significance. In the
first type of experiments, we measure the solution quality as per Equation 6.1l the
average message size (in bytes), and the required computation time (in seconds). In the
second, we report the error of ignoring risk by measuring the difference between using
an optimal against necessary condition, as well as the savings in overhead in terms of
computation and communication, again measuring the difference between the optimal

and the necessary condition.

6.3.2 Results

The results for the first experiment are shown in Figure BEIH These results clearly show
the theoretical properties of the various dominance conditions: NDC-Action-GDL with
a sufficient and an optimal condition is optimal, while Action-GDL (i.e. the necessary
condition) is not (Figure [6.2(c)). Léauté et al. observed a similar result for their (in-
complete) E-DPOP algorithm when using a linear decomposition (i.e. rhs of Equation

[6.2) to maximise non-linear objective functions (Léauté and Faltings, 2011).

We found that the difference between the solution quality of using the optimal and the
2

max’

= 1 and 2.82 (£0.32) for o2

max

with a mean absolute difference of
= 10 (for n = 50). Thus, as
expected, Action-GDL algorithm performs worse as uncertainty increases. However,
Figure shows that this optimality comes at a cost of a roughly fivefold increase

in message size for the optimal condition (n = 40), and a hundredfold increase for the

necessary condition increases as we increased o
0.97 (£0.12) for o2

max

sufficient condition (n = 50), as compared to Action-GDL. Simultaneously, the runtime

3We show results for § = 0 and 6§ = 0.4 only, because for § > 0.4, the resulting junction tree clusters
too many variables resulting in (NDC-)Action-GDL running out of memory.
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of the optimal and sufficient conditions grows by a factor of 5 and 330 respectively
(Figure [6.2(e))). However, depending on the application domain, a computational cost
of less than 14 seconds (optimal) shared among 50 agents can be justified for a twofold

increase in solution quality (n = 50).

The results of the second experiment are shown in Figure[6.3] The most evident fact here
is that, as the agents become more risk averse (increasing =), the error of ignoring risk
increases. Notably, the error grows exponentially as v > 1. The reason for this is that v
is the exponential factor in the utility © — ¢” and as soon as it becomes larger than one
the risk averseness of the agents starts growing exponentially. However, the overhead
in both computation and communication is significantly decreased by doing so. This
means that as the difference between the performance of the optimal and the necessary
conditions becomes larger, the overhead in terms of computation and communication
becomes smaller. The reason for this is that the larger +, the more the risk profile
constrains the attitude of the agents towards uncertainty. Hence, a larger number of
pdfs become non-dominated (i.e. the number of solutions grows larger), and thus, more

alternatives need to be considered while using the optimal condition.

6.4 Summary

This chapter presented a new class of problems and solution techniques to address coor-
dination problems involving uncertainty and risk awareness. More specifically, in Section
[6.1] we proposed the RA-DCOP framework, a specialisation of the PO-DCOP frame-
work from Chapterdl The key idea of a RA-DCOP is that each outcome of the partially
ordered constraint function of a PO-DCOP becomes a random variable defined by a
specific pdf. Hence, in addition to multi-objective distributed constraint optimisation

problems presented in Chapter [l we propose here a further class of problems that meet



Chapter 6 A Class of Algorithms for Partially Ordered Coordination Problems
involving Risk Awareness 147

the complex interaction requirement defined in Chapter [l In addition, the RA-DCOP
framework also satisfies the generality requirement, since no conditions are put on the

type uncertainty and risk profile.

We then presented, in Section 621 a new set of solution techniques for solving RA-
DCOPs. To derive these techniques, we specialised the PO-GDL and derived a new
commutative semi-ring based on the relation of non-dominance, which we need to be
derived for specific pdfs and risk profiles. In so doing, we can then instantiate the
message passing algorithms presented in Chapter 2 (Algorithms 2[1] and 212]) to solve
RA-DCOPs. By so doing, as described in Chapter @l we are able to instantiate optimal
or bounded approximate algorithm and to meet the requirements of quality guarantees

and robustness defined in Chapter [l

Now, to solve RA-DCOPs optimally, these algorithms have to keep track of multiple
non-dominated partial solutions. To do so, in Section [6.2.2] we derived three types of
domination conditions. Specifically, optimal conditions propagate the smallest number
of probability density functions (pdfs) without losing the guarantee of optimality, but
do not always have a closed form expression. Alternatively, sufficient (which achieve
optimality at the cost of a higher overhead), and necessary (which incur lower costs but

can sacrifice optimality) conditions may be used.

Finally, in Section [6.3] we empirically demonstrated the need for this new class of algo-
rithms to solve RA-DCOPs by showing that transforming them into DCOPs can lead to
significantly suboptimal performance, especially as the level of risk aversion is increased.
However, this evaluation also shows that using our algorithms incurs a significant in-
crease in terms of computation and communication. This is to be expected since we
are solving optimally a problem which we have shown in Chapter @ to be more complex
than canonical DCOPs. Moreover, considering the performance loss derived from using
canonical DCOP techniques to solve RA-DCOPs, such an increase in both computation
and communication is to be expected. For this reason, despite being able to scale up to
50 agents (i.e. they meet the scalability requirement), our algorithm partially satisfies

the requirement of resource awareness.






Chapter 7

A Class of Algorithms for
Partially Ordered Coordination
Problems involving Online

Learning

This chapter presents a formal framework to solve distributed constraint optimisation
problems (DCOPs) where the outcome of the constraint functions is uncertain (with
unknown probability) and where no prior information is available about it. Considering
then, that these functions are typically used to measure the quality of the collective
decisions of a set of agents, the key aim of this chapter is to study problems in which the
outcome of the agents’ decisions is uncertain and unknown before-hand. In so doing, we
aim to address the requirement of complex interactions described in Chapter [l in the

case where the agents need to learn the outcome of their decision online.

In more detail, in Chapter Bl we presented a number of algorithms to address uncer-
tainty and lack of prior information. In the same chapter, we argued that, thus far
existing literature lacks algorithms capable of addressing both of these challenges simul-
taneously. Moreover, existing algorithms do not provide any guarantee on the quality of
the solutions recovered, which is a key requirement for the purpose of our work (Chapter
). This is a clear limitation, since in many real world coordination problems not only
is uncertainty endemic, but often little information is available about the environment
where the agents are deployed. For instance, referring back to the scenario described in
Chapter [l the scenario describes the environment where the agents are deployed as un-
known, uncertain and unpredictable. Moreover, these agents have noisy sensors. Thus,
the outcome of their decisions cannot be defined a priori due to the level of uncertainty

and the lack of knowledge. These outcomes then need to be learnt during the operation.

149
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Against this background, this chapter proposes two main contributions. First, we first
generalise the DCOP framework to the setting in which the values of the constraint func-
tions is unknown. In more detail, we model each of these functions as a multi-arm bandit.
This effectively models both the stochastic nature of realistic decentralised coordination
problems, as well as the absence of a priori knowledge. To model these problems, we
build upon the PO-DCOP framework presented in Chapter [dl More specifically, we spe-
cialise partially ordered distributed constraint optimisation problems (PO-DCOPs) to
model problems in which the agents need to learn online the outcome of their decisions.
In so doing, we enrich the canonical framework and allow it to be used for a broader
class of real world problems. Second, to solve these problems, we propose a class of
algorithms based on the generalised distributive law (GDL). Again, we build upon the
framework described in Chapter Ml and instantiate the PO-GDL to derive algorithms
to solve the previous problems. In so doing, we further generalise multiple canonical
DCOP algorithms such as Action GDL, bounded max-sum and DPOP, whose level of
performance has been well studied in literature, to be able to address decision making
problems involving online learning. These algorithms solve MAB-DCOPs, an extension
of canonical DCOPs, in which each local utility function becomes a multi-armed bandit
(MAB) (see Chapter ). Unlike a DCOP, a MAB-DCOP is not a single shot optimisa-
tion problem, but rather a sequential problem in which agents need to coordinate their
joint actions over multiple time steps, so as to maximise the cumulative global utility
received over a finite time horizon. Our algorithms achieve this by repeatedly choosing
the joint action with the highest estimated upper confidence bound (UCB) on the sum
of local utilities received in a single time step, which is a non-linear combination of the

confidence bounds on the local utilities.

The remainder of this chapter proceeds as follows. Section [[I]details the general frame-
work that we defined. Section then presents the GDL-based algorithm which we
derived to solve MAB-DCOPs. Next, Section [[.3] presents some empirical evaluation

and Section [7.4] summarises the chapter.

7.1 Problem Definition

This section describes the framework of multi-arm bandit DCOPs (MAB-DCOPs), a
specialisation of PO-DCOPs that incorporate the concepts of UCB and MAB to the
canonical DCOP framework. In so doing, this framework can be used to model problems
in which the agents have to learn online the outcome of each of their decisions. Moreover,
in so doing, MAB-DCOPs extend canonical DCOPs and address the requirement of
complex interactions described in Chapter [l Formally, a MAB-DCOP is defined as

follows:

Definition 7.1. A MAB-DCOP is a tuple (4, X, D, F, C)) such that:
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A={1,...,]A|} is a set of agents.

o X ={x1,x9,...,2,} is a set of variables.
e D={Dy,...,D,} is a set of discrete domains, where D; is the domain of variable
ZT;.

e F: X — Ais a function that assigns variables to agents. Each agent controls (the

value of) the variables that are assigned to it.

C={C1,...,Cp} is now a set of MABs. In more detail, each constraint function
Cj models a MAB, such that each joint assignment X; € Dy, of the agents
connected to that MAB becomes an arm of that bandit. Hence, each value C; (Xj),
obtained by choosing X; € Dx;, is assumed to be drawn from an unknown, but
fized, distribution, with (unknown) expected value p (X;), and bounded support

[Umina Umax] .

Thus, in a MAB-DCOP, as is the case for a general PO-DCOP, the sets A, X, D and
F' maintain the same semantics as for traditional DCOPs. The constraint functions
C; are then defined as MABs which means that there is no a priori knowledge about
the constraint functions that govern the agents’ interactions, and these interactions are
subject to stochasticity. This is a common situation in multiple real world problems.
For instance, as we discussed at the beginning of this chapter, in the domain of disaster
response, multiple scenarios can be identified in which the agents need to learn the

outcome of their decisions (one is presented in Chapter [I]).

At the beginning of this chapter, we described a MAB-DCOP as a sequential problem
rather than a canonical one shot optimisation problem. Hence, in a MAB-DCOP the
agents’ goal is to choose an optimal joint assignment X*(¢) = (zi(¢),...,z(t)) at each

time step t, such that the expected cumulative utility over a finite time horizon T is

maximised:

T m
[X*(1),...,X"(T)] = argmax E C; (X;(t))
X (1), X (T) ;; e

T m
max 305" (X;(0)) (7.1)

arg
X (1), X(T) 121 j=1

where X;(¢) is the chosen assignment to X at time t.

It should be noted, that if the constraint functions were known and if the level of
uncertainty was zero, then a MAB-DCOP would regress to a canonical DCOP. More

formally, we can define the following property:
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<]

FIGURE 7.1: A factor graph encoding the MAB-DCOP presented in Example [7.11

Property. A DCOP is a MAB-DCOP in which the outcome of each of the constraint

functions in C is known with precision.

To illustrate MAB-DCOPs, consider the following example:

Example 7.1. Consider a MAB-DCOP with A = {A1,As}, X = {x1,22}, D =
{{0,1},{0,1}}, and C = {Ci(x1,x2), Co(z1,22)}, at time t = 10. Figure[7]] illustrates

the factor graph associated with it. The constraints are defined as follows:

I i) Cl(.%'l,.%'g) Cg(xl,.%'2> C({L‘l,m'z)
0 0| (30,1 (25,1) | (5.2,2)
0 1| (5.0,3) (32,3) | (8.2,7)
1 0| (20,2 (1.7,1) | (3.7,3)
1 1| (1.1,2) (4.1,2) (5.2,4)

Constraint functions are represented as tables, each cell of which has a tuple ((1(X;,t), n(X;,t)),
where [1(X;,t) is the sample mean of the constraint received for the assignment C; at
t, and n(X;,t) is the number of times that assignment has been sampled. Given the
current sample means, assignment (r1 = 0,29 = 1) seems to be optimal. However,
(x1 = 0,22 = 0) could be the real optimal, since C1(0,1) and C2(0,1) have only been

sampled once.

As this example suggests, to solve MAB-DCOPs, agents need to coordinate over the
assignments to variables X at each time step, in order to trade off exploration (reducing
uncertainty about the expected utility of each joint assignment) and exploitation (using

the joint assignment that is believed to maximise reward).

Similar to standard MABs (see Chapter [2)), we can define the regret of a coordination
algorithm in a MAB-DCOP as a measure of the performance of a particular algorithm.

In more detail, let P = X (1), XF(2),... denote a coordination algorithm that chooses
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the joint assignment X (¢) = (z0(¢),...,2F(t)) at time t. The regret Rp (T) for T

n

time steps can be formalised as:
Rp(T)=T- Inaxz p(X5) = Z n(X7 (1) (7.2)

Hence, since we are interested in minimising such regret (i.e. thus generalising the pro-
cedure used for canonical MABs), we follow the same procedure used in Chapters
and [B] and use the PO-GDL to instantiate new algorithms to solve MAB-DCOPs. To
achieve this, as discussed in Chapter 2] a key idea is to use the UCB. For this reason we
present in the next section, the way in which we adapt it to a multi-agent setting and

incorporate in a commutative semi-ring that can be used to instantiate the PO-GDL.

7.2 An Algorithm for solving MAB-DCOPs based on the
PO-GDL

We present in this section a class of algorithms to solve MAB-DCOPs. We name this
class of algorithms the MAB-GDL since, as was the case in ChaptersBl and[6l it exploits
the PO-GDL framework described in Chapter @l

In more detail, we present in what follows an optimal algorithm, proceeding over three

phases:

Phase 1 - Junction Tree Computation : The junction tree (JT') phase produces
a junction tree of the factor graph encoding an MAB-DCOP, using the same

procedure as the canonical Action GDL algorithm.

Phase 2 - Message Passing : The message passing (M P) phase is a re-definition
of the canonical GDL message passing phase to the setting in which the agents
coordinate to find the non-dominated set of solutions to the cycle-free factor graph

computed in the JT' phase.

Phase 3 - Value Propagation : The value-propagation (V P) phase allows the agents
to select a consistent variable assignment, considering that now multiple non-

commensurable alternatives exist.

For the sake of solving MAB-DCOPs appropriately, we need an algorithm capable of
recovering optimal solutions. Thus, we focus here on instantiating an optimal algorithm
which extends the Action GDL algorithm for solving MAB-DCOPs (we obtain the same

algorithm as in Chapter [6). For the sake of our exposition, we name this algorithm
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HEIS. Nonetheless, by exploiting the PO-GDL framework this algorithm maintains
the same key property as the ones described in Chapters [l and [ That is to say,

depending on the algorithm used on the first phase, different algorithms can be obtained.

In what follows, we describe each of these phases in detail, and then we analyse some of

the algorithm’s key properties.

7.2.1 Algorithm Description

Our algorithm proceeds in three phases. In what follows, we discuss each of these phases

in detail.

7.2.1.1 The Junction Tree Phase

As described in the previous chapters, this phase is used to transform any factor graph
encoding a MAB-DCOP into an acyclic factor graph. Various techniques can be used,
most of which have been discussed in Chapters 2] and [l

In this chapter, however, in contrast to the previous chapters, we focus on studying
the overall class of algorithms, and do not consider a specific algorithm for phase 1.
Nonetheless, to keep our exposition clear, we will assume in the remainder of this chapter
that a junction tree algorithm has been used for phase 1 of the PO-GDL algorithms (see
Chapters[2l dland[@). The following example then shows how the MAB-DCOP described

in Example [[1] is transformed into a junction tree.

Example 7.2. The MAB-DCOP in Ezample[7.1] describes a setting with two variables
x1 and z2, and two constraints C1 and Co. This can be encoded in the factor graph

depicted in Figure [7.2.

Now, to compute a junction tree, variables x1 and x2 are merged into a new variable ),
the new RA-DCOP is defined as follows:

zp = (21,22) | Ci(zp) | Calzp) | Clap)
a=(0,0) |(3.0,1) | (25,1) | (5.5,2)
b=(0,1) | (5.0,3) | (3.2,3) | 8.2,7)
c=(1,0) | (20,2)| @71 | (3.7.3)
d=(1,1) | (1.1,2) | (4.1,2) | (5.2,4)

Constraint functions are represented as tables, each cell of which has a tuple ((1(X;,t),n(X;, 1)),

where [1(X,t) is the sample mean of the constraint received for the assignment C; at t,

!The name comes from the fact that the algorithm coordinates a group of bandits.
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T2

FIGURE 7.2: The junction tree from the factor graph in Figure [Z1]

and n(X;,t) is the number of times that assignment has been sampled. Given the current
sample means, assignment x, = b = (0, 1) seems to be optimal. However, x, = a = (0,0)

could be the real optimal, since Ci(a) and Ca(a) have only been sampled twice.

7.2.1.2 The Message Passing Phase

In this section, we present our message passing phase for solving MAB-DCOPs with
asymptotically optimal regret. Using this algorithm, agents coordinate at each time
step to identify the best joint assignment to variables X, i.e. the arms that should be

pulled on the local MABs (functions Cj) to minimise regret over time horizon 7.

In more detail, at each time step ¢, the algorithm uses a PO-GDL message passing phase
to find the joint assignment X*(¢) that maximises the upper confidence bound (UCB)
(see Chapter [2) on the received utility.

The formulation of this UCB is different from the UCB given in Equation E.5—in fact,
it is a generalisation—since the objective in a MAB-DCOP is to maximise the sum of
the rewards of multiple local MABs, instead of a single MAB:

m
X*(t) = arg max Z (Xj,t) + 2lntz Ur;;get (7.3)
j=1 - Js

Here, [i(X},t) is the sample mean at time ¢ of the utility obtained by assignment X

from MAB Cj, n(Xj,t) is the number of times a specific assignment to X; was made,
and Urange = Umax — Umin-

Example 7.3. In Ezample [7.1, X*(10) = (z1 = 0,29 = 1), with a UCB equal to
8.2+ \/2 In(10) (% + %), assuming Urange = 1.
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Algorithm 5 The HEIST message passing algorithm for variable x;

L tmin = MaxXgep,m | Dx, | > Wait for initial samples (line 7)
2: for t =ty + 1 to T do > For each joint pull
3: Z;i(x;) = GDL_VARIABLE(%) > See Algorithm [3]
4: Set x}(t) : argmrinax (ﬂ)bgr)neaém) (L +b)

5: Send message sample(z;(t)) to all C; : j € M(7)

6: end for

Calculating joint action X*(¢) in Equation [7.3]is not trivial. For instance, this problem
cannot be solved using a DCOP algorithm, since the objective function is not decompos-
able into a sum of factors (i.e. it is non-linear). As a result, the application of a canonical
DCOP algorithm to this problem can lead to sub-optimality (Léauté and Faltings, 2011)

(which we will show in the empirical evaluation).

In contrast, by applying the methodology described in Chapter [, we can instantiate
the PO-GDL to derive a class of algorithms with a number of properties, such as the
optimality over acyclic factor graphs (which we will shortly see) which is guaranteed
to preserve the joint assignment with the optimal UCB. To achieve this, we describe
the commutative semi-ring characterising the objective function of a MAB-DCOP to
minimise regret (Equation [(3). Note that in contrast to the semi-rings defined in
Chapters Bl and [0l the semi-ring defined here is not a property of the objective function
to optimise. Rather, we use it here as an algebraic solution to define algorithms that
can solve MAB-DCOPs by providing optimal regret. This semi-ring, which we define as
the UCB-GDL semi-ring, is defined as follows:

Definition 7.2. The UCB-GDL semi-ring is a semi-ring (R, max,,+) such that:

e R=P(R xR) is a set of sets of tuples as described in Definition .2 which have
the same signature as the tuples output by functions C;—the first element of each
tuple is a sample mean /i, and the second is a squared bound b%. The identity
elements are 0 = {(—o00, —00)} and 1 = {(0,0)}.

e max. is an operator that takes multiple sets S1,...,Sr C R as input and outputs
a set S’ such that:

k k
! _ . / o
S —mBX(S)—{SGi_LJlS,VS eizulsz.s ;As}

Operator max, filters out so-called dominated tuples from sets S, ..., S;—those
that cannot maximise the global UCB. Domination is formally defined by binary
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Algorithm 6 The HEIST message passing algorithm for function C;. Line numbering
continued from Algorithm [l

7. for each X} € Dx,, sample C;(X}) once

8: Tmin 1= maXge[1,m] |DXk|

9: fort =ty +1to7T do > For each joint pull
10: execute GDL_FUNCTION(j) > See Algorithm @l
11: Wait for sample(z; (¢)) messages from all z; : ¢ € N (4)

12: Pull arm X7 (t) = {x}(t) | i € N(j)}

13: Update sample mean fi(X7,t) and sample count n(X7,t)

14: end for

operator > such that (fi1,b3) = (jig, b3) iff:

(i1 — fiz > ba — 1) A

<ﬂ1 — ﬂQ > \/b% + u?ange2 Int — \/b% + (urange)QQ In t) A
R . 2Int 2Int
(:Ll‘l — K2 > \/b% + u%angeT - \/b% + (urangc)zt)

e + is a binary operator such that if S1,S2 € R, then Sy + Sy = {(fi1 + fi2, b3 + b3) |
Y(fi1,b2) € S1,Y(jiz,b3) € S2}. The key idea here is to define an operator that
aggregates the parameters necessary to update the global UCB (see Equation [T.3)).

More specifically, the estimates /i of the functions in C' and the bounds b; on the

uncertainty over these estimates are added together in a way that is consistent
with the global UCB.

The > operator presented in the definition above, is derived by algebraic manipulation.

In Section[[.2.2] we will present the way the operator is derived (see the proof of Theorem

73).

Using this semi-ring, we can instantiate our algorithm, which proceeds as any canon-
ical GDL algorithm. It is split up into two algorithms, one for variables (Algorithm
2[0) which extends Algorithm 2[I] and one for functions (Algorithm 2[6) which extends
Algorithm 22l The main difference is that the propagated messages here, contain in-
formation about the samples fi and the bounds b;. The reason for propagating bounds
is that they are used to calculate the number of pulls of multiple arms when calculat-
ing function to variable messages R;_;(x;)(z;) (using max, from Definition [[.2). In
addition, similarly to the UCB algorithm presented in Chapter Bl which pulls each arm
once at the start, before communication commences, functions first sample the utility

for their local domains (line 7) which takes maxye ) [Dx,| time steps.

Note, that constraint functions are now vector functions (as per definition of a PO-
DCOP) defined over tuples of the form: C;j(X;,t) = (i(X;,t),b(X;,t)?). Here, a(X;,t)
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is the sample mean of assignment X; € Dx; at time t and b(X, 1) = Urange/2Int/n(X}, 1)
is its (local) upper confidence bound ¢ (cf. the two terms in Equation 2.5]).

As a consequence of the non-linearity of the objective function in Equation [(.3] choosing
the assignment that maximises the sum of UCBs on local utility, does not (necessarily)
produce optimality of the UCB on the sum of local utilities. Thus, we cannot simply
discard one tuple (fi1,b?) in favour of tuple (fig, b3) if fiy + by > jiz + be. This problem
is addressed by the definition of the max, operator, which is designed to discard only
those tuples that are guaranteed to lead to global sub-optimality. As a result, it imposes

a partial order over tuples to preserve the tuple that produces global optimality.

Executing the GDL algorithm on the UCB-GDL semi-ring yields the marginal function
Z;(x;) for each variable z; (line 3). It can be proved that for each assignment x; € D,
the set Z;(x;) contains a tuple (fi, b?), such that fi + b is the maximum achievable global
UCB given that assignment (Theorem [(3]). Using this marginal function Z;(z;), the
second phase of our algorithm first computes the maximum UCB for each assignment x;
(line 4, expression between brackets) and then selects the assignment with the maximum
UCB (remainder of line 4). Then, in line 5, each variable informs adjacent functions of

its assignment, after which all functions sample assignments (line 12).
The following example illustrates the behaviour of our algorithm:

Example 7.4. The following example demonstrates the operation of the message passing
phase on a single time step (t = 10) of the MAB-DCOP from Ezample [7.1. Let ¢ =
2In(10), and urange = 1. In order to keep the exposition as clear as possible, we consider
a simple message passing schedule, where the computation starts at the leaf nodes and
goes up through the different nodes of the graph. The computation begins at time step
t = 0, nodes C1 and Cy both have a single edge (i.e. they are leaves of the cycle free

factor graph) and therefore send a message first:

Tp C Tp C
a=(0,0) | [3.0,(] a=(0,0) | [2.5,(]
Rispley) = b=(0,1) | [5.0,5] | Rospley) = b=(0,1) | [3.2,5]
c=(1,0) | [2.0,¢] c=(1,0) | [1.7,¢]
d=(1,1) | [1.1,§] d=(1,1) | [4.1,§]

Both Cy and Cy computes the multi-objective marginal function of variable x,, as detailed

above. At time step t = 1, x), receive the messages and compute the next two messages:
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Zp c Zp C
a=(0,0) | [2.5,(] a=(0,0) | [3.0,(]
Q@)= b=(0,1) | 32,8 | Qpuolw)= b=(0,1) | [5.0,¢]
c=(1,0) | [1.7,¢] c=(1,0) | [2.0,5]
d=(1,1) | [4.1,§] d=(1,1) | [1.1,§]

After these messages have been sent, the M .S phase terminates. Finally, variable x, can

compute its non-dominated values:

Tp C )
a=(0,0) | [5.5,c(1+1)]
NDxqo)=max{ b=(0,1) | [8.2,¢(3 + §)]
c=(1,0) | [3.7,¢(1+ 1)
d=(1,1) | [5.2,¢(1 + 1)
= (B2.¢(3 +3))

Such values correspond to the non dominated solutions of the problem Ox(10) = {zp =

(0,1) = b}.

7.2.1.3 The Value-Propagation Phase

The value-propagation phase operates on the cycle-free factor graph computed in the
first phase.
consistent variable assignment. Since, MAB-DCOPs are PO-DCOPs, we can use the
value-propagation described in Chapter M by instantiating the >~ relation using the

Variables and function nodes in the factor graph coordinate to select a

dominance condition defined in the previous section.

However, in contrast to the example presented in Chapter Bl and similarly to the one
presented in Chapter[@] since the solution of Example[lT]is unique, the value propagation

phase is not necessary in this case.

7.2.2 Theoretical Analysis

The key focus of our theoretical analysis is demonstrating that when solving MAB-
DCOPs using a GDL-based algorithm we can achieve optimal regret. To demonstrate

this, we first state the following result, similar to those presented in Chapters [l and

Theorem 7.3. If the factor graph is acyclic and the stopping criterion is chosen such
that the GDL message passing phase is run for a number of iterations that is equal to the
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diameter of the factor graph, the following equation holds for each t > max¢(i ) [Dx,,|:

$ 21nt Z urango ‘

'MS

(,0*)€Zi(4) X\z;

max ({1 +b) = max [

Proof. We first show that operator max, filters out tuples that cannot maximise the
global UCB. In particular, if there is at least one incoming message, then (fig, b3) is
dominated by (i1, b?) if and only if for any incoming tuple (fi3, b3), fi1 + fiz + /b1 + b3 >
fi2 + fiz ++/ba + b3 holds. This implies that i1 — iz > /bg + b3 —+/b1 + b3. By definition,

b3 = Urange 211(“; at time ¢, where n3(t) is the number of samples included in fi3. Note

that 1 < ng(t) < t, and can take any arbitrary value within this interval. That is,

ufangemnt <h < urangeﬂn t. This implies that if at least one among the second or the
third clause in the definition does not hold, then tuple (ji2,b3) cannot be discarded (i.e.
it is not dominated by tuple (fi1,b?). In addition, if there are no incoming messages,
then breaking the first clause indicates that (fiz, b3) cannot be discarded either. That

is, (fi2,b3) is dominated by (ji1,b?) iff all the clauses hold.

The proof of the claim that the MAB-GDL message passing phase yields Z;(z;), the
maximum marginal UCB for each assignment, follows a similar argument from that of
Theorem [£.3] O

Put differently, Theorem [7.3] states that, after the initial pulls, set Z;(x;) contains the
tuple that yields the marginal maximum UCB that can be obtained for each assignment
to x;, 1 € [1,n]. As a direct consequence, line 12 pulls the arm on each function with the
highest overall UCB (Equation [Z3). This observation leads to the following theorem:

Theorem 7.4. Suppose the factor graph is acyclic and the stopping criterion is chosen
such that MAB-GDL message passing phase is run for a number of iterations that is equal
to the diameter of the factor graph at every time t. Let X® = arg maxy Z’J":l p(X;)
be the joint assignment that mazimises the (unknown) expected wutility. Let d(X) =
I (X]E) — u(X) denote the difference between the expected utility of the optimal action
XE and that of a particular joint action X. Given this, the cumulative regret Rygsr(T)

of algorithm after T time steps is at most:

UrangeO 11 w2
> Clg(f(l)T+ (1+3> > d(X) (7.4)

X£XE X£XE

Proof. The demonstration proceeds by calculating an upper bound on the regret (see
Equation [.2)) of HEIST. We know, by theorem [7.3] that after the MAB-GDL message
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passing phase has converged, the algorithm chooses the joint assignment with the max-
imum UCB at each time ¢t < T. More formally, suppose that at each time t, HEIST

chooses joint assignment X*(t) = (z3(¢),...,z}(¢)).

rrn

To determine the bound, the idea is to estimate the expected number of times X*(t) #
X is chosen. Formally, let N7(X) denote the number of times the algorithm chooses a
suboptimal joint assignment X # X before the last time step 7. By estimating Np(X),
we can estimate the number of times HEIST chooses a suboptimal joint assignment, and

thus, derive a bound on its regret. Such bound is defined as follows:

Rupse(T) < Y Np(X)d(X) (7.5)
XellD;

Now, we denote the expected number of times X*(t) # X® is chosen as E[Np(X)].
Intuitively, we can bound E [Np(X)] by calculating the probability that the algorithm
always chooses a sub-optimal assignment for 7" time steps (except the first k steps, where
the algorithm pulls each of the & arms as shown in Algorithm [f). Formally, this bound

is defined as follows:

T
E[Ny (X)) <k+> P (X*(t) = X, X £ XE N,y (X) > k) (7.6)
t=1

Now, the latter term can be further upper bounded by noticing that the probability that
HEIST chooses X*(t) # X® can be bounded by the probability that X*(¢) has a higher
UCB than X for each time step t. In other words, the second term of Equation
is further bounded by the probability that (X (),t) 4+ b(X (¢),t) > (X", t) + b(XE, t).
More formally, this probability is defined as follows:

P (ﬂ(X(t),t) FBX(E), 1) > A(XE ) + b(XE, 1), Ny (X) > k:) (7.7)
=1

~

where b(X,t) = \/ 21n(t) Z;nzl (Z&fet))z' This can be further bounded by the probability
that the UCB of each possible assignment X*(¢) is higher than the UCB of each possible

XE(#") with ¢ # ¢/. This probability is defined as follows:

T t t
S S P (A(X(55),5) + B (X (55),55) = A(XE,8) +b(XE,8)) (78)

t=1 Sj:k s=k
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Now, by using similar argument to that of Theorem 1 in (Auer et al), 2002), it is true
that if 2(X(s;),s;) +b(X (s5),8;) > a(XE, s) +b(XE, s) holds then at least one of the

following must hold:

By using McDiarmid’s inequality (McDiarmid,|1989), we can show that both (1) and (2)
hold with probability +=4, and if k > [“22#52L ] then (3) does not hold. This implies
that:

T t t 2
E[NT(X)]§k+ZZZQt_4§k+% (7.9)
t=1 s=1 Sjil

for any k > f%} . The last inequality is obtained from the Riemann Zeta Function
(Edwards, 2001) for value of 2. Finally, substituting this into Equation concludes
the proof. ]

Based on this result, we can show that HEIST provides asymptotically optimal regret

bounds, by comparing against best achievable regret:

Theorem 7.5. For any algorithm, there exists a constant C > 0, and a particular
instance of the MAB-DCOP problem, such that the regret of that algorithm within that

particular problem is at least C'In'T.

Proof. We can reduce all standard MAB problems to a MAB-DCOP with m = 1. Ac-
cording to|Lai and Robbins (1985), the best possible regret that an algorithm can achieve
on standard MABs is C'InT. Therefore, if there is an algorithm for MAB-DCOPs that

provides better regret than C'In T, then it also provides better regret bounds for standard
MAB:s. O

Thus, the regret bound of HEIST (Equation [T4]) only differs from the best possible with

a constant factor.
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7.3 Empirical Evaluation

In the previous section, we proved that the regret achieved by HEIST is guaranteed
to be a constant factor away from the optimal. However, further empirical analysis is
needed to gauge HEIST’s practical performance, in terms of solution quality as well as
communication and computation overhead. Moreover, such analysis can focus on the
algorithm’s performance when the MAB-GDL phase is not run until convergence, one
of the conditions for optimality in Theorem [7.4l Instead, the number of iterations ¢ of
the GDL phase can be a parameter for tuning the trade off between solution quality and

overhead (i.e. computation and communication).

Therefore, in this section, we benchmark several versions of HEIST against existing ap-
proaches, taken from the state of the art in the MAB and DCOP literature. Specifically,

we compare the algorithm against the following approaches:

HEIST-c¢ a version of HEIST where the GDL message passing phase is run for c iter-
ations. When taking joint actions is cheap compared to communication, or when
action is required before the GDL message passing phase is able to converge, ¢
can be set to a value smaller than the diameter of the factor graph. In this case,
optimality is no longer guaranteed, but it can lead to a good trade off between

communication and solution quality.

e-first an algorithm that samples from the utility functions (exploration) for the first
eT time steps, and picks the one that is believed to be optimal (exploitation)
for the remaining (1 — €)7T" time steps. At the start of the exploitation phase,
this algorithm runs a standard DCOP algorithm (max-sum) once to find the joint
assignment that maximises the sum of the sample means of the local utilities.
Using a DCOP algorithm in this way is equivalent to using E-DPOP (Léauté and
Faltings, 2009) on a problem where each local assignment X; for j € [1,m] is
modelled by a single random variable. Thus, e-first can be considered as E-DPOP
applied to a MAB-DCOP. To perform well, € needs to be tuned for each problem
instance (Auer et all, [2002; |Sutton and Bartd, 1998). After initial tests, we found

that € = 0.02 leads to good performance for the problems described below.

Monolithic UCB the (centralised) UCB algorithm (see Section [2.4.3) that considers
a MAB-DCOP as a single “monolithic” MAB with []?, |D;| arms.

Max-Sum a standard DCOP algorithm, applied to a DCOP in which the objective is
to compute X (¢) at every ¢ € [1,T], such that:

(7.10)

i (Urange)?21nt
XT(t) = arg maxz (X, 1) +
x o

n(va t)
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By solving this DCOP, the sum of UCBs on local utilities is maximised, instead
of the UCB on the sum of utilities (Equation [T.3)). Since the latter is clearly not
linear, Equations [(.3 and [[.I0] are not equivalent (except for m = 1). As a result,
this decomposition leads to loss of optimality in the sense of Theorem Léauté
and Faltings (2011) observed a similar result for their (incomplete) algorithm when

using a linear decomposition to maximise non-linear objective functions.

The e-first and max-sum algorithms are included to demonstrate that standard DCOP
algorithms are unsuitable for solving MAB-DCOPs, while the Monolithic UCB algorithm
is included to demonstrate the need to exploit the factorisability of a MAB-DCOP.

We randomly generated MAB-DCOP instances that can be encoded as acyclic factor
graphs, with n = 15 and m = 14, and |D;| = 3. Each constraint function C;(X})
is governed by a set of normal distributions, one for each assignment to X;. In more
detail, Cj(X;) ~ N (u(X;),0%(X;)), where u(X;) and o%(X;) are uniformly drawn from
intervals [0, imax] and [0, 1] respectively. The idea here follows from Chapter [ and
consists of creating a controllable environment in which we can reproduce several level
of uncertainty to cover a vast majority of the situations that could arise in the real
world. Parameter piyax is used to control the relative importance that needs to be given
to exploration and exploitation. When ppyax is decreased, the received utilities become
more noisy and the balance should be shifted towards exploration. Conversely, when
Imax 18 increased, the optimal joint action becomes more easily identifiable, and agents
start exploitation quite early on. For our experiments, we chose tmax = 1 and pimax =
10. These values were chosen during initial calibration to yield two sets of difficult
problems, which simultaneously demonstrate the difference in required emphasis between
exploration and exploitation. The idea of controlling the balance between exploration
and exploitation allows us, again, to reproduce a variety of outcomes of agents’ decisions
that might arise in the real world. For instance, while mapping the scene of a disaster
searching for casualties, UAVs might not know with precision the number of casualties
within each area. More specifically, each area might have a different estimate of such
number, with a different level of uncertainty. Hence, by designing tests with a varying
level of uncertainty, we are able to design problems capable of encompassing all such

settings.

The results are shown in Figures and [4] for pmax = 1 and pimax = 10 respectively.
Each algorithm was run 64 times on both problem classes to obtain statistically sig-
nificant results. Error bars indicate the standard error of the mean. Monolithic UCB
is omitted from all figures, because its regret converged approximately a factor of 3'°
slower than HEIST. This was expected, as it regards the problem as a MAB with 3'°
arms, instead of 14 MABs with 9 arms each.
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Now, Figures [7.3(a)| and [7.4(a)| show the average regret for the remaining algorithms,

while Figures|7.3(b)|and [7.4(b)|show the number of average suboptimal assignments. As

can be observed from these figures, HEIST and HEIST-4 outperform all others in terms of
regret (up to 1.5 orders of magnitude for ppax = 10). We found that for ¢ > 8, the per-
formance of HEIST (which was run for 30 iterations to ensure convergence) and HEIST-c
coincide, indicating that the algorithm performs well even when conditions of Theorem
are not met. Max-sum—and indeed any algorithm that solves Equation [Z.10is
clearly suboptimal, as its regret does not converge to zero, and it consistently produces
suboptimal assignments. The fact the regret of max-sum increases is counter intuitive.
However, additional experimentation showed that for smaller problem instances, the dif-
ference between HEIST and max-sum is much smaller, and their performance often coin-
cides for problems with m < 5, while for m = 50, the difference in regret at 7" = 10000
was found to be more than 3 orders of magnitude. This leads us to conclude that for
larger problems, the non-linearity of Equation is more pronounced, increasing the
difference between the regret associated with assignments X (¢) and X*(¢). The regret
of the second DCOP based technique, e-first, does converge to zero, but at a much slower
pace than HEIST. Based on these results, we can conclude that both DCOP techniques
are unsuitable for solving MAB-DCOPs.

Focusing on communication overhead, Figures [7.3(c)| and |7.4(c)| show the cumulative

message size expressed as the number of floating point values exchanged between the
agents. Compared to e-first (which needs a negligible number of messages to coordinate
once) and max-sum (which exchanges scalars, instead of sets of tuples), HEIST requires
more communication. However, a good balance can be struck between solution quality
and communication by reducing ¢ to 4. Moreover, note that HEIST requires each agent
to exchange only 600 values per iteration of the MAB-DCOP, a value that is well within
the capabilities of bandwidth constrained embedded agents. Finally, the computation
required by HEIST to solve problem instances with n = 50 and T' = 20000 never exceeded
4 hours on a standard desktop PC, which is less than 200ms per agent per iteration.

Again, this is well within the reach of embedded agents.

7.4 Summary

This chapter presented a new class of problems and solution techniques to address co-
ordination problems involving uncertainty and lack of prior information on the outcome
of the agents’ decisions. More specifically, in Section [T.1] we proposed the MAB-DCOP
framework, a specialisation of the PO-DCOP framework defined in Chapter @ The key
idea of a MAB-DCOP is that each partially ordered constraint function of a PO-DCOP
becomes a MAB. Hence, we propose here a further class of problems that meet the

complex interaction requirement defined in Chapter [, in addition to those presented
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in Chapters Bl and Bl Furthermore, the MAB-DCOP framework satisfies the general-
ity requirement, since it can represent any type of problem where the agents need to

coordinate while learning online the outcome of their decisions.

We then presented, in Section [[.2] a new set of solution techniques for solving MAB-
DCOPs. To derive these techniques, we specialised the PO-GDL and derived a new
commutative semi-ring based on a generalisation of the UCB (Equation [7.3]) in which
multiple agents need to coordinate their arm selection (following the MAB terminology
defined in Chapter 2)). By using this semi-ring, we can then instantiate the message
passing algorithms presented in Chapter [2 (Algorithms 2[I] and 22]) to solve MAB-
DCOPs. Hence, as discussed in Chapter @, we are able to instantiate optimal and
bounded approximate decentralised algorithms that meet the requirements of robustness
and quality guarantees defined in Chapter Il In so doing, a key contribution of this
chapter was presented in Section where we demonstrate that using this class of

algorithm yields optimal regret (Theorem [7.0]).

In Section [[L3] we then presented an empirical analysis to gauge the practical perfor-
mance of one instantiation of the previous class of algorithms (which we refer to as
HEIST) in terms of solution quality, as well as communication and computation over-
head. Such analysis focused on the algorithm’s performance when the MAB-GDL phase
is not run until convergence, a situation which is most likely to happen in applied do-
mains such as disaster response. Our results show that the algorithm was capable of
achieving a reasonable trade off between the quality of the solutions recovered and the
amount of computation and communication necessary to get them. Hence, these results
demonstrated that the algorithm positions itself well with respect to the resource aware-
ness requirement defined in Chapter [Il These results were then evaluated on instances

of up to 50 agents. Therefore, the algorithm also meets the scalability requirement.



Chapter 8

Conclusions and Future Work

In this chapter, we present an overview of the contributions of this thesis towards the
two research objectives presented in Chapter [Il The first objective was to design effec-
tive coordination algorithms to enhance the decision making process of a team of agents
cooperating to solve a problem. The second objective was to understand the require-
ments necessary to coordinate these agents in the real world by deploying state-of-the-art

coordination algorithms to address real world coordination problems.

In light of this, we discuss, in Section Bl the various achievements that we were able
to make towards this end. More specifically, we discuss the extent to which each con-
tribution that we were able to make has satisfied the design requirements laid down in
Chapter [l In Section [R.2, we then go on to discuss various potential lines of research

that could be pursued as a continuation of this work.

8.1 Summary of Results

A key challenge for modern computer science is the development of technologies that
allow interacting computer systems, typically referred as agents, to coordinate their
decisions whilst operating in an environment with minimal human intervention. The
key idea is that such coordinated behaviour allows each agent to improve its decision

making capabilities by taking into account what the remaining agents intend to do.

For this reason, literature that sits at the nexus of artificial intelligence, machine learning
and robotics has focused on designing, implementing and deploying novel coordination
algorithms capable of improving the performance of such a multi-agent system. Given
this background, the work presented in this thesis studied such coordination algorithms

and designed new ones to further reduce the gap between the current decision making

169
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capabilities of the agents and those that are actually required to deploy these agents in

the real world.

Now, there exist numerous application domains in which adopting coordinated behaviour
can improve the agents’ overall effectiveness. Examples include coordinating generators
in the smart grid (Miller et al!, [2012), wireless sensor networks (Rogers et all, 2009)
and scheduling multi-processor jobs (Sultanik et all, 2007). Among these domains, this
thesis focused on that of disaster response as it involves a range of challenges associated
with coordination in complex domains (Chapter 2)). In particular, we focused on prob-
lems related to the deployment of robotic agents, such as unmanned aerial or ground
vehicles (UAVs and UGVs respectively), to achieve situational awareness at the scene
of a disaster. Specifically, we described various typologies of unmanned aerial vehicles
(UAVSs) which constitute the type of robotic agent over which we deployed our coordi-
nation algorithms. By analysing these problems and vehicles, we were able to identify
the key requirements that need to be satisfied; namely those of generality, scalability,

robustness, resource awareness, performance guarantees and complex interactions.

Given these requirements, we moved on to study the degree to which existing algorithms
were capable of satisfying them. Initially, we analysed practical approaches (i.e. those
that have been deployed in the real world). These are essentially distributed negotiation
protocols, in which the agents share their decisions and each agent makes a decision
in response to the decisions of the other agents. In so doing, however, the level of
performance that these agents can achieve is often low (see Chapter [2 for more details).
Hence, the performance guarantee requirement is not met. Moreover, these algorithms
often only allow the agents to coordinate over standard decisions defined over one single
criteria such as the importance of completing a task or quality of observing a certain

area. Thus, the complex interaction requirement is also not met.

In light of this, we moved to study theoretical approaches, where a large body of litera-
ture exists, which was focused primarily on deriving new problems capable of modelling
sophisticated interactions and on algorithms capable of achieving a high level of perfor-
mance. We focused our analysis on two key frameworks. First, we studied distributed
constraint optimisation problems (DCOPs). We focused on this framework because it
has been shown to constitute a reasonable compromise between the way it can encompass
a real world problem and the computational complexity that it requires to solve it. In
particular, we argued that the DCOP framework positions itself well within the require-
ments of generality, scalability, resource awareness and robustness. Second, we discussed
the generalised distributive law framework (the GDL). We focused on this framework
because it is well known for its flexibility. In more detail, the GDL framework can be
used to derive optimal (DPOP, Action GDL), bounded approximate (bounded max-

sum) and approximate (max-sum) algorithms. These algorithms were shown to fully
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satisfy requirements such as scalability and generality and to position themselves well

with respect to robustness and resource awareness.

Given these properties, both DCOPs and the GDL seemed attractive for the purposes
of our work. However, thus far, neither GDL-based algorithms, nor DCOPs have been
capable of meeting the complex interaction requirement. Furthermore, the effectiveness
of these coordination algorithms when deployed in real agents to solve a real world
problem has only been evaluated in simulation. Hence, their actual capability to meet
the previously defined requirements when deployed in the real world still needs to be
verified. Thus, we argued that a new body of research needs to be produced. In our case,
this focused on two main challenges. First, the performance of these algorithms needs to
be verified in practice. By addressing this challenge, we could start to confirm what they
are actually capable of doing when confronted with the complexity of the real world.
Second, a new theory needs to be defined to represent and solve problems involving
agents engaged in complex interactions. By addressing this challenge, we could then
derive new frameworks and algorithms to solve problems which have only been partially
addressed by current research, but which are crucial to bridge the gap between the
capabilities of existing algorithms and those that are required to solve complex real
world problems. To achieve this, however, the first step is necessarily a theoretical one,
since we first need to derive these algorithms and study their properties in a simple and

controlled environment, before actually deploying them in the real world.

Against this background, the work presented in this thesis was divided into two main
branches. In Chapter Bl we presented our practical contributions. These consist of a
case study on the deployment of the max-sum algorithm, an approximate algorithm
based on the GDL, on a system inspired by first responders at the scene of a disaster
requesting imagery collection tasks of some of the most relevant areas to a team of UAVs.
These agents then coordinate to complete the largest number of tasks. In chapters [
Bl @ and [@ we presented our theoretical contributions. These consist of a new class
of problems and algorithms to address coordination problems involving complex agents’
interactions (Chapter M) and three examples of such interactions, namely multi-objective
problems (Chapter [), problems involving uncertainty and risk awareness (Chapter [6)

and problems involving online learning (Chapter [7]).

In more detail, the key idea of the system presented in Chapter [ is to use the max-
sum algorithm to allow the UAVs to provide first responders with accurate situational
awareness in real time. As argued in Chapter 2] max-sum has been applied to a variety of
problems related to situational awareness. However, a systematic framework that unifies
all this literature into a principled methodology to guide a developer to the successful
deployment of max-sum was still missing. To this end, we proposed such a methodology
and, we described the way in which the algorithm satisfies the requirement of generality

in the context of disaster response.
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Now, in the system that we presented, the first responders use a personal digital assistant
(a PDA) to request and receive such situational awareness in the form of a streaming
video that the UAVs capture while hovering above a specific area. Within this system,
the max-sum algorithm is fully decentralised between the different UAVs and PDAs.
For this reason, it meets the requirement of scalability since new agents, either UAVs
or PDAs, can be added or removed without affecting the system. It also meets the
requirement of robustness since the performance of the system remains unaffected by the
failure of either a UAV or a PDA. Finally, it meets the requirement of resource awareness
because the computation required by max-sum is distributed efficiently between the
available sources of computation (the UAVs and the PDAs).

The resulting system is evaluated both in simulation and in the real world. The former is
used to confirm empirically the accuracy of the system. As a consequence, despite max-
sum being an approximate algorithm, and not meeting the requirement of performance
guarantees, we were still able to show that it yields a good performance nonetheless.
Real world tests were then used to ascertain whether the algorithm satisfies one of the
two key objectives of this thesis. More specifically, we ran these tests to illustrate the
performance of max-sum in the real world. In particular, we deployed the algorithm on
two hexacopters UAVs and tested it in a number of complex coordination scenarios. As
indicated by these tests, both the system and max-sum responded well when confronted
with the complexity and the unpredictability of the real world. In so doing, we were able
to satisfy our first objective and demonstrate the potential of max-sum to coordinate
real UAVs.

However, as previously stated, the max-sum and all GDL algorithms in general, are not
yet capable of satisfying the complex interactions requirement in its entirety. For this
reason, we dedicated the remaining chapters of this work, to discuss a new framework

to represent such problems where the agents make complex joint decisions.

More specifically, the key reason why the current problem frameworks, including DCOPs,
cannot represent such joint decisions lies in the way they measure the quality of these
decisions. For instance, we discussed, in Chapter 2, how DCOPs measure the quality of
each possible joint decision of multiple agents by using a real valued constraint function.
However, such real valued functions are not capable of encompassing problems where the
agents interact over complex decisions. This is because these are typically defined over
multiple, heterogeneous parameters. Thus to represent such decisions, it is necessary to
strike a balance between these dimensions. To deal with this, we proposed the frame-
work of partially ordered distributed constraint optimisation problems (PO-DCOPs) in
Chapter @l We defined the framework as follows:

Partially ordered constraint optimisation problems (PO-DCOPs): A PO-DCOP

generalises the constraint functions of a canonical DCOP into partially ordered vector
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functions. Each vector function is then defined over the different parameters that define
a complex interaction. In so doing, the use of such partial ordering allows us to generalise
over the total order imposed by real valued functions. Consequently, we can represent
and measure complex interactions that involve trading off between the above mentioned

dimensions.

By introducing such PO-DCOPs we were then able to produce a novel framework ca-
pable of satisfying the complex interactions requirement. In addition, the PO-DCOP
framework also satisfies the generality requirement. Indeed, no restrictions are made on
the type of agents or the decisions that these agents are making. For this reason, in
Chapters [0, [ and [l we proposed three novel frameworks that specialised PO-DCOPs to
encompass three types of complex interactions. More specifically, we proposed the three

following frameworks:

e Multi-objective distributed constraint optimisation problems (MO-DCOPs):
This framework specialises PO-DCOPs to represent problems where the agents
make decisions involving multiple objectives. We chose this type of interaction,
since many real world coordination problems involve the simultaneous optimisa-
tion of multiple, possibly conflicting, objectives. In particular in disaster response,
UAVs deployed to complete imagery collection tasks might need to coordinate over
objectives such as maximising the number of completed tasks and minimising the
passing through dangerous areas (e.g. areas containing buildings on fire or radi-
ation). To trade off between these objectives, we introduced MO-DCOPs which
re-define the constraint functions of a PO-DCOP as multiple objective functions.
As a consequence, the solutions of these problems are partially ordered according

to the Pareto dominance relation.

e Risk-aware distributed constraint optimisation problems (RA-DCOPs):
This framework specialises PO-DCOPs to represent problems where the agents
make decisions whose outcome is uncertain. This uncertainty implies that the
value of the agents’ joint decisions is defined according to a probability density
function (pdf). Hence, in this setting, the agents need to carefully weight each
of their decisions to avoid making poorly valued ones. To do so, they need to
take into account the collective risk (i.e. the potential that one possible collec-
tive decision can lead to an undesirable outcome) associated with such decisions.
We chose to focus on this type of interaction since uncertainty is endemic within
many real world coordination problems. Considering again the disaster response
setting, when UAVs are deployed to explore the scene of a disaster in search of
casualties, they might not know with precision the number of casualties in the
scene. However, this number is the key criteria to consider when selecting which

area to explore next. Hence, the agents need to be able to trade off between the
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risk of exploring areas with a very large, but highly uncertain, potential number
of casualties (i.e. being risk seeking) and the risk of exploring areas with a lower,
but certain, number of casualties (i.e. being risk averse). To achieve this, we de-
fined RA-DCOPs which re-define the outcome of each possible assignment of a
PO-DCOP’s constraint function as a random variable. To determine the optimal
solutions of these problems, a partial order relation was derived to rank the joint

decisions’ pdfs based on their risk.

e Multi-arm bandit distributed constraint optimisation problems (MAB-
DCOPs): This framework specialises PO-DCOPs to represent problems where the
agents make decisions whose outcome is uncertain and impossible to determine
before the agents’ deployment. This implies that the agents have to learn the
outcome of their decisions online. We chose this type of interactions, since un-
certainty and lack of prior information are characteristics pertaining to many real
world settings. For instance, nothing might be known about the positions of the
casualties before the UAVs are actually deployed. Hence, the UAVs might not
know what the actual outcome of their decisions is going to be. For instance, they
might assume that a certain area contains a high number of life-rafts, and thus,
that exploring it might be highly rewarding. However, in reality the area might
contain a limited number of casualties and, consequently, it is not the best area to
explore. In these settings, the agents need to be able to trade off between making
decisions that might reduce the uncertainty over the outcomes (exploration) and
making decisions that might maximise their team performance (exploitation). To
achieve this, we defined MAB-DCOPs which re-defines the constraint functions of
a PO-DCOP as a MAB. To determine the optimal solution of these problems, we
then imposed a partial order relation based on the upper confidence bound which

ranked these solutions to achieve optimal regret (Chapter ).

These three classes of problems, together with the general PO-DCOP framework, exhibit
many of the same qualities as DCOPs. Most importantly, they satisfy the requirement
of generality, since they can be used for multiple domains. However, by modelling the
partially ordered constraint functions as vectors, some additional complexity is intro-
duced. This is to be expected, since these new problems try to represent coordination

problems while considering more real world details than canonical DCOPs.

In light of this, in Chapter dl we proposed a new class of algorithms for solving PO-
DCOPs by exploiting the qualities of the GDL. Here, the key idea was to follow the
procedure used for canonical DCOP algorithms, which consists of exploiting the algebraic
structure of DCOPs’ constraint functions (i.e. the fact that they are defined over a
commutative semi-ring), to obtain two operators, max,. and ®, which can be used to

instantiate the GDL’s message passing algorithms (Algorithms 2[I] and 2[2]) to solve
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PO-DCOPs. The key insight was to instantiate algorithms that proceed over three
phases: (i) use graphical techniques, such as spanning or junction tree algorithms, to
transform the problem so that it can be optimally solved by the GDL; (ii) use the
GDL message passing algorithms to optimally solve the problem output by phase 1
and (iii) select a consistent solution by using value propagation. In so doing, given the
properties of the GDL, we can instantiate optimal (DPOP, Action GDL) and bounded
approximate (bounded max-sum) algorithms to solve PO-DCOPs. In so doing, all these
algorithms meet three requirements that are fundamental for our work. First, they meet
the generality requirement since they can solve general PO-DCOPs. Second, they satisfy
the quality guarantee requirement since they are either optimal or can provide a bound
on the quality of the solutions that they can find. Third, they satisfy the robustness
requirement, since they are decentralised and so can cope with the failure of one or more

components.

Next, we moved on to study some of the key properties of PO-DCOP algorithms to
understand how they position themselves with respect to the requirements of our work.
More specifically, we studied some of their key theoretical properties in Chapter 4 and
empirically analysed their performance in Chapters Bl @] and [l In this context, our
empirical analysis was focused on evaluating some of the fundamental properties of
the algorithms. Specifically, we instantiated three of these algorithms to solve various
instances of MO-DCOPs, RA-DCOPs and MAB-DCOPs respectively:

e B-MOMS, a bounded approximate algorithms to solve MO-DCOPs:
We instantiated bounded multi-objective max-sum (B-MOMS) which solves MO-
DCOPs while providing a bound on the quality of the recovered solutions. Next,
we ran experiments on several MO-DCOP instances to verify the runtime perfor-
mance of the algorithm, the approximation ratio and the quality of the solutions
that it can produce. The results showed that B-MOMS was capable of providing
good approximate solutions in a reasonable runtime, even for extremely large and
complex problems. Hence, these results showed that B-MOMS satisfies both the

requirements of scalability and resource awareness.

e Action NDC-GDL, an optimal algorithm to solve RA-DCOPs: We in-
stantiated Action NDC-GDL, based on the Action GDL algorithm, which can
solve RA-DCOPs while providing optimal solutions. Next, we ran experiments
on several RA-DCOP instances to analyse their performance in terms of both
computation and communication, most importantly by showing that using canon-
ical DCOP techniques to solve these problems can lead to significant suboptimal
performance. Our results show that solving RA-DCOPs optimally for problems
involving up to 50 agents incurs a significant cost in terms of both computation
and computation. However, our results further demonstrate a significant perfor-

mance loss while using canonical DCOP techniques to solve RA-DCOPs. Hence,



176 Chapter 8 Conclusions and Future Work

our techniques fully satisfy the scalability requirement but only partially satisfy
the resource awareness one. However, sacrificing such resources is necessary to

produce effective solutions.

e HEIST, an optimal algorithm to solve MAB-DCOPs: We instantiate HEIST
which can solve MAB-DCOPs by providing optimal regret on the quality of the
solutions. Next, we ran experiments, on problem instances up to 50 variables, to
ascertain the practical performance of HEIST in terms of solution quality, as well as
communication and computation overhead. Our results showed that the algorithm
was capable of achieving a reasonable trade off between the amount of computation
and communication necessary to recover the solutions and their quality. Hence,
these results demonstrated that the algorithm satisfies the scalability aspect and

that it positions itself well with respect to the resource awareness requirement
defined in Chapter [Il

When taken together, these experiments emphasized two key traits of our algorithms.
First, bounded approximate algorithms perform well in the sense that they meet all the
requirements defined in Chapter[Il Second, optimal algorithms meet all the requirements
except resource awareness, which is only partially satisfied since solving PO-DCOPs
optimally requires a bigger effort in terms of both communication and computation.
This effort is further demonstrated in Chapter ] where we analysed some of the key
theoretical properties of PO-DCOPs algorithms. This analysis emphasized how both
the size of the messages and the computation required to process them are exponential,
not only in the number of variables but also in the number of parameters defining the

PO-DCOPs’ constraint vector functions.

8.2 Future Work

As we have seen in the previous section, the research presented in this thesis constitutes a
significant step forward towards deploying cooperating agents in the real world. However,
it is still a first step towards this aim. Hence, several challenges remain open and need

to be addressed to push forward the work presented here.

In general, the algorithms that we derived to solve coordination problems involving
complex interactions position themselves well with respect to our design requirements.
However, the computation and the communication that these algorithms require can still
be prohibitive for some real world problems. We argued, in the previous section, that
this is to be expected because providing quality guarantees (either optimal or bounded
approximate solutions) necessarily involves a large effort. Nonetheless, reducing this

load is the key general challenge to address to bring this research closer to be deployed
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to coordinate agents in the real world. In additon, by so doing, we would also be
able to improve the way our algorithms behave with respect to the resource awareness

requirement.

In light of this, we propose three key lines of research that naturally follow on from the
current work. All of them share the same objective; that of reducing the amount of
computation and communication required to compute the GDL messages. In particular,
the idea is to define new techniques that are capable of reducing the size and amount of
computation required to compute these messages. These techniques differ, however, in

the way they try to achieve this objective:

e Techniques that optimally preserve the quality guarantees: The key aim of
this research is to define new techniques that preserve the ability of our algorithms
to provide quality guarantees, but improve these algorithms by using approaches to
reduce the amount of computation required to compute GDL messages. To achieve
this, a good starting point would be to study effective search space techniques such
as branch and bound and branch and cut (see (Dechter, 2003)) to see whether
they could be used to solve PO-DCOPs. Alternatively, there exist a variety of
techniques that have been used to reduce the message size and the computation
required by DPOP, which is a well known optimal GDL algorithm (see (Petcu,
2007) for more details). Thus, by using the same procedures, we could perhaps

adapt these techniques to our settings and use them to solve PO-DCOPs.

e Techniques that approximate and bound the quality guarantees: The
key aim of this research is to define new techniques to reduce the amount of
communication required by the algorithm. The idea is to prun the edges of the
factor graph that are likely to yield more communication. To achieve this, one
possibility could be to generalise the approach described in (Macarthur et all,2010)
to the partially ordered case. To achieve this, we could define a new weighting
approach where the weight of each edge trades off the edge’s importance and its
communication overhead. Thus, by pruning these edges, it would be possible to
reduce the computation required by the algorithm by eliminating those edges that

are likely to become bottlenecks.

e Techniques that sacrifice the quality guarantees: The key aim of this line
of work is to define an approximate algorithm that can solve PO-DCOPs with
very similar properties as the canonical max-sum algorithm. The reason for this
choice was stated in Chapter [l and is that max-sum is a very effective algorithm for
coordinating agents in complex real world domains. The disadvantage in doing this
is that max-sum does not provide any guarantee on the quality of the solutions that
it recovers. However, strong empirical evidence, including the work presented in

this thesis, has shown that it is capable of providing effective solutions nonetheless.
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Unfortunately, deriving such an approximate GDL algorithm is extremely chal-
lenging when dealing with PO-DCOPs which might consist of several non com-
parable solutions. More specifically, aggregating these solutions to compute the
GDL messages is currently impossible in loopy graphs. However, this problem can
be avoided by considering that it is not necessary to consider all such solutions to
compute an approximate solution. In fact, most of the equivalent solutions could
be pruned, thus drastically reducing the amount of computation and communica-
tion required by the algorithm. However, to achieve this, it would be necessary to
sacrifice the ability of the algorithm to provide quality guarantees. In this sense,
the key challenge in defining these new techniques would be to show that they are
capable of achieving a good compromise between the amount of computation and
communication that they cut and the quality of the solution that they yield. A
good starting point to derive these techniques would be studying pruning tech-
niques such as alpha-beta or reduced error pruning used for data mining or search
algorithms (see (Russel and Norvig, [1995) for a good introduction on these tech-
niques) and see whether they can be applied to PO-DCOPs. In particular, the
idea would be to define a set of techniques or, more generally, of criteria that can

be used to cut those partial solutions that are less likely to yield an optimal one.

By deriving either of these techniques, we would be able to obtain extremely efficient
algorithms that could be applied to several real world problems, even those involving
agents with limited computational capacities. Achieving this is also another future chal-
lenge of this work. Indeed, we still need to illustrate the performance of our algorithms
on more complex and dynamic coordination problems such as those presented in Chap-
ter 2l To date, we have only tested our algorithms on various instantiations of the graph
colouring problem, which is a well known and acknowledged test problem for coordina-
tion algorithms, but which still lacks some of the key challenges related to real world
problems (see Chapter [)). In particular, it does not address dynamism or limited com-
munication, which are often present in real world problems. In this sense, the problems
discussed in Chapter [2 would constitute an excellent starting point to push forward the
analysis of our algorithms. For instance, we could model the search and track problem
as a MO-DCOP and instantiate either optimal or bounded approximate algorithms to
solve them. We could then model the target tracking problem as a RA-DCOP. This
would allow us to incorporate the uncertainty related to the UAVS’ sensors in the deci-
sion making process. Finally, we could represent the SLAM problem as a MAB-DCOP
where the agents have to learn the importance of their decisions (i.e. which area to ex-
plore next) depending on the number of casualties that they would find within each area.
Moreover, these are not the only problems to which our algorithms can be applied. For
this reason, it would be extremely interesting to see how these algorithms perform on
domains such as the energy domain or the job scheduling domain which contains several

features making them different from the situational awareness problems presented in
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Chapter Pl In so doing, we would be able to gather sufficient knowledge and experience
to again put our algorithms on real agents, as was done in Chapter B and demonstrate,

finally, that they are the state-of-the-art for coordination for agents deployed in the real

world.
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