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Abstract

The three key concepts of interdependency, resiliency and sustainability of a complex system have appeared in a
number of studies and in various contexts. Nevertheless, little has been done to define and analyze them, especially the
latter two, in a unified quantitative framework for engineering infrastructures. In this paper, we propose overarching
mathematical modeling frameworks to quantify these three key concepts in the context of complex infrastructure
systems with multiple interdependent subsystems (i.e., the system of systems). We show how interdependencies
between subsystems can affect the resiliency and sustainability of the entire system. We provide a case study in the
context of biofuel development and use different dynamical models to demonstrate these concepts.

Keywords: Systems, complex, critical, infrastructure, interdependencies, resiliency, sustainability, Markov jump
linear systems.

1 Introduction

Recent catastrophic events, such as the World Trade Center Disaster, Hurricane Katrina, and Northridge
earthquake have alerted infrastructure designers and policy makers about the interdependencies between
critical infrastructures in complex systems [23, 25, 22, 18]. Since then, many researchers have pointed out the
importance of resilient and sustainable system designs. The terms of resiliency and sustainability have been
used widely in many different contexts and, in most of the cases, these key words were defined qualitatively
and separately. In fact, these terms have been used so extensively that their meanings are often inconsistent
or even contradicting each other across different fields. There is also a lack of consistent analytical modeling
frameworks that are suitable for designing resilient and sustainable engineering infrastructure systems. In
view of such gaps, our paper attempts to provide not only a consistent set of definitions for these terms
but also an underlying mathematical framework to analyze them. This framework allows us to provide
interesting insights into the system behavior, particularly on how interdependencies between subsystems
might change the system resiliency and sustainability.

With the primary goal of providing a mathematical framework for defining and quantifying interdepen-
dencies, resiliency and sustainability (IRS), our approach is different from those of most existing studies.
First, we recognize that the resiliency and sustainability of a complex system of subsystems are directly
affected by the interdependencies between the subsystems. This motivates us to study these three key con-
cepts in one unified framework. Second, our work presents analytical tools to study the system at both
the design and operational stages. The mathematical framework provides us with an understanding about
the system’s expected behavior as well as ways to mitigate consequences from extreme events before actual
implementation. This feature distinguishes our paper from existing works such as [6, 25], which mainly focus
on empirical case studies through the use of existing systems and the analysis of past events.
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1



2 Complex Systems of Subsystems & Interdependencies 2

As a motivating example, we consider the complex infrastructure system that supports the rapid develop-
ment of biofuel. This system consists of interdependent subsystems underlying biomass production, biofuel
refinement and water supply. Figure 1 shows the overlaying interdependencies between these subsystems.
The nation’s increasing demand on biofuel as a source of clean energy exaggerates vulnerabilities of these
critical supporting infrastructures. For example, biomass production and biofuel refinement will consume a
large amount of water as well as affecting water quality. Therefore, studying the interdependencies, resiliency
and sustainability of this complex system will provide us with 1) a better understanding of the expected
dynamical behavior of the entire system, 2) guidelines for appropriate system design to improve system
resiliency and sustainability, and 3) quantification of cascading effects from possible subsystem failures as
well as strategies to mitigate these effects.

Fig. 1: Overlaying interdependent subsystems generates the complex “system of subsystems” for biofuel
development.

For the ease of demonstration, we simplify our numerical example by aggregating all the farms into one
biofuel production subsystem, all the refineries into one refinery subsystem and the entire water supply
into one water subsystem. The purpose of this simple example is to illustrate how the key concepts of
interdependencies, resiliency and sustainability can be modeled and quantified in a unified mathematical
framework. It shall be noted, nevertheless, that the proposed framework can be extended to more complex
systems and the same IRS metrics can be quantified. For example, it is possible to consider a more complex
system with a spatial dimension within each subsystem, such as one with an underlying river network, and
multiple refineries and farms. In that case the system would have a clearer and more realistic geography, but
in this explorative study we keep the system relatively simple for the sake of illustrating the mathematical
framework and generating insights.

Our paper is structured as follows: Section 2 starts with the system dynamics and the mathematical
definition of interdependencies. Then, Sections 3 and 4 respectively present the conceptual development,
definitions, and measures for resiliency and sustainability. Section 5 demonstrates how the key concepts of
interdependencies, resiliency and sustainability can be modeled and quantified by using different dynamical
system models such as a linear system with sudden losses and a Markov jump linear system. Section 6
presents the biofuel development case study and demonstrates how the mathematical framework can be
applied to the complex system to draw insights. Section 7 concludes our paper.

2 Complex Systems of Subsystems & Interdependencies

2.1 Notations

We use the following notations:

• n: Number of subsystems.

• si(t),ui(t): State and control variables of subsystem i at time t.
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• s(t),u(t): State and control variables of the system at time t.

• Iij(t): Dependency of subsystem i on subsystem j at time t.

• I(t): Interdependency matrix at time t.

• R: Resiliency of the systems (there are different aspects of resiliency, which are denoted as Rop for
operational resiliency, Rrt for recovery time resiliency, Rrs for recovery speed resiliency, and Rad for
adaptivity resiliency).

• κ: Sustainability of the system.

• F : Set of possible failure scenarios under consideration.

• K: Number of failure scenarios.

• p: Probability of failures.

• ε,L: Randomness of the system (ε is often the white noise while L is often a sudden jump).

• m: Number of modes of operations of the Markov jump linear system.

• π,θ: Transition probability and the steady state probability of the Markov jump linear system.

We use bold symbols for vectors and matrices. We use i, j, k as general subscripts or indices, t, τ, T as time
quantities or indices, and B, R, W , Q as subscript indices of the subsystems in the biofuel case study.

2.2 Complex System Dynamics

Consider a complex system of n subsystems A1, A2, . . . , An, which form a network with n nodes. The
interaction between these subsystems are represented by directed links in the network. For example, if Ai is
directly dependent on Aj , then there is a directed link (Aj → Ai) from subsystem Aj to subsystem Ai. Let
N{i} be the set of indices of the neighboring subsystems that have directed links to subsystem Ai.

Let si(t), ui(t), and εi(t) be the vectors of state variables, control (decision) variables, and randomness
of subsystem Ai at time t. Suppose the dynamics of subsystem Ai is represented by the following dynamical
equation:

si(t+ 1) = hti
(
si(t),ui(t), sN{i}(t), εi(t)

)
,

where sN{i}(t) is the state of the neighboring subsystems AN{i} at time t. Let di = dim(si(t)) and ki =
dim(ui(t)) be the dimensions of si(t) and ui(t), respectively. Here, hti are some known functions (e.g. linear
functions with known parameters in as shown in subsections 5.1 and 6.1).

For example, in the case of biofuel development, we consider three main subsystems: biomass production,
biofuel refinery and water supply, which are denoted as B, R and W respectively. Figure 1 shows the
interactions among these subsystems. The biomass production subsystem takes water from the water supply
subsystem to produce biomass, and then it sends the biomass output to the refinery subsystem. The
refinery subsystem takes biomass and water from the biomass production and the water supply subsystems
and the produced biofuel is then transshipped to the consumers. The biomass production and biofuel
refinery subsystems also affect water quality through fertilization and waste water discharges. Based on
these interdependencies, the system dynamics for this system can be represented as follows:

sB(t+ 1) = htB (sB(t),uB(t), sW (t), εB(t)) ,

sR(t+ 1) = htR (sR(t),uR(t), sB(t), sW (t), εR(t)) ,

sW (t+ 1) = htW (sW (t),uW (t), sR(t), εW (t)) .

The detailed formulations of sB, sR and sW are presented in the case study in section (6).
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2.3 Interdependencies in Systems of Subsystems

There is a rich literature about interdependencies in critical infrastructures in the wake of catastrophic events
in the last two decades. Qualitatively, Rinaldi et al. [22] categorize interdependencies into the following four
types: a) physical interdependencies, b) cyber interdependencies, c) geographic interdependencies, and d)
logical interdependencies.

Quantitatively, Zimmerman [25] defines the dependency index Di of infrastructure i as the empirical effect
ratio between the number of times that infrastructure i fails causing others to fail (Ci), and the number of
times that infrastructure i fails due to the failure of other infrastructures (Ei), i.e. Di = Ci/Ei. Zimmerman
and Restrepo [26] use another metric to define the dependencies of infrastructures on electricity. They use
the ratio between the affected duration Ti of infrastructure i and the electric outage duration Te to model
the infrastructure dependency on electricity, i.e. Di = Ti/Te.

Casalicchio and Galli [5] generalize the work by Zimmerman and Restrepo [25, 26] to categorize interde-
pendencies into shape metrics, core metrics and sector specific metric depending on the information content
and decision support. The shape metrics are defined similarly to that in [25, 26] while the core metrics go
into the component level of the infrastructure.

Haimes et al. [12] develope a method based on the Leontief input-output framework [15] to model the
failure of interdependent systems. The method defines the operability of system as linear relation to input
arguments of the system. For interdependent systems, the input arguments are outputs of other systems.
The interdependencies between systems can thus be expressed a matrix of proportionality coefficients. The
above method was applied to estimate economic losses resulting from electromagnetic attacks in Haimes et al.
[11, 10]. Many studies utilized the idea of using a network of nodes and links to represent the interdependent
systems [16, 8, 9, 20, 14]. The network representation facilitates the use different types of links to represent
different categories of dependencies (physical, informational, geo-spatial, policy/procedural, and societal
interdependencies). An extensive survey of the existing methods for modeling interdependencies can be
found in Pederson et al. [21].

In this paper, the interdependencies between the subsystems are represented by the links connecting
them. Under our notation, subsystem Ai is dependent on subsystems AN{i}. Subsystems Ai and Aj are
interdependent if Ai is dependent on Aj and Aj is also dependent on Ai. In the case of biofuel development,
B is dependent on W ; R is dependent on (B,W ); and W is dependent on R. In addition, the pairs (W , B)
and (W , R) are interdependent.

Definition 1. The first order (direct) dependency Iij(t) between subsystems Ai and Aj at time t is
defined as follows:

Iij(t) =
∂si(t+ 1)

∂sj(t)
=

∂hti
∂sj(t)

. (1)

Here, Iij(t) ∈ Rdi×dj . The interdependency matrix I(t) is defined as a big matrix of size d × d that is
composed of blocks Iij(t), where d =

∑n
i=1 di .

Equation (1) defines the dependency of subsystem Ai on subsystem Aj as the change in Ai in the next
period given one unit change in Aj in the current period. For example, the dependency of biomass production
on water supply could be the yield increase in the next period (e.g. next month) given one unit increase in
the rainfall this period (e.g. this month).
Remarks:

• Subsystem Ai is often also dependent on itself and the dependency Iii(t) is defined similarly as shown
in equation (1) with j = i.

• Iij(t) represents the first order dependency between subsystems i and j. If Iij(t) = 0, subsystem i is
independent of subsystem j, i.e. there is no directed link from Aj to Ai in the system network.

• It is often the case that the interdependency matrix is asymmetric, i.e. it is possible to have Iij(t) 6=
Iji(t)′ for some i, j where ′ is the matrix transpose operator. We can even see the cases when Iij(t) = 0
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while Iji(t) 6= 0. For example, in the case of biofuel development, we have IBR = 0 while IRB 6= 0 since
the biofuel refinery subsystem needs input from the biomass production but not vice versa. (Notice
that, in reality, biofuel production also affects the decision of the farmers and hence there is an indirect
effect from the biofuel subsystem to the biomass production subsystem. However, for clarity, we assume
there is no such indirect effect. Nevertheless, we take the cascading effects into consideration as we
will show in the remark about cascading effect).

• The number of directed links (or dependency) in the system network is equal to the number of non-zero
off-diagonal blocks Iij . If the system network is disconnected, i.e. we can divide it into two groups
of subsystems that are disconnected from each other, the matrix I can be rearranged to form a block
diagonal matrix. In this case, the system can be analyzed by studying the two groups separately.

• Cascading Effect: The interdependency matrix shown earlier represents the first-order dependencies.
The subsystems might also be interdependent through cascading effects. Considering two subsystems
Ai and Aj and supposing there is a direct path connecting them and the shortest path length is equal
to (q + 1), a change in the state of Aj will only affect the state of Ai in at least q + 1 periods later.
We define this effect as the (q + 1)th order dependency. We also have a recursive formulation for
approximating the (q + 1)th order dependencies as follows:

Iq+1
ij (t) =

∂si(t+ q + 1)

∂sj(t)

=

n∑
k=1

∂si(t+ q + 1)

∂sk(t+ 1)

∂sk(t+ 1)

∂sj(t)

=

n∑
k=1

Iqik(t+ 1)Ikj(t).

If the shortest directed path between two subsystems Ai and Aj is through q links, then the (i, j) block
of matrix Iq is non-zero. If there is no directed path between them, then the (i, j) block of matrix Iq
is zero for all q.

3 Resiliency

3.1 Resiliency: Conceptual Development

The term resiliency has been used in many different contexts including cybernetics security and supply chain
management. Snyder et al. in [24] model resiliency as the worst case behavior of the system under different
possibilities of failures. Brown et al. in [2], [3] present attacker-defender models where a defender aims to
find the best design of the system such that the system’s worst performance under all the possible attacks
is maximized. Resiliency with these models is often measured as the performance of the system under the
worst scenarios and is calculated by solving the corresponding robust optimization problems.

In general, resiliency is related to the capability of the system to recover from shocks. According to
O’Rourke in [19], resilience is defined in Webster’s Unabridged Dictionary as “the ability to bounce or spring
back into shape, position, etc., after being pressed or stretched.” The National Infrastructure Advisory
Council at the Department of Homeland Security [17] defines infrastructure resilience as “the ability to re-
duce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or
enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially
disruptive event.” Bruneau et al. in [6], [4], present the necessary conditions for resiliency in both physical
and social systems as having the following four qualities: robustness, redundancy, resourcefulness and rapid-
ity. The authors also quantify resiliency as the system average functionality during shock recovery which is
measured as a function of the magnitude of losses and their probabilities.

In our paper, we also use the same resiliency definition as in Webster’s Unabridged Dictionary and by
the National Infrastructure Advisory Council. We also use the similar conceptual framework for defining
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resiliency as presented by Bruneau et al. in [6], [4]. However, for the purpose of quantification, we extend
these definitions and measure resiliency using four different quantifiable criteria as shown in the following
definition:

Definition 2. The resiliency of an infrastructure system is its capability to get back to its operational
boundary after being affected by disruptions. Four measures of resiliency include:

1. The worst/average level of functionality degradation, denoted as Rop, in the case of failures.

2. The capability and the worst/average recovery time of the system once experiencing shocks (denoted
as Rrt).

3. The recovery speed (denoted as Rrs).

4. The adaptability of the system, denoted as Rad, is its capability to stabilize to a stable state, which
could be different from the current stable state, after shock.

Fig. 2: Conceptual understanding of resiliency as adapted from Figure 1 in Bruneau et. al [6]

Notice that the first two dimensions of resiliency can be used to approximate the system average func-
tionality during shock recovery. In addition, we extend Bruneau et al. framework in [6], [4] and define the
system functionality Q(t) as a function of the system states, i.e.

Q(t) ≡ Q(s(t)) : Rd → [0, 1].

For example, the functionality of a water supply system could be a function of the water quality and
water quantity. This extension allows us to achieve our main goal to study how interdependency between
subsystems can affect the overall system resiliency as will be shown in Sections 5 and 6. Notice also that
concepts such as robustness, redundancy, resourcefulness and rapidity are all captured in the system states
s(t).

Figure 2 demonstrates the concept of resiliency which is adapted from Figure 1 in Bruneau et. al [6].
The vertical axis is for the system quality, which is a function of the system states. There is an operational
threshold that defines the boundary above which the system is considered normal. Under different events,
e.g. Event 1 in Figure 2, the system experiences a shock at time t0 and its quality drops to a level Q(t0),
which is below the operational threshold. We call Q(t0) the robustness of the system for that particular
event. The higher the robustness, the better the system is in terms of avoiding failure consequences. The
system then recovers gradually and comes back to the normal zone again at time t1 and stays there until
experiencing another shock at time t2. We call the duration t1− t0 to be the recovery time. The speed of
recovery is defined as the ratio of the loss in system quality and the recovery time and can be approximated

as 1−Q(t0)
t1−t0 for event 1. The system quality Q(t) is often stochastic and the times t0, t1, t2 as well as the values

Q(t0), Q(t1), Q(t2) are often random.
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Another aspect of resiliency concerns the system’s adaptability, which represents the system’s capability
to return to a stable state after being shocked. That stable state could be the same or different from the
stable state that the system would reach without shocks. In general, a system is resilient if it has high
robustness, a small recovery time, a high speed of recovery, and is adaptable.

3.2 Resiliency: Quantification

We define a set F of the possible failure scenarios under consideration. We consider only the cases the set F
is nonempty since, otherwise, we say the system is perfectly resilient. Our analysis applies for both discrete
and continuous set of F but for simplification in notation, we only consider the case when F is discrete. Let
sj , j ∈ F be the set of possible failure states and let pj be the corresponding probability of occurrence.

According to Definition 2, we denote the functionality Rop and the recovery time Rrt as the two aspects
of resiliency. Depending on the risk measure that we want to apply on the system, the resiliency can be
taken as the expected functionality (or recovery time) or the worst case functionality (or recovery time) over
all the possible random events within the set F . In the context of supply chain management, we often care
about the loss of the system’s operability when a facility fails. We often use robust optimization to model
these worst case behaviors.

Definition 3. The average (or the worst) operational resiliency Raop (or Rwop) of a system under the
set of failure events F is measured as the average (or the worst) system quality under those set of failure
events, i.e.

Raop = Ej∈F [Q(t) | s(t) ≡ sj ] =
∑
j∈F

pjQ(sj),

Rwop = min
j∈F

[Q(t) | s(t) ≡ sj ] = min
j∈F

Q(sj).

Definition 4. The average (or the worst) recovery resiliency Rart (or Rwrt) of a system under the set
of failure events F is measured as the average (or the worst) system recovery time under those set of failure
events, i.e.

Rart = Ej∈F [τj ] =
∑
j∈F

pjτj ,

Rwrt = max
j∈F

[τj ],

where τj = [argmin τ | Q(t+ τ) ≥ 1− δ, s(t) ≡ sj ] is the recovery time under failure scenario j and (1−δ)
is the operational threshold of the system. For example, we can set (1− δ) = 90% to specify that the system
is only recovered if its functionality is at least 90% of its fully functional level.

Definition 5. The average (or the worst) speed of recovery Rars (or Rwrt) of a system under the set of
failure events F is measured as the average (or the worst) speed of recovery under those set of failure events,
i.e.

Rars = Ej∈F [υj ] =
∑
j∈F

pjυj ,

Rwrs = max
j∈F

[υj ],

where υj =
1−Qj
τj

is the recovery speed under failure scenario j and Qj , τj are the quality of the system and

the recovery time after experiencing failure scenario j.

Another concept that is related to the recoverability of a system is adaptability and is defined as follows:
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Definition 6. The adaptability Rad of a system under the set of failure events F is measured as the
capability to stabilize itself (probably to another stable state) after experiencing any shock among those set
of events F , i.e.

Rad =

{
1, if the system can recover to a stable state,

0, otherwise
.

There is a rich literature for studying the stability of dynamical systems, especially on linear systems
and Markov jump linear systems. We can also show that the concepts of interdependency, resiliency, con-
trollability, and stability are interrelated. For brevity, we do not show these results in this paper but they
are available on request.

Remark: Among the four types of resiliencies defined, Rop and Rrt are the most popular ones and
the other types can be approximated by using these two factors. For example, the recovery speed can be
approximated as

1−Rop
Rrt and the adaptability can be derived by checking if the recovery time is greater than

an acceptable threshold. In different systems, we might care more about one type of resiliency than others.
For example, in a cyber security network, we care more about Rop but less about Rrt since it is assumed that
once the system experiences some extreme events (such as link breakdown), the process for reassignment can
be done in a reasonable time using some predetermined recovery protocol. In this case, we only care about
the loss of operationality due to failure. In a hospital operation, we care about both the functionality Rop
and the recovery time Rrt. In general, different systems use different utility functions for these two types of
resiliencies. We can define the overall system resiliency as R = U(Rop,Rrt), which is a utility function over
Rop and Rrt.

Mitigating failure affect: When an extreme event occurs, the response variable u is set to improve
the system resiliency and to mitigate the effects. For example, to minimize the recovery time, the following
robust optimization can be solved for an optimal response u:

min
u

τ

s.t. s(0) = extreme case,

s(t+ 1) = h(s(t),u(t), ε(t)), ∀ t,
‖s(τ)− µ‖ ≤ ε,
u(t) ∈ B(s(t)),

where µ is a desirable state (often a stable state of the system), µ ± ε is a small acceptance range around
µ to which we want to drive the system state, and B(s(t)) is the feasible region of the control u(t). Notice
that the preceding model cannot be solved in its current form since the unknown variable τ cannot be used
for indexing s(τ). Instead, we can use a bisection search with some initial guess for τ and then solve the
feasibility problem. We then reduce τ if the problem is feasible and increase τ if otherwise.

4 Sustainability

4.1 Sustainability: Conceptual Development

Sustainability can have different meanings in different contexts. In infrastructure systems, sustainability
often means the durability, reliability, quality and maintainability of the system. Figure 3 demonstrates the
concept of sustainability. The vertical axis is for the system quality, which is a function of the system states.
The system is sustainable if its quality does not consistently degrade through time.

Definition 7. System sustainability is its long-term capability to use its limited resources effectively to
maintain its functionality and to endure stresses.

The first part of this definition is concerned with the long-term functionality of the system. This aspect is
related to the concept of stability. The second aspect is about the system’s capability to bear with stresses.
This aspect is related to the concept of resiliency that we have defined in subsection 3.1.
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Fig. 3: Conceptual understanding of sustainability

4.2 Sustainability: Quantification

Definition 8. The sustainability level κ of a system is defined as:

κ = lim
T→∞

E

[
1

T

T∑
t=0

Q(t)

]
.

Here, Q(t) is the system quality at time t, which is a function of the system state variables. The
sustainability is defined as the expected long-term average quality of the system. In order to calculate κ, we
need to know the exact formulation for Q(t). For demonstration purpose in the next sections, we choose the
quality function to be Q(t) = ω′s(t) where ω is a weighting vector on the system state variables s(t) that
depends on the relative importance of these state variables. The weight vector ω allows us put appropriate
weights to the state variables when taking sustainability measures. For example, in the biofuel system, the
water quality sustainability can be computed by setting ωQ = 1 while ωj = 0, ∀j 6= wq. Introducing the
weight vector ω allows us to consider different levels of sustainability measures (e.g. local sustainability or
global sustainability). Notice that we might need to use some normalization operation on ω′s(t) to make
sure Q(t) ∈ [0, 1]. However, for clarity, we assume this requirement is relaxed.

5 Demonstrating IRS Quantifications using Different Dynamical Systems

This section provides the measures and properties of infrastructure system interdependency, resiliency and
sustainability in the framework of different dynamical system models including a stochastic linear system
with sudden losses and a Markov jump linear system.

5.1 Stochastic Linear Systems with Sudden Losses (LSwSL)

Consider a simplified model where the dynamics of subsystem Ai are represented by a simple linear model
as follows:

si(t+ 1) = M iisi(t) +N iiui(t) +
∑

j∈N{i}

M ijsj(t)

+εi(t) +Li(t), ∀i,

where εi(t) is white noise and Li(t) represents the sudden losses (jumps) of the subsystem. Suppose the
losses follow a discrete distribution with (K + 1) scenarios, i.e.

Li(t) =

{
0, w.p. p0,

Lij , w.p. pj , ∀j = 1, . . . ,K,
, ∀i = 1, . . . , n.
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Let’s define:

s(t) =
[
s1(t), . . . , sn(t)

]′
, u(t) =

[
u1(t), . . . ,un(t)

]′
,

ε(t) =
[
ε1(t), . . . , εn(t)

]′
, L(t) =

[
L1(t), . . . ,Ln(t)

]′
,

M =

M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn

 , N =

N11 · · · 0
...

. . .
...

0 · · · Nnn

 .
We have the system dynamics:

s(t+ 1) = Ms(t) +Nu(t) + ε(t) +L(t).

To demonstrate the LSwSL model, let us consider the following simple example:

s(t+ 1) = 0.4s(t) + ε(t) +L(t)

Li(t) =



0, w.p. 0.96,

−0.15, w.p. 0.01,

−0.2, w.p. 0.01,

−0.25, w.p. 0.01,

−0.3, w.p. 0.01,

ε(t) : Uniform on [−0.01, 0.01]

Q(t) = max(0, 1− |s(t)|).

(2)

Figure 4 shows a sample path of the quality of the system using the LSwSL model shown in (2). We can see
the sample path looks very similar to the conceptual picture shown in Figure 2.

Fig. 4: Simulated quality of a linear system with sudden losses as shown in equation (2)

5.1.1 Interdependencies

The off-diagonal elements in matrix M represent the interdependencies between the subsystems. Notice
that this LSwSL model is more general than the Liontief input/output infrastructure model by Haimes and
Jiang in [12] since we include both the dynamics of the system, the control u, and the randomness ε, L. In
this LSwSL model, we assume the interdependencies matrix is time invariant. In the next subsection, we
will consider the case in which M changes over time.
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5.1.2 Resiliency

The resiliency and sustainability of a system depend on the form of control u. In order to provide concrete
measures for resiliency and sustainability, let us consider the case of linear control u(t) = V s(t). The system
dynamics can then be rewritten as:

s(t+ 1) = As(t) + ε(t) +L(t),

where A = M +NV .
Under failure event j, the system experiences a loss Lj to its state variables, and the system will expect

a quality loss of ALj in the next period (in comparison to its quality if failure had not occurred). The

expected quality loss in k period after that would be AkLj . The recover time kj(δ) under event j is the
time taken for the system to recover this loss and get back to a level δ from the original level, i.e.

kj(δ) = min
k
{k | ‖AkLj‖ < δ}.

The average recovery time is: Rart(δ) =
∑K
j=1 pjkj(δ) and the worst recovery time is: Rwrt(δ) =

maxj kj(δ).
The operational resiliency measure would depend on the form of the quality function Q(s(t)). Suppose

the quality of the system is defined as Q(t) = ‖s(t)‖
maxτ ‖s(τ)‖ , then the average operational resiliency is: 1 −∑K

j=1 pj‖Lj‖
maxτ ‖s(τ)‖ and the worst operational resiliency is: 1−maxj

‖Lj‖
maxτ ‖s(τ)‖ .

Let λ(A) be the set of eigenvalues of A and let λ(A) and λ(A) be the maximum and minimum absolute
eigenvalue of A correspondingly, i.e. λ(A) = maxj |λj(A)| and λ(A) = minj |λj(A)|. The speed of recovery

can be approximated as the speed of loss reduction and is equal to
‖Lj‖
‖ALj‖ which is bounded below and above

by 1√
λ(AA′)

and 1√
λ(AA′)

, i.e.

1√
λ(AA′)

≤ ‖Lj‖
‖ALj‖

≤ 1√
λ(AA′)

.

This means the worst recovery speed is 1√
λ(AA′)

which can be further approximated as 1
λ(A)

. (The

equality occurs when the control is adjusted such that Lj is the eigenvector of A that correspond to the
eigenvalue λ(A)).

The adaptability of the system is its capability to stabilize, which is determined by checking whether
λ(A) < 1. Overall, we have the following measures:

Raop = 1−
∑K
j=1 pj‖Lj‖

maxτ ‖sτ‖

Rwop = 1−maxj
‖Lj‖

maxτ ‖sτ‖
Rart(δ) =

∑K
j=1 pjkj(δ)

Rwrt(δ) = maxj kj(δ)

Rrs = 1
λ(A)

Rad =

{
1, if λ(A) < 1,

0, if λ(A) ≥ 1,
.

5.1.3 Sustainability

Consider the following stochastic linear system with sudden jumps:

s(t+ 1) = µ+A(s(t)) + ε(t) +L(t), (3)

The main steps for deriving the sustainability level is shown below (details can be found in the comple-
mentary document):
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• Case 1: λ(A) < 1:

With the maximum absolute eigenvalue of A smaller than 1, i.e. λ(A) < 1, we have det(I −A) 6= 0 and
hence there exist µa = (I−A)−1µ. The system dynamics shown in equation (3) can be rewritten as follows:

s(t+ 1)− µa = A(s(t)− µa) + ε(t) +L(t).

We have:

Eε(t),L(t)[s(t+ 1)− µa | s(t)] = A(s(t)− µa) +

K∑
j=1

pjLj ,

⇒ Eε,L[s(t+ 1)− µa] = AEε,L[s(t)− µa] + L̄,

where L̄ =
∑K
j=1 pjLj is the average loss of the system through time and the expectation is taken for the

randomness in ε and L. From now on, we will exclude ε and L from the expectation operator for convenient
notation.

Let L̄a = (I −A)−1L̄. We call L̄a the adjusted average loss. We have:

E[s(t+ 1)− µa − L̄a] = AE[s(t)− µa − L̄a],

= At+1(s(0)− µa − L̄a),

⇒
T∑
t=0

E[s(t)− µa − L̄a] =

T∑
t=0

At(s(0)− µa − L̄a),

⇒ E[
1

T

T∑
t=0

ω′s(t)] = ω′(µa + L̄a)

+
1

T
ω′(I −AT+1)(I −A)−1(s(0)− µa − L̄a),

Since λ(A) < 1, we have AT+1 → 0 as T →∞. Thus,

lim
T→∞

1

T
ω′(I −AT+1)(I −A)−1(s(0)− µa − L̄a) = 0.

Hence,

κ = lim
T→∞

E

[
1

T

T∑
t=0

ω′s(t)

]
= ω′(µa + L̄a) (4)

• Case 2: λ(A) ≥ 1:

Notice that, in this case, we might not be able to find µa and L̄a that solves (I − A)µa = µ and

(I −A)L̄a = L̄ because (I −A) might be singular. In addition, the average 1
T

∑T
t=0 ω

′s(t) would contain

a weighted average of the elements in the series At, t = 0, . . . ,∞ which approaches infinity. Thus, the
sustainability level would depend on the specific values of ω,µ, L̄ and A. We consider here a regular case
when A has its eigen-decomposition as follows: A = SJS−1 where J is a diagonal matrix of eigenvalues of
A and S is the matrix formed by the eigenvectors of A. Notice that this decomposition is only possible if
the eigenvectors of A are linearly interdependent. In the general case, we can always use the Jordan decom-
position to simplify the series At, t = 0, . . . ,∞. However, the results from using the Jordan decomposition
is more complicated and we only consider the case when A has an eigendecomposition.
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We have:

E[s(t+ 1)] = AE[s(t)] + µ+ L̄,

= At+1s(0) +

t∑
τ=0

Aτ (µ+ L̄),

⇒ E[

T∑
t=0

ω′s(t+ 1)] = ω′
T∑
t=0

Ats(0)

+ ω′
T−1∑
t=0

(T − t)At(µ+ L̄).

Thus,

κ = lim
T→∞

E

[
1

T

T∑
t=0

ω′s(t)

]

= lim
T→∞

(
ω′S

[
1

T

T∑
t=0

J t

]
S−1s(0)

+ω′S

[
1

T

T−1∑
t=0

(T − t)J t
]
S−1(µ+ L̄)

)
.

Let F =
[

1
T

∑T
t=0 J

t
]

and H =
[

1
T

∑T−1
t=0 (T − t)J t

]
. Then F and H are diagonal matrices with:

Fjj =

{
λT+1
j −1

T (λj−1) , if λj 6= 1

1, otherwise.

and,

Hjj =

{
λT+1
j −(T+2)λj+T+1

T (λj−1)2 , if λj 6= 1
T+1

2 , otherwise.

Let B, E and S be the sets of indices of the eigenvalues of A that are corresponding to |λ(A)| > 1,
|λ(A)| = 1 and |λ(A)| < 1 respectively. Let v1 = S′ω, v2 = S−1s(0), v3 = S−1(µ+ L̄)

We have:

κ = lim
T→∞

(
ω′S

[
1

T

T∑
t=0

J t

]
S−1s(0)

+ω′S

[
1

T

T−1∑
t=0

(T − t)J t
]
S−1(µ+ L̄)

)

= lim
T→∞

 n∑
j=1

(v1jv2jFjj + v1jv3jHjj)

 ,

=



∑
j3E

1

1− λj
v1jv3j +

∑
j∈E

v1jv2j if both

(a) v1jv3j = 0, ∀j ∈ E, and

(b) (λj − 1)v1jv2j + v1jv3j = 0, ∀j ∈ B
∞, otherwise

(5)
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Notice that in the case |λ(A)| < 1, formulation (5) gives us:

κ =
∑
j

1

1− λj
v1jv3j

= ω′S(I − J)−1S−1(µ+ L̄)

= ω′(µa + L̄a),

which is exactly what we found in equation (4) in Case 1. Notice that we still divide the derivation into
two cases since the first case does not require matrix A to be eigendecomposable.

Notice also that the previous derivation can be extended to the case where the system dynamics follow
some generic curve g(t). For example, sustainable economic growth often contains a positive drift of the
form g(t) = α+ βt. In these cases, the system dynamics is modeled as:

s(t+ 1)− g(t+ 1) = A(s(t)− g(t)) + ε(t) +L(t),

The sustainability level can also be derived using the same methodology. For example, for the case
λ(A) < 1, we have:

κ = lim
T→∞

E[
1

T

T∑
t=0

s(t)] = lim
T→∞

(
1

T

T∑
t=0

g(t)

)
+ L̄a.

5.2 Markov Jump Linear Systems

In the Markov jump linear systems (MJLS) model, there is a finite number of modes that the system can
behave. Let denote these modes at time t as r(t) ∈ {0, 1, · · · ,m}. Notice that when m = 0, the MJLS model
has only one mode of operation and it is equivalent to a linear model. The system dynamics at time t is:

s(t+ 1) = µr(t) +M r(t)s(t) +N r(t)u(t) + ε(t).

Notice that we have excluded the term L(t) from the system dynamical equation for clarity. All the analysis
still applies if we add this term.

The modes of operation follow a Markov transition mechanism with probability matrix π, i.e.

P (r(t+ 1) = j | r(t) = i) = πij .

Let θ be the steady state of the Markov chain, i.e. the probability of being in mode j is θj . For convenient
characterization of the resiliency and sustainability, we also assume the control u is linear on the state
variable, i.e. u(t) = V r(t)s(t). This simplifies the MJLS as follows:

s(t+ 1) = µr(t) +Ar(t)s(t) + ε(t) +L(t),

where Ar(t) = M r(t) +N r(t)V r(t).
The interdependency, resiliency and sustainability of the MJLS can be derived as follows:

5.2.1 Interdependencies

The off-diagonal elements of the matrix M j contains the interdependencies of the system during mode j.
Notice that the interdependency in the Markov jump linear system is different depending on the mode of the
systems. This makes sense in complex infrastructure systems comprised of interdependent subsystems. For
example, the interdependency is often higher during critical modes compared to that of the normal mode.
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5.2.2 Resiliency

Let us define µ̄j = (I −Aj)
−1µj as the steady state of the system if it only operates in mode j. Let mode 1

to be a good (functional) mode while other modes are considered failure modes. Under failure event j with
j = 1, . . . ,m, the system experience a loss Lj = µ̄0 − µ̄j .

The operational resiliency measure would depend on the form of the quality function Q(s(t)). Sup-

posing the quality of the system is defined as Q(t) = min
(

1, ‖s(t)‖‖µ̄0‖

)
, the average operational resiliency is:∑m

j=1 θj‖µ̄j‖
‖µ̄0‖

and the worst operational resiliency is: minj
‖µ̄j‖
‖µ̄0‖

.

The transition time kj(δ) under event j is the time taken for the system to recover from the loss and
return back to a level δ from the normal steady state level µ̄0 assuming the system experiences no further
losses, i.e.

kj(δ) = min
k
{k | ‖Ak

jLj‖ < δ}.

Let Nj be the number of times the system is in the normal mode before it finally returns back to the

operational zone. Then Nj follows a geometric distribution with probability of success being qj = θ
kj
0 , which

is the probability of successfully returning back to the operational zone after experiencing shock scenario j.

Thus, the expectation of Nj is N̄j = q−1
j = θ

−kj
0 .

The length of each trial also follows a geometric distribution with a probability of success being 1− θ0,
which is the probability of not returning to the normal mode. Thus, the trial expected length is T̄ =
(1− θ0)−1. The expected recovery time is therefore:

Rart(δ) =

m∑
j=1

θjN̄j T̄j =

m∑
j=1

θjθ
−kj
0 (1− θ0)−1,

and the worst recovery time is: Rwrt = θ
−kj
0 (1− θ0)−1.

The adaptability of the system is its capability to maintain a stable state. If we want to make sure the
system is adaptable in every mode of operation, the adaptability can be quantified as:

Rad =

{
1, if λ(A) < 1, ∀j
0, otherwise.

5.2.3 Sustainability

Eε(t),r(t)[s(t+ 1) | s(t)] =

m∑
j=0

θjµj +

m∑
j=0

θjAjs(t),

⇒ Eε,L[s(t+ 1)] =

m∑
j=0

θjµj +

m∑
j=0

θjAjEε,Ls(t),

= ĀEε,L[s(t)] + µ̄,

where Ā =
∑m
j=0 θjAj is the average of Ar(t) under the randomness on r(t) and µ̄ =

∑m
j=0 θjµj . From now

on, we will exclude ε and L from the expectation operator for convenient notation.
We have:

E[s(t+ 1)] = ĀEε,L[s(t)] + µ̄,

From here, we can use the similar technique shown in subsection 5.1 to derive the sustainability level.
Let λj be the eigenvalues of Ā and let B, E and S be the sets of indices of the eigenvalues of Ā that
are corresponding to λ(Ā) > 1, λ(Ā) = 1 and λ(Ā) < 1, respectively. Suppose Ā can be decomposed into
Ā = SJS−1 where J is a diagonal matrix of eigenvalues of Ā and S is the matrix formed by the eigenvectors
of Ā. Let v1 = S′ω, v2 = S−1s(0), v3 = S−1µ̄. We have the following result:
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κ =



∑
j3E

1

1− λj
v1jv3j +

∑
j∈E

v1jv2j if both

(a) v1jv3j = 0, ∀j ∈ E, and

(b) (λj − 1)v1jv2j + v1jv3j = 0, ∀j ∈ B
∞, otherwise,

6 Case Study of Biofuel Development and Insights

6.1 Biofuel System

The system configured for this study consists of interdependent subsystems of biomass production (with
a single feedstock such as Miscanthus), biofuel refinery and water supply considering both quantity and
quality (of nitrate load). Figure 5 depicts the interdependencies of the system, showing the various phys-
ical interdependencies with a form of human interferences to natural processes (a-c) and supply-demand
relationships (d) , and land use decision depending on water availability (e). Other interdependency rela-
tionships in the given system, such as the dependencies of land use on refinery production capacity and water
quality regulation on land use, can also be included but we omit them in this example for simplicity. Let

Fig. 5: Physical and functional interdependencies. The arrow direction Aj → Ai means system i depends
on system j. The physical interdependencies include the effects of: (a) refinery water withdrawal
on water quantity, (b) irrigation water withdrawal on water quantity, (c) land use pattern on water
quality, (d) biomass production on biofuel production, and (e) water availability on land use.

sB(t), sR(t), sW (t), sQ(t) be the state variables for biomass production area (in km2), biofuel refinery capac-
ity (in million m3 of ethanol) , water supply quantity (in million m3) and water supply quality (in nitrate

mass) at year t, respectively. We also use the following vector notations: s(t) =
[
sB(t), sR(t), sW (t), sQ(t)

]′
.

We assume that the changes in biomass production area sB(t) is determined by the availability of the
water supply availability sW (t). The amount of water required per year in million m3 for one km2 of biomass
production is α1 = 0.423.1. Then the maximum area of biomass that can be produced is sW (t)/α1, and the
difference sW (t)/α1− sB(t) represents the maximum new biomass production area due to water availability.
In observation of such an opportunity, the decision maker might choose to make a fractional increase in

1 Source: David et al. [7]
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biomass production, ρ(sW (t)/α1 − sB(t)), for some ρ ∈ [0, 1]. The biomass area in the next period is then:

sB(t+ 1) = sB(t) + ρ(sW (t)/α1 − sB(t)) + εB(t),

= (1− ρ)sB(t) + ρ/α1sW (t) + εB(t),

where εB(t) is the error term associated with factors other than the water supply availability. For our
numerical demonstration, we choose ρ = 0.5. The refinery capacity is assumed to be proportional to the
biomass yield:

sR(t+ 1) = α2sB(t) + εB(t),

where α2 = 0.0015 is the yield of ethanol per unit area of biomass production (in million m3 ethanol per
km2)2

The water supply quantity in the next period sW (t+ 1) depends on crop water consumption and refinery
water consumption as follows:

sW (t+ 1) = µW − α1sB(t)− α3sR(t) + α4sW (t) + εW (t),

where µW is the reservoir recharge (in million m3), α1 = 0.423 is crop water consumption (in million m3

per km2), α3 = 6 is refinery water consumption (in million m3 water per million m3 ethanol production),
α4 ∈ [0, 1] is the percentage of water left from the previous period. In our numerical test, we choose
α4 = 0.8 which means 20% of the water in the reservoir is either used for other purposes or lost (e.g. due to
evaporation).3

Let sQ(t) be the state variable for the water quality which is represented by the nitrate mass (in tons).
This state variable is dependent on the biomass production area as follows. Let α6 = 0.6 (tons/km2) be
the nitrate yield from land covered with Miscanthus and α7 = 3 (ton/km2) be the nitrate yield for land
covered by other crops (e.g. corn). Then the nitrate mass for the land covered by Miscanthus is α6sB(t)
and that of the remaining land is α7(L−sB(t)) where L is the total area of land. We also assume α5 ∈ [0, 1]
is the percentage of nitrate mass left from the previous period and we choose α5 = 0.8 for our numerical
demonstration. The dynamic equation for the nitrate mass becomes:

sQ(t+ 1) = α5sQ(t) + α6sB(t) + α7(L− sB(t)) + εQ(t).

Combining all the above relationships together, we obtain the system dynamics: s(t+1) = As(t)+µ+ε(t)
where the interdependency matrix A is:

A =


1− ρ 0 ρ/α1 0
α2 0 0 0
−α1 −α3 α4 0

−(α7 − α6) 0 0 α5

 =


0.5 0 1.1820 0

0.0015 0 0 0
−0.423 −6 0.8 0
−2.4 0 0 0.8

 .
The elements in the matrixA reflect the effects subsystems have on one another, and the off-diagonal elements
highlight the interdependencies. For example, a13 = 1.1820 is the dependency of biomass production on
water. Notice that a12 = 0 since there is no direct feedback link from the biofuel refinery subsystem to the
biomass production subsystem.

6.2 Insights

6.2.1 Insight 1: Interdependency Affects Loss Propagation

Consider the biofuel system that experiences K = 5 scenarios of losses with the following distribution:

Li(t) =

{
0, w.p. p0,

Lij , w.p. pj , ∀j = 1, . . . ,K,
, ∀i = 1, . . . , n.

2 Miscanthus yield is 39 ton/ha and it typically continues yielding for fifteen to twenty years before replanting is required.
For every one ton of Miscanthus the refinery receives, it produces approximately 0.3 ton of ethanol with a density of 0.003
ton/gallon. Thus, α2 = 39∗0.3

0.003
= 3900 gallon/ha = 0.0015Mm3/km2. The data is obtained from Heaton et al. [13].

3 Source: Aden et al. [1].
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where,

L =


−0.1 0 0 0 −0.025

0 −0.1 0 0 −0.025
0 0 −0.1 0 −0.025
0 0 0 −0.1 −0.025

 .
Let the probability of the system experiencing the losses be pj = 0.01, ∀ j = 1, . . . , 5, p0 = 1−

∑5
j=1 pj = 0.95.

This means the system endures losses 5% of the time and works normally 95% of the time.
Under the first loss scenario, the biomass production subsystem experiences a loss of magnitude L11 =

−0.1 while the other subsystems remain intact, i.e. L21 = L31 = L41 = 0. The loss of the biomass production
system in period t would result in a loss of m21L11 in the refinery system at period t + 1. However, the
reduction in biomass production would also mean the amount of water supply used by the biomass production
system is reduced. This leads to an increase in the water quality and water quantity in period t + 1. In
period t+2, the increase in the water supply from period t+1 leads to the increase in the biomass production
and the refinery subsystems. These increases would reduce the loss effect from period t and the chain of
reactions between the subsystems continues until the system is stable at a new state that is equal to:

(I −A)−1µ+ (I −A)−1L.1,

where L.1 is the system loss under scenario one. The system will be stable at this state until it experiences
another loss. The long-term average (sustainability level)) of the system state is:

(I −A)−1µ+ (I −A)−1L̄,

as we have derived in subsection 5.1 where L̄ is the system average loss.
It is interesting to analyze the overall system loss quantity (I −A)−1L.j for each scenario j.
The overall system losses in the five scenarios are:

(I −A)−1L =


−0.0328 1.1618 −0.1936 0.0000 0.9354
−0.0000 −0.0983 −0.0003 0 −0.0986
0.0707 0.4914 −0.0819 0.0000 0.4803
0.3931 −13.9411 2.3235 −0.5000 −11.7245

 ,
where each column corresponds to a scenario. For example, the overall system loss under the first scenario is
[−0.0328, 0, 0.0707, 0.3931] for the four system state variables of biomass production, biofuel refinery, water
quantity, and water quality, respectively. It is interesting to notice that under the first scenario with a sudden
loss in the biomass production subsystem, only the biomass production endures the loss of −0.0328, while
the water supply has the benefits from this with the water quantity and water quality increase by 0.0707
and 0.3931 respectively. These facts result from the negative interdependencies between water supply and
the other two subsystems.

It is interesting to notice the sign of the losses under different scenarios. Overall, we found:

• A loss in biomass production will negatively affect itself while benefiting the water supply.

• A loss in refinery subsystem will affect itself and the water quality but benefit other subsystems.

• A loss in water quantity will affect all the subsystems but not the water quality. This is because the
losses in the biomass production benefits the water quality more than the negative effect caused by the
loss in the water quantity. However, it should be noticed that these results only apply for our choice
of parameters. The results could be different if we change the interdependencies factors.

• A loss in the water quantity only affects itself and leads to no changes in other subsystems. This is
because the water quality only absorbs the changes from other system state variables (i.e. the water
quality node has only incoming links in the biofuel network)

Notice also that the signs of the elements in the interdependencies matrix have strong effects on the signs
of the system losses. For example, if all the interdependencies are non-negative, the loss on any subsystem
will degrade all other subsystems to which it is connected.
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6.2.2 Insight 2: Interdependency Affects Resiliency

The interdependencies matrix A decides how the system behaves while the maximum absolute eigenvalue
λ(A) is one of the key measures of the system and it appears in most of the equations for the resiliency
and the sustainability levels. Specifically, λ(A) is a factor of the recovery time and recovery speed. In
addition, the sustainability level is only finite and well defined when λ(A) ≤ 1. Since λ(A) is dependent
on the magnitude of the interdependency factor in A, the interdependency factors affect the resiliency and
sustainability levels.

Consider the case when the interdependency matrix is changed from A, as shown in subsection (6.1), to
Ãij(ρ) by changing only the dependency of system i on j to a varying level ρ. In other words, Ãij(ρ) is
exactly the same with A except for the (i, j) element, which is equal to ρ. Figure 6 shows how the recovery
time changes when we vary the interdependency levels ρ for the pair (i = 1, j = 3), which corresponds to
the dependency of the biomass production on water supply.

Fig. 6: Recovery time changes when varying the dependency factor a13.

Figure 6 also shows that the required recovery times have V-shapes that increase when the magnitudes
(i.e. the absolute values) of the dependency factors increase. Notice that, we only show the dependency
factors in specific ranges. For example, the feasible ranges of ρ is [−0.228, 1.372] which was found by finding
the threshold of ρ such that the system is stable, i.e. λ(Ãij(ρ)) ≤ 1.

6.2.3 Insight 3: Interdependency Affects Sustainability

Consider again the simple linear system with the interdependency matrix as shown in subsection (6.1).
Under the case when λ(A) < 1, the sustainability level under measure ω is κ = ω′(I −A)−1(µ+ L̄), which
is a function of ω,A,µ and L̄. Once we change the interdependency factors, the sustainability level also
changes. Similar to subsection 6.2.2, we consider the case when the interdependency matrix A is changed
to Ãij(ρ) by changing only the dependency of system i on j to ρ. Figure 7 shows how the sustainability
changes when we vary the dependency factors for the pairs (i = 1, j = 3) and (i = 2, j = 1).

Overall, we find that increasing the dependencies of water supply on biomass production, i.e. increasing
the magnitudes of a31, will reduce the system sustainability while increasing the dependency of the biofuel
production on the biomass production increase the system sustainability.

Sensitivity analysis: It is interesting to analyze the change of the system sustainability when we change
the dependency factors. Suppose A is adjusted to Ãij(%) = A+ %Iij where Iij is a matrix of the same size
with A and has also elements equal to zero except for the element at row i and column j which is equal to
one. (Notice a slight difference between Ãij(%) and Ãij(ρ)). Let us define:

κij(%) = ω′(I −A− %Iij)−1(µ+ L̄)
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(a) Dependency factor: a13 (b) Dependency factor: a21

Fig. 7: System sustainability changes when changing the dependency factors.

Then we can take the derivative of κ(%) on % to find out the sensitivity of the sustainability levels on the
interdependency factor aij . We have:

∂κij(%)

∂%
= ω′

[
(I −A)−1(Iij)(I −A)−1(µ+ L̄)

]
=

[
ω′(I −A)−1

]
i

[
(I −A)−1(µ+ L̄)

]
j
.

Let us take the case when ω = [0.25, 0.25, 0.25, 0.25]′. We have the following sensitivity matrix ∆κ at A
when we vary the elements in the interdependency matrix:

∆κ =
[
ω′(I −A)−1

]′ [
(I −A)−1(µ+ L̄)

]′
=


−8.4273 −0.0038 −3.5721 36.5
242.1473 0.1098 102.6379 −1049.1
−40.0321 −0.0181 −16.9682 173.4

9.7749 0.0044 4.1432 −42.3

 ,
Interestingly, the signs of the elements of ∆κ show the directions of change in κ when we change A. For

example, the sustainability decreases when we increase a13, a31 and increase when we increase a21. We can
see the trends shown in figure 7 match with the sign of the sustainable sensitivity matrix.

It is also interesting to break down the system sustainability level into two components, one due to µ
and another due to L̄ and analyze their corresponding sensitivity matrices. We have:

∆κ =
[
ω′(I −A)−1

]′ [
(I −A)−1(µ+ L̄)

]′
= ∆κ(µ) + ∆κ(L̄),

where ∆κ(µ) and ∆κ(L̄) are the sensitivity matrices of A through µ and L̄ correspondingly.
We have:

∆κ(µ) =
[
ω′(I −A)−1

]′ [
(I −A)−1µ

]′
=


−8.3467 −0.0123 −3.5306 35.5
239.8302 0.3541 101.4482 −1020
−39.6490 −0.0585 −16.7715 168.6

9.6813 0.0143 4.0952 −41.2

 ,
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and

∆κ(L̄) =
[
ω′(I −A)−1

]′ [
(I −A)−1L̄

]′
=


−0.0806 0.0085 −0.0414 1.0108
2.3171 −0.2443 1.1897 −29.0443
−0.3831 0.0404 −0.1967 4.8016
0.0935 −0.0099 0.0480 −1.1724

 ,
It can be seen very clearly that the sustainability level component of µ is the predominant cause of the

loss since our choice of the loss probabilities and magnitudes is quite small.

6.2.4 Insight 4: Sustainability Level is Dependent on the Scale of Study

From the formulation of the sustainability level (5), we can see very clearly the sustainability level of the
system is dependent on the choice of the weight vector ω. We will show a more striking result that the
system can be sustainable in some choices of ω but unsustainable in others. This reflects the notion of local
versus global sustainability in which a system might be sustainable at a local scale of study but not in a
larger global scale.

Consider a slight change to the interdependency matrix of the linear system as follows:

A =


0.5 0 1.1820 0

0.0015 0 0 0
−0.423 −6 2 0
−2.4 0 0 0.8

 .
Notice that we have changed a33 from 0.9 to 2. We deliberately make this simple change so that λ(A) > 1 and
all the eigenvalue of A are real for a simple demonstration. In this case, λ(A) = {0.8, 0.0069, 1.4855, 1.0214}
with four corresponding linear independent eigenvectors. Let S be the matrix formed by the eigenvectors
and J is a diagonal matrix of eigenvalues of A. We have: A = SJS−1 and Ak = SJkS−1

Using the same method as shown in section 5.1, the sustainability level of the system is:

κ =


ω′(I −A)−1(µ+ L̄),

if [ω′S.j ] ∗
[
S−1
.j ((λj − 1)s(0)− µ− L̄a)

]
= 0, ∀j ∈ {3, 4}

∞, otherwise

where S.3 = {0.2677, 0.0003, 0.2232,−0.9373}′ and S.4 = {0.0918, 0.0001, 0.0405,−0.9950}′ are the third
and the fourth eigenvectors of A.

Suppose we have chosen the initial state s(0) such that
[
S−1
.j ((λj − 1)s(0)− µ− L̄a)

]
6= 0,∀j ∈ {3, 4}.

Then the sustainability level depends on whether [ω′S.j ] = 0 ∀j ∈ {3, 4}. The system sustainability level κ
is finite under all sustainability measures ω that satisfy:{

0.2677ω1 + 0.0003ω2 + 0.2232ω3 − 0.9373ω4 = 0

0.0918ω1 + 0.0001ω2 + 0.0405ω3 − 0.995ω4 = 0

The sustainability level could be +∞ or −∞ if either of these equalities does not hold. In an infrastructure
system, there are many options and views for choosing ω. Some of these views consider the global scale
of the system while other consider only the local scale. Depending on these views, the system might be
considered as sustainable or not.

6.2.5 Insight 5: Transition Probability

Our discussion so far was for complex systems with fixed and fully known interdependencies between subsys-
tems. However, in reality, complex systems might be ill-defined or we might only know the inter-relationships
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partially. In the case the interdependency matrix is not deterministic but follows a Markov stochastic pro-
cess, then we can apply results from subsection 5.2 that makes use of the Markov jump linear systems to
derive closed-form solution for the system resiliency and sustainability factors. Suppose s follows a Markov
jump linear system with m = 2 modes of operations, a “good” (functional) mode and a “bad” (failure)
mode. Let the dynamical equations for the good mode be:

s(t+ 1) = µG +AGs(t) + ε(t)

and bad mode be:

s(t+ 1) = µB +ABs(t) + ε(t)

Let the transition probability be: Π =

[
π11 π12

π21 π22

]
. Let θ1 be the steady state probability of being the

good mode and θ2 be that of the bad mode. The steady state probability is θ = (θ1, θ2)′ solves: Π′θ = θ
and θ1 + θ2 = 1. We will vary θ2 and analyze the effects to the system resiliency and sustainability.

Consider the case when µG = e and µB = 0.6e where e′ is an identity vector. Let the interdependency
matrices be AG = AB = A as shown in subsection (6.1).

Figures 8 shows how varying θ2 might affect the system resiliency and sustainability. The horizontal axis
is for the steady state probability of being in the bad mode (i.e. θ2). The left vertical axis is for the recovery
time and the right vertical axis is for the sustainability level. We can see the recovery time increases while
the sustainability level decreases when we increase the probability of being in the bad mode.

Fig. 8: System recovery time and sustainability change when changing the steady state probability of having
the bad mode.

For complex systems with more generic dynamic processes, we might not be able to obtain the closed
form solution for the system resiliency and sustainability. In that case, we can use Monte-Carlo simulation
to simulate the possible value of the interdependency matrix and find out the distribution of the system
resiliency and sustainability. From which, we can tell the expected system sustainability level or the worst
recovery speed.

7 Conclusion

This paper presents a unified modeling framework to analyze infrastructure interdependency, resiliency and
sustainability (IRS), each of which has been the topic of intensive discussion. We first develop mathematical
models to quantify how interdependency among infrastructure subsystems affects resiliency and sustainability
of the whole complex system. We then apply the models to an illustrative case study on biofuel development.
The metrics and the analytical framework developed in this effort lay a foundation for improving the design of
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complex infrastructure systems in the sense that the interdependency may be adjusted to achieve a desirable
level of system resiliency and sustainability. For example, in the biofuel case, the decision on land allocation
for feedstock will affect nearby water supply; similarly, the decision on the locations for refinery facilities will
affect the water supply. These design choices could ultimately be reflected in the interdependency matrix,
which will in turn affect the resiliency and the sustainability of the overall system.

The main objectives of this research are (i) to provide a consistent set of metrics for engineering infras-
tructure IRS, and (ii) to provide insights on the interplay among these different system metrics. In order to
achieve the second objective, we have made some simplifying assumptions in our numerical example; e.g.,
the system dynamics is either linear or Markov-jump linear, and we have omitted the spatial dimension in
each of the subsystems (refinery, water source, and biomass farm). We shall note that we keep the system
very simple for the sake of insight exploration but the framework can be extended to more complex systems,
where the same IRS metrics can be quantified either in closed forms or through simulations. For example,
if we consider a more detailed system (e.g., one with an underlying river network, multiple refineries and
multiple farms), each river node, each farm and each refinery shall be treated as a separate subsystem, and
they are linked together via spatial proximity. This extension would lead to a larger dynamical system with
significantly more state variables, but the methodology presented in this paper is still applicable.

Many analytical results and interesting insights have been drawn from this study. For example, inter-
dependency affects loss propagation, system resiliency and sustainability. Overall, we find that increasing
the magnitudes of interdependencies increases the system recovery time (and hence reduces the recovery
speed). Similarly, in general, increasing the magnitudes of interdependencies decreases the overall system
sustainability. However, there are specific choices of the interdependency matrix and the loss distribution in
which increasing interdependency magnitudes can improve system sustainability. In addition, the concept of
sustainability is scale-dependent, as a system might be considered sustainable at one scale (e.g. local scale)
but unsustainable at others (e.g. global scale).
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